
Repository Manager
technology

by J. M. Sagawa

IBM's Repository Manager" enables specifications in-
volved in the program application development proc-
ess to be managed. On the basis of the technology,
the Repository ManagerfMVS" was developed as a
product. The primary concepts and services of the
technology are introduced, and specific aspects of the
product and its operation are discussed. A discussion
of what is involved in designing and implementing a
tool is also included.

R epository Manager'" (RM) provides a system
approach to managing specifications. In IBM's

Systems Application Architecture'" (s A A ~ ~) strategy,
Repository Manager is a system to support the de-
velopment and execution of softyare engineering
tools for application development, computer and
network system management, and other application
families. It uses an extended three-schema approach
to enable the specification, transformation, and ex-
ecution of tool systems, while enforcing specified
corporate standards.

In the first four sections of this paper, the primary
concepts and services comprising Repository Man-
ager technology in Repository ManagerfMVS" Re-
lease 1 (RM/MVS) are introduced. In the next two
sections, the concepts and facilities that are provided
for tool development productivity are explained.
Next, the relationship between the RM/MVS product
and the Repository Manager portion of the SAA
Common Programming Interface (repository CPI) is
shown. Finally, some implementation-specific char-
acteristics of the RM/MVS product are mentioned and
current and future work is outlined.

The concepts and facilities described in this paper
are introduced in the manual,2 Repository Man-
agerfMVS: General Information, where the empha-
sis is on the RM/MVS product. The intent of this paper
is to emphasize the basic technology of Repository
Manager.

The architecture of Repository Manager

The Repository Manager architecture has two major
domains: (1) specification and (2) run-time services.
The specification domain encompasses the concepts
supporting machine-readable specifications of tool
structure and behavior, as well as end-user tools and
program-callable functions for creating and main-
taining these specifications. The role of run-time
services is to enable execution of the specifications
and to enforce global standards stated in the specifi-
cations.

Specification domain. RM manages specification by
grouping assertions into related models of data and
function. These models arf further grouped into
three categories called views: (1) the conceptual view
(cv), which is global, or common, across all tools
and systems, (2) the storage view (sv), which models
dependencies on system environments and services,
and (3) the logical view (LV), which is specific to a
tool. The views are depicted in Figure 1.
@ Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 3, NO 2, 1990

Figure 1 Architecture components

SPECIFICATIONS

* I I

SPECIFICATIONS RUN-TIME SERVICES

The conceptual view data model. Data are modeled
in the conceptual view as entities, attributes, and
relationships. These data representations are based
on the work of Peter Chen.435 Data value constraints,
called integrity policies, are included in the model.
Entities and relationships can be grouped together
and modeled as entity aggregations. Entity aggrega-
tions are similar to the IBM Database/Data Com-
munications (DBIDC) Data Dictionary
and t$e aggregation concepts of John and Diane
Smith and Dennis M ~ L e o d . ~ , ~ More abstract groups
can be modeled as “objects.” RM objects are similar
to objects of OOPS (object-oriented programming

but with some important differences. RM
objects can be abstractions for managing data in

entity-relationship (ER) form and in files or other
external forms. RM objects are managed with com-
posite data locks, which persist across system restarts,
whereas typical OOPS systems do not have such mul-
tiuser locks. The RM-managed data that are locked
can reside in multiple database management system
(DBMS) table rows in multiple tables.

All entities, relationships, entity aggregations, and
objects are classified by “type,” and are known to
RM as instances of a specific type.

The conceptual view function model. Function is
modeled in the conceptual view as policies on entities
and relationships, and as methods for objects.

210 SAGAWA IBM SYSTEMS JOURNAL, VOL 29, NO 2. 19%

Four types of specifications, called policies, can be
specified on constructs in the conceptual view. Integ-
rity policies, introduced in the previous subsection,
are part of the data model, whereas the other three
types of policies are part of the function model.
Security policies are rules for authorized access to
entities, attributes, and relationships. Trigger policies
specify execution of processes on the basis of the
states of entity attributes and relationships. Deriva-

The logical view should be regarded
as a database of tool functional

specifications.

tion policies specify algorithms for creating entity
attribute values. Policies are written as expressions
in the IBM procedures language (REXX). Conceptual
view policies are specified for enforcement when data
are read from the repository or written to it.

In the function model there are object-type depen-
dent operators called methods. The role of the
method is to encapsulate the object. The name,
parameters, and description of a method are globally
specified. However, the detailed semantics of a
method are determined by the object type that in-
cludes it.

The storage view data model. Data are modeled in
the storage view as constructs that are dependent on
the underlying system. For example, these constructs

Multiple Virtual Storage (MVS) operating system and
Structured Query Language/Data System (SQL/DS) in
the virtual machine (VM) operating system. They are
concerned with tables and columns for storing in-
stances of entities, attributes, and relationships. Per-
formance-oriented constructs are also modeled, as
for example, indexes on combinations of table col-
umns.

differ Slightly between DATABASE 2" (DBZ'") in the

The dependencies between the cv constructs and sv
constructs are known and managed by RM. An ex-
ample might be instances of the entity type PROGRAM
stored in the D B ~ table, Table Y.

The storage view function model. Function also is
modeled in the storage view as constructs that are
dependent on the underlying system. For example,
transactions making up the implementation of a tool
are fyxtions that would be modeled in the storage
view.

The logical view RM function. The logical view
should be regarded as a database of tool functional
specifications, and in the logical view, the basic con-
struct is the RM function. The RM function is a
package of specification, comprising the tool-specific
data model and function model.

