Data modeling for
software development

One of the motivations for the use of a facility such as
the Repository Manager™ in an information processing
system is to centralize the information needed for the
development of software. What this information is and
how it is interrelated is defined in the underlying data
madel. This paper discusses the kinds of information
required for software development and offers some
suggestions on how the data model should be orga-
nized and implemented.

facility such as the Repository Manager™' al-

lows an installation to create an organized,
shared collection of information about an enter-
prise’s information systems. One of the motivations
for such a facility is to centralize the information
needed for the development of the enterprise’s soft-
ware. This information is generated by a variety of
tools. At the same time, it is accessed by a variety of
tools, not only while the software is being developed
but also throughout its life as it undergoes correction,
change, and maintenance.

The information generated in the development of
software can be thought of as a software development
database, the clients of which are the various software
development tools. The problem of designing such a
collection of information is not unlike that of design-
ing any database. In particular, provision will be
made for sharing information among tools, so that
data stored by one tool are accessible on an equal
basis to any other tool. Equally important, when
information is elicited from the user, it must be done
only once.

228 MATTHEWS AND MCGEE

by R. W. Matthews
W. C. McGee

In order for tools to share data, the data must have
an agreed-to format or model. We refer to this model
as a data model. This model allows the tool set to
evolve over time without the constant renegotiation
of intertool interfaces. The model should also be
reasonably stable, so that existing tools are not ad-
versely affected by model extensions. Additions to
the model will be frequent but generally not disrup-
tive. Changes should be infrequent, and deletions
should hardly ever occur.

In this paper we present a technique for the design
of a data model suitable for software development.
We begin by briefly reviewing the types of informa-
tion generated by software development activity, and
then consider the manner in which the data can be
organized. We conclude by suggesting some criteria
by which the success of a data model can be meas-
ured.

Data requirements for software development

Before a data model suitable for software develop-
ment can be designed, it is necessary to understand
the information that is generated by software devel-
opment activity. This can be approached by first

© Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

identifying the major stages in the software devel-
opment cycle and then considering the data pro-
duced at each stage.

According to Reference 2, the software development
cycle has the following major stages:

s Requirements

s Analysis and design

s Produce

& Build and test

s Production and maintenance

Table 1 indicates the major kinds of data produced
in the various stages of the software development
cycle. For example, in the analysis and design stage,
software specifications are written to state the pur-
pose of the software, the functions that it is to
perform, the external interfaces to the software, and
the environment(s) in which it is to operate. These
specifications are usually written in natural language
and are then used to design the various components
of the software: databases, panels, reports, programs,
and so forth. Designs may be expressed again in
natural language, or they may be given in a formal
language that can be processed by a design tool to
yield data required at the next stage of the develop-
ment cycle.

As can be seen from the table, the data generated in
software development have a range of formats and
sizes. Specifications tend to be unstructured collec-
tions of text, whereas source programs have more
restricted formats. Data definitions tend to be com-
pact, whereas programs and listings tend to be bulky.

An important characteristic of these data is that they
tend to be highly interrelated. That is, data produced
in one stage are (or may be expected to be) related
to other data in that stage or different stages. For
example, source modules are related to the program
specification that they implement; object modules
are related to the source modules from which they
are produced by a compiler, and so forth. When
these relationships are properly recorded, the impact
of changes in one aspect of the software on other
aspects (e.g., the effect of a change to a record format
on programs that use the record) can be readily
determined.

In addition to data on the software itself, it is useful
to maintain data about the hardware/software envi-
ronment in which the software was developed and
in which it will execute. When this is done, the

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1990

Table 1 Data generated in the software development cycle

business models
business objectives/problems

Requirements

specifications
database design
panel/report design
program design

Analysis and design

source code

object code

database definitions
panel definitions
development libraries
listings

Produce

Build and test test plans
integration plans
test cases

test results

test libraries

Production and maintenance operating procedure
production libraries
problem reports
problem fixes
change management records

impact of changes in the environment on the soft-
ware (e.g., the substitution of one terminal type for
another) can be readily determined.

Representation of software development data

The first step in the development of a data model
for software development is to identify and formally
define the types of data involved. For this purpose,
it is useful to use the concepts of entity and relation-
ship. An entity is any identifiable thing or event that
can be characterized in terms of a set of attributes
and their associated values. For example, a source
module is an entity with such attributes as program-
ming language, statement count, or reentrant. A
relationship is an association of two or more entities
which may have attributes of its own. For example,
the association of an object module and the source
module from which it was compiled is a relationship
whose attributes include date of compilation.

