Repository Manager
technology

IBM’s Repository Manager™ enables specifications in-
volved in the program application development proc-
ess to be managed. On the basis of the technology,
the Repository Manager/MVS™ was developed as a
product. The primary concepts and services of the
technology are introduced, and specific aspects of the
product and its operation are discussed. A discussion
of what is involved in designing and implementing a
tool is also included.

Repository Manager™ (RM) provides a system
approach to managing specifications. In 1BM’s
Systems Application Architecture™ (SAA™) strategy,
Repository Manager is a system to support the de-
velopment and execution of software engineering
tools for application development,' computer and
network system management, and other application
families. It uses an extended three-schema approach
to enable the specification, transformation, and ex-
ecution of tool systems, while enforcing specified
corporate standards.

In the first four sections of this paper, the primary
concepts and services comprising Repository Man-
ager technology in Repository Manager/MVS™ Re-
lease 1 (RM/MvS) are introduced. In the next two
sections, the concepts and facilities that are provided
for tool development productivity are explained.
Next, the relationship between the RM/Mvs product
and the Repository Manager portion of the saa
Common Programming Interface (repository CPI) is
shown. Finally, some implementation-specific char-
acteristics of the RM/MVS product are mentioned and
current and future work is outlined.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

by J. M. Sagawa

The concepts and facilities described in this paper
are introduced in the manual, Repository Man-
ager/MVS: General Information,z where the empha-
sis is on the RM/Mvs product. The intent of this paper
is to emphasize the basic technology of Repository
Manager.

The architecture of Repository Manager

The Repository Manager architecture has two major
domains: (1) specification and (2) run-time services.
The specification domain encompasses the concepts
supporting machine-readable specifications of tool
structure and behavior, as well as end-user tools and
program-callable functions for creating and main-
taining these specifications. The role of run-time
services is to enable execution of the specifications
and to enforce global standards stated in the specifi-
cations.

Specification domain. RM manages specification by
grouping assertions into related models of data and
function. These models are further grouped into
three categories called views: (1) the conceptual view
(cv), which is global, or common, across all tools
and systems, (2) the storage view (sv), which models
dependencies on system environments and services,
and (3) the logical view (Lv), which is specific to a
tool. The views are depicted in Figure 1.

© Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

sacawa 209

Figure 1 Architecture components

SPECIFICATIONS

CONCEPTUAL VIEW

FUNCTION

DATA

STORAGE VIEW

FUNCTION

DATA

DATA

FUNCTION

SPECIFICATIONS

SYSTEM SERVICES

USER SERVICES -

RUN-TIME SERVICES

The conceptual view data model. Data are modeled
in the conceptual view as entities, attributes, and
relationships. These data representations are based
on the work of Peter Chen.** Data value constraints,
called integrity policies, are included in the model.
Entities and relationships can be grouped together
and modeled as entity aggregations. Entity aggrega-
tions are similar to the 1BM Database/Data Com-
munications (DB/DC) Data Dictionary “structure”™
and the aggregation concepts of John and Diane
Smith’ and Dennis McLeod.™” More abstract groups
can be modeled as “objects.” RM objects are similar
to objects of ooprs (object-oriented programming
system)”'® but with some important differences. RM
objects can be abstractions for managing data in

210 sacawa

entity-relationship (ER) form and in files or other
external forms. RM objects are managed with com-
posite data locks, which persist across system restarts,
whereas typical 0oPs systems do not have such mul-
tiuser locks. The RM-managed data that are locked
can reside in multiple database management system
(DBMS) table rows in multiple tables.

All entities, relationships, entity aggregations, and
objects are classified by “type,” and are known to
RM as instances of a specific type.

The conceptual view function model. Function is

modeled in the conceptual view as policies on entities
and relationships, and as methods for objects.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Four types of specifications, called policies, can be
specified on constructs in the conceptual view. Integ-
rity policies, introduced in the previous subsection,
are part of the data model, whereas the other three
types of policies are part of the function model.
Security policies are rules for authorized access to
entities, attributes, and relationships. Trigger policies
specify execution of processes on the basis of the
states of entity attributes and relationships. Deriva-

The logical view should be regarded
as a database of tool functional
specifications.

tion policies specify algorithms for creating entity
attribute values. Policies are written as expressions
in the 1BM procedures language (REXX). Conceptual
view policies are specified for enforcement when data
are read from the repository or written to it.

In the function model there are object-type depen-
dent operators called methods. The role of the
method is to encapsulate the object. The name,
parameters, and description of a method are globally
specified. However, the detailed semantics of a
method are determined by the object type that in-
cludes it.

The storage view data model. Data are modeled in
the storage view as constructs that are dependent on
the underlying system. For example, these constructs
differ slightly between DATABASE 2™ (DB2™) in the
Multiple Virtual Storage (Mvs) operating system and
Structured Query Language/Data System (SQL/DS) in
the virtual machine (vM) operating system. They are
concerned with tables and columns for storing in-
stances of entities, attributes, and relationships. Per-
formance-oriented constructs are also modeled, as
for example, indexes on combinations of table col-
umns,

The dependencies between the Cv constructs and sv
constructs are known and managed by RM. An ex-
ample might be instances of the entity type PROGRAM
stored in the DB2 table, Table Y.

1BM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

The storage view function model. Function also is
modeled in the storage view as constructs that are
dependent on the underlying system. For example,
transactions making up the implementation of a tool
are ftﬂlctions that would be modeled in the storage
view.

The logical view RM function. The logical view
should be regarded as a database of tool functional
specifications, and in the logical view, the basic con-
struct is the RM function. The RM function is a
package of specification, comprising the tool-specific
data model and function model.

The logical view data model. The RM function data
model is specified as a logical data view with its
dependencies on the conceptual view, panels, and
processing. The logical data view is composed of
logical records, called templates, which are structures
of fields. Template fields are used for parameters,
views of entity attributes, views of Dialog Manager
panel fields, and tool local storage. Templates are
combined in hierarchic structures to view relation-
ships, providing a general and powerful form of
name “scoping.” Integrity policies may be specified
on a template field.

