User interface services
in AD/Cycle

Significant progress has been made in the effort to
separate programmers from the management of data
storage. By comparison, the window of a workstation
is still managed and controlled in great detail by the
typical programmer. in AD/Cycle™ user interface ser-
vices define a set of services that assist in the man-
agement of the displays on the workstation, These ser-
vices also help increase the productivity of the tool
builder by enforcing Common User Access rules and
guidelines, and raise the level of consistency of user
displays of the tools in AD/Cycle.

Increased display usability and consistency for
tools and support functions is achieved with ex-
tensions to the saa Common User Access (CUA)l_3
rules and guidelines by AD/Cycle™,* a Systems Ap-
plication Architecture™ (SAA™) application. Over
time, AD/Cycle’s user interface will evolve to the
cua workplace environment’ as the preferred style
for user interaction on the workstation. In this paper,
we discuss the evolving AD/Cycle workplace and a
set of services, called user interface services, that
define the implementation.

Objectives of the user interface services

The main objective of user interface services is to
implement a workplace environment for AD/Cycle.
This objective would be rather difficult to achieve if
each individual tool enabled’ in AD/Cycle managed
its user interaction on the workstation without ar-
chitectural control. In the absence of AD/Cycle’s

236 ARTIM, HARY, AND SPICKHOFF

by

J. M. Artim
J. M. Hary
F. J. Spickhoff

user interface services, AD/Cycle tools would inde-
pendently use the standard set of user interface com-
ponents as defined by cuA and implemented in 0s/2°
Extended Edition. Since these components are ge-
neric for current and future saa applications, only a
corresponding general degree of user interface con-
sistency would be achieved. Also, if individual tools
were to interpret and to implement the rules and
guidelines for cua’s existing workplace model, the
resulting workplace would more likely be segmented
along tool boundaries that might not match the task
boundaries of the application developer.

A secondary objective of the user interface services
is to increase the separation of the management of
user displays from the tool logic. AD/Cycle tools can
then focus primarily on data transformations and
data computations, decreasing the size of each tool
and simplifying its structure. This should increase
the productivity of the AD/Cycle tool builders.

User interface services will accelerate the realization
of the AD/Cycle workplace by extending and refining
the generic description of Common User Access
definition of a workplace into programming services
for AD/Cycle tools. The existence of this set of

© Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 1 An example of the main AD/Cycle workplace window

File Edit
TEMPLATE OBJECT ry
& v~ |
ErEt =l bj
CONTAINER OBJECT Business Model In Out
ﬁ'ﬁ
BM: Kidco BM: Sample
DEVICE OBJECT
DATA OBJECT
= =
i
Test Tool SC: Project 1 ECD Shredder T
e | =

programming services will also accelerate the inte-
gration of the AD/Cycle workplace with other SAA
applications, for example 1BM's OfficeVision/2.%7 It
is easier to change and to integrate a controlled set
of services, such as user interface services, than to
modify an open-ended set of workstation tools.

Figure 1 illustrates a model of the AD/Cycle work-
place where some office applications and some
AD/Cycle applications are integrated. For example,
in Figure 1, office applications are the in and out
basket; AD/Cycle applications are the business mod-
eling applications (labeled BM:Kidco and BM:Sam-
ple) and the source code application (labeled
SC:Project 1).

The implementation of user interface services will
evolve over time. The specific services described are
representative examples and do not necessarily de-
scribe the actual packaging and implementation in
AD/Cycle. The AD/Cycle workplace will be comple-
mented by enhancements that will increase the user
interface consistency and provide incremental levels

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1990

of tool integration on the workstation. Three func-
tional enhancements have been identified to faciki-
tate the evolution to the AD/Cycle workplace and
are described later in this paper: a standardized win-
dow model, a generalized list handler, and a set of
rules for AD/Cycle tools that provide a common
“look and feel” for the user of AD/Cycle.

Positioning the user interface services

User interface services cannot be defined in isolation.
Its relationship to the architected components of
AD/Cycle and to the basic facilities of saa bounds
its content and its structure.' The user interface
services are a workstation resident facility of the AD
platform that can only be accessed from tools or
distributed tool segments that reside on the worksta-
tion. They cannot be accessed directly from a host
environment. Figure 2 shows that user interface ser-
vices are positioned within the workstation services
component of the AD/Cycle architecture. They are
a set of services that support the implementation of
the AD/Cycle user interface.