The logical view data model. The RM function data
model is specified as a logical data view with its
dependencies on the conceptual view, panels, and
processing. The logical data view is composed of
logical records, called templates, which are structures
of fields. Template fields are used for parameters,
views of entity attributes, views of Dialog Manager
panel fields, and tool local storage. Templates are
combined in hierarchic structures to view relation-
ships, providing a general and powerful form of
name "scoping." Integrity policies may be specified
on a template field.

The logical view function model. Function is mod-
eled in the logical view by RM function policies,
which are nonprocedural, and by RM function pro-
cedural logic, which may be coded in a traditional
programming language, such as c or COBOL. Security
policies specify the authority by which a user can
call the RM function or use a template field. Trigger
policies specify template-field value-dependent con-
ditions for automatically calling other RM functions.
Derivation policies are algorithms for creating tem-
plate-field values. Just as in the conceptual view,
policies in the logical view are written as expressions
in REXX. They are specified for enforcement at RM
function initiation or termination, reading or writing
RM-managed data, or reading from or writing to a
display panel.

The tool group. The logical view includes the tool
group construct. It is a packaging concept that allows
specifications in the conceptual view, storage view,
and logical view to be aggregated into a single group.
Therefore, the tool group is the construct represent-
ing a complete tool system. The tool group is used
to establish the scope of names during specification
and to facilitate export and import of all the specifi-
cations for a tool. By utilizing the aggregation con-
cept, the RM functions that support tool groups pro-
vide a methodology for tool installation.

SAGAWA 21 1 IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 2 RM function and data model

I CONCEPTUAL VIEW 1
0

FUNCTION:
-PROCEDURAL PROCESSING
-SECURITY POLICIES
-TRIGGER POLICIES
-DERIVATION POLICIES
(TOOL GROUP)

DATA:
-LOGICAL DATA VIEW

* PARAMETERS
*TREE STRUCTURE - FIELDS

-DISPLAY LAYOUT
INTEGRITY POLICIES

I I

The elements making up the data and function
models in the specification domain are depicted in
Figure 2.

RM provides program-callable functions and inter-
active tools to perform query, update, and reporting
on all specifications in the conceptual view, logical
view, and storage view.

Run-time services domain. Run-time services are
invoked by tools for access to RM-managed data (data
services), dialog management (user services), and
system facilities (system As shown in
Figure 1, run-time services can be regarded as being
vertical slices through specifications. RM run-time
services executes and enforces the data and function
specifications in the conceptual view, storage view,
and logical view.

Run-time services can be implemented in a number
of ways, ranging from fully interpretive to fully com-
piled. The current implementation in RM/MVS is a

semicompilation approach, where some functions
are in executable form and other units require tool
procedures to call run-time services.

Data services. Data services supports actions such as
the reading and writing of entities, entity attributes,
and relationships through the tool logical data view.
Also provided are built-in functions that support the
reading and writing of entities and relationships
through template trees or groups of template trees,
with a single call. Data services supports locking of
entity aggregations on a long-term basis on behalf of
a user, where the lock is persistent across system
restarts. Entity aggregations can also be exported and
imported between instances of RM. Commitment
and restoration of RM-managed data are supported
by internal use of SQL commit and rollback mecha-
nisms. Data services enforces policies specified in the
conceptual view and logical view for reading and
writing RM-managed data. Enforcement includes
checking the authority of users and tools to access
RM-rnanaged data, as well as executing derivation,

212 SAGAWA IBM SYSTEMS JOURNAL, VOL 29. NO 2, 1990

trigger, and integrity policies on the basis of the
values of entity attributes and relationships.

User services. User services supports automatic map-
ping from template fields to Dialog Manager panel
fields. Automatic mapping greatly improves the pro-
ductivity for development of tools that use the IBM
Dialog Manager (Interactive System Productivity Fa-
cility, or ISPF, on System/370). It also provides mes-
sage management and diagnostic log services, with
substitution of RM variables. User services enforces
security, integrity, derivation, and trigger policies
specified in the logical view for Dialog Manager I/O
operations.

System services. System services provides such serv-
ices as the open and close of RM function, call of
integrated RM function, method RM function, and
built-in RM function. It also supports dynamic bind-
ing of templates to entity sets and relationship sets,
tracing and timing services, query of system-specific
information such as the version and release numbers
of the RM system, and system-specific support for
services that may not be available in a particular tool
development language. An example is the service
that allows a REXX program to call a third-generation
language program, passing parameters to it. System
services enforces policies specified in the logical view
for the invocation of RM functions of all types. This
includes checking the authority of users and tools to
execute an RM function, as well as executing deriva-
tion, trigger, and integrity policies on parameters.

Entity-relationship concepts in RM

Entities are representations of perfons, places, things,
events, and concepts in general. Entities are often
nouns. Entity attributes are representations of prop-
erties of entities and are often adjectives. Relation-
ships are associations of entities and are often verbs
or role descriptions. In RM, relationships can also be
associations of relationships. Such relationships are
often gerunds. In RM, entities and relationships may
be categorized into higher-level groups, called entity
 aggregation^."^ These aggregations often are more
abstract nouns or role descriptions. Persistent locks
can be applied on those entities which are instances
of entity aggregations. Extended composite object
management is provided by utilizing entity aggrega-
tions and is explained in the next major section of
this paper.

In RM, generalized constraints can be specified for
entities, entity attributes, and relationships. These

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 19%

Figure 3 Entity examples

ENTITY
TYPE

ENTITY
INSTANCE

ENTITY
SET “SALLY DOE”

constraints are the RM policies, which were intro-
duced earlier.

Entities and their attributes. Entities are instances of
an entity type. The entity type defines characteristics
common to all of the instances, including their attri-
butes and policies. Groups of instances of an entity
type are called an entity set. The set may be all
instances of the type, or may be ad hoc groupings
based on selection clauses or scoping specified in
tool-specific logical data views. In the example in
Figure 3, the entity set is those PERSONS whose last
name is “Doe.” Logical data views are explained
later in the section on the RM function.

