Cross System Product
application generator:
Application design

This paper describes some techniques that can be
used for Cross System Product/Application Develop-
ment (CSP/AD) application design. CSP/AD is an appli-
cation development tool for professional programmers.
A well-designed application is obtained by using
proven principles of structured analysis, structured de-
sign, and structured programming. An understanding
of these principles and the application definition con-
structs provided by Cross System Product/Application
Development is necessary for the CSP/AD application
designer. Application design for CSP/AD is accom-
plished by using a combination of techniques for data
design, application design, and application program
design. For each of these design techniques there ex-
ist formal, accepted practices, and methodologies that
may be used. These techniques are described, and
methods that have proven successful for designing
CSP/AD applications are presented.

ross System Product/Application Development

(csp/AD) is a product that provides interactive
definition and test, including batch or interactive
generation of application programs. In this paper, an
application consists of one or more closely related
programs that support a functional area of an enter-
prise, e.g., a payroll or inventory control system. An
application program is the application definition and
generation unit for CSP/AD. A CSP/AD application
definition is functionally equivalent to a third-gen-
eration language source program. See References 1
to 3 for more information on the facilities of CSP/AD.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

by M. E. Dewell

CsP/AD had its beginning in 1978 and has empha-
sized the advantages of a structured modular pro-
gram design. A history of the product is discussed in
Reference 4. Structured design is enabled in CSP/AD
by a number of application definition constructs that
are presented in this paper.

The reader should be familiar with structured analy-
sis and design methods, and data normalization prin-
ciples. This paper does not present, teach, or favor
any particular method. Structured analysis and de-
sign methods are adequately and eclaborately pre-
sented in other publications that are available to the
reader. (See References 5 to 9.)

The csp/AD application designer may use many
standard structured analysis and design methods. For
a structured analysis method, see Gane and Sarson
(Reference 5); for structured design and module
design, including good module coupling and cohe-
sion, see Yourdon and Constantine (Reference 6);
for structured programming, see Linger, et al. (Ref-

© Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

DewelL 265




erence 7); and for data normalization, see Codd
(References 8 and 9).

CSP/AD is one of the participating products in the
AD/Cycle™ architecture and AD/Cycle tools strat-
egy. Another paper in this issue of the 1BM Systems
Journal discusses these subjects.10

Csp/AD provides a common and consistent end-user
interface conforming to the Systems Application
Architecture™ (SAA™) Common User Access (CUA)
architecture, with its cooperative application defini-
tion facility implementation on a programmable
workstation.

The external source format interface of csp/AD is the
means used to inform CSP/AD of enterprise analysis
and design information that is provided by AD/Cycle
tools.

CSP/AD supports Systems Application Architecture
by providing the sAA application generator interface
components of the saA Common Programming In-
terface (CPI).ll Csp/AD applications that conform to
the SAA application generator interface are portable
across all the SAA execution environments.

The design challenge

The ease of use of the csp/aD definition facility
encourages developers to create applications with
little effort or no prior design experience. It is easy
to iteratively define, prototype, and redefine appli-
cations. Unfortunately this can result in poorly de-
signed applications.

CSP/AD enables application reusability if the appli-
cation designer and the application program designer
have reusability as a goal. Reusability usually results
in high development productivity. In order to obtain
reusability, the designer must understand and apply
good design principles. A well-designed application
uses sound structured analysis and design methods,
meets the application user’s requirements with high
quality, and is easy to maintain.

This paper describes the requirements for designing
applications that are developed with csp/AD. First,
the design of data is briefly described and a method
is suggested. Next, some application design methods
are described and the csp/AD support is defined.
Finally, the specific cSP/AD application program de-
sign requirements are presented.

266 DpewelL

Data design

Data are defined as records (data structures) in
¢spP/AD. Records can be defined for flat files (sequen-
tial, indexed, or relative record access), hierarchical

CSP/AD supports both local and
global data item definitions.

database segments, and relational database tables.
Records are composed of elements called data items.

csp/AD supports both local and global data item
definitions. The developer can have the benefit of
globally available data item characteristics (data type,
length, decimal positions, and description) for data
items that must be consistent in all of their CSP/AD
application programs or data item characteristics
that are used only locally in the defined record.