ARTIM, HARY, AND SPIckHOFF 237

Figure 2 Position of user interface services in the
AD/Cycle architecture

USER INTERFACE

-USES COMMON USER ACCESS
RULES AND GUIDELINES

WORKSTATION SERVICES

USER INTERFACE SERVICES

-USED TO IMPLEMENT
THE USER INTERFACE

OTHER WORKSTATION SERVICES

Figure 3 Relationship between user interface services and
0S/2 Extended Edition

0S/2 EXTENDED EDITION
PRESENTATION MANAGER

USER

INTERFACE

SERVICES

From the perspective of the designer of CUA, user
interface services refine the physical, syntactic, and
the semantic consistency rules and guidelines of cua®
into a specific set of available programming services
that will form the AD/Cycle workplace. CUA is en-
abled on the workstation through the services of the
Presentation Manager™ in 0s/2 Extended Edition.
Refinements of the kind defined by user interface

9238 ARTIM, HARY, AND SPICKHOFF

services have been anticipated by the developers of
cua and they are important for the evolution of cua
and 0s/2 Extended Edition.*

Figure 3 shows the relationship of the user interface
services to the 0s/2 Extended Edition Presentation
Manager. The size and content of the part of the
user interface services that extends into 0S/2 Ex-
tended Edition is dependent on a wide acceptance
of the functions provided by the user interface ser-
vices. This means if user interface services are com-
mon and useful beyond the domain of application
development, those services become candidates for
extensions to the Presentation Manager services of
082 Extended Edition. A side effect of such an
implementation would be that such services would
not remain in the infrastructure of AD/Cycle but
would become part of the more general saa facilities.

For example, the object services and direct manipu-
lation described in this paper are likely candidates
for inclusion into 0s/2 Extended Edition. On the
other hand, the graphical network services appear
unique for viewing and navigating the information
models defined in AD/Cycle.” The remaining ser-
vices fall between these two extremes.

OfficeVision/2 supplies a set of services that are
useful in AD/Cycle as well. Examples of such services
are the printer, the shredder, and the dragging of
objects across windows. These will not be reinvented
in user interface services but will be used within the
generic framework provided by the workplace envi-
ronment of CUA.

From the perspective of the AD/Cycle tool builder,
there are two ways in which the user interface ser-
vices can be used: (1) Tools (primarily new tools)
can use the user interface services exclusively. (2)
Tools can use both the user interface services and
Presentation Manager. This is particularly the case
for modal dialogs, since tools may need to imple-
ment such dialogs, through 0s/2 Extended Edition
services. It is expected that most tool builders will
use this method. Tools that exist prior to the availa-
bility of user interface services that will not be con-
verted will not use the user interface services at all.
Careful design reviews need to minimize the need
for tools that do not use the services exclusively.

The AD/Cycle workplace

In this section we discuss the user interface as defined
by aspects of the AD/Cycle workplace that are ex-

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

posed (appear on the screen) to the user. The general
principles behind the user’s conceptual model are
discussed. The look and feel of the workplace are
outlined, and finally, the advantages of the workplace
for AD/Cycle are presented.

The AD/Cycle user approaches a development task
with some model of interaction in mind. This mental
model must include a plan for executing the task at
hand as well as a model of the system that supports
the task. A useful computer interface will provide a
strong, reliable set of visual and behavioral cues
guiding the user to an effective mental model of the
user interface, The interface also must provide visual
information indicating the current state of the inter-
face, minimizing the need for the user to remember
these details. The purpose of the rules and guidelines
of cuA is to present a common interaction paradigm
guiding the user within this interface domain, Each
new application provides new mechanisms to ad-
dress specific requirements though in all cases the
style of interaction remains consistent.