The logical view function model. Function is mod-
eled in the logical view by rM function policies,
which are nonprocedural, and by RM function pro-
cedural logic, which may be coded in a traditional
programming language, such as C or COBOL. Security
policies specify the authority by which a user can
call the RM function or use a template field. Trigger
policies specify template-field value-dependent con-
ditions for automatically calling other RM functions.
Derivation policies are algorithms for creating tem-
plate-field values. Just as in the conceptual view,
policies in the logical view are written as expressions
in RExX. They are specified for enforcement at RM
function initiation or termination, reading or writing
RM-managed data, or reading from or writing to a
display panel.

The tool group. The logical view includes the tool
group construct. It is a packaging concept that allows
specifications in the conceptual view, storage view,
and logical view to be aggregated into a single group.
Therefore, the tool group is the construct represent-
ing a complete tool system. The tool group is used
to establish the scope of names during specification
and to facilitate export and import of all the specifi-
cations for a tool. By utilizing the aggregation con-
cept, the RM functions that support tool groups pro-
vide a methodology for tool installation.

SAGAWA 21 1

Figure 2 RM function and data model

CONCEPTUAL VIEW J

FUNCTION:
-SECURITY POLICIES
-TRIGGER POLICIES

- DERIVATION POLICIES
- OBJECT METHODS

DATA:
-ENTITIES
« ATTRIBUTES

INTEGRITY POLICIES

~RELATIONSHIPS
INTEGRITY POLICIES

-ENTITY AGGREGATIONS

- OBJECTS

STORAGE VIEW J

FUNCTION {EXAMPLES):
~TRANSACTIONS

~ COMMANDS

- SUBSYSTEMS

DATA (EXAMPLES):
- DATABASES
~TABLES

+ COLUMNS
- INDEXES

FUNCTION:

- PROCEDURAL PROCESSING
- SECURITY POLICIES
-TRIGGER POLICIES

~ DERIVATION POLICIES
(TOOL GROUR}

DATA:
~-LOGICAL DATA VIEW
+ PARAMETERS
* TREE STRUCTURE
» FIELDS
INTEGRITY POLICIES
-DISPLAY LAYOUT

The elements making up the data and function
models in the specification domain are depicted in
Figure 2.

RM provides program-callable functions and inter-
active tools to perform query, update, and reporting
on all specifications in the conceptual view, logical
view, and storage view.

Run-time services domain. Run-time services are
invoked by tools for access to RM-managed data (data
services), dialog management (user services), and
system facilities (system services).”'> As shown in
Figure 1, run-time services can be regarded as being
vertical slices through specifications. RM run-time
services executes and enforces the data and function
specifications in the conceptual view, storage view,
and logical view.

Run-time services can be implemented in a number
of ways, ranging from fully interpretive to fully com-
piled. The current implementation in RM/MVS is a

212 sncawa

semicompilation approach, where some functions
are in executable form and other units require tool
procedures to call run-time services.

Data services. Data services supports actions such as
the reading and writing of entities, entity attributes,
and relationships through the tool logical data view.
Also provided are built-in functions that support the
reading and writing of entities and relationships
through template trees or groups of template trees,
with a single call. Data services supports locking of
entity aggregations on a long-term basis on behalf of
a user, where the lock is persistent across system
restarts. Entity aggregations can also be exported and
imported between instances of RM. Commitment
and restoration of RM-managed data are supported
by internal use of sQL commit and rollback mecha-
nisms. Data services enforces policies specified in the
conceptual view and logical view for reading and
writing RM-managed data. Enforcement includes
checking the authority of users and tools to access
RM-managed data, as well as executing derivation,

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

trigger, and integrity policies on the basis of the
values of entity attributes and relationships.

User services. User services supports automatic map-
ping from template fields to Dialog Manager panel
fields. Automatic mapping greatly improves the pro-
ductivity for development of tools that use the 18M
Dialog Manager (Interactive System Productivity Fa-
cility, or 1SPF, on System/370). It also provides mes-
sage management and diagnostic log services, with
substitution of RM variables. User services enforces
security, integrity, derivation, and trigger policies
specified in the logical view for Dialog Manager 1/0
operations.

System services. System services provides such serv-
ices as the open and close of RM function, call of
integrated RM function, method RM function, and
built-in RM function. It also supports dynamic bind-
ing of templates to entity sets and relationship sets,
tracing and timing services, query of system-specific
information such as the version and release numbers
of the RM system, and system-specific support for
services that may not be available in a particular tool
development language. An example is the service
that allows a REXX program to call a third-generation
language program, passing parameters to it. System
services enforces policies specified in the logical view
for the invocation of RM functions of all types. This
includes checking the authority of users and tools to
execute an RM function, as well as executing deriva-
tion, trigger, and integrity policies on parameters.

Entity-relationship concepts in RM

Entities are representations of persons, places, things,
events, and concepts in general.4 Entities are often
nouns. Entity attributes are representations of prop-
erties of entities and are often adjectives. Relation-
ships are associations of entities and are often verbs
or role descriptions. In rRM, relationships can also be
associations of relationships. Such relationships are
often gerunds. In RM, entities and relationships may
be categorize(718into higher-level groups, called entity
aggregations.” These aggregations often are more
abstract nouns or role descriptions. Persistent locks
can be applied on those entities which are instances
of entity aggregations. Extended composite object
management is provided by utilizing entity aggrega-
tions and is explained in the next major section of
this paper.

In RM, generalized constraints can be specified for
entities, entity attributes, and relationships. These

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 3 Entity examples

ENTITY L T
TYPE
PERSON
~-NAME
ENTITY VB
INSTANCE
ANC *JOHN DOE"
ENTITY
SET

LA

"JOHN DOE”

constraints are the RM policies, which were intro-
duced earlier.

