
DevelopMate:
A new paradigm
for information system
enabling

by K. P. Hein

This paper discusses a new approach to the use of
information systems that is based on enterprise infor-
mation system modeling concepts. This approach is
primarily oriented to the enterprise expert, who is con-
sidered to be the individual most familiar with the func-
tioning of a particular area of the enterprise informa-
tion system. The approach is not primarily oriented
toward the data processing professional. The paper
discusses the phases of the approach and how the
DevelopMatenl software product supports some of
those phases.

0 ver the past twenty-five years, we have wit-
nessed an evolution in the development of

information systems by data processing profession-
als. First, specific programs were written to solve a
particular problem. These were later combined via
some intermediate step, such as a sort, into a pro-
gram set (application) that operated on common
data. Then, the industry evolved from building a
single application to creating integrated, shared-data
systems. As this evolution has taken place, it was
discovered that integrated information systems are
more complex, multidimensional, and highly inter-
related. These systems affect an ever larger part of
the enterprise than had initially been foreseen. Un-
fortunately, development approaches have not kept
pace with this evolution in complexity. Most data
processing organizations are approaching shared-
data system development the same way they ap-
proached the development of single programs.

The traditional application development life cycle is
shown in Figure 1. This process is not capable of
supporting the requirements of integrated data-sys-
tern development. F13r example, no provision is
made to understand how the system under develop-
ment affects or comnlunicates with other informa-
tion systems in the enterprise. There is no accounting
for how many systems there are or what data are
affected. It does not take into account the quantity
of data being passed or the data standardization that
might be required. Instead, the system under consid-
eration is treated as an isolated entity that is assumed
to have no association with any other system in the
enterprise. Expensive design, programming, and test-
ing are done for individual system parts, without an
understanding of final interfaces and dependencies.
As Figure 1 suggests, integration of the various ap-
plication parts is performed only after considerable
time and effort have been expended. The results of
the integration activity send the developers back to
the design definition phase to correct any interoper-
ability problems that might come to light. Thus the
cycle is repeated at considerable cost. This approach
is analogous to building an airplane using different

0 Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IEM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 1 Standard development life cycle, granular view

CONCEPT AND
FEASIBILITY

I REQUIREMENTS 1' I DEFINE

jcoo. CHANGE

subcontractors. As they meet on the appointed day
to join fuselage, wings, landing gear, communica-
tions equipment, and interior cabin, it is discovered
that the major assemblies do not connect. The seats
are too large for the available space in the fuselage,
the wings cannot support the weight of the airplane,
and the landing gear is too large to fit into the
appropriate place for storage.

In manufacturing, this problem is avoided by incor-
porating the integration step into the early design
stages of the product, so that subcomponent builders
may build to predesigned and well-understood inter-
faces. In the information system manufacturing busi-
ness, however, a common practice is to isolate ap-
plications from their major subsystems and treat
them as if the rest of the environment did not exist.
As a result, the user and the enterprise pay for the

resultant rework and redesign in the form of lost
time, dissatisfaction, and production loss.

This cost is manifested in successive systems because
they must recover the expense of integrating previous
systems. Each successive system becomes ever more
expensive with the cost borne by the sponsoring
organization, even though the benefit is corporate
wide. The more the already-existing systems need to
be integrated with the current system, the higher the
cost of the current system. Therefore, it must be
concluded that integration at this price is undesirable
and that the old model of system development does
not serve the construction of large-scale integrated
systems sharing common data.

The result is that the user community feels that its
requirements, which are often very straightforward,

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

require an inordinate amount of time to be fulfilled.
When the system is delivered, many requirements
and requests are not implemented or do not perform
as specified, and the cost is substantially higher than
initially estimated. Such systems are often delivered
late as well. The data processing professionals have
good and sound technical reasons for the late deliv-
ery and inadequate performance of the systems.
However, these technical reasons further alienate the
end users from the data processing professionals
because end users are often not well versed in tech-
nical matters and do not identify with these technical
issues.

For these and many other reasons, end users have
embarked on creating their own solutions. Usually,
they purchase a microcomputer or minicomputer in
order to gain control over their own information
environment. They feel that this step will allow them
to have systems that meet their requirements. The
time required to implement the system is under their
control, and they need no longer beg and plead with
others who appear to be indifferent to their problems.

As much as these users' actions may satisfy the
requirements, when viewed from the enterprise per-
spective, other problems arise. Instead of sharing
data as a corporate resource, data are being managed
as organizational property by narrow groups of users.
Rather than sharing a single information source from
which consistent decisions can be made, we find that
many information sources leave management to
make decisions based on conflicting, duplicate, and
contradictory data. The problem created by the dis-
persal of information has been made worse by the
fact that the applications reside on different hard-
ware. Standardization of terms and definition of data
is nonexistent, and the processing of the same fact
multiple times is widespread and results in ineffi-
ciency, duplication, and poor decision making.