The user model inherent in CUA’s description of the
workplace environment’ incorporates the concept of
a customized user workspace organized around user-
relevant objects. For the purposes of this paper, an
object is the fundamental unit of manipulation on
the screen. It supports the user’s task at the user
interface, allowing actions such as OPEN, MOVE, or
COPY against an object. When the object is open, the
object handler allows the user to carry out functions
on the object. The objects are organized on the
display screen by windows that can be sized and
positioned in accordance with the user’s task ap-
proach. This tailorable approach allows the user
full control over the screen presentation space (see
Figure 1).

Much of the power of the workplace environment
derives from its object nature. The user’s focus is on
data objects that have unique actions associated with
them, rather than on selecting an AD/Cycle tool and
specifying the data to be processed by the tool. In a
tool-oriented environment, the user must be con-
cerned not only about which collection of data ob-
jects is relevant to the user task but also which tools
are required to manipulate each object. In the object-
oriented workplace, the environment integrates the
tools that are relevant to a given object. At any point
in the interaction, the user specifies an object or
collection of objects, and the interface provides the
user with information about the type of actions that
can be invoked against that object. These two fea-
tures—a user-customized presentation space and a

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

focus on direct manipulation of objects—form an
interaction style based on the user’s approach to
problem solving rather than an arbitrary interaction
style that is predetermined by a set of tools.

In the AD/Cycle workplace the user perceives each
window as a container holding one or more objects.
By selecting one or more of these objects, the user
limits the context to be explored. The actions that

Object handlers provide a view
of an object and the means
to manipulate that object.

can be invoked against the objects can then be
indicated both by selective bolding and graying of
action bar pull-down items and by the contents of
context pop-ups (later described in detail as context
menus). In this fashion the user builds up a mental
model of the object-viewing capability of the envi-
ronment. Because the exploration is focused on task-
relevant objects, it is easier for the user to map the
interface’s capabilities to the task domain. At the
same time, the objects the user is manipulating and
the actions being performed against those objects are
all user-relevant. The AD/Cycle workplace supports
the cognitive structure the expert user has developed
prior to the use of AD/Cycle’ by presenting familiar
objects and actions, allowing the user to arrange
these objects freely, and giving the user the freedom
to dictate action sequences.

One of the important concepts outlined in the CUA
description of the workplace environment is that
object handlers provide a view of an object and the
means to manipulate that object. There may be
many object handlers available to view any given
object.2

In the absence of user interface services, individual
AD/Cycle tools must manage the user interface di-
rectly. In this case the scope of the user task is
determined by the tool and not by the task the user
wishes to accomplish. For example, the incorpora-

ARTIM, HARY, AND SPICKHOFF 239

tion of a structure diagram into a design document
might involve the use of several tools. One tool might
be used to enter the information associated with the
structure diagram. Another tool might be needed to
convert the structure diagram into a standard image
format. A text editor would be used to compose the
document. A page layout tool might be needed to
view the combination of text and figure. In this case,
the user has to manage the context switch between
these tools. By contrast, in the AD/Cycle workplace
with user interface services, a document would be
opened by the user and the appropriate object han-
dlers would be transparently invoked against that
object. If a structure diagram is included as a figure
in a design document and the document is opened,
then the text would be viewed using a text editor and
the diagram would be viewed using a graphic editor.
The user would be unaware that two different editor
tools were used, allowing the user to maintain atten-
tion on the development task.

In AD/Cycle, there may be many ways of using a
specific screen object. For example, the source code
might be manipulated by either a code-generating
tool, or by a test tool. In every case the user’s
approach is the same: select the source code of
interest and invoke one of the actions against it. A
window containing the source code, would be
opened and the action invoked against an object
would determine the presentation of that object. A
diagramming tool might support the action of pre-
senting a structure chart of the source code, while a
test tool might support the action of animating the
execution of the code.

To re-enforce the object style, iconic representation
is preferred throughout the interface, although text
presentation will be available. Icons support direct
manipulation by providing an easy cursor target.
Icons depict basic classes of objects: data objects,
templates to generate new data object instances,
containers used for grouping, and various devices
like printers, in and out baskets, and shredders.
Although these basic class icons can be enhanced
with specific details, the classes must be easily distin-
guished from each other. Through careful selection
of classes and subclasses, icons can be used as a
visual mnemonic of the basic behavior of any given
screen object.