Although data structures with substructures and ar-
rays are supported, it is recommended that the data
design be targeted for relations. A relation is a rela-
tional term for a normalized two-dimensional table
(rows and columns) of data elements with the follow-
ing characteristics:

» There are no duplicate rows.
» The rows are not ordered.

& The columns are not ordered.
« All elements are single valued.

The data may be analyzed and the design refined
until all the relations are normalized. Normalized is
a relational term that refers to data that have no
repeating element groups, i.e., none of the elements
are sets (this is first normal form). This allows and
encourages good functional modular design of ap-
plication programs—that is, related functions are
confined in a single unit. The definition of processing
for a single relation should be defined in one process
or process hierarchy. It should not include processing
for unrelated functions or relations. Detailed knowl-
edge about the internal processing is not necessary
to access the function. Well-defined interfaces are
provided for access to the function. This is a good

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990




Figure 1 Entity-relationship diagram data design

CUSTOMER

11 RECEIVE

1 m{ CUSTOMER_INVOICE

IS_SENT_BY

IS_SENT_TO
1 m
1 1
'S
OI
Zle
gl
b2
31
1S_BILL_FOR J 418
c {O
IS_BILLED_8Y <10
m 1
1
CONTAINS _LIST _OF 1
ARE_LISTED_IN

DESIGN NOTATION

-

MAX § 3 MANY

MIN
MINf ©

modular structure which allows reusability and sim-
plifies maintenance. These modular units are iterated
to process sets of the relations, and combined with
other functional modules to create structured appli-
cation programs,

Entity-relationship (ER) diagraming is a useful tech-
nique for data analysis and design."” See the example
in Figure [. Relational database design methods
promote the use of ER. This ER design can directly
reflect the user’s view of data because the entities
may define items that the user recognizes. An entity
is defined as a person, place, thing, or event, such as
CUSTOMER and CUSTOMER_INVOICE. The user also

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

recognizes the relationships that exist between items;
for example, CUSTOMER __INVOICE IS_SENT_TO CUS-
TOMER. In the example, the rectangles represent en-
tities, the labeled lines connecting the entities are
relationships. The notations on the line adjacent to
an entity specify the minimum and maximum num-
ber of entities of that type that can participate in the
stated relationship with one of the entities at the
opposite end of the line. For example, a CUSTOMER
INVOICE IS_SENT_TO one and only one CUSTOMER
but a CUSTOMER may receive one or many CUS-
TOMER _INVOICES.

The ER diagram can be viewed as a definition of data
structures or relations (tables). The entities and re-

oewell 267




Figure 2 Application program transfer design example

APPLICATION _SELECTION

¥ ¥
i ] |}
s o o il | ™

r a |
1 ]
1] ¥
1 ¥

r-*-;ﬂ

&
ORDER_ENTRY

L—.n,—-----—-q-u---u-d--uiﬂh gt 2, §

- g

INVENTORY

lationships can be logical relations whose attributes
(columns) are used in process and function design.
The relation and its attributes can be associated with
screens, reports, and parameters in the function de-
sign. When used for database design, the relations
may become Data Language/One (DL/I) segments or
DATABASE 2™ (DB2™) tables. These are represented by
CSP/AD records.

Application design

The application programs may communicate infor-
mation through a database or file, or through param-
eters passed from calling programs or working stor-
age received from transferring programs. CSP/AD sup-
ports application program transfer and application
program call designs.

Application program transfer. The application pro-
gram transfer design includes application control
and data transfer. An application program transfer
passes control to another program without returning
control to the transferring program. The transferring
program is terminated. During the transfer, data may
be passed.