Entities and their attributes. Entities are instances of
an entity type. The entity type defines characteristics
common to all of the instances, including their attri-
butes and policies. Groups of instances of an entity
type are called an entity set. The set may be all
instances of the type, or may be ad hoc groupings
based on selection clauses or scoping specified in
tool-specific logical data views. In the example in
Figure 3, the entity set is those PERSONs whose last
name is “Doe.” Logical data views are explained
later in the section on the RM function.

An entity type has a name and a description. It has
a set of attributes, where one attribute, the “entity
key,” uniquely identifies the entity instance. RM sup-
ports “nonkeyed” entities, where data services auto-
matically generates a surrogate key for each entity
instance. It can be specified that the entity instances
must be locked before they can be written. Trigger
policies can be specified for the entity type, which
cause RM functions to be scheduled for execution.
The triggering conditions are checked at the time the
entity is read or written.”> These RM functions are

sacawa 213

Figure 4 Relationships

executed when the tool issues an RM commit request,
and RM restore processing will discard them. Security
policies can be specified for read or write authority
to the entities and attributes.

An entity attribute type has a name and description.
It has default characteristics, such as data type and
maximum length, which are used by generators of
reports, panels, and tools, but are not necessarily the
format of data stored in the RM-managed data store.
The DBMS data format is specified in the storage
view. Security, integrity, and derivation policies may
be specified for entity attributes.

Relationships. In rM, relationships are “binary and
directed.” A binary relationship associates exactly
two things, which can be entities or relationships.
These relationships are depicted in Figure 4, where
the boxes are entities, and the arrows are relation-
ships. “Directed” means that each direction is given
a name. Queries can be made using just the name in
the right direction, and RM determines the character-
istics of the relationship source and target. Relation-
ship integrity is dynamically maintained: The exis-
tence of the source and target instances are auto-

214 sacawa

matically verified at relationship instantiation, and
relationship instances are automatically deleted
when their source or target instances are deleted.

A relationship has a description and two type names,
one for each direction. One direction is called the
primary, the other the inverse. No preference is given
to one direction over the other. These terms are used
to provide concreteness to the specification of the
“source” and “target” of the primary direction
(which are respectively the “target” and “source” of
the inverse direction). The source and target may be
entities or relationships. There are four kinds of
semantic constraints on instances of the relationship
type: cardinality, mandatory, controlling, and or-
dered set.

Cardinality—Cardinality semantics specifies that
sources and targets can be related many-to-many,
one-to-one, one-to-many, and many-to-one. For ex-
ample, one-to-many allows one source instance to
be related to multiple target instances via the subject
relationship type, whereas any one of those targets
can only be related to a single source instance. Spec-
ification of cardinality for one direction implies that
the inverse direction takes on the inverse cardinality.
This means that the inverse of one-to-many is many-
to-one.

Mandatory—The mandatory semantic means that
when a target instance is created, the relationship
instance must also be created. This rule is enforced
at RM commit time. Each direction can indepen-
dently be mandatory for its target.

Controlling—The controlling semantic means that
when the relationship instance is deleted, the target
instance is also deleted. These automatic deletions
are performed recursively, when relationship integ-
rity is being maintained. Each direction can inde-
pendently be controlling for its target.

Ordered set—The ordered set semantic means that
the tools or users that instantiate the relationships
can control the order in which instances are delivered
at later read requests. Either the primary or inverse
direction can be an ordered set, but they cannot both
be ordered sets. The data services ER data manipu-
lation language (pDML) of RM allows the tool to ma-
nipulate the relationship order through use of the
commands ADD BEFORE and ADD AFTER. Multiple
relationship types may be defined with a common
target, where some or all of the relationship types
are independently ordered.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Sécurity and integrity policies can be defined for
instances of the relationship type. Security policies
are enforced at read or write, where write is relation-
ship instantiation or deletion. Relationships are not
updated. Integrity policies are enforced at instantia-
tion.

In RrM, relationships do not have data attributes.
Although there are cases where data attributes on
relationships are useful—and we are doing work in
this area—our focus has been on semantic control,
where this is not vital. The function of relationship
data attributes is modeled by dependent entities
whose owner’s source is the subject relationship.
Dependent entities are explained in the next subsec-
tion.

The modeling of events or other concepts which
require the association of more than two entities,
commonly called n-ary relationships, is done by
relationships between relationships, or by modeling
the association itself by an entity. The reduction of
all interdependencies to binary relationships allows
specification of semantics at a fine level of granular-
ity.

In the example shown in Figure 5, the entity PERSON
is related to the entity PERSON by the relationship
WORKS_FOR. The inverse of WORKS_FOR is MAN-
AGES. One PERSON WORKS_FOR, at most, one PER-
SON, but one PERSON MANAGES potentially many
PERSONs. The entity PERSON is also related to the
entity PROGRAM by the relationship coDEs. The in-
verse of CODES is CODED_BY. One PERSON CODES
potentially many PROGRAMs, and one PROGRAM is
CODED_BY at most one PERSON.

Dependent entities. Entities that occur in natural
hierarchies can be designated as dependent entities.
A dependent entity is similar to a normal entity but
with the following differences. It is specified to be
dependent on one, and only one, relationship type,
for which it is the target. That relationship is called
the owning relationship. The relationship source is
called the owner. A dependent entity may be part of
a chain, where the source of the owning relationship
is itself a dependent entity. The dependent entity can
occur in the chain only once; that is, it cannot be its
own owner. The “backward chain” must eventually
terminate in an owner which is not a dependent
entity. For a dependent entity, instances of its entity
key need only be unique in the context of the owner
keys. Thus, dependent entities are a hierarchic form
of name scoping. Access to the dependent entity

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 5 Two example relationships

WORKS _FOR
(MANAGES)

PERSON

~NAME
- ADDRESS

1

CODE (CODED_BY}

instance can only be done in the context of the
owner keys. Selection clauses in templates can refer
to owner keys, so queries can be composed to dis-
cover the owners of a dependent entity instance. The
owning relationship automatically has semantics of
mandatory and controlling. It can have cardinality
semantics of either one-to-one or one-to-many but
can be neither many-to-one nor many-to-many. It
can also be an ordered set, but only with ordering
on the target (the dependent entity).