An entity type has a name and a description. It has
a set of attributes, where one attribute, the “entity
key,” uniquely identifies the entity instance. RM sup-
ports “nonkeyed” entities, where data services auto-
matically generates a surrogate key for each entity
instance. It can be specified that the entity instances
must be locked before they can be written. Trigger
policies can be specified for the entity type, which
cause RM functions to be scheduled for execution.
The triggering conditions ire checked at the time the
entity is read or written. These RM functions are

Figure 4 Relationships

executed when the tool issues an RM commit request,
and RM restore processing will discard them. Security
policies can be specified for read or write authority
to the entities and attributes.

An entity attribute type has a name and description.
It has default characteristics, such as data type and
maximum length, which are used by generators of
reports, panels, and tools, but are not necessarily the
format of data stored in the RM-managed data store.
The DBMS data format is specified in the storage
view. Security, integrity, and derivation policies may
be specified for entity attributes.

Relationships. In RM, relationships are “binary and
directed.” A binary relationship associates exactly
two things, which can be entities or relationships.
These relationships are depicted in Figure 4, where
the boxes are entities, and the arrows are relation-
ships. “Directed” means that each direction is given
a name. Queries can be made using just the name in
the right direction, and RM determines the character-
istics of the relationship source and target. Relation-
ship integrity is dynamically maintained: The exis-
tence of the source and target instances are auto-

matically verified at relationship instantiation, and
relationship instances are automatically deleted
when their source or target instances are deleted.

A relationship has a description and two type names,
one for each direction. One direction is called the
primary, the other the inverse. No preference is given
to one direction over the other. These terms are used
to provide concreteness to the specification of the
“source” and “target” of the primary direction
(which are respectively the “target” and “source” of
the inverse direction). The source and target may be
entities or relationships. There are four kinds of
semantic constraints on instances of the relationship
type: cardinality, mandatory, controlling, and or-
dered set.

Cardinality-Cardinality semantics specifies that
sources and targets can be related many-to-many,
one-to-one, one-to-many, and many-to-one. For ex-
ample, one-to-many allows one source instance to
be related to multiple target instances via the subject
relationship type, whereas any one of those targets
can only be related to a single source instance. Spec-
ification of cardinality for one direction implies that
the inverse direction takes on the inverse cardinality.
This means that the inverse of one-to-many is many-
to-one.

Mandatory-The mandatory semantic means that
when a target instance is created, the relationship
instance must also be created. This rule is enforced
at RM commit time. Each direction can indepen-
dently be mandatory for its target.

Controlling-The controlling semantic means that
when the relationship instance is deleted, the target
instance is also deleted. These automatic deletions
are performed recursively, when relationship integ-
rity is being maintained. Each direction can inde-
pendently be controlling for its target.

Ordered set-The ordered set semantic means that
the tools or users that instantiate the relationships
can control the order in which instances are delivered
at later read requests. Either the primary or inverse
direction can be an ordered set, but they cannot both
be ordered sets. The data services ER data manipu-
lation language (DML) of RM allows the tool to ma-
nipulate the relationship order through use of the

relationship types may be defined with a common
target, where some or all of the relationship types
are independently ordered.

commands A D D BEFORE and A D D AFTER. Multiple

IBM SYSTEMS JOURNAL, VOL 3, NO 2, 1990

SCcurity and integrity policies can be defined for
instances of the relationship type. Security policies
are enforced at read or write, where write is relation-
ship instantiation or deletion. Relationships are not
updated. Integrity policies are enforced at instantia-
tion.

In RM, relationships do not have data attributes.
Although there are cases where data attributes on
relationships are useful-and we are doing work in
this area-our focus has been on semantic control,
where this is not vital. The function of relationship
data attributes is modeled by dependent entities
whose owner’s source is the subject relationship.
Dependent entities are explained in the next subsec-
tion.

The modeling of events or other concepts which
require the association of more than two entities,
commonly called n-ary relationships, is done by
relationships between relationships, or by modeling
the association itself by an entity. The reduction of
all interdependencies to binary relationships allows
specification of semantics at a fine level of granular-
ity.

In the example shown in Figure 5 , the entity PERSON
is related to the entity PERSON by the relationship
WORKSFOR. The inverse of WORKSFOR is MAN-
AGES. One PERSON WORKSFOR, at most, one PER-
SON, but one PERSON MANAGES potentially many
PERSONS. The entity PERSON is also related to the
entity PROGRAM by the relationship CODES. The in-
verse of CODES is CODED-BY. One PERSON CODES
potentially many PROGRAMS, and one PROGRAM is
CODED-BY at most One PERSON.

Dependent entities. Entities that occur in natural
hierarchies can be designated as dependent entities.
A dependent entity is similar to a normal entity but
with the following differences. It is specified to be
dependent on one, and only one, relationship type,
for which it is the target. That relationship is called
the owning relationship. The relationship source is
called the owner. A dependent entity may be part of
a chain, where the source of the owning relationship
is itself a dependent entity. The dependent entity can
occur in the chain only once; that is, it cannot be its
own owner. The “backward chain” must eventually
terminate in an owner which is not a dependent
entity. For a dependent entity, instances of its entity
key need only be unique in the context of the owner
keys. Thus, dependent entities are a hierarchic form
of name scoping. Access to the dependent entity

IBM SYSTEMS JOURNAL, VOL 29. NO 2. 1990

Figure 5 Two example relationships

instance can only be done in the context of the
owner keys. Selection clauses in templates can refer
to owner keys, so queries can be composed to dis-
cover the owners of a dependent entity instance. The
owning relationship automatically has semantics of
mandatory and controlling. It can have cardinality
semantics of either one-to-one or one-to-many but
can be neither many-to-one nor many-to-many. It
can also be an ordered set, but only with ordering
on the target (the dependent entity).