To solve these problems, a development approach
must allow for the creation of large, integrated en-
terprise information systems at much higher produc-
tivity levels than heretofore realized. The approach
must also take into account the requirements of the
enterprise to manage data as a resource in a stand-
ardized, integrated, and consistent way. It must also
involve full participation and responsibility by the
eventual owners of the system. This approach must
make it possible for the designers to create overall
enterprise-wide information systems as a well-func-
tioning, integrated architecture. This requires that
the method employ well-recognized design and ar-

chitectural principles used for complex system build-
ing. Furthermore, the system users must be actively
involved in the architectural phase and exercise over-
all control over each part of the integrated informa-
tion system. Additionally, the users should be able
to express their system specifications and business
rules in their own language and test these specifica-

The effect of the immediate
and interactive testing capability

is to save expensive rework.

tions for validity and accuracy. And finally, the
whole approach must be completely supported by
software in order to gain significant productivity
improvements.

A new approach

A new approach to using information systems based
on enterprise modeling and a program product called
DevelopMate", is illustrated in Figure 2. This ap-
proach capitalizes on the business professional's de-
sire to be involved and to take responsibility for his
or her system. The user is an extension of the total
available enterprise information system develop-
ment resource. The user is supported in this by a set
of software support functions that store and share
their information in a facility such as the IBM Re-
pository Manager'"(RM). These support functions, as
embodied in DevelopMate, allow the professional to
communicate in terms of the business processes, data
views (such as invoices and bills of material), orga-
nizational units (such as departments or individuals),
events, locations, and so forth. This information is
defined as enterprise rules and takes the form of
models, constraints, report or panel images, and
enterprise policy statements.

At the start, enterprise experts define an enterprise-
wide information system architecture. Following
that, parallel subsystem architecture and specifica-
tion begins. This step is taken with the secure knowl-
edge that expensive rework caused by integration
problems can be avoided, because the new approach,

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

~

Figure 2 New approach to development activities

ENTERPRISE ” I ANALYSIS I.‘+ I I
I I I

DECOMPOSITION AND REFINEMEN? LI VALIDATION I SPECIFICATION

2HANGE

MAINTENANCE

ENTERPRISE ANALYSIS AND ARCHITECTURE VALIDATE PRODUCE

ENTERPRISE ARCHITECTURE SYSTEM DevelopMate GENERATOR

as part of its philosophy, takes integration into ac-
count at the start.

When the architecture has been captured and stored
by RM, the enterprise expert can test his or her
specifications interactively using DevelopMate. This
provides the ability to determine how the system will
apply the specifications at execution time. The sys-
tem will let the user correct ambiguous statements
immediately, without propagating them down to
later stages of development. The effect of the im-
mediate and interactive testing capability is to save
expensive rework during later definition phases.
Once this concurrent specification checkout is com-
pleted and the tested set of specifications performs
as desired, the user’s business subsystem is ready to
be generated into target production environments,
such as IMS/VS and CICS/VS, using a generator that

can understand and translate the specifications into
more conventional data processing terms. The infor-
mation may also be used to support traditional pro-
gram coding.

With all of this concurrent architecture and devel-
opment activity supported by various software facil-
ities, all the architecture information is integrated
and shared via a common, active knowledge base
stored by RM. RM-managed data contain all the in-
formation system specifications in terms of models,
rules, and formats. This concept is explained in more
detail below.

DevelopMate

DevelopMate allows for the definition, decomposi-
tion, and refinement of a previously created infor-

IBM SYSTEMS JOURNAL, VOL 29. NO 2. 1990

DEMAND FORECAST
COST ESTIMATE*

MARKET SUPPORT
DESCRIPTION
DESCRIPTION*

COST*
MARKET SUPPORT DATA

MANUFACTURING
SUPPORT DATA

I PLANNINQ
SUBSYSTEM

I
I

MANUFACTURING
SUPPORT DATA
DESCRIPTION*

MATERIALS STATUS

254

I

PRODUCTION SCHEDULE I I ORDERS*
AND I i

""

DEMAND FORECAST
PLANS PRODUCT AND STATUS
MANUFACTURING SUPPORT DATA
CAPACITY

INVENTORY STATUS

\

MANUFACTURING
RESOURCE STATUS

AND STATISTICS
PRODUCTION SCHEDULE

AND STATUS

1 1_
ORDERS'