The AD/Cycle workplace accommodates complex
objects that can be represented in multiple levels of
abstraction. For example, a technology model may
contain multiple submodels. Each submodel con-

240 ARTM, HARY, AND SPICKHOFF

tains its own subparts. As the user traverses this
refinement, a visual context is established that
matches the user’s need for more specific informa-
tion about the development task. In this way the
AD/Cycle workplace enables the user to maintain
intellectual control over larger and more complex
development domains than in traditional and more
fragmented development environments. Increased
intellectual control can lead to higher productivity
and improved software quality.

User interface services

The following are examples of services needed to
realize the workplace model in AD/Cycle. The
AD/Cycle tool builder will use these services to create
a user interface handler for a tool. These services
include:

* A set of standard user interface controls

* A programming interface for object handling and
direct manipulation

* Handlers to support displaying lists of objects

In addition to describing these services, we also use
them to demonstrate how they refine and constrain
the workplace environment as described by CUA rules
and guidelines.

A major component of user interface services is a set
of controls that support direct manipulation. Ex-
amples of controls include context menus, palettes,
and network navigators. These controls provide the
AD/Cycle tool builder with a toolkit of parts to
assemble an interface. In the following discussion,
we describe a set of user interface controls that are
required and the user interface problems that they
solve.

Context menus. The current workplace environment
requires action bars and pull-down menu controls.
These controls are efficient for dealing with simple,
independent window objects; however, the action
bar and the pull-down menus rapidly become cum-
bersome when an application developer must deal
with several objects. For example, a developer might
be working with objects that include a description of
a program, the program’s representation in a struc-
ture diagram, and a list of users who are dependent
on this program. For these typical application devel-
opment tasks, the developer will make frequent and
widely-spaced mouse movements between the action
bar and the object of interest. These mouse move-

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 4 Context menu

File gdit
CONTEXT MENU
< v ~
EELD Open = =l
Business Model Move In Out
Link
D gk
BM: Kidco BM: Sample
= = =)
REEH
Test Tool SC: Project 1 ECD Shredder

ments can confuse the user about the association
between the pull-down menu and the selected win-
dow object. Since the AD/Cycle workplace will con-
tain many objects, a more compact packaging of
window objects with their menus is needed.

Solution. Context menus (see Figure 4) provide a
compact grouping of an object and its actions by
allowing the user to display actions in a menu next
to the selected object to which the actions apply. The
context menu is activated by placing the mouse
pointer on an object and clicking a mouse button. If
the mouse pointer is over an object, such as a file
folder, clicking the mouse button displays a context
menu appropriate to the folder object (for example,
OPEN, MOVE). If the mouse is over the background of
a window, the window itself is the selected object,
and a list of general actions (for example, CUT, COPY,
PASTE functions) is shown in the context menu.

Tear-off menus. AD/Cycle tools, such as debuggers,
contain actions that must be executed frequently.
These actions, such as STEP and RUN, become cum-
bersome to use if a user must select the action as a

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

pull-down choice from the action bar. Dialog boxes
and secondary windows are inappropriate to support
action selection, since their purpose is to support
extended user dialogs, not menu function. In addi-
tion, context menus are inappropriate for packaging
these actions, since context menus disappear after a
single action has been selected.

Solution. Tear-off menus (see Figure 5) provide im-
mediate access to frequently used actions. These
menus contain action choices in the form of text
strings or push buttons. The user can select the
desired actions from these windows without referring
to the action bar pull-down. For tools that have
frequently used global actions, such as debuggers,
tear-off menus provide a useful extension to the
action bar method of selecting actions.

Network creation and maintenance. In many infor-
mation modeling tools, users construct and manip-
ulate the content of information models by con-
structing graphical networks. In these diagrams, data
are represented as nodes or graphic boxes and rela-
tionships among data are represented as graphic lines

ARTIM, HARY, AND spickrHoFF 241

Figure 5 Tear-off menu

File Edit
L)
[= v ~r
g} Cut ________I _____I
(20 Copy
Business Mode! Paste In Out
Zoom
= Move
= Option '%
Option D'ﬁ
Option
BM: Kidco - BM: Sample
TEAR-OFF MENU TOPNON
AN
R
Test Tool SC: Project 1 ECD Shredder T
e | =

Figure 6 Palette

File Edit View Options Help
PALETTE l
=
‘ | —
.\-
3]
« | [=»H

242 ARTM, HARY, AND SPICKHOFF

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

(see Figure 6). For example, in an entity-relationship
diagram, entities appear as labeled boxes and rela-
tionships appear as lines drawn among the entity
boxes. In these tools, the user constructs the network
piece by piece by first creating graphic nodes and
then drawing links among the nodes to define the
relationships.