Entities fall into types, which are based primarily on
the particular attributes that they possess. For ex-
ample, source modules tend to have the same or
similar attributes, and therefore they can be consid-
ered entities of a single type. Relationships can be
similarly typed, based on their attributes and on the
types of the entities that they associate.

MATTHEWS AND MCGEE 229

A collection of entity types and relationship types
constitutes an entity-relationship data model. The
model is used by various software development tools

An approach must be found
that divides the entity types
into understandable
and manageable units.

in creating and maintaining entity and relationship
instances, which represent software development in-
formation. The model can be extended over time by
adding types to support new kinds of software infor-
mation.

The second step in developing a data model for
software development consists of determining how
entities and relationships of each type will be imple-
mented. It is in this step that the spectrum of data
forms characteristic of software development can be
best accommodated. In particular, entities that are
compact and must be accessed from many other
entities can be implemented in an entity-relationship
(eR) facility, such as that provided by the 1BM Repos-
itory Manager/MVS™ (RM).

Entities that are bulky and can be organized into
records that are accessed sequentially can be repre-
sented as flat files, and surrogates for such entities
can be stored in an ER facility to document their
existence and their relationships with other entities.

Model organization

When facing the task of identifying the various types
of entities to be controlled and maintained, it quickly
becomes apparent that an approach must be found
that segments or divides the set of entity types into
understandable and manageable units. Each of these
units can then be analyzed for completeness and its
role within the overall data model. Each unit can
also be evaluated for any dependencies or associa-
tions with entity types in other units.

230 MATTHEWS AND MCGEE

Entity-type categories. One such approach involves
segmenting the set of entity types into distinct cate-
gories, according to their relationships with other
entity types and to the overall model. By this ap-
proach, we group those entity types that deal with
software development from a conceptual standpoint.
These might include the following entity types: busi-
ness process, business goal, business entity, and busi-
ness attribute. Together they serve to define the
requirements for business applications.

Another group might be composed of entity types to
be used to describe a software program or system
from a logic or design point of view. Such entity
types as data views and data elements describe the
data design for applications and databases that meet
the requirements identified in the conceptual model.

A third grouping in this example represents the
physical implementation of the software program.
Here, the entity types deal with the descriptions of
various implementations of the logical application
description. The data structures described in the
logical definition are, in this case, represented as
table definitions or segment definitions. The data
view may be represented by a panel definition or a
report format definition entity.

There are other entity types, however, that apply to
more than one of these categories. Organization unit
and location are examples of this type of entity,
which we call universal entity types. Table 2 lists the
three entity type categories just discussed and in-
cludes some examples of entity types and entity
instances that fit within each category.

Example of relationships. The glue that joins these
categories of entity types into a single view of data is
supplied by relationship types (e.g., use, produce),
which identify interdependencies and associations
between individual entity types regardless of their
category. Using the levels and entity types depicted
in Table 2, relationship types can be identified be-
tween entity types within a single category as well as
between entity types in different categories. For ex-
ample, a PAYROLL process uses information about
an EMPLOYEE (e.g., rate, hours worked, etc.) as input
t0 EXECUTE_.PAYROLL to produce (MONTH—_END) a
paycheck. This is an instance of a relationship that
associates a process with the data it either produces
Or uses.

Figure | illustrates some sample relationship types
that associate entity types within a single category

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Table2 Entity categories with sample object types and instances

Category Entity Types Sample Entity Instances
Conceptual business entity EMPLOYEE
business relationship ~ EXECUTE_PAYROLL
business process PAYROLL
business event MONTH_END, PROJECT_COMPLETION
business goal
organization unit
location
Logical user view CHECK
data view EMPLOYEE_PAY_VOUCHER
data element ACCOUNT_NUMBER
Physical source code PRTCHKO00
segment definition EMPSEGO1
table definition EMP_TABLE
panel! definition EMPPANIA

(business entity to business process) and across cat-
egory boundaries (data view to table definition).

Conceptually, there is no implication that the payroll
process is a computer-based application. The payroll
process could be performed by monks laboring in
silence and seclusion, using quills and ink under
candlelight. At this conceptual level, the entities
often refer to tangible things, events, and ideas.

At the logical level, those conceptual definitions are
dealt with in data processing terms. Again, however,
the definitions have no specific implementation char-
acteristics. Here we see that a user view (e.g., CHECK)
produces information described in a data view (e.g.,
EMPLOYEE_PAY_VOUCHER); the data view comprises
many data elements (e.g., ACCOUNT_NUMBER).

The physical implementation of the payroll program
unit is documented at the physical level. Here is
recorded the fact that the payroll program reads
records from the employee table and prints an em-
ployee pay voucher.