MATERIALS STATUS

mation system architecture; it is not an architecture
development system. Rather, it stores the results of
the architecture study phase and provides for addi-
tional decomposition and refinement of the architec-
ture. DevelopMate also allows the user to define
enterprise information policies or rules in a nonpro-
cedural manner. It also allows for the definition of
the enterprise information model in process and
entity-relationship form, report formats, panel lay-
outs, and other defining features. These definitions
and refinements can be checked and tested interac-
tively for consistency using the facilities provided
and reported in printed form through predefined
reports or by using Query Management Facility
(QMF’”). If desired results are not achieved, the user
is free to make modifications to the specifications
and test them again. All the information is stored by
RM for later use or for concurrent sharing with other
information-system facilities.

In the following sections, the various phases pre-
sented in Figure 2 showing the new approach are
discussed. It is shown how DevelopMate may sup-
port these phases.

Enterprise analysis

Figure 2 shows the steps involved in the new ap-
proach. The first step is an enterprise analysis phase
which develops the high-level enterprise information
system architecture. This step can be automated with
the use of the Information System Model and Ar-
chitecture Generator (ISMOD ~ S - F B A) , a program
offering available from IBM. ISMOD can support var-
ious study meth2ds that deal with information sys-
tem architecture.

The important point is that the enterprise analysis
provides an overall blueprint of the information
system architecture based on common sharing of
data. Once this common blueprint has been estab-
lished, further top-down decomposition and archi-
tecture refinement can occur concurrently in each
one of the subsystems identified at the higher level.
The result of this activity is an enterprise process
model. When the process model is completed, it may
be mass imported into the DevelopMate system, or
it can be entered via a set of DevelopMate panel
dialogs if ISMOD was not used.

Major subsystem analysis

Through the creation of the models defined in this
phase, the enterprise expert can define the informa-

Figure 4 Entity-relationship (ER) model

THROUGH I STORES 1

tion system processes and their relationship to an
underlying AD information model of the enterprise.
The expert can also define how the data and proc-
esses are distributed within the enterprise. This en-
terprise data model is the vehicle by which system
integration is achieved. A comprehensive process
and data architecture are created from a very high
level down to the lowest functional primitive, called
a minispec. The minispec has some unique infor-
mation defined for it in order to make it a machine-
executable function. We now expand upon this sum-
mary of the approach, starting with the process
model. Note, however, the user may define model
types to the DevelopMate system in any order.

Enterprise process model definition. Figure 3 shows
a sample process model that may be defined to
DevelopMate. It shows the processes performed by
the enterprise in network form. Decomposition can
be performed on each process into lower-level net-
works until the lowest-level process (minispec) has
been reached. At the lowest level, all the minispecs
may have more than one input, but they must have
only one output. The minispec becomes the unit of
implementation either as a manual task description
or as a programming specification for mechanized
implementation.

The inputs to and outputs from the process are
referred to as data views. Data views are documents
that are needed to perform the process in the enter-
prise information system. A view is defined as a

group of interrelated data arranged to allow the user
to derive useful information. An invoice, check stub,
bill of material, telephone message form, and com-
puter screen format are examples of data views.

Events may also be defined to identify the conditions
under which certain processes are performed. Thus,
events act as triggering mechanisms that cause the
process to execute when the event is satisfied. An
event can be a certain time of day, end of the month,
the completion of a process, or creation of a data
view. In the initial implementation of DevelopMate,
events are defined for documentation purposes only.
Event action is performed based on trigger policies
discussed later in this paper.

Enterprise data model definition. The process model
is not enough to completely describe the enterprise
information system. Additionally, a data model that
supports the enterprise information processes is re-
quired. Through the DevelopMate data model defi-
nition dialog, the enterprise expert can express how
enterprise data relates.

Referring to the example in Figure 4, it can be seen
that a customer buys a part through a salesperson
who works at a warehouse which stores the part.
This data model not only conveys information to
the user, but it also allows the enterprise expert to
define knowledge of complex interrelationships in a
simple, understandable form to the system. Entities
and relationships are described by attributes that tell

IBM SYSTEMS JWRNAL. VOL 2 9 , NO 2. 1990

us more about the particular entity or relationship
type. This type of model is known as an entity-
relationship (ER) model and was first advocate! as a
useful tool for data definition by Peter Chen. It is
created through the common efforts of enterprise
experts and data administrators.