No description exists in CUA’s workplace environ-
ment to create nodes and links in graphical networks
or select construction tools that operate in the area
of an application, such as pens in a drawing program.

Construction tools are different from actions. These
tools provide the user with a method to perform
multiple actions without constant selection of ac-
tions from a menu. However, in the current work-
place environment, users must select construction
tools, such as CREATE NODE, from the action bar,
resulting in unnecessary movement of the mouse.

Solution. Palettes provide an efficient way for the
user to build graphs by providing immediate access
to network construction tools (see Figure 6). The
palette is a movable, persistent child window, that
presents a menu of iconic construction tools that can
be used to customize the behavior of the mouse
pointer. When the user selects a tool icon, the mouse
pointer changes to indicate that the user has entered
a mode for that tool. For example, if the user selects
a CREATE NODE tool in a palette, the mouse pointer
is transformed to the shape of the tool icon to
indicate that the user is currently in a node to create
nodes. The palette contains a system pointer icon to
allow the user to exit a mode.

Palettes ease the user’s task of constructing the net-
work. Palettes allow the user to select construction
tools to build their network without repetitive menu
access. In addition, the iconic tools in a palette allow
the user to perform repetitive actions without con-
tinuously selecting the action from a menu. As the
AD/Cycle workplace evolves, palettes will prove use-
ful for supporting direct manipulation methods of
constructing information models.

Graphical network navigation and manipulation.
Network representations of information models tend
to be large. Navigators allow the developer to explore
these large networks, but, in many cases, these net-
works are far bigger than the area of the window
within which they are displayed. The current CUA
workplace environment only defines scrolling with
scroll bar controls for manipulating and navigating

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1980

these networks when they exceed the boundaries of
the window. Scrolling with scroll bars provides fine
grain control in viewing or paging a network display;
however, these techniques need to be supplemented
with navigation methods that allow the user to see
the current position with respect to the network as a
whole.

Solution. The global overview window alleviates
some of these problems (see Figure 7). The global
overview window is a secondary window that pro-
vides a complete (zoomed-out) view of a graphical
network. A selection rectangle in the global overview
window indicates the segment of the network that is
displayed in the parent window. The user can move
this selection rectangle with a mouse. When the
selection rectangle is moved, an updated network
segment is displayed in the parent window. Con-
versely, if the parent window is scrolled, the global
overview window is updated. This global overview
window provides visual cues on the user’s position
in the overall network.

In many cases, the user may desire to zoom in on a
particular graph segment. The global overview win-
dow provides a powerful method for zooming, The
user can draw a new selection rectangle in this win-
dow with the mouse (see Figure 8). The area selected
within the global overview window would then be
zoomed and displayed in the parent area of the main
window. The image in the parent window would be
scaled to use the entire area of the window. Text and
graphic attributes on nodes are displayed when the
parent area is magnified enough by zooming to allow
their display. Because of the importance of infor-
mation models in AD/Cycle, zooming controls and
global maps will be an important feature of the
AD/Cycle workplace.

Additional controls. The AD/Cycle workplace re-
quires the definition and registration of additional
user interface controls, such as palettes and context
menus. Each control requires the addition of a set of
messages to user interface services that define the
control’s behavior. In addition, a programming in-
terface is required to:

» Create specific controls
¢ Register controls
¢ Delete controls

Presentation Manager provides a generic program-
ming interface to register and delete user-defined
controls. However, the programming interface nec-

ARTIM, HARY, AND SPICKHOFF 243

Figure 7 Network navigator—illustrates the function of a global overview window

NETWORK File Edit View Options Heip

APPLICATION
WINDOW

GLOBAL
OVERVIEW
WINDOW

SELECTION
RECTANGLE

| I R |

essary to create specific controls can be standardized
for the AD/Cycle environment. For example, a func-
tion call can create a palette control window and
install icons within the palette.