In the example shown in Figure 6 , a PROGRAM may
CONTAIN internal SUB-PROCEDURES. The nameS Of
the SUB-PROCEDURES are only unique in the context
of the PROGRAM; therefore, they are modeled as
dependent on CONTAIN. The graphic notation “ D
at the upper left corner of the box for SUB-PROCE-
DURE indicates that it is a dependent entity.

Entity aggregations. Entity aggregation is a grouping
concept, allowing entities of different types to be
dealt with as a unit. An entity aggregation is hier-
archic, with a root entity and a set of relationships
arranged as branches in a tree structure. The hier-
archy may be of any depth and any width.

An entity aggregation type has a name and descrip-
tion. It has a specified root entity type and optional
relationship types with their positions in the hier-
archy. RM functions can be specified to be executed
before or after the export, import, lock, or unlock of

SAGAWA 215

Figure 6 A dependent entity

1

CONTAIN (CONTAINED-IN)

SUB-PROCEDURE
-NAME

Figure 7 An entity aggregation

PROGRAM-CODER

1. PROGRAM-CODER ENTITY AGGREGATION
ENCOMPASSES PROGRAM, CODED-BY, PERSON.

2. IT IS HIERARCHIC, WITH PROGRAM AS THE ROOT,
E.G.. AGGREGATION CAN BE LIKE THIS:

entity aggregations. An example could be: For the
TOOL SPECIFICATION aggregation type, after successful
import, execute the TOOL INSTALL NOTIFICATION
function. Entity aggregations can overlap, in that
more than one entity aggregation type can contain
the same entity or relationship type.

Data services provides a callable RM function to do
persistent lock management on entity instances
which constitute an entity aggregation. Lock levels
supported are no-update, update, add, and delete.
No-update, also known as stable read, can concur-
rently be held by multiple users, but they must all
be requesters of the no-update lock level. This is a
nonexclusive lock, but it cannot be shared with
holders of the higher-level locks (update, add, delete).
The higher-level locks are exclusive; there cannot be
any other user holding any lock on the instance. At
lock request, data services checks that the requester
has the authority to operate on the underlying entity
instances at the requested level. These entity aggre-
gation locks are enforced by data services when any
user or tool attempts an operation on the underlying
entities. Data services entity aggregation lock man-
agement cooperates with system services object
method routing such that run-time reduction of
object method call overhead is possible. See the next
section for an explanation of object control.

In the example shown in Figure 7, PROGRAM-CO-
DER is an entity aggregation type, which is used for
showing which person codes a given program.

RM object concepts

My experience has been that it is relatively easy to
explain RM entity-relationship (ER) concepts and es-
tablish some level of understanding with most audi-
ences. It is less straightforward with RM object serv-
ices. In this section, I will attempt to establish the
motivation for RM object services, and at the same
time introduce the concepts and facilities.

The object concept in RM provides for a common
set of management facilities for RM-managed data
that represent real-world items with a complex struc-
ture that often have information stored in nonho-
mogeneous media. For example, complex work
products that are shared by multiple users are good
candidates for management as RM objects. The object
can be composite in nature. That is, it can span
many database tables and media and can be very
large. The object can have its data encapsulated by
methods, which are object-type dependent functions.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 8 Methods, inheritance, and bodies

RM OBJECT TYPE METHOD ,, , . METIKID MPLEEMENTATIDN EWY WATION
“ .

, ” , . , , , , , , ” , , , , I , , I

STORE
RETRIEVE

SDOC ER, GML. AND OPTICAL
GDOC

GENERATEDOCUMENT GEND
(MIXED BODY)