In the example shown in Figure 6, a PROGRAM may
CONTAIN internal SUB_PROCEDUREs. The names of
the SUB_PROCEDUREs are only unique in the context
of the PROGRAM; therefore, they are modeled as
dependent on CONTAIN. The graphic notation “D”
at the upper left corner of the box for SUB_PROCE-
DURE indicates that it is a dependent entity.

Entity aggregations. Entity aggregation is a grouping
concept, allowing entities of different types to be
dealt with as a unit. An entity aggregation is hier-
archic, with a root entity and a set of relationships
arranged as branches in a tree structure. The hier-
archy may be of any depth and any width.

An entity aggregation type has a name and descrip-
tion. It has a specified root entity type and optional
relationship types with their positions in the hier-
archy. RM functions can be specified to be executed
before or after the export, import, lock, or unlock of

sacawa 215

Figure 6 A dependent entity

CONTAIN {CONTAINED_IN)

SUB_PROCEDURE
-NAME

Figure 7 An entity aggregation

PROGRAM_CODER

1. PROGRAM_CODER ENTITY AGGREGATION
ENCOMPASSES PROGRAM, CODED_BY, PERSON.

£.G.. AGGREGATION CAN BE LIKE THIS:

::34— ROOT
R —
— -

2. IT IS HIERARCHIC, WiITH PROGRAM AS THE RCOT,

216 srcawa

entity aggregations. An example could be: For the
TOOL SPECIFICATION aggregation type, after successful
import, execute the TOOL INSTALL NOTIFICATION
function. Entity aggregations can overlap, in that
more than one entity aggregation type can contain
the same entity or relationship type.

Data services provides a callable RM functton to do
persistent lock management on entity instances
which constitute an entity aggregation. Lock levels
supported are no-update, update, add, and delete.
No-update, also known as stable read, can concur-
rently be held by multiple users, but they must all
be requesters of the no-update lock level. This is a
nonexclusive lock, but it cannot be shared with
holders of the higher-level locks (update, add, delete).
The higher-level locks are exclusive; there cannot be
any other user holding any lock on the instance. At
lock request, data services checks that the requester
has the authority to operate on the underlying entity
instances at the requested level. These entity aggre-
gation locks are enforced by data services when any
user or tool attempts an operation on the underlying
entities. Data services entity aggregation lock man-
agement cooperates with system services object
method routing such that run-time reduction of
object method call overhead is possible. See the next
section for an explanation of object control.

In the example shown in Figure 7, PROGRAM_CO-
DER is an entity aggregation type, which is used for
showing which person codes a given program.

RM object concepts

My experience has been that it is relatively easy to
explain RM entity-relationship (ER) concepts and es-
tablish some level of understanding with most audi-
ences. It is less straightforward with RM object serv-
ices. In this section, I will attempt to establish the
motivation for RM object services, and at the same
time introduce the concepts and facilities.

The object concept in RM provides for a common
set of management facilities for RM-managed data
that represent real-world items with a complex struc-
ture that often have information stored in nonho-
mogeneous media. For example, complex work
products that are shared by multiple users are good
candidates for management as RM objects. The object
can be composite in nature. That is, it can span
many database tables and media and can be very
large. The object can have its data encapsulated by
methods, which are object-type dependent functions.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 8 Methods, inheritance, and bodies

RM OBJECT TYPE METHOD || METHOD EMPt;EMENTAT!QN L BODY LOCATION. :
STORE SDOC ER, GML, AND OPTICAL
RETRIEVE GDOC (MIXED BODY)
GENERATEDOCUMENT GEND
UNIQUE: UNIQUE:
GETMESSAGE GM37 ER, GML, AND OPTICAL
TRACKREVIEWS TR7 (MIXED BODY)
SUPERTYPE; GENERATEDOCUMENT GN17
INHERITED: INHERITED:
DOCUMENT STORE SDOC
| RETRIEVE GDOC

The object can be a subtype or a supertype of other
objects, where the subtype inherits the methods of
the supertype. Object method support is the basis for
providing a single interface to multiple products
performing the same function. The relationships of
an object to entities, other relationships, and other
objects are managed through use of data services
relationship management. The object is the means
by which RM provides consistent authorization sup-
port for composite data of mixed media. The object
is the basis for managing versions of composite data.
The object provides common attributes that tools
can query and update to keep track of data move-
ment between the host and the programmer work-
stations.

Composite data. If the data of an object are totally
in entities and relationships, the object is said to have
an “internal body.” If its data are totally in some
form not in entities and relationships, it is said to
have an “external body.” An example is a document
composed of BookMaster source files, in a parti-
tioned data set library. A mixture is said to have a
“mixed body.” See Figure 8 for examples of mixed
media object data bodies.

In all cases, the control information about an object
is in entities and relationships. The conceptual view
for the object control information is shown later in
Figure 10.

Type-dependent encapsulation. The definition of an
object (the “object type”) can include a list of names
of “object methods.” An object method is an RM
function; therefore, it has a globally unique name,
description, and input and output parameters with
policies. Every rRM function which is an object

1BM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

method has at least the object name as an input
parameter.'* Regardless of which object type in-
cludes an object method, that method always has
the same set of parameters. A method can have a
different implementation for each object type where
it is used. The method semantics are dependent on
the method implementations (Mis), but, to be most
useful, the Mis for a particular method should provide
similar semantics. As an (admittedly extreme) ex-
ample, it would be confusing for one implementa-
tion of the create method to do instantiation and
another to erase files. See Figure 9 for an example of
scheduling an Mt for a method call. The object can
be a subtype or a supertype of other objects, where
the subtype inherits the methods of the supertype.
See relationship SUPERTYPE in Figure 10. Also see
Figure 8 for an example of method inheritance.
Object support is the basis for providing a single
interface to multiple products performing the same
function.