Object level control. In addition to user interface
controls, user interface services of AD/Cycle define
a set of general resources to support object services
for the display and manipulation of tool data, list
presentation, and direct manipulation functions
such as DRAG and DROP.

Object services. Object services provide generic func-
tions to allow AD/Cycle tools to use the display
controls and direct manipulation functions of the
AD/Cycle workplace. These object services affect
how tools are presented to the user. Object services
affect only the user interface and they do not provide
system services, such as sorting lists or copying data
between file systems or repositories.

Object services include functions that:

244 ARTIM, HARY, AND SPICKHOFF

e Support the visual presentation of an AD/Cycle
tool as an object icon in the workplace

¢ Define the properties and behavior of workplace
object views

* Define default views of workplace objects

¢ Support direct manipulation

Object services allow an AD/Cycle tool to: display
an object icon to the user and allow the user to open
default views on objects represented by icons, allow
the user to change the properties of an object, such
as its color and font, and send messages to other
system services when a user interacts with an object
icon or object view using a mouse or other input
device. They also provide default views, or object
windows, allowing the developer to easily produce
cua-conforming tools.

List services. List services provide functions that
operate on collections of objects. These objects could
be icons or text strings. List services provide a means
of organizing objects within a workplace environ-
ment. Some list services include:

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1930

Figure 8 Network navigator—illustrates the effect of zooming in on one graphic element

File _dit‘!iéﬁ Options Help

NETWORK
APPLICATION
WINDOW

AN Histogram.Pert

— ool =

GLOBAL
OVERVIEW
WINDOW

SELECTION
RECTANGLE

* Displaying objects in a list

& Formatting lists

% Supporting of list element selection
* Filtering lists

The list services operate at the user interface level
only. For example, a system service may query the
names of the objects contained in the Repository
Manager™ data store. The list services would be
responsible for displaying the names of these objects
in an organized fashion to the developer. Another
example of a list service is a view of a container
object such as that shown in Figure 1, where the
presentation of a window can contain a collection of
icons.

Selection services allow a user to select one or more
elements within a list. If a developer clicks on a list
element, the list services are responsible for sending
a selection message to the list element.

Direct manipulation services. Certain direct manip-
ulation services apply to the AD/Cycle workplace as

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

a whole. These services include support for:

% Dragging objects among windows
% Dropping objects on other objects
* Pointer management

Dragging services are used when the user wishes to
move objects across windows within the AD/Cycle
workplace. The dragging services include a program-
ming interface to record the initiation of a drag
operation and drag messages that are sent while a
user is dragging an object. Dragging services are also
responsible for checking to see if an object is movable
before initiating a drag operation. If the object is not
movable, dragging services will display visual feed-
back to the user to indicate that the object cannot
be moved by the mouse. Dropping services receive
messages that indicate that one object has been
dropped upon another.

Pointer management provides a programming inter-
face to change the pointer image from the system
pointer icon into the image of the icon to be dragged.

ARTIM, HARY, AND SPICKHOFF 245

These services are also responsible for restoring the
system pointer icon after the drag operation is ter-
minated by a drop operation.

The effective use of AD/Cycle requires the definition

of controls, which have been discussed, to refine and
constrain the cua workplace environment providing

Interface interactions will
conform to the object-action
paradigm.

an operating environment for the workstation user.
These controls, and the other services defined above,
will facilitate the enabling of tools in the AD/Cycle
workplace.

Evolution to the AD/Cycle workplace

We now describe some techniques that will allow
existing AD/Cycle tools to evolve toward the
AD/Cycle workplace. AD/Cycle tools that follow
these techniques will achieve a desired degree of
consistency and integration.

Consistent visual structure. Graphical interfaces
present a multitude of visual cues ranging from type
font choice to the use of color for various window
components. These cues can be disorienting if they
are arbitrarily applied. For example, if every
AD/Cycle tool arbitrarily set the background color
of a window rather than using the os/2 default color,
the user would likely become confused and frustrated
by such a random cue of a context switch. In-order
to draw correct conclusions about the state of an
application, AD/Cycle tools will start with a mon-
ochrome look as a base and add specific colors only
if they convey additional information for the user of
the tool. In addition, the system font should be
employed for all text display, unless there is compel-
ling need to do otherwise.