The enterprise data model connects to the process
model via the data view. The entity attributes that
are specified to be displayed on the data view become
the connecting thread. An invoice, for example, dis-
plays various entity attributes, such as customer
number, customer name, part number, part name,

Enterprise analysis provides an
overall blueprint of the information

system architecture based on
common sharing of data.

part price, and salesperson number. Thus, each data
view is supported by information described in the
data model. What is most important in this data
representation is that business knowledge is imbed-
ded in the model in the form of relationships such
as: buys, stores, works at, or through. Thus, an
enterprise expert can express highly technical data
interrelationships in a simple and friendly way.

The model shown in Figure 4 can be made more
expressive by applying association rules. For exam-
ple, one might define the relationship type WORKS
AT as M: 1, i.e., many to one. This allows the user to
define the rule that a salesperson may work at only
one warehouse and that a warehouse may have many
salespeople. Other rules for control and dependency
may also be defined.

Enterprise distribution model definition. In this step
of the major subsystem analysis phase, the user may
define which organizations perform the various en-
terprise processes, where the organizations are lo-
cated, where specific processes are performed, and
the data required at that location to perform the
process. This architecture will be of great importance

IBM SYSTEMS JOURNAL, VOL 29. NO 2, 1990

to communication-network and hardware/software
planners who must provide the physical environ-
ment in which the eventual information system is to
perform.

DevelopMate provides the user with a set of dialogs
that may be used to acquire such architecture infor-
mation, but it provides no support for distribution
architecture algorithms. This is left to appropriate
architecture facilities.

The minispec. The minispec is defined as the lowest
level of decomposition in the process model. It is at
this level that processing algorithms transform input
data into output data. These algorithms may be
written as a job description to be performed by a
person or they may be programmed as a transaction
for a computer system. Another possibility is that an
application-development-oriented expert system
may merge the specifications and create a computer-
executable function without programming.

In order for a process to be defined as a minispec, it
must meet the following conditions:

Have a superior (parent) process
Not have any subordinate (child) processes
Have multiple inputs but only one output

Another difference between a high-level process and
a minispec process is that the minispec process may
also have additional specifications that can be used
by a computer system to create an executable func-
tion. These additional specifications are:

A data submodel that tells the system the subpart
of the enterprise data model to be used by the
minispec to create the desired output view
A format that defines the physical form of the
output view when it is presented to the user
An output data view to be produced by this mini-
spec process that provides the list of entity attri-
butes (data elements) that are to be shown or are
required to compute values to be shown on the
format
Any policies that pertain to the particular mini-
spec

Enterprise policy specification

DevelopMate allows the enterprise expert to define
enterprise policies that implement his or her partic-
ular rules of operation. This is the step in the devel-
opment approach that gives logical life to the process

HEIN 257

and data models defined in the previous steps. (See
Figure 3.) Policies are statements made by the enter-
prise expert specifying the action to be performed
when certain conditions occur during the execution
of enterprise processes. These policies are divided
into the following four main categories:

Integrity
Derivation
Trigger
Security

Policies may be expressed as conditional or uncon-
ditional. A conditional integrity policy may be ex-
pressed as follows:

If the EMPLOYEE NUMBER is not in the range of 1000-
5000, issue the message “Employee nunber out of
range. ”

An example of a derivation policy is the following:

If the employee is salaried, the EMPLOYEE GROSS PAY
is EMPLOYEE YEARLY SALARY divided by 12.

An unconditional derivation policy may be the fol-
lowing:

STATE TAX iS GROSS PAY * 0.075.

A conditional trigger policy may look as follows:

If PART QUANTITY ON HAND is less than PART ORDER
POINT, execute the PURCHASE ORDER WRITING mini-

ECONOMIC ORDER QUANTITY on to the next step.

These policies can be globally defined for the entire
enterprise and by specific, local processes. Global
policies are defined once, such as the integrity policy
just shown. The policies can be applied any time the
employee number attribute is referenced at execu-
tion time. Therefore, when a change in the policy is
made-such as a range change from 1000-5000 to
1000-6000-the enterprise expert can reference the
policy and change it. From that instance, all refer-
ences by all minispecs across the entire system will
reflect and correctly implement the new policy. A
local policy is one that is unique to a particular
minispec process, and any change made to it is
reflected only in the specific minispec. This allows
the user to contain a change to a specific minispec
process without affecting the entire system.

spec process, passing the PART NUMBER and the PART

258 HEIN

Note that it is possible with this concept to store
enterprise policies in a nonredundant manner, mak-
ing future maintenance much easier than when logic
is duplicated in many application programs.

Specification validation

In DevelopMate, the above specifications-includ-
ing the policies-are made independent of one an-
other. This means that no procedural definition is
made, leaving the enterprise expert free to concen-
trate on the specific definition rather than being
concerned with detail logic specification. However,

After the specifications have been
defined to the system, tested, and
found to work, they can be moved

into production.