Object relationships. The object instance is repre-
sented by the instance of the object edition entity
type. The relationships of an object to entities, rela-
tionships, and other objects are defined as relation-
ships from the object edition (Figure 10). These
relationships are instantiated through use of the nor-
mal data services ER DML.

Object access authorization. RM object services pro-
vides consistent authorization support for composite
data. Every object type must have an entity aggre-
gation type defined for it to be used for locking and
method access purposes. Such an entity aggregation
always has object edition as the root entity. Object
lock-level requirements are defined for each object
method. The levels are those lock states supported

sacawa 217

Figure 8 Method implementation routing

CALL RM FOR

FUNCTION “TRACKREVIEWS" PASSING OBJECT NAME "PROJECT_A.DESIGNDOC.PRODUCTA.002" AND OTHER PARAMETERS

OBJECT INSTANCE
TABLE (CREATED

AT ENTITY
AGGREGATION LOCK)

PROJECT_A

BOUND RM
OBJECT TYPE

RM FUNCTION
TO INVOKE

for entity aggregation locks. If the object is locked at
the level required for the method (or at a higher
level) for the requesting user, the method may be
called. Otherwise the object method call is rejected.

Version control. The object provides the base for
common version control services (Figure 10). Object
instances with the same collection, type, and part
name can have different object edition key values,
thus being different “versions” of the “same thing.”
Object editions, and collections of object editions,
can be made into different versions relative to each
other by use of the relationships COLLECTION BASED
ON COLLECTION and EDITION BASED ON EDITION. This
is sometimes referred to as “heritage versioning,”
since if the tools properly maintain instances of the
... BASED ON ... relationships, it is possible to query
where the object “came from.”

Object data location. The object is the basis for data
movement between the host repository and the host-

218 sacawa

connected workstation. Method implementations do
the actual data movement, but the common attri-
butes in the object edition can be used to hold
information such as identifying which workstation
and which file at that workstation holds a copy of
the object data body.

The RM function

It is important to understand the RM function con-
struct because it is the basic unit of tool functional
specification. It is similar to the Ada® package spec-
ification, in that it is intended to be used as an
interface description, which describes the outside
of a black box.'*'® RM functions are “understood” by
the rM system. Tools are made up of a network of
RM functions.

Four types of RM function. An RM function has a
name and description. It is classified into one of the
following four types.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1990

Figure 10 Object control, conceptual view (CV)

PINOTC
] m CBASEDONG
__| 0BJ TYPE m M | COLLECTION
1 OING
m I m m
SUPERTYPE .
METHOD m | gy eyncTiON
14
OBJINSTANGCE m i
OAGG 1| AM AGGREGATION
OINGRP ™ | TOOL GROUP
OBASEDONO

OBJECT
K-EDITION

OWNER
HOSTLOC
HOSTSTATUS
HOSTUPOTIME
HOSTUPDTUSER
PWSLOC
PWSSTATUS
PWSUPDTIME
PWSUPDTUSER

VALIDITY CHECK

Open/close. An open/close RM function is just a
package of templates. The RM function is opened;
the templates are used to access RM-managed data
and services; and then the RM function is closed. The
RM function has no procedural logic, but it can have
any type of logical view policy. For example, security
policies prevent unauthorized users and tools from
opening an RM function.

Integrated. The integrated RM function, in contrast,
does have procedural logic. It need not be associated

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

with any object type, and no object-type dependent
implementations can be specified. It can be called by
tools (other RM functions) and policies, with param-
eters passed through its parameter template fields. It
can have any type of logical view policy. For exam-
ple, any violation of integrity policies on input pa-
rameters will cause the RM function call request to
be rejected. Its procedural logic is executed at the
time it is called and can be coded in third-generation
language or RExX programs. It accesses ER data
through its own tailored view, which is specified by

sacawa 219

templates. See the following subsection on the logical
data view for more detail about templates. The in-
tegrated RM function can have optional dialog dis-
play panels, with automatic mapping between panel
1/0 fields and template fields.

Method. The method RM function can be called, but
it has no procedural logic. It is the interface from a
tool to the M1 (method implementation). Its param-
eter template must have at least the fields for the
object name. It can have any type of logical view
policy. This type of rRM function can be called, with
object lock control enforcement and with routing to
the object-type dependent implementation (MmI).
The example of method-to-mi routing is shown in
Figure 9.

Integrated and method rRM functions can be called
by conceptual view policies, logical view policies,
procedural logic, and end-user command.

Method implementation. The M1 RM function has
procedural logic, but it cannot be called directly by
tools. It can only be invoked via method-MI routing.
It can have any type of logical view policy. For
example, an input parameter could be synthesized
by a derivation policy which includes the calling of
an integrated RM function that solicits additional
input from the end user. In most respects, the M1 RM
function is the same as an integrated RM function,
except that its parameter template must have fields
for the object name.

RM function logical data view. The logical data view
in an RM function is comprised of templates. The
template is a group of fields; it is a logical record. A
template field is a view of one or more of the follow-
ing: entity attribute, parameter, interactive panel
field, and local storage. The fields in a template may
view a subset of the attributes of an entity. The
template-field data type, precision, and length can
differ from the ER data stored in the DBMS. If they
differ, the field value is converted at run time.

Templates can be arranged in trees, where a template
tree 1s a hierarchic view of the entity-relationship
network of the conceptual view. A branch of the
template tree maps to a relationship in the concep-
tual view. A template mapping to a dependent entity
has a field for each owner’s key attribute.

Retrieval selection clauses can be specified on a
template. For the example in Figure 3, a template
for reading PERSONs based on last name would have

220 sacawa

a selection clause similar t0 PERSON.LASTNM = LLAST,
where LLAST is assigned the value of the last name,
“Doe.”