Consistent interaction style. A consistent interaction
style, used to manipulate the graphical interface, is

246 ARTM, HARY, AND SPICKHOFF

provided to the application developer for the opera-
tion of tools within AD/Cycle. Existing AD/Cycle
tools can provide this consistent style by following
the cua design guidelines.” Action bars conform to
the cua standards and, as a rule, interface interac-
tions will conform to the object-action paradigm
where the object selection sets the context for the
actions that are appropriate.

Reversibility. User actions should not cause acciden-
tal and irreversible side effects. Either an “undo”
operation will be available or warnings will be issued
to alert the application developer to side effects that
are not necessarily obvious at the interface. For
example, the shredding of an object may have hidden
side effects on the Repository Manager level.

The window model. One basic feature of the
AD/Cycle workplace is the window model. User
interface services will support this window model as
a key element for early tool integration and interface
consistency based on the rules and guidelines de-
scribing the cuA workplace model.

In AD/Cycle, a user may switch among multiple
tasks or task threads, and thus integrated ways of
grouping and switching windows according to these
tasks would be essential. Windows in the AD/Cycle
workplace are grouped into one of the following
categories:

* A container window showing a view of a collection
of objects

* An object handler window showing a view of one
object

* A secondary window showing an alternate view of
an object handler or container

¢ A dialog box

Container windows conform to cua’s definition of a
workplace window. A container window contains a
view of a collection of objects. That view can be
either text based or a graphical display composed of
individually selectable icons. Container, or work-
place, windows can be nested to any degree. The
most common presentation style will be the list
handler.

An object handler window contains an object view
that uses its present area to display graphics, text,
data, lists, and other objects. Object handler window
design is described by cua’s workplace environ-
ment.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 9 An example of an object handler window and an associated secondary view

File Edit View Help
The purpose of this department s to track developments 1
in workstation technology and interface design and recommend
OBJECT HANDLER strategic directions based on this information.
.
- |-
— I ™) DGT‘Shpnm]V |A
Edit Help
SECONDARY VIEW Workstation Strategy 1
4
| | |-
ose2||

Secondary windows are available on either container
or object handler windows (see Figure 9). They allow
the user to view the same information in more than
one form. An example of a standard type of second-
ary view to be supported by AD/Cycle is a view of
all objects currently in use. This is the equivalent of
a list of all windows opened from the current win-
dow.

Dialog boxes are used to elicit information from a
user. They can be either modal or modeless. A
modeless dialog allows the user to switch between
the dialog box and other windows before completing
the interaction with the dialog box. Modeless dialogs
allow the user a greater measure of control and
should be used in preference to modal dialogs wher-
ever possible.

Modal dialog boxes (see Figure 10) are used to elicit
responses from a user where the responses are re-

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

quired before the user-initiated action can be com-
pleted. Their purpose is to either collect additional
information needed to complete a task the user has
initiated or they are used to give the user the choice
of proceeding with or canceling a task if that task
results in change that cannot be undone.

Summary

User interface services play a dual role in AD/Cycle:

1. The services simplify the structure and content of
the tools that are enabled on the workstation.

2. The services facilitate building the AD/Cycle
workplace. They allow many tools to interact with
an application developer, hiding disruptive con-
text switching between tools, managing the con-
trol flow between tools on behalf of the applica-
tion developer, and providing a consistent frame-
work and style for the interaction with AD/Cycle.

ARTM, HARY, AND SPICKHOFF 247

Figure 10 An example of a modal dialog box

| File Edit View Palette Help

Please enter organization name: | D87

} MODAL DIALOG BOX

[Cancel]

(o)

(Help |

1!

=L

We have described how user interface services ex-
tends the rules and guidelines of the cua workplace
environment. The examples for some of the key
services provide a basis to assess the impact user
interface services will have on the productivity of
tool development in AD/Cycle and the degree of
consistency achievable in AD/Cycle.