A module structure chart may be used for designing
application program networks. Figure 2 is an example
using a module structure chart for an application
program transfer design. A module, or application
program, is represented by a rectangle with a module
name in the rectangle. A connection between mod-
ules is represented by an arrow between the rectan-
gles. The dotted lines indicate an asynchronous call

268 oeweLL

(transfer), the arrows indicate the direction of pro-
gram control flow. These connections may be only
potential connections that occur based on the satis-
faction of some conditions. Multiple references in
one module to another are usually not represented.
The names of the data or parameters that are shared
between the modules may be indicated on the chart.
The APPLICATION_SELECTION program is the con-
trolling module. The INVENTORY program has design
interfaces that are shown in Figure 3.

Application programs use the CSP/AD asynchronous
transfer statements (XFER and DXFR) to implement
the design. Data may be passed to the other program
during the transfer as an argument of the transfer
statement. The argument that is transferred may be
defined as a working storage record (containing one
or more data structures) or may be defined as a map
(containing variable data fields).

CSP/AD applications may execute as segmented mode
transactions in Customer Information Control Sys-
tem for Virtual Storage (cics/vs) and Information
Management System for Virtual Storage (1ms/vs). In
CICS/VS, this execution mode is called pseudoconver-
sational. In IMs/vs, it is called conversational or
nonconversational, depending upon whether the
scratch pad area is used or not.

Application program call. An application program
call design also involves control and data passing,
but control is passed and returned, and data may be
passed and returned. An application program call

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1990




Figure 3 Application program call design example

SUPPLIERS

passes control to another program and receives con-
trol again when the called program returns (termi-
nates). When the program calls involve more than
one level, the resulting design forms a call hierarchy.

The module structure chart may be used to design a
call hierarchy. Figure 3 is an example of an applica-
tion program call design. In this example, the solid
connecting lines indicate a synchronous call (control
is returned). Application programs use the CSP/AD
synchronous call statement (CALL) to implement the
design. Data may be received by the called program
and returned to the calling program. These data are
defined in the called program as parameters and in
the calling program as arguments on the call state-
ment. The design requirements for parameters (ar-
guments) are: (1) There may be single elements or
data structures and (2) arguments must match pa-
rameters in number, order, structure, data type, and
length.

Application program design

A key concept in software engineering using struc-
tured analysis and design methods is cohesion, also
referred to as “modular strength,” “binding,” and
“functionality.” Cohesion is the degree of functional
relatedness of processing elements within a single
module (Chapter 7 of Reference 6). The CSP/AD
application program design has a highly modular
structure which facilitates design for high cohesion.
The primary subordinate unit of a csp/AD applica-
tion program is a process. This is similar to a source

1BM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

program procedure or paragraph but is more re-
stricted, as discussed in a following section on process
design. There are no parameters or local variables
for a process. The scope for access of data elements
is global within an application program-—that is,
definition of variables that may be known only
within a process is not supported by CSP/AD.

The csp/AD application program structure consists
of a top-level application program flow logic, and
lower levels of processes invoked by the processes of
the previous level, i.e., a process hierarchy. This
CSP/AD application program structure may be de-
signed using data flow diagrams, module structure
charts, and action diagrams.

Program flow logic. The top level consists of a list of
main processes and application flow processing state-
ments defined for each main process. The main
processes and associated application flow processing
statements are the elements used to implement the
top-level or main program design.

An action diagram may be used to design this appli-
cation program logic. In Figure 4, the SELECTION_
WSR (working storage record) definition is followed
by the main processes, represented by the PERFORM
and the labeled rectangle. The main processes are
listed in default execution order. The first process in
the list is always executed when the application is
invoked. A set of application flow statements may
be defined for execution following the completion of
the execution of each main process. This is repre-

DEWELL 269




sented in the figure by the bracketed csp/AD condi-

tional IF statement. The application flow processing

statements determine which main process to execute

next. Flow statements, i.e., conditional processing

statements, are used to alter the default sequence of

. execution of the main processes. This allows consid-
SELECTION_ WSR SELECTION_WSR erable flexibility in the program design.