DevelopMate is capable of combining the various
definitions in such a way that processing is performed
in the proper order to yield the required results. The
enterprise expert can call for an execution of defini-
tions at any time, and the system will produce the
result. Any specification errors can be corrected im-
mediately and then retried.

The significant point is that after the specifications
have been defined to the system, tested, and found
to work as desired, they can be moved into produc-
tion by causing a generator facility to create pro-
grams for specific production environments. It may
further be noted that the system can only execute
properly when the expert’s knowledge has been de-
fined to the system. This means that without docu-
menting the required information through the sys-
tem model and rules, there is no functioning system.
Documentation becomes a necessity to system op-
eration, yet it is a by-product of the development
environment and not a separate step which, in the
traditional development process, is usually not per-
formed.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Operational test and evaluation

DevelopMate implements an operational test evalu-
ation phase of the new development life cycle by
allowing the actual every-day users of the processes
to test and evaluate the ease of use of the system
components. If a change is required, the enterprise

Documentation is an integral part
of the change procedure and cannot

be bypassed.

expert can immediately change the specification in
the enterprise model definitions, and the new result
can be tested. Furthermore, if the specifications and
policies are global, all other usages in the system will
be immediately corrected.

After validation by the enterprise expert, who is also
the responsible user, the operational test and evalu-
ation phase is almost nonexistent. The reason for
this is that the user has worked closely with the
system from the beginning and therefore has made
the specifications to meet particular requirements.

Production and maintenance

DevelopMate does not affect applications in the
main production environments of IMS/VS or CICSIVS.
Instead, it stores the enterprise architecture and as-
sociated rules in the RM-supplied entity-relationship
model, so that a follow-on generator may use it to
create a production system for the required target
environment.

In DevelopMate, change to the architecture and rules
is easily accommodated. If business policies change
or the process model needs to change, the change
can be applied by the responsible enterprise expert
to the DevelopMate information stored by RM. The
significant advantage here is that the user must go
back to the model and policy specification to affect
the change. This means that the documentation step
is an integral part of the change procedure and
cannot be bypassed, as is so often the case today.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

independence

Note from the preceding description of the approach
and from its underlying computerization, that all
data about the enterprise information system is
stored by RM. It is, therefore, extremely important
that RM be capable of operating in various hardware
and software environments. This level of independ-
ence is provided, because RM is a Systems Applica-
tion Architecture" (sAA'~) component.

Some considerations for automation

The ER model. The entity-relationship (ER) model is
a device that is widely used by analysts today, be-
cause it allows the analyst to describe a body of
knowledge in picture form. An example ER model is
shown in Figure 4. The following are definitions of
some of the terms used in connection with the ER
model.

An entity is a person, place, thing, or idea about
which the user wants to collect and maintain data in
order to manage a particular resource. An entity
must be uniquely identifiable and may be collected
into entity sets. In a model, the description of an
entity set is called an entity type. Examples of entities
may be a customer, general ledger account, student,
automobile, etc. Notice that each instance of an
entity type (the entity) must be uniquely identified
by one or a combination of its attributes.

Entity attributes are characteristics or properties of
a particular entity type. For example, the entity type
CUSTOMER may have the attributes CUSTOMER NUM-
BER (identifier), CUSTOMER NAME, CUSTOMER STREET
ADDRESS, CUSTOMER CURRENT BALANCE, etc.

A relationship connects two entities or, if desired, an
entity and another relationship. For example, the
entity type STOCKHOLDER owns the entity type STOCK
CERTIFICATE. In this case, the verb OWNS is the
relationship. As for the entity, the relationship de-
scription in the model is called a relationship type.
Its instances are the relationships between real enti-
ties. Relationships can define forward and inverse
directions. Thus, we may say that a stock certificate
IS OWNED-BY a stockholder. Additionally, relation-
ships may have certain rules. For example, a stock-
holder may own MANY stock certificates, but a stock
certificate is owned by only ONE stockholder.

With these explanations we can now see how easy it
is for the enterprise expert to express knowledge in

Figure 5 Entity-relationship (ER) example

7"- USING/USED-BY +
DEPOSITS-INTO/DEPOSITED_INTO_BY

CUSTOMER

WITHDRAWS-FROM/WITHDRAWN-FROM-BY
4 I WRITES/WRITTEN-TO

pictorial form using the ER model. In Figure 5 , entity
types are represented by rectangles, relationship
types by lines with arrowheads, and constraint rules
with 1 (ONE) and m (MANY).

Let us use the following semantic description of a
banking environment:

A customer deposits money into a checking account
using a deposit slip. The customer writes checks to
withdraw money from the checking account.