SUPERTYPE:
~~~ 

I DOCUMENT I 

UNIQUE: 
GETMESSAGE 
TRACKREVIEWS 
GENERATEDOCUMENT 

INHERITED: 
STORE 
RETRIEVE 

UNIQUE, 
G M 3 7  
TR7 
GN17 

INHERITED: 
SDOC 
GDOC 

The object  can  be  a  subtype or a  supertype of other 
objects,  where the subtype inherits the methods of 
the supertype.  Object method support is the basis  for 
providing  a  single  interface to multiple products 
performing the same function. The relationships of 
an object to entities, other relationships, and other 
objects  are  managed  through  use  of data services 
relationship  management. The object  is the means 
by  which RM provides  consistent authorization sup- 
port for  composite data of  mixed  media. The object 
is the basis  for  managing  versions of composite data. 
The object  provides common attributes that tools 
can  query and update to keep  track of data move- 
ment between the host and the programmer  work- 
stations. 

Composite data. If the data of an object are totally 
in entities and relationships, the object  is  said to have 
an “internal body.” If its data are  totally in some 
form  not  in  entities and relationships,  it  is  said to 
have an “external  body.” An example  is  a document 
composed of BookMaster  source  files, in a parti- 
tioned data set  library. A mixture  is  said to have  a 
“mixed  body.” See  Figure 8 for  examples of mixed 
media  object data bodies. 

In  all  cases, the control information about an object 
is in entities and relationships. The conceptual view 
for the object control information is  shown  later in 
Figure 10. 

Type-dependent  encapsulation. The definition of an 
object (the “object type”) can include a  list  of  names 
of “object  methods.” An object  method  is an RM 
function; therefore, it has  a  globally unique name, 
description, and input and output parameters with 
policies.  Every RM function which  is an object 

method h”;S4 at least the object name as an  input 
parameter.  Regardless  of  which  object  type in- 
cludes an object method, that method always  has 
the same  set of parameters. A method can  have  a 
different implementation for  each  object  type  where 
it  is  used. The method  semantics are dependent on 
the method implementations (MIS), but, to be  most 
useful, the MIS for  a particular method  should  provide 
similar  semantics. As an (admittedly  extreme) ex- 
ample,  it  would  be  confusing  for one implementa- 
tion of the create method to do instantiation and 
another to erase  files.  See  Figure 9 for an example of 
scheduling an MI for  a method call. The object  can 
be  a  subtype or a  supertype of other objects,  where 
the subtype inherits the methods of the supertype. 
See relationship SUPERTYPE in Figure 10. Also  see 
Figure 8 for an example of method inheritance. 
Object support is the basis  for  providing  a  single 
interface to multiple products performing the same 
function. 

Object  relationships. The object instance is  repre- 
sented by the instance of the object edition entity 
type. The relationships of an object to entities,  rela- 
tionships, and other objects are defined  as  relation- 
ships  from the object  edition  (Figure 10). These 
relationships are instantiated through  use  of the nor- 
mal data services ER DML. 

Object  access  authorization. RM object  services  pro- 
vides  consistent authorization support for composite 
data. Every  object  type must have an entity aggre- 
gation  type  defined  for it to be  used  for  locking and 
method  access  purposes.  Such an entity aggregation 
always  has  object edition as the root entity. Object 
lock-level requirements are defined  for  each  object 
method. The levels are those  lock states supported 

IBM SYSTEMS JOURNAL, VOL 29, NO 2. 19% 



Figure 9 Method  implementation  routing 

CALL RM FOR 
FUNCTION “TRACKREVIEWS” PASSING OBJECT NAME “PROJECT-A.DESlGNDOC.PRODUCTA.002” AND  OTHER PARAMETERS 

I 
OBJECT INSTANCE 

TABLE (CREATED 
AT ENTITY 

AGGREGATION LOCK) 

L 

OBJECT TYPE 
BOUND RM 

. 
DESIGNKC 

b 

DES-CTL 

b 

j I  
TRACKREVIEWS RM FUNCTION 

TO INVOKE . 

for  entity  aggregation  locks. If the object  is  locked at 
the level  required  for the method (or at a  higher 
level)  for the requesting  user, the method  may be 
called.  Otherwise the object  method  call  is  rejected. 

Version  control. The object  provides the base  for 
common  version  control  services  (Figure 10). Object 
instances  with  the  same  collection,  type, and part 
name  can  have  different  object  edition key values, 
thus being  different  “versions” of the “same  thing.” 
Object  editions, and collections of object  editions, 
can be  made into different  versions  relative to each 
other by  use  of the relationships COLLECTION  BASED 
ON COLLECTION and EDITION BASED ON EDITION. This 
is  sometimes  referred to as “heritage  versioning,” 
since  if the tools  properly maintain instances of the 
... BASED ON ... relationships, it is  possible to query 
where the object  “came  from.” 

Object  data  location. The object  is the basis  for data 
movement  between the host  repository and the host- 

connected  workstation.  Method implementations do 
the actual data movement, but the common attri- 
butes  in the object  edition  can  be  used to hold 
information  such as identifying  which  workstation 
and which  file at that workstation  holds  a  copy  of 
the  object data body. 

The RM function 

It is important to understand  the RM function  con- 
struct  because it is the basic unit of tool  functional 
specification.  It  is  similar to the  Ada@  package  spec- 
ification,  in that it is intended to be  used as an 
interface  description,  which  describes  the  outside 
of a  black  bo^.'^,'^ RM functions are  “understood” by 
the RM system.  Tools  are  made up of a  network of 
RM functions. 

Four types of RM function. An RM function  has  a 
name and description.  It  is  classified into one of the 
following  four  types. 

218 SAGAWA IBM SYSTEMS JOURNAL, VOL 29 NO 2, 1990 



Figure 10 Object control, conceptual view (CV) 

1 

I m  

OBJINSTANCE 

PINOTC 

V I  OBJ TYPE 

SUPERTYPE 

- 
n 

OINGRP 

K-EOITION 
OBJECT 

OWNER 
mSTm 
HOSTSTATUS 
HOSTUPUTIME 
HOSTUFQTUSER 
PWSLOC 
PWSSTATUS 
PWSUPDTtME 
PWSUPDTUSER 

m l  CBASEDONC 

OlNC v 
I” 

OAGG ; 

OBASEDONO 