{WORKING STORAGE —
RECORD)

Figure 4 Action diagram example of program flow logic

If a structured program design is preferred (and it
should be), the developer must utilize structured
i R program principles in this phase of the program
PERFORM DISPLAY_SELECTIONS 1y design. A process sequence is good program structure
for functions that are executed once in a specified
order for each invocation of the program. For exam-
ple, if it is assumed that security or user authorization
is one of the main processes in the list, the flow
statements may be used to bypass subsequent proc-
esses and terminate the application if the user does
not have valid authorization. The principle of good
F SECURITY EQ “FAILED" structured programming described here 1is: Malp
EZECLOS process execution sequence should only be altered if
the progression is forward in the list of main proc-
esses.

PERFORM USER_ALTHORIZATION

PERFORM

Process hierarchy. Each main process may be the
root process of a process hierarchy. A main process
may invoke other processes which in turn may in-
voke other processes. When each process below the
main process in the hierarchy completes execu-

Figure 5 Data flow diagram example of application program design (VALIDATE_CUSTOMER)

ENTER_ORDER_HEADER CUSTOMER_INFORMATION CUSTOMER_INQUIRY

&
»

CUSTOMER_ADD CUSTOMER_INFORMATION

-

CUSTOMER_ID

CUSTOMER_CHANGE

-

270 oewew IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990




Figure 6 Module structure chart example of application program design

VALIDATE _CUSTOMER

ENTER_ORDER_HEADER

CUSTOMER_INQUIRY

CUSTOMER_SCAN

CUSTOMER _ADD

CUSTOMER_REPLACE

tion, control returns to the invoking process. This
process hierarchy structure is implemented with the
CSP/AD synchronous process invocation statement
(PERFORM).

The data flow diagram can be used to design the
process hierarchy of the application program. Each
of the main processes is refined through one or more
levels of data flow diagrams. The lowest level con-
tains processes that define a single function and may
perform only one input/output operation, as de-
scribed in the following section on process design.
Figure 5 is a data flow diagram for the VALIDATE_
CUSTOMER function. The rectangles are processes and
the lines connecting the processes name and indicate
the direction of flow for the data.

Each data flow diagram level may be transformed
into a program structure chart. (See Chapter 10 of
Reference 7.) Figure 6 represents the resulting proc-
ess hierarchy design for the VALIDATE_CUSTOMER
function.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Process design. A process is a sequence of CSP/AD
statements consisting of three optional parts: before
1/0 processing, an I/0 option, and after 1/0 processing.
The action diagram, as shown in Figure 7, may be
used to design the logic of a process. The READ
RELATION is the 1/0 option in the figure.

A CSP/AD application program I/O operation is re-
ferred to as the process option. Process options are
provided to display screens (DISPLAY and CONVERSE)
which have a map definition as the object of the
option, to print forms (DISPLAY) which also use a
map definition as the object, and to perform database
and file 1/0 (e.g., INQUIRY, ADD, UPDATE, REPLACE,
DELETE) which have a record definition as the object.

If the design is a segmented transaction, each con-
verse of a map divides the application into logical
segments. Database locks and file positions are not
maintained across the converse of a segmented ap-
plication. The proper process design for data update
follows:

pewel 271




Figure 7 Action diagram example of process design

CUSTOMERS

CUSTOMER_SCAN

CUSTOMER_ADD

CUSTOMER_UPDATE

¢ Read the database or file information (INQUIRY).

¢ Save the information in working storage.

¢ Display the information (CONVERSE).

¢ Reread the information with a lock (UPDATE).

e Compare the reread information with the saved
information.

e If the information has not changed, update the
information with the modifications from the dis-
played map and write the updated information
(REPLACE).

e Otherwise, redisplay the changed information with
an appropriate message to the user (CONVERSE).

Good process design requires modular design with
each process performing a single function. The ad-
vantages of decomposition of the design to this level
are higher reusability, better maintainability, and
extensibility. It also provides a means for estimating

272 oewell

and measuring application development and main-
tenance by using function point analysis.