Other relationships that can be defined here show
that the payroll program is a single and unique
implementation of the payroll function unit. The
payroll function unit is in turn a logic design for all
or part of the payroll process, as defined at the
conceptual level. Similar relationships tie the em-
ployee information to a data design and an imple-
mentation of that design.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1990

Different types of descriptions

A second method of sectioning the entity types uses
the type of descriptive information they contain
relative to the software product being developed.
Reference 3 suggests that the minimal set of descrip-
tion types address the what, how, where, when, why,
and who aspects of the product.

The application of the entity-type categories and
description-type approaches simultaneously allow
the partitioning of the entity types into very concise
units. The grid or template into which these units fit
is then very much in line with the framework de-
scribed by Zachman in Reference 3. Figure 2 shows
this correlation. The scope and detailed description
perspectives that appear in the Zachman framework
are shown here, but they are not applicable to the
previous section on model organization. By building
on the example shown in Table 2 and placing the
entity types in appropriate cells in the grid, the
resulting model (without relationships) is shown in
Figure 3.

Use of modeled data

We have discussed various aspects of modeling data
for software development. In this section, we con-
sider briefly the uses which can be made of the data.
Some of the functions we describe, such as program
analysis, are now experimentally state-of-the-art, but
their development should be stimulated by the use
of a common data model.

MATTHEWS AND MCGEE 231

Figure 1 Sample entity types and interrelationships

BUSINESS ENTITY

BUSINESS EVENT

CONTAIN

A 4

| DATA ELEMENT

INCLUDE

B USE TRIGGER R
'y Fy
v v
BUSINESS PROCESS | PURPOSE | Business coaL
- Ll
A A A
AT/OF
»| LOCATION AT/OF
INGLUDE AT/OF i <
OWNERSHIP
OWNERSHIP
v N
DATA VIEW
R . USE
T T T IMPLEMENTATION REFINEMENT
v v ¥y v VY
PROCESS DESIGN ’ OWNERSHIP | oRaANiZATION UNIT
4 IMPLEMENTATION 4
OWNERSHIP
»| SOURCE GODE <
USE -
Sy r e
T USE USE INCLUDE
_|/ L/
L\ 4 vy vyY v Vv A4
PANEL DEFINITION DATABASE DESIGN TABLE DEFINITION PROGRAM
> DEFINITION , <

SUBROUTINE

232 MATTHEWS AND MCGEE

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 2 Comparison with the Zachman framework

DESCRIPTION
FOCUS

Yy 9.2

DATA

I PERSPECTIVE l
rmrer——————

PROCESS NETWORK EVENT REASON | ORGANIZATION

SCOPE
{BALLPARK VIEW)

MODEL OF THE
BUSINESS
(OWNER'S VIEW)

TECHNOLOGY
MODEL
(BUILDER'S VIEW)

DETAILED
{OUT OF CONTEXT)

Figure 3 Entering object types in the framework

WHAT

yl

DESCRIPTION
FOCUS

HOW.- WHERE WHEN {WHY ! iWHO}

DATA

PROCESS NETWORK EVENT REASON | ORGANIZATION

SCOPE
(BALLPARK VIEW)

MODEL OF THE
BUSINESS
(OWNER'S VIEW)

~BUSINESS ENTITY -
~BUSINESS
RELATIONSHIP

~BUSINESS PROCESS | -LOCATION | -BUSINESS | -BUSINESS | ~ORGANIZATION
-BUSINESS RULE EVENT GOAL UNIT

pr e
{DESIGNER'S VIEW,

-DBD DEFINITION

TECHNOLOGY -SOURCE CODE -LOCATION -ORGANIZATION
MODEL -TABLE DEFINITION | -LINK PLAN UNIT
(BUILDER’S VIEW} |-PANEL DEFINITION

DETAILED ~TABLE DDL -PROGRAM -NETWORK

{OUT OF CONTEXT} [-DBOGEN JCL -SUBROUTINE MAP

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1990

MATTHEWS AND MCGEE 233

Figure 4 Traditional top-down flow and bottom-up flow

TOP-DOWN
DEVELOPMENT

CONCEPTUAL

PHYSICAL

BOTTOM-UP
DEVELOPMENT

Traditionally, the process of developing software
begins with requirements, continues with analysis
and design, produce, build and test, and ends with
production and on-going maintenance. Following
that scheme and applying it to the model organiza-
tion grid previously illustrated, it is apparent that
there is a kind of flow through the model. During
the requirements phase, those entity types identified
in the conceptual level of abstraction are populated
and manipulated. In the early stages of the design
phase, those same entity types supply the basic in-
formation to shape the design. The logical entity
types are populated with information from the con-
ceptual entities. Depending on the robustness of the
logical entity types and the information they contain,
some or all of the information needed for coding can
be found in those entities. A tool that can obtain the
design information from the logical entities can in
turn populate the physical entities and perhaps gen-
erate the bulk of the code needed for the software
program. Under these conditions, the user is required
to enter information just once. Translation and
transformation of information from one level to the
next is the job of software tools.