Openlclose. An open/close RM function  is just a 
package  of  templates. The RM function  is  opened; 
the  templates  are used to access  RM-managed data 
and services; and then the RM function is  closed. The 
RM function  has no procedural  logic,  but it can  have 
any  type of  logical  view  policy. For  example,  security 
policies  prevent  unauthorized  users and tools  from 
opening an RM function. 

Integrated. The integrated RM function, in contrast, 
does  have  procedural  logic.  It  need not be associated 

with  any  object  type, and no object-type  dependent 
implementations can be  specified.  It  can  be  called  by 
tools (other RM functions) and policies,  with  param- 
eters  passed  through its parameter  template  fields.  It 
can  have  any  type of logical view  policy. For exam- 
ple,  any  violation of integrity  policies on input pa- 
rameters will  cause the RM function  call  request to 
be rejected.  Its  procedural  logic  is  executed at the 
time it is  called and can be  coded in third-generation 
language or REXX programs.  It  accesses ER data 
through its own  tailored view,  which is specified  by 

b 
IBM SYSTEMS JOURNAL. VOL 2 9 ,  NO 2, 1990 SAGAWA 219 



templates. See the following  subsection on  the logical 
data view for more detail about templates. The in- 
tegrated RM function can have optional dialog  dis- 
play  panels,  with automatic mapping  between  panel 
110 fields and template fields. 

Method. The method RM function can be  called, but 
it has  no  procedural  logic. It is the interface  from  a 
tool to the MI (method implementation). Its param- 
eter template must  have at least the fields  for the 
object  name. It can have any type  of  logical  view 
policy. This type  of RM function can be  called,  with 
object  lock control enforcement and with routing to 
the object-type dependent implementation (MI). 
The example of method-tom routing is  shown in 
Figure 9. 

Integrated and method RM functions can  be  called 
by conceptual view  policies,  logical  view  policies, 
procedural  logic, and end-user command. 

Method  implementation. The MI RM function has 
procedural  logic, but it cannot be  called  directly  by 
tools. It can  only  be  invoked via  method-MI routing. 
It can  have any type of  logical  view  policy. For 
example, an  input parameter could  be  synthesized 
by a  derivation  policy  which  includes the calling  of 
an integrated RM function that solicits additional 
input from the end user. In most  respects, the MI RM 
function is the same as an integrated RM function, 
except that its parameter template must have  fields 
for the object  name. 

RM function  logical data view. The logical data view 
in  an RM function is  comprised of templates. The 
template  is  a group of  fields; it  is  a  logical  record. A 
template field  is  a  view  of one or more of the follow- 
ing: entity attribute, parameter, interactive  panel 
field, and local  storage. The fields in a template may 
view a  subset  of the attributes of an entity. The 
template-field data type,  precision, and length can 
differ  from the ER data stored in the DBMS. If they 
differ, the field  value  is  converted at run time. 

Templates  can  be  arranged in trees,  where  a template 
tree  is  a  hierarchic view  of the entity-relationship 
network  of the conceptual view. A branch of the 
template tree maps to a  relationship in the concep- 
tual view. A template mapping to a dependent entity 
has  a  field  for  each owner’s  key attribute. 

Retrieval  selection  clauses can be  specified on a 
template. For the example in Figure 3, a template 
for  reading PERSONS based on last name would  have 

220 SAGAWA 

a  selection  clause  similar to PERSON.LASTNM = LLAST, 
where LLAST is  assigned the value  of the last name, 
“Doe.” 

A template can  be  arrayed so that a  large  set  of entity 
and relationship instances can  be  read or written in 
a  single operation. A template array is  a  table in 
main  storage; it can  have any number of  rows, and 
retrievals  can  be under the control of a  selection 
clause. 

A field in a template can be  synthesized  by derivation 
policies, so the fields in a template can be  a  superset 
of the attributes of an entity. 

Logical  view  policies are subordinate to conceptual 
view policies, in that conceptual view policies are 
always  enforced  before ER data are changed. 

ER data reads and writes  can  be  issued on a template, 
or the data access  can  be done in fewer  calls  by  using 
RM built-in  functions.  Built-in functions operate on 
template trees or groups of trees in a  single operation. 
The RM logical data view provides  a  simple but 
powerful  form of data access. The run-time syntax 
is  very  simple, but the semantics in the specification 
are  comprehensive. It provides  a  form of hierarchic 
name scoping on data which  can  be  overlapping  sets. 
It supports a  means of nonprocedural processing that 
is  driven by the occurrence  of  events and changes in 
the data state.  Defined  events are ER read, ER write, 
RM function initiation, RM function termination, 
display  read, and display  write. 

Display  specification.  Interactive  display  panel  spec- 
ifications are held in RM as  part of the RM function 
specification. For example,  included are logical  field 
display coordinates and default  highlight control. 
The display and the logical data view are related, but 
are  separate components of the RM function specifi- 
cation.I6 

RM tool  development  and  execution  method 

The intent of this  section  is to give an intuitive 
understanding of what  is  involved in designing and 
implementing a tool, and  to provide an integrated 
view  of the concepts and facilities  described so far. 

A tool designer  will  usually  perform the following 
steps  (illustrated in Figure 11): 

1. Define  a conceptual view-This step is optional, 
in that the existing conceptual view  may  be com- 

IBM SYSTEMS JOURNAL.  VOL 29. NO 2. 1990 



Figure 11 Tool development steps 

5, RM TOOL FUNCTION 
I 

RM TOOL FUNCTION 

THIRD-GENERATION 
LANGUAGE LOGIC 

1 1  
U 

plete  enough  for the purposes of the new tool. 3. Define one or more RM functions in the logical 
This step is “data modeling,” that is,  design  of  view-A mapping of the logical  view to the stor- 