If we use small capital letters for each of the uniquely
identifiable entity types in the preceding paragraph,
we obtain the following sentence:

The CUSTOMER deposits money into a CHECKING

CHECKS to withdraw money from the CHECKING
ACCOUNT using a DEPOSIT SLIP. The CUSTOMER writes

ACCOUNT.

The words in small capitals represent entity types
with uniquely identifiable occurrences and are all
nouns. For example, the entity type CUSTOMER has
unique occurrences of IBM, GE, AT&T, etc. Thus any
noun that represents a uniquely distinguishable oc-
currence of its type-such as customer-is an entity
type. If we capitalize each of the words that expresses

a relationship between the nouns, we obtain the
following:

A customer DEPOSITS money into a checking account
using a deposit slip. The customer WRITES checks
and WITHDRAWS-FROM the checking account.

The example could be carried further to show that
adjectives become the attributes of entity types and
that adverbs become attributes of the relationship.
For example:

A CUStOmer who has a CUSTOMER NAME, CUSTOMER
ADDRESS, CUSTOMER NUMBER, and CUSTOMER TELE-
PHONE NUMBER deposits money into a checking ac-
count using a deposit slip. The entity type CUSTOMER
then has the attributes name, address, number, and
telephone number.

Additionally, it is possible to define constraints about
the relationships. To do this, expand our original
paragraph and capitalize the constraints, as follows:

A customer may deposit money into MANY checking
accounts, using ONE deposit slip for each deposit.
The customer may write ONE check to withdraw
money from ONE checking account, but may have

IBM SYSTEMS JOURNAL, VOL 29, NO 2. 1990

MANY withdrawals per account. Checking accounts
may have only ONE customer. (Partnerships and joint
accounts are treated as one customer for this exam-
ple.)

The advantage of this type of representation can be
seen immediately. In the first place, it is easy and
straightforward for a user who is not a data process-
ing professional to define complex information in
very simple terms and pictures. Also, a model of this
type can be analyzed by a program in order to make
execution decisions. When policies are added to the
entity and relationship type attributes, the power of
the ER model in logic processing becomes apparent.

Therefore, DevelopMate provides this ability to al-
low easy definition of the enterprise data environ-
ment in ER form. Our experience has shown that the
ER facilities, as provided by RM, serve this purpose
in a powerful way. This allows the enterprise expert
to communicate with the system at the user’s con-
ceptual level while at the same time being able to
physically store and retrieve data from underlying
data management servers.

Repository Manager. The ER facility is used to allow
the expert to define every aspect of the enterprise
information system to one common shared collec-
tion of information. The definition contains all data
necessary to describe the desired information proc-
essing functions. RM is used to completely integrate
every aspect of the enterprise model, including poli-
cies, screen and report formats, and enterprise analy-
sis outputs (such as process and data models). Thus,
the RM-managed data become the integration vehicle
for the functional components supporting the new
life cycle, the specification environment, and the
verification facility.

With this facility, changes can be made simply by
changing the information in RM’S data store. Because
RM-managed data are actively consulted at specifi-
cation test time, the change can be implemented
easily and swiftly throughout the enterprise infor-
mation system.

Fill-in-the-blank panels are provided to allow the
enterprise expert to define knowledge to the system.
The panels use words familiar to the expert. This
makes it unnecessary to learn a data processing
language that is understood only by the computer.

Consistency checking. DevelopMate provides exten-
sive consistency checking to ensure that all specifi-

IBM SYSTEMS JOURNAL, VOL 2 9 NO 2, 1990

cations required to execute a set of minispecs are
met. This means that extensive checking of the proc-
ess and data models is done under user control at
various levels of detail. Furthermore, DevelopMate
automatically invokes consistency checking at var-
ious points in the specification phase.

In the facility under discussion, checking of the
process model is done at various process decompo-

The enterprise requirements
analysis phase is a highly
stimulating and creative

experience for those involved.

sition levels. The system ensures that processes are
properly connected vertically through parent-child
relationships and that horizontal connections exist
through data views. Additionally, data views are
checked for existing and proper definition.

The data model is similarly interrogated to ensure
that views have formats defined for them; that entity
types have attributes; that the attributes defined on
a view are present in the entity type specified; and
that the required relationship types exist. Lists of
error messages are created to allow the enterprise
expert to provide additional information about the
environment and make corrections.

Benefits. Based on preliminary testing, we have
found that the approach presented here, with the
supporting software, provides significant benefits
over the traditional process of information system
development. The development team (consisting of
the enterprise expert, with support from an analyst
and database administrator, both of whom are
knowledgeable about the system) can define and
prototype high-quality integrated data systems in a
very short time.