Also note that there is no requirement that the user
begin with entering requirements information at the
conceptual level. The user may start at the logical or
physical levels. The level of detail is, of course,
different at each level, but there is no requirement
that the definitions be completed at one level before
moving on to the next. The model structure fully
supports an iterative style of modeling. Therefore,
facts or concepts identified at one level can be itera-
tively applied to other levels.

We have been discussing here what is often referred
to as a top-down approach, that is, populating the

234 MATTHEWS AND MCGEE

repository model from the conceptual level down-
ward. Another method for populating the repository
model is the bottom-up method, which uses, for
example, the analysis of existing programs to dis-
cover their structure, data usage, logic design, and
operational characteristics. This method normally
begins with populating the physical entities, and
from them (with additional input) populates the
logical and then the conceptual objects. Figure 4
shows how these two methods vary.

Concluding remarks

The success of a data model for software develop-
ment can be measured in terms of the following
affirmative criteria:

«» The model is easy to understand and use.

~ A prospective software development tool devel-
oper can easily find the entity types and relation-
ship types required.

~ The entity and relationship types have been im-
plemented appropriately.

~ The model meets the performance objectives of
the development tool.

&~ The model is robust.

~ The model can be extended by the tool developer
in a nondisruptive way.

Acknowledgment

We wish to acknowledge the benefits we have re-
ceived from the pioneering work of John Zachman
in information systems architecture.

Repository Manager, Repository Manager/MVS, and AD/Cycle
are trademarks of International Business Machines Corporation.

Cited references

1. J. M. Sagawa, “Repository Manager Technology,” /BM Sys-
tems Journal 29, No. 2, 209-227 (1990, this issue).

2. V. J. Mercurio, B. F. Meyers, A. M. Nisbet, and G. Radin,
“AD/Cycle Strategy and Architecture,” IBM Systems Journal
29, No. 2, 170-188 (1990, this issue).

3. J. A. Zachman, “A Framework for Information Systems Ar-
chitecture,” IBM Systems Journal 26, No. 3, 276-292 (1987).

Robert W. Matthews /BM Programming Systems, Santa Teresa
Laboratory, P.O. Box 49023, San Jose, California 95161-9023.
Mr. Matthews is currently an advisory programmer in repository
product development at the IBM Santa Teresa Laboratory. He
joined IBM in 1974 as a junior programmer in the IBM develop-
ment laboratory, Kingston, New York, where he specialized in
supporting the software development and library processes for the
Kingston Programming Center. In 1976, he assumed similar re-

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

sponsibilities at the Santa Teresa Laboratory. Since 1986, he has
worked on different aspects of the use of a repository in software
development, Mr. Matthews holds a degree in mathematics from
New Mexico Institute of Mining and Technology.

William C. McGee /BM Programming Systems, Santa Teresa
Laboratory, P.O. Box 49023, San Jose, California 95161-9023.
Mr. McGee is currently a senior programmer in repository product
development at the IBM Santa Teresa Laboratory. He joined IBM
in 1964 as a staff member of the Palo Alto Scientific Center, where
he specialized in physics applications, computer graphics, and
database systems. In 1969, he received an Outstanding Contribu-
tion Award for work on Data Base/Data Communication
(DB/DC) requirements and strategy. In 1970 he joined the DB/DC
development group in Palo Alto, where he was manager of the
DB/DC architecture department. Other assignments in DB/DC
development have included performance evaluation, distributed
data requirements and planning, and data dictionary planning and
development. From 1951 to 1959, Mr. McGee was with the
General Electric Hanford Atomic Products Operation in Richland,
Washington, as manager of the numerical analysis unit and as a
reactor data specialist. From 1959 to 1964, he was head of systems
programming and research at Ramo Wooldridge Corporation in
Canoga Park, California. Mr. McGee received the A.B. degree in
physics from the University of California at Berkeley in 1949, and
the M.A. degree in physics from Columbia University, in 1951.
He is a member of the Association for Computing Machinery.

Reprint Order No. G321-5395.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

MATTHEWS AND McGee 235