the ER model.  Usually,  design  consists  of  exten-  age view may  be done, depending on the RM 
sions to the IBM-supplied ER model. New object 
types and their object  methods  can  be  defined. 

2. Define  tailored  storage view for the conceptual 
view-This step  is optional, since  it  obviously  is 
only  necessary  if the conceptual view  was 
changed.  Also,  a  default  storage  view  will  be 
provided by RM. This default  is  suitable  for pro- 
totyping the tool, and the conceptual view 
changes. 

1 
IBM SYSTEMS JOURNAL,  VOL 2 9 ,  NO 2. 19% 

implementation and the user’s  needs. The RM 
function can  be  a  simple data view (open/close), 
an integrated RM function, a method, or a method 
implementation. 

4. For each RM function, write one or more pro- 
grams--nM provides  productivity  facilities  for 

gramming  language^,'^ including  generation of 
source  code,  such  as the procedure parameter list, 

the PL/AS, PL/X-86, PL/I, COBOL, c, and REXX pro- 

SAGAWA 221 



222 

I 

PERSON 

-ADDRESS 
-NAME 

1 

rn 

~~ 

4 

Figure 12 CV,  SV, LV mapping example 

4 

I 

0 

(I 

SAGAWA IBM SYSTEMS JOURNAL,  VOL 29. NO 2. 1990 0 



template declaration structures, return code con- pending  definition of SAA security. The CPI includes 
stants, and invocation macros. aggregation,  object  with method, and supertype  for 

ation language  logic  accesses  RM-managed data 
and services  via the logical data view in its RM The CPI logical  view includes RM function, with 
function. These  accesses are under the control of  logical data view and integrity, derivation, and trig- 
the logical  view  policies in the RM function and ger  policies. The RM function types  of Open/ClOSe, 
the global conceptual view  policies. The policies integrated, method, and method implementation are 
and data semantics are enforced by RM run-time 
services. 

5. Execute the tool RM function-The  third-gener- method inheritance. 

D 

Repository  Manager  in  relational  DBMS 

RM uses the services of the IBM SAA DBMS, through its 
implementations in D B ~  and SQLIDS. Interactive dia- 
logs are  provided for database specification and for 
mapping the conceptual view to the storage view. 
SQL DDL (data description  language) is generated 

generation of  useful  indexes. Static SQL application 
source  code is generated to improve performance of 
common execution  paths. Dynamic SQL is  used 
where appropriate. RM provides  extensive instrumen- 
tation for  system and tool diagnostics and tuning. 

A simplified  example illustrating the roles  of the 
three parts of the specification domain is  shown in 
Figure  12,  with  a D B ~  storage view. 

Repository  Manager  within SAA 

b from the RM-managed data, including automatic 

1 The main concepts and facilities in the Repository 
Manager/MVS  Version  1  Release 1 product are de- 
picted in Figure 13. This is a  superset of the SAA 
repository CPI, which  is  shown in Figure  14.  Some 
specific  non-cpI  facilities  available are reliability, 
availability, and serviceability (RAS) services  for trac- 
ing and logging, interactive dialogs  for  specification 
maintenance and prototyping, and utility  tools for 
product installation and customization. 

SAA repository CPI. The functions that ultimately 
will  be supported by the Repository  Manager portion 
of the SAA CPI (repository CPI) are shown in Figure 

of ER data manipulation language (DML). The speci- 
fication domain is an extended two-schema  architec- 
ture, which includes the conceptual view and logical 
view, but not the storage view,  which is specific to 
System/370. 

The CPI conceptual view includes entity and rela- 
tionship with  integrity, derivation, and trigger  policy 
types.  Security  policy  capability  is not included, 

b 14. The first  level of the CPI only supports the syntax 

I 
IBM SYSTEMS JOURNAL, VOL 2 9 ,  NO 2. 1990 

A Repository  Manager 
data  load  facility  is 

part of the RM product. 

supported. Logical  view  security  policies  have  been 
excluded. Tool group (to group definitions of objects, 
entities, relationships,  aggregations, and RM func- 
tions) is included. 

Run-time services in the repository CPI are data 
services and a  subset of  system  services but not user 
services. Data services includes ER logical data view 
management and data access (DML), including built- 
in functions, ER and object  specification (DDL), and 
object instance access (DML). System  services in- 
cluded are the open/close RM function, call RM func- 
tion with method call routing to object-type depend- 
ent implementations, and DDL verbs  for  all RM func- 
tion types.  Also included are bind, unbind, and 
system information query. Not included in the CPI 
are  system  services  for timing and diagnostic  tracing. 

RM  implementation 

RM is implemented in RM means that important 
elements of RMIMVS are specified in RM-managed 
data via a conceptual view  of RM itself.  Examples  of 
system elements moFled in RM-managed data are 
tool groups, entities, relationships, entity aggrega- 
tions, objects, RM functions, system control blocks, 
buffers and  data areas,  system commands, system 
return codes, and system  messages.  Some  benefits 
observed  for this approach have  been: Interactive 
maintenance tools are quickly implemented and eas- 
ily maintained; documentation is to a  large extent 

SAGAwA 223 



Figure 13 Repository ManagerIMVS V1 R1 

- ENTITY, POLICIES 
- RELATIONSHIP,  POLICIES - ENTITY AGGREGATION 
-OBJECT WITH METHODS 

(TOOL  GROUP) 
AND  SUPERTYPES 

IBM-SUPPLIED ER MODEL 
-ENTERPRISE SUBMODEL 
- TECHNOLOGY  SUBMODEL 
- GLOBAL  SUBMODEL 

I 

automatically generated; and source  code  for con- chooses.  Such support has  been implemented for 
stants and data structure declarations are automati- PL/AS, PL/X, PL/I, COBOL, and C. 
cally  generated. 

A Repository  Manager data load  facility (RM loader) 
Since RM function specifications are held in RM- is part of the RM product. It populates the RM- 
managed data, it is  straightforward to generate  source  managed data stores from files created by programs 
code  fragments in the language the tool developer or users outside RM. An example of this is the Dic- 



Figure 14 Repository CPI structure, strategy 

REPOSITORY CPI ON HOST 

- ER DATA VIEWS, DML 
- ER. OBJECT DDL/DML 