The enterprise requirements analysis phase is a
highly stimulating and creative experience for those

Figure 6 New approach subsystem costs

COST

ENTERPRISE ANALYSIS
AND ARCHITECTURE

SUBSYSTEM 1 1

SUBSYSTEM

involved. The enterprise expert develops require-
ments and has a simple facility in which to store
them and from which they may be retrieved at a
later time. Computerized support (using the Infor-
mation System Model a n t Architecture Generator
[ISMOD] program offering) provided at this point
allows the team to tackle very large and complex
information systems with great efficiency. Decisions
critical to the development sequence are easily made
with architecture and flow matrices, user satisfaction
ratings, and simulation.

As the requirements and architecture are developed
to greater detail, the system specifications emerge.
They are stored by RM and are available to the
designer or expert for review and modification. The
usual lengthy and cumbersome system specification
document takes on less significance. Because the
enterprise expert and the analyst have made the
definitions using RM and have tested them via the
interactive validation capability, the need for a for-
mal sign-off procedure disappears. Adjustments and
modifications are part of the normal process and are
therefore an ongoing activity.

Interactive validation allows the user to check the
specifications immediately to determine the result at
execution time. This means that when specifications
have been executed and pronounced accurate, the

262 HEIN

particular function or process is ready to be gener-
ated into production. Therefore, except for very rare
and complex requirements, programmer involve-
ment is minimized.

Application execution is not possible unless the
knowledge about it has been defined to the system.
Thus documentation is a requirement for system
operation and not an additional task. If the docu-
mentation is not precise, the resulting executable
function may be in error.

Integration of the various 11s subsystems in the en-
terprise is accomplished in the architecture phase
well ahead of any detail specifications. The definition
of the data model becomes the integration mecha-
nism for the entire enterprise information system.
Using the power of ER models and the capability of
relational database facilities, changes and adjust-
ments can be made easily and at low cost. Thus the
high cost of integration using traditional methods
(because of rework and redesign) are reduced or
eliminated.

Figure 6 indicates the enterprise-wide resources in-
vested at the beginning of an architecture and re-
quirements analysis cycle. Even though this may take
time and the expenditure of resource, the effort is
very cost effective. The reason is that individual

IBM SYSTEMS JOURNAL, VOL 29, NO 2. 1993

subsystems or subcomponents of the architecture
can be implemented at a much more reduced and
consistent cost compared to the traditional practice
described earlier in this paper.

Maintenance is done by the responsible enterprise
organization and can be accomplished in a matter
of minutes or hours rather than days and weeks.

Maintenance is done in a matter
of minutes or hours rather than

days and weeks.

Because specifications are stored nonredundantly,
the change can be applied at a precise point and
shared throughout the system.

Productivity. The productivity gains are orders of
magnitude greater than the traditional methods, be-
cause specifications can be directly validated and do
not need to be converted to code before testing can
begin. The programmer or analyst no longer is the
bottleneck. Instead, that person can be trained to be
the consultant to the enterprise expert and assist in
making the specifications to the system. If very dif-
ficult problems arise which may need a traditional
programming solution, the skill of the programmer
is still available to solve the problem. This mode of
operation, however, is now an exception rather than
the rule.

The extension of the development process to the
responsible end-user community allows a whole new
personnel resource to participate in this process,
while at the same time control over the resultant
functions is maintained by the user. Therefore, a
whole new group of people can be involved in solving
the application backlog problem of today, within the
confines of an overall enterprise architecture.

Summary

The purpose of DevelopMate is to demonstrate and
test the feasibility of an automated development
method that breaks the bamers to productivity in

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

the traditional development approach. DevelopMate
allows the user to develop large-scale integrated,
shared-data information systems. Through the
proper blending of various techniques and leading-
edge software, such concepts as entity-relationship
(ER) data modeling, logic creation through nonpro-
cedural definitions, and various design concepts, we
have found it possible to create a development en-
vironment in which the eventual user participates
from beginning to end, controls the quality of the
output, and prepares the application for use. Yet the
enterprise-wide requirements of shared data, smooth
integration of enterprise processing systems, and
control of enterprise decision making are incorpo-
rated at productivity levels heretofore seldom attain-
able.

Acknowledgments

I would like to express my gratitude to Vivian An-
derson and George Brantzeg for the great assistance
they have provided in proving that this concept is
viable, usable, and commercially feasible. I also want
to thank Jim Sagawa and Tom Duncanson of the
IBM Santa Teresa Laboratory for their excellent work
in ER implementation research. Their contributions
significantly reduced the time required for our ef-
forts. Finally, I thank Robert Tabory for his intellec-
tual, advanced technological, and moral support.