A template can be arrayed so that a large set of entity
and relationship instances can be read or written in
a single operation. A template array is a table in
main storage; it can have any number of rows, and
retrievals can be under the control of a selection
clause.

A field in a template can be synthesized by derivation
policies, so the fields in a template can be a superset
of the attributes of an entity.

Logical view policies are subordinate to conceptual
view policies, in that conceptual view policies are
always enforced before ER data are changed.

ER data reads and writes can be issued on a template,
or the data access can be done in fewer calls by using
RM built-in functions. Built-in functions operate on
template trees or groups of trees in a single operation.
The rM logical data view provides a simple but
powerful form of data access. The run-time syntax
is very simple, but the semantics in the specification
are comprehensive. It provides a form of hierarchic
name scoping on data which can be overlapping sets.
It supports a means of nonprocedural processing that
is driven by the occurrence of events and changes in
the data state. Defined events are ER read, ER write,
RM function initiation, RM function termination,
display read, and display write.

Display specification. Interactive display panel spec-
ifications are held in RM as part of the RM function
specification. For example, included are logical field
display coordinates and default highlight control.
The display and the logical data view are related, but
are separate components of the RM function specifi-
cation.'

RM tool development and execution method

The intent of this section is to give an intuitive
understanding of what is involved in designing and
implementing a tool, and to provide an integrated
view of the concepts and facilities described so far.

A tool designer will usually perform the following
steps (illustrated in Figure 11):

1. Define a conceptual view—This step is optional,
in that the existing conceptual view may be com-

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 11 Tool development steps

SYSTEM SERVICES

USER SERVICES

DATA SERVICES

CONCEPTUAL VIEW

1. OPTIONAL. DESIGN ER
MODEL EXTENSIONS TO
1BM~SUPPLIED MODEL.
DESIGN OBJECTS.

[;'ORAGE VIEW

2. OPTIONAL,
TAILOR SV FOR ANY
EXTENSION.

3. DESIGN METHODS,
FUNCTIONS.

4. IMPLEMENT
THIRD-GENERATION
LANGUAGE LOGIC.

5. RM TOOL FUNCTION

L

RM TOOL | FUNCTION

MACRO/CALL
THIRD-GENERATION
LANGUAGE LOGIC

plete enough for the purposes of the new tool.
This step is “data modeling,” that is, design of
the ER model. Usually, design consists of exten-
sions to the 1BM-supplied ER model. New object
types and their object methods can be defined.

. Define tailored storage view for the conceptual
view—This step is optional, since it obviously is
only necessary if the conceptual view was
changed. Also, a default storage view will be
provided by rRM. This default is suitable for pro-
totyping the tool, and the conceptual view
changes.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

3. Define one or more RM functions in the logical

view—A mapping of the logical view to the stor-
age view may be done, depending on the RM
implementation and the user’s needs. The RM
function can be a simple data view (open/close),
an integrated RM function, a method, or a method
implementation.

. For each rM function, write one or more pro-

grams—RM provides productivity facilities for
the PL/AS, PL/X-86, PL/I, COBOL, C, and REXX pro-
gramming languages,' including generation of
source code, such as the procedure parameter list,

sagava 221

Figure 12 CV, SV, LV mapping example

CONCEPTUAL VIEW

WORKS _FOR
(MANAGES)

PERSON
-NAME
- ADDRESS

1

CODE (CODED_BY}

PROGRAM
~NAME
-LANGUAGE

STORAGE VIEW

TEMPLATE
TREE

TABLEX % 7 7
PERSONM | ADDRESS PROGRAM
- MODULNM
TABLEY CODED_BY
PROGNM
PROGRMR
- NAME
TABLER?
WORKS_FOR
TABLER?2

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

222 sacawa

template declaration structures, return code con-
stants, and invocation macros.

5. Execute the tool RM function—The third-gener-
ation language logic accesses RM-managed data
and services via the logical data view in its RM
function. These accesses are under the control of
the logical view policies in the RM function and
the global conceptual view policies. The policies
and data semantics are enforced by RM run-time
services.

Repository Manager in relational DBMS

RM uses the services of the 1BM SAA DBMS, through its
implementations in DB2 and SQL/DS. Interactive dia-
logs are provided for database specification and for
mapping the conceptual view to the storage view.
sQL DDL (data description language) is generated
from the RM-managed data, including automatic
generation of useful indexes. Static SQL application
source code is generated to improve performance of
common execution paths. Dynamic SQL is used
where appropriate. RM provides extensive instrumen-
tation for system and tool diagnostics and tuning.

A simplified example illustrating the roles of the
three parts of the specification domain is shown in
Figure 12, with a DB2 storage view.

Repository Manager within SAA

The main concepts and facilities in the Repository
Manager/MVS Version 1 Release 1 product are de-
picted in Figure 13. This is a superset of the SAA
repository CPI, which is shown in Figure 14. Some
specific non-Cp1 facilities available are reliability,
availability, and serviceability (RAS) services for trac-
ing and logging, interactive dialogs for specification
maintenance and prototyping, and utility tools for
product installation and customization.

SAA repository CPI. The functions that ultimately
will be supported by the Repository Manager portion
of the saA CPI (repository CPI) are shown in Figure
14, The first level of the cpi only supports the syntax
of ER data manipulation language (DML). The speci-
fication domain is an extended two-schema architec-
ture, which includes the conceptual view and logical
view, but not the storage view, which is specific to
System/370.

The cpi conceptual view includes entity and rela-

tionship with integrity, derivation, and trigger policy
types. Security policy capability is not included,

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

pending definition of SAA security. The CPI includes
aggregation, object with method, and supertype for
method inheritance.

The cpi logical view includes RM function, with
logical data view and integrity, derivation, and trig-
ger policies. The RM function types of open/close,
integrated, method, and method implementation are

A Repository Manager
data load facility is
part of the RM product.

supported. Logical view security policies have been
excluded. Tool group (to group definitions of objects,
entities, relationships, aggregations, and RM func-
tions) is included.