Summary

Recommended designs and methods for CSP/AD ap-
plication programs include: data design using entity-
relationship diagrams and relational principles, ap-
plication program transfer and call designs using
module structure charts, and structured application
program design using data flow diagrams, module
structure charts, and action diagram techniques.

An application must meet the user’s requirements
and have high quality and good maintainability. A
well-designed application is obtained by using
proven principles of structured analysis, structured
design, and structured programming. An under-
standing of these principles, and the CSP/AD-sup-
ported application definition constructs, is necessary
for the application designer.

AD/Cycle, Systems Application Architecture, SAA, DATABASE
2, and DB/2 are trademarks of International Business Machines
Corporation.

Cited references

1. Cross System Product/Application Development and Cross
System Product/Application Execution, General Information,
GH23-0500, IBM Corporation; available through IBM branch
offices.

2. Cross System Product{Application Development User’s Guide,
GH23-0501, IBM Corporation; available through IBM branch
offices.

3. Cross System Product/Application Development Sample Ap-
plications Guide, GH23-6428, IBM Corporation; available
through IBM branch offices.

4. W. K. Haynes, M. E. Dewel], and P. J. Herman, “The Cross
System Product Application Generator: An Evolution,” /BM
Systems Journal 27, No. 3, 384-390 (1988).

5. C. Gane and T. Sarson, Structured Systems Analysis: Tools
and Techniques, Prentice-Hall, Englewood Cliffs, NJ (1979).

6. E. Yourdon and L. L. Constantine, Structured Design: Fun-
damentals of a Discipline of Computer Program and Systems
Design, Prentice-Hall, Englewood Cliffs, NJ (1979).

7. R. C. Linger, H. D. Mills, and B. 1. Witt, Structured Program-
ming: Theory and Practice, Addison-Wesley Publishing Com-
pany, Inc., Reading, MA (1979).

8. E. F. Codd, “A Relational Model of Data for Large Shared
Data Banks,” Communications of the ACM 13, No. 6, 377-
387 (June 1970).

9. E. F. Codd, “Further Normalization of the Data Base Rela-
tional Model,” Courant Computer Science Symposia, Data
Base Systems (Volume 6), Prentice-Hall, Englewood Cliffs,
NJ (1972).

10. V. J. Mercurio, B. F. Meyers, A. M. Nisbet, and G. Radin,
“AD/Cycle Strategy and Architecture,” IBM Systems Journal
29, No. 2, 170-188 (1990, this issue).

11. Systems Application Architecture Common Programming In-
terfuce Application Generator Reference, SC26-4355, IBM
Corporation; available through IBM branch offices.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990




12. P. P.-S. Chen, “The Entity-Relationship Model—Toward a
Unified View of Data,” ACM Transactions on Database Sys-
tems 1, No. 1, 9-36 (March 1976).

M. Eugene Dewell /BM Programming Systems, P.O. Box 60000,
Cary, North Carolina 27512-9968. Mr. Dewell is a senior program-
mer in the Advanced Design and Strategy department where he is
involved with the design of the IBM Cross System Product appli-
cation generator. He attended the University of Virginia where he
received his B.S. degree in biology. Mr. Dewell joined IBM in 1967
as a systems engineer at the Indianapolis marketing branch office.
In 1972 Mr. Dewell was the Systems Engineer Grand Award
winner for the Midwestern Marketing Region. He has been a
member of seven IBM systems engineer symposiums. In 1974 he
moved to Raleigh to work in software development on a project
that resulted in the extended telecommunications module (EXTM)
product (a low-entry CICS-based communications product for
support of IBM finance and point-of-sale terminals for the new
synchronous data link control [SDLC] communications). Mr.
Dewell was one of the original designers and developers of the
current Cross System Product application generator. He has been
continuously involved in design and development of various
phases of Cross System Product since 1977. For the last five years
he has focused on Cross System Product advanced design require-
ments. Mr. Dewell is a coauthor of “The Cross System Product
Application Generator: An Evolution,” which appeared in the
IBM Systems Journal in 1988 (see Reference 4).

Reprint Order No. G321-5398.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1890

pewelL 273