DevelopMate, Repository Manager, QMF, Systems Application
Architecture, and SAA are trademarks of International Business
Machines Corporation.

Cited references and note

1 . The DevelopMate program number is 5688-36 and the manual
number is GC26-4641-0, both of which may be obtained
through IBM branch offices.

2. K. P. Hein, “Information System Model and Architecture
Generator,” IBM Systems Journal 24, Nos. 3/4 (1985).

3. P. P. Chen, Entity-Relationship Approach to Systems Analysis
and Design, University of California at Los Angeles, L o s An-
geles, CA (December 1979).

4. M. Veys, Information System Model and Architecture Generu-
tor-System Guide, Program Offering Manual, LY20-0975,
published by IBM Corporation (December 1984); available
through IBM branch offices.

5. K. P. Hein and M. Veys, Information System Model and
Architecture Generutor-Study Guide, Program Offering Man-
ual, SH20-665 I , published by IBM Corporation (December
1984); available through IBM branch offices.

General references

R. Ambrosetti, T. A. Ciriani, and R. Pennacchi, “An Application
Analyzer,” IBM Systems Journal 23, No. 4, 336-350 (1984).

HEIN 263

Arthur Young Information Technology Group, The Arthur Young
Practical Guide to Information Engineering, John Wiley and Sons,
Inc. (1987).
A. Blokdijk and P. Blokdijk, Planning Design of Information
Syslems, Academic Press, Inc., New York (1987).
Business Systems Planning-Information Systems Planning
Guide, Application Manual, GE20-0527.
C. Gane and T. Sarson, Structured Systems Analysis: Tools and
Techniques, Prentice-Hall, Inc., Englewood Cliffs, NJ (1979).
W. H. Inmon, Information Engineering for the Practitioner, Your-
don Press Computing Series, Prentice-Hall, Inc., Englewood Cliffs,
NJ (1988).
J. Martin, Application Development without Programmers, Pren-
tice Hall, Inc., Englewood Cliffs, NJ, 1982.
J. Martin and J. Leben, Strategic Information Planning Method-

(1989).
ologies (Second Edition), Prentice-Hall, Inc., Englewood Cliffs, NJ

R. L. Nolan, “Managing the Crisis in Data Processing,” Harvard
Business Review 57, No. 2, 115-126 (March-April 1979).
R. L. Nolan, Restructuring the Data Processing Organization for
Data Resource Management, Information Processing 77, North-
Holland Publishing Co., Amsterdam, The Netherlands (l977),

M. M. Parker, “Enterprise Information Analysis: Cost-Benefit
Analysis and the Data-Managed System,” IBM Systems Journal
21, No. 1, 108-123 (1982).
M. Vetter, “Aubau Betrieblicher Informationssysteme,” Leitfae-
den der Angewandten Inforrnatik, B. G. Teubner (Editor), Stutt-
gart, West Germany.
M. Vetter, Database Design Methodology, Prentice-Hall Interna-
tional, Englewood Cliffs, NJ (198 l) .
M. M. Veys, “ISS Pour une Logique de la Productivite,” Infor-
mation, IBM Belgium 90, Brussels (1979), p. 2.
J. A. Zachman, “Business System Planning and Business Infor-
mation Control Study: A Comparison,” IBM Systems Journal 21,

Zanthe Information Inc., “ZIM EAR Data Base Management
System,” Ottawa, Canada.

pp. 261-265.

NO. I , 31-53 (1982).

K. Peter Hein IBM General Products Divison, Santa Teresa Lab-
oratory, P.O. Box 49023, Sun Jose, California 95161-9023. Mr.
Hein is a senior programmer with many years of experience in
business systems planning, top-down system architecture, and
large-scale system integration. He has lectured extensively at con-
ferences and seminars on these subjects in the U.S. and abroad.
At present, he leads an advanced technology project which deals
with the automation of a complete methodology from the Strategic
Information System Plan to application creation with the use of
professionals who are not trained in data processing. As an ad-
vanced research project in the IBM branch office in Salt Lake City,
Utah, Mr. Hein did the basic work that led to DevelopMate. In
his present position in AD/Cycle external support at the IBM
Santa Teresa Laboratory, he is the architect of DevelopMate. Mr.
Hein graduated from the University of Utah with a B.S. and an
M.B.A. degree. He is also a graduate of the IBM Systems Research
Institute, the U.S. Army Command and General Staff College, and
the U.S. Army War College.

Reprint Order No. G321-5397.

264 HEIN IBM SYSTEMS JOURNAL, VOL 29. NO 2. 1990