Run-time services in the repository CPl are data
services and a subset of system services but not user
services. Data services includes ER logical data view
management and data access (DML), including built-
in functions, ER and object specification (DDL), and
object instance access (DML). System services in-
cluded are the open/close RM function, call RM func-
tion with method call routing to object-type depend-
ent implementations, and DDL verbs for all RM func-
tion types. Also included are bind, unbind, and
system information query. Not included in the cP1
are system services for timing and diagnostic tracing.

RM implementation

RM is implemented in RM means that important
elements of RM/Mvs are specified in RM-managed
data via a conceptual view of RM itself. Examples of
system elements modeled in RM-managed data are
tool groups, entities,”® relationships, entity aggrega-
tions, objects, RM functions, system control blocks,
buffers and data areas, system commands, system
return codes, and system messages. Some benefits
observed for this approach have been: Interactive
maintenance tools are quickly implemented and eas-
ily maintained; documentation is to a large extent

saGawa 223

Figure 13 Repository Manager/MVS V1R1

fGONCEPT UAL VIEW

- ENTITY, POLICIES

- RELATIONSHIP, POLICIES

~ENTITY AGGREGATION

- OBJECT WITH METHODS
AND SUPERTYPES

{TOOL GROUP)

IBM-SUPPLIED ER MODEL
- ENTERPRISE SUBMODEL
- TECHNOLOGY SUBMODEL
- GLOBAL SUBMODEL

l—STORAGE VIEW J

ER MAP TO DB2
AND PRIVATE DATA
{TOOL GROUP)

[[Loaoa ¥
RM FUNCTION SPEC
~TYPE

+ METHOD
+ METHOD IMPLEMENTATION
+ INTEGRATED
« OPEN/CLOSE

- POLICIES

- TEMPLATE, POLICIES

- REXX, THIRD~GENERATION
LANGUAGE LOGIC

(TOOL GROUP}

HOST TOOLS

-DEFINE:
- MANIPULATE

REPOSITORY MANAGER/MVS

[LOGICAL USER SERVICES

- ER DATA VIEWS, DML

- ER, OBJECT DDL/DML MAPPING

- MESSAGE MANAGER,
DIAGNOSTIC LOGGER

- LV TO DIALOG MANAGER

LOGICAL SYSTEM SERVICES—I

- FUNCTION/METHOD
« ROUTING, DDL VERBS
~ TIMING, TUNING, TESTING

automatically generated; and source code for con-
stants and data structure declarations are automati-
cally generated.

Since RM function specifications are held in RM-

managed data, it is straightforward to generate source
code fragments in the language the tool developer

2924 sacawa

chooses. Such support has been implemented for
PL/AS, PL/X, PL/1, COBOL, and C.

A Repository Manager data load facility (Rm loader)
is part of the RM product. It populates the RM-
managed data stores from files created by programs
or users outside RM. An example of this is the Dic-

1BM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 14 Repository CPI structure, strategy

FCONGE PTUAL VIEW

- ENTITY, POLICIES

- RELATIONSHIP, POLICIES

- ENTITY AGGREGATION

- OBJECT WITH METHODS
AND SUPERTYPES

{TOOL GROUP)

RM FUNCTION SPEC
-TYPE
+ METHOD
+ METHOD IMPLEMENTATION
+ INTEGRATED
« OPEN/CLOSE
- POLICIES
- TEMPLATE, POLICIES
- REXX, THIRD-GENERATION
LANGUAGE LOGIC
(TOOL GROUP)

REPOSITORY CPl ON HOST

LOGICAL SYSTEM SERVICES]

- FUNCTION/METHOD
+ ROUTING, DDL VERBS

- ER DATA VIEWS, DML
- ER, OBJECT DDL/DML

tionary Model Transformer (DMT) product offering.
pMT reads data from the 18M DB/DC Data Dictionary
and writes it to a file, which can be read by the RM
loader.

RM provides integrated support for the Query Man-
agement Facility (QMF™) for reports and queries on
ER data.

Future directions

The repository CP1 will be extended in functional
scope as well as in support of other host and coop-
erative environments, We continue to work on ex-
tending the conceptual view data modeling con-
structs to be semantically richer, while not neglecting
opportunities for fully utilizing the underlying op-
erating systems and DBMS by extending the storage
view architecture. The concepts of entity, entity ag-
gregation, and object will continue to converge, with

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

eventual integration 7with the general concepts of
entity generalization.

Further research needs to be done on structural
aspects of the RM architecture, such as peer-con-
nected Repository Managers and hierarchically con-
nected Repository Managers, which are aware of
each other and cooperate in solving the problems of
distributed semantic management, with acceptable
performance.

Summary

Repository Manager is a system for managing spec-
ifications. In the 1BM SAA strategy, it is also a system
to support the development and execution of soft-
ware engineering tools for application development
and other strategic requirements. It enables tools to
be specified through an extended three-schema ar-
chitecture which models data and function. It trans-

sacawa 225

forms these specifications into systems of tools and
executes the tools while enforcing corporate stan-
dards. Repository CPI is an additional component in
the 1BM Systems Application Architecture Common
Programming Interface. Repository Manager/MVS
is implemented using its own technology.

Acknowledgments

Significant and fundamental early contributions
were made to the architecture by Claude Miller,
Christopher Wood, Vern Watts, Carlos Goti, and
Jerome Fox. In the application of Repository Man-
ager technology to the 1BM internal software engi-
neering strategy, William Beregi and Gene Hoffnagle
were key contributors. Peter Hein shared a vision of
what is possible and provided an earty demonstration
of the value of RM with the MIRAGE system." Very
early on, Raymond Berman implemented the first
pro%;ction RM tool (oCTOPUS), and it is still in daily
use.” The product and technology efforts may not
have survived without the vision and unflagging
support of IBM management, especially Donald
Hyde, who started the research effort, Robert Ta-
bory, who was instrumental in obtaining funding at
critical times, and Norman Pass, who kept the effort
alive and took it into the product development or-
ganization. William Hallahan and Claudia Gardner-
Treiber were the key people with the experience and
perspective on how to apply the advanced technology
prototypes to the application development problems
of 1BM customers. Many more people have been
collaborators and supporters over the years. My
thanks to all these people.