Acknowledgments

User interface services summarizes ideas of a team
of people. In particular the following members of
the AD/Cycle architecture department in the IBM
Santa Teresa Laboratory contributed to this paper:
B. Costain, D. Ecimovic, N. Eisenberg, and B. Mey-
ers. Members of the human factors department, also
in the Santa Teresa Laboratory, helped in the defi-
nition of the specific pieces of the user interface
services. They are K. Bury and G. Moore. Our
thanks go to members of the CUA team in Cary,
D. Roberts and R. Smith, and to D. Collins from
Thornwood who contributed to this paper from its
initial conception. We also wish to acknowledge the
helpful comments by the referees of this paper.

248 ARTIM, HARY, AND SPICKHOFF

AD/Cycle, Systems Application Architecture, SAA, Presentation
Manager, and Repository Manager are trademarks, and OS/2 is a
registered trademark, of International Business Machines Corpo-
ration.

Cited references and note

1. Systems Application Architecture, Common User Access—Basic
Interface Design Guide, SC26-4583, IBM Corporation (Decem-
ber 1989); available through IBM branch offices.

2. Systems Application Architecture, Common User Access—Ad-
vanced Interface Design Guide, SC26-4582, IBM Corporation
(June 1989); available thvough IBM branch offices.

3. R. E. Berry, “Common User Access—A Consistent and Usable
Human-Computer Interface for the SAA Environments,” /BM
Systems Journal 27, No. 3, 281-300 (1988).

4. V. J. Mercurio, B. F. Meyers, A. M. Nisbet, and G. Radin,
“AD/Cycle Strategy and Architecture,” IBM Systems Journal
29, No. 2, 170-188 (1990, this issue).

5. In this paper, the term ¢nabled refers to a tool or application
that is ready for execution, being requested directly by a user
or indirectly by the controlling system at a determined point in
the development process.

6. OfficeVision/2, Using OS2 Office, SH21-0421, IBM Corpora-
tion; available through IBM branch offices.

7. OfficeVision/2, Managing OS/2 Office, SH21-0422, IBM Cor-
poration; available through IBM branch offices.

8. S. Uhlir, “Enabling the User Interface,” IBM Systems Journal
27, No. 3, 306-314 (1988).

BM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

9. R. W. Matthews and W. C. McGee, “Data Modeling for Soft-
ware Development,” IBM Systems Journal 29, No. 2, 228-235
(1990, this issue).

John Artim I/BM Programming Systems, Santa Teresa Labora-
tory, P.O. Box 49023, San Jose, California 95161-9023. Mr. Artim
is currently a staff human factors scientist in the Application
Development User Interface department at IBM’s Santa Teresa
Laboratory in California. Mr. Artim received an M.A. degree in
experimental psychology from the University of California, Santa
Cruz, in 1988. His work is involved with the application of
cognitive and perceptual psychology to the design and evaluation
of software user interfaces.

Joseph Hary IBM Programming Systems, Santa Teresa Labo-
ratory, P.O. Box 49023, San Jose, California 95161-9023. Dr.
Hary is an advisory human factors scientist in the Application
Development User Interface department at IBM’s Santa Teresa
Laboratory. Previous to joining IBM, he worked as a research
scientist at the Institute for Perception Research, in the Nether-
lands. His current work includes interface design for object-ori-
ented systems and multimedia applications of workstations. He
received his Ph.D. in experimental psychology at the University
of California, Santa Cruz, in 1984.

Franz Spickhoff /BM Programming Systems, Santa Teresa Lab-
oratory, P.O. Box 49023, San Jose, California 95161-9023. M.
Spickhoff is a senior programmer in the Application Development
Systems department at IBM’s Santa Teresa Laboratory. Prior to
taking his current position in June 1988, he worked for three years
in Poughkeepsie, New York, with a team exploring the architec-
tural solutions for an integrated facility for software development,
precursor work leading to AD/Cycle. He worked as a systems
engineer for IBM in New York and Asia. Mr. Spickhoff received
a Masters degree in micro economics (Diplom Kaufmann) from
the University of Cologne, Germany, in 1962.

Reprint Order No. G321-5396.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

ARTM, HARY, AND spickHorF 249