Many suggestions by Fran Beason, Karen Roberts,
and the patiently anonymous referees were crucial
in making this paper as readable as it is. Any errors
in fact or style are solely mine.

Repository Manager, Repository Manager/MVS, Systems Appli-
cation Architecture, SAA, DATABASE 2, DB2, and QMF are
trademarks of International Business Machines Corporation.

Ada is a registered trademark of the U.S. Department of Defense.

Cited references and notes

1. Systems Application Architecture: AD/Cycle Concepts, GC26-
4531-0, IBM Corporation (1989); available through IBM
branch offices.

2. Repository Manager/ MVS: General Information, GC26-4608-
0, IBM Corporation (1989); available through IBM branch
offices.

3. The term view is somewhat limiting, in that some people
might interpret it as meaning only data as opposed to both
data and function, but it is used for primarily historical
reasons.

296 sacawa

4. P. P. S. Chen, “The Entity-Relationship Model—Toward a
Unified View of Data,” ACM Transactions on Database Sys-
tems 1, No. 1, 9-36 (March 1976).

5. E. F. Codd, “Extending the Database Relational Model to
Capture More Meaning,” ACM Transactions on Database
Systems 4, No. 4, 397-434 (December 1979).

6. OS/VS DB/DC Data Dictionary Administration and Custom-
ization Guide, SH20-9174, IBM Corporation (1979, 1984,
1986); available through IBM branch offices.

7. J. M. Smith and D. C. P. Smith, “Database Abstractions:
Aggregation and Generalization,” ACM Transactions on Da-
tabase Systems 2, No. 2, 105-133 (June 1977).

8. D. McLeod, “A Semantic Data Base Model and Its Associated
Structured User Interface,” MIT/LCS/TR-214, Massachusetts
Institute of Technology, Cambridge, MA (August 1978).

9. M. Hammer and D. McLeod, SDM: A Semantic Data Model,
USC TR 80-3, University of Southern California, Los Angeles
(February 1980).

10. G. Booch, Software Engineering with Ada, The Benja-
min/Cummings Publishing Co., Menlo Park, CA (1983).

11. This is not done in the RM Release 1 product, but the
architecture enables it to be done in the future, for example,
for performance or control reasons.

12. G. F. Hoffnagle and W. E. Beregi, “Automating the Software
Development Process,” IBM Systems Journal 24, No. 2, 102—
120 (1985). RM is described in this paper as “common tool
services.”

13. Policies for read are separately specified and enforced from
policies for write.

14. Actually, it is four parameters for the four parts of the object
name: collection, object type, part, and object edition.

15. Common APSE Interface Set (CAIS), Proposed Military
Standard, Version 1.3, Report AD-A134825/9, Office of the
Secretary of Defense, Ada Joint Program Office, Washington,
DC (August 1984).

16. The display specification acts as a storage view for the inter-
active RM function. Perhaps we should recast the architecture
to make that explicit.

17. PL/AS and PL/X-86 are IBM product development languages
for the System/370 and the Personal System/2®,

18. J. M. Fox, J. C. Goti, C. R. Miller, and J. M. Sagawa,
“Implementing a Self-Defining Entity/Relationship Model to
Hold Conceptual View Information,” Proceedings of the Sec-
ond International Conference on Entity-Relationship Approach
to Information Modeling and Analysis, ER Institute (October
1981), pp. 569-581.

19. MIRAGE (MlInispec and Repository based Application GEn-
erator) was the advanced technology prototype for
DevelopMate™. It was a fully functional tool for Yourdon-
DeMarco-based requirements and application analysis and
prototype generation.

20. OCTOPUS (0Old Code TO Properly Understood Software) is
an interactive tool to allow queries on the component structure
of products with multiple versions under concurrent devel-
opment. It allows unlimited bidirectional and recursive queries
of a “bill of material,” including macros, modules, and pro-
gram symbol usage.

James M. Sagawa IBM Programming Systems, Santa Teresa
Laboratory, P.O. Box 49023, San Jose, California 95161-9023.
Mr. Sagawa received a B.S. in electrical engineering from the
California Institute of Technology in 1963. He joined IBM at the
Burbank branch office where from 1963 to 1969 he was a systems

iBM SYSTEMS JOURNAL, VOL 28, NO 2, 1990

engineer specializing in engineering and scientific applications,
operating systems, time sharing, and graphics. As a member of the
CADAM® implementation team at the Lockheed California Com-
pany, he wrote the graphic attention handler and various perform-
ance prediction tools. From 1969 to 1971 he was on assignment
as a consultant to IBM United Kingdom for marketing and
implementing engineering graphics, scientific applications, and
operating systems. In 1971 and 1972 he was on assignment at the
IBM World Trade Manufacturing Industry Marketing Center in
Munich, Germany, where he provided guidance to European
country-level marketing for engineering and scientific applications.
From 1972 to 1977 he was a member of the Information Manage-
ment System development team in Palo Alto, California, and
served as chief programmer for IMS/VS 1.0.1. In 1977 he helped
start the Sundance advanced technology project, which evolved
into the Repository Manager (RM). As architect and chief designer,
he led the effort to apply RM (in its implementation as Common
Tool Services) to the development and execution of IBM internal
system development tools as the base for the Software Engineering
Support Facility (SESF) architecture. Later, he led the effort to
apply it to the development and execution of application devel-
opment tools as the base for AD/Cycle™. Mr. Sagawa is a past
member of the SESF Architecture Review Board and ADE System
Design Council. He currently is a member of the Santa Teresa
Laboratory Technical Review Council and the AD/Cycle System
Architecture Board.

Reprint Order No. G321-5394.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

sacawa 227