tionary Model Transformer (DMT) product offering. 
DMT reads data from the IBM DB/DC Data Dictionary 
and writes it to a file,  which can be  read by the RM 
loader. 

RM provides  integrated support for the Query Man- 
agement  Facility (QMF") for reports and queries on 
ER data. 

Future directions 

The repository CPI will be  extended in functional 
scope  as well as in support of other host and coop- 
erative environments. We continue to work on ex- 
tending the conceptual view data modeling con- 
structs to be semantically  richer, while not neglecting 
opportunities for  fully  utilizing the underlying op- 
erating systems and DBMS by extending the storage 
view architecture. The concepts of entity, entity ag- 
gregation, and object will continue to converge,  with 

eventual integration with the general concepts of 
entity genera~ization.~ 

Further research  needs to be done on structural 
aspects of the RM architecture, such as  peer-con- 
nected  Repository  Managers and hierarchically con- 
nected  Repository  Managers,  which are aware  of 
each other and cooperate in solving the problems of 
distributed semantic management, with  acceptable 
performance. 

Summary 

Repository  Manager  is  a  system  for  managing  spec- 
ifications. In the IBM SAA strategy, it is  also  a  system 
to support the development and execution of soft- 
ware engineering tools for application development 
and other strategic requirements. It enables tools to 
be specified through an extended  three-schema ar- 
chitecture which  models data  and function. It trans- 

IBM SYSTEMS JOURNAL, VOL 2 9 .  NO 2, 1990 SAGAWA 225 



forms these  specifications into systems of tools and 
executes the tools while  enforcing corporate stan- 
dards. Repository CPI is an additional component in 
the IBM Systems  Application Architecture Common 
Programming Interface.  Repository  ManagerIMVS 
is implemented using its own  technology. 

Acknowledgments 

Significant and fundamental early contributions 
were made to the architecture by Claude Miller, 
Christopher Wood,  Vern  Watts,  Carlos Goti, and 
Jerome Fox. In the application of Repository Man- 
ager  technology to the IBM internal software  engi- 
neering  strategy,  William Beregi and Gene Hoffnagle 
were  key contributors. Peter Hein shared a  vision of 
what  is  possible and provided an early demonstration 
of the value of RM with the MIRAGE system.I9  Very 
early on, Raymond Berman implemented the first 
production RM tool (OCTOPUS), and  it is  still in daily 
use. The product and technology  efforts  may not 
have  survived without the vision and unflagging 
support of IBM management, especially Donald 
Hyde,  who started the research  effort, Robert Ta- 
bory, who  was instrumental in obtaining funding at 
critical  times, and Norman Pass,  who  kept the effort 
alive and took it into the product development or- 
ganization. William Hallahan and Claudia Gardner- 
Treiber were the key people  with the experience and 
perspective on how to apply the advanced technology 
prototypes to the application development problems 
of IBM customers.  Many more people  have  been 
collaborators and supporters over the years.  My 
thanks to all  these  people. 

Many  suggestions by Fran Beason, Karen Roberts, 
and the patiently anonymous referees  were crucial 
in making this paper  as  readable  as it is.  Any errors 
in fact  or  style are solely mine. 

20 

Repository  Manager,  Repository  ManagerfMVS,  Systems  Appli- 
cation Architecture, SAA,  DATABASE  2,  DB2, and QMF are 
trademarks of International Business Machines Corporation. 
Ada  is a registered trademark of the U.S. Department of  Defense. 

Cited  references  and  notes 

1. Systems Application Architecture: AD/ Cycle Concepts, GC26- 
4531-0, IBM Corporation (1989); available through IBM 
branch offices. 

2. Repository ManagerlMVS: General Information, GC26-4608- 
0, IBM Corporation (1  989);  available through IBM branch 
offices. 

3. The term view is somewhat limiting, in that some people 
might interpret it as meaning only data  as opposed to both 
data and function, but it is  used for primarily historical 
reasons. 

226 SAGAWA 

4. P.  P. S. Chen, “The Entity-Relationship Model-Toward a 
Unified View  of Data,” ACM Transactions on Database Sys- 
tems 1, No. 1,  9-36 (March 1976). 

5. E. F. Codd, “Extending the Database Relational Model to 
Capture More  Meaning,” ACM Transactions on Database 
Systems 4, No. 4,  397-434 (December 1979). 

6. OS/VS DBIDC Data Dictionary Administration and Custom- 
ization Guide, SH20-9174, IBM Corporation (1979, 1984, 
1986);  available through IBM branch offices. 

7. J. M. Smith and D. C.  P. Smith, “Database Abstractions: 
Aggregation and Generalization,” ACM Transactions on Da- 
tabase Systems 2, No. 2, 105-133 (June 1977). 

8.  D.  McLeod, “A Semantic Data Base Model and Its Associated 
Structured User Interface,” MIT/LCS/TR-214, Massachusetts 
Institute of  Technology, Cambridge, MA (August  1978). 

9.  M. Hammer and D.  McLeod, SDM: A Semantic Data Model, 
USC TR 80-3,  University of Southern California, Los Angeles 
(February 1980). 

10. G. Booch, Software  Engineering  with Ada, The Benja- 
min/Cummings Publishing  Co., Menlo Park, CA (1983). 

11. This is not done in the RM Release 1 product, but  the 
architecture enables it to be done in the future, for example, 
for performance or control reasons. 

12. G. F. Hoffnagle and W.  E.  Beregi, “Automating the Software 
Development Process,” IBMSystems Journal 24, No. 2, 102- 
120 (1985). RM  is  described in this paper as “common tool 
services.” 

13.  Policies  for  read are separately  specified and enforced from 
policies  for  write. 

14. Actually, it is four parameters for the four parts of the object 
name: collection, object  type, part, and object edition. 

15. Common APSE  Interfnce  Set (CAIS), Proposed Military 
Standard, Version 1.3, Report AD-A134825/9, Office  of the 
Secretary of Defense,  Ada Joint Program  Office,  Washington, 
DC  (August  1984). 

16. The display  specification acts as a storage view for the inter- 
active  RM function. Perhaps we should recast the architecture 
to make that explicit. 

17. PL/AS and PL/X-86 are IBM product development languages 
for the System/370 and  the Personal Sy~tem/2~. 

18. J. M.  Fox, J. C. Goti, C. R. Miller, and J. M.  Sagawa, 
“Implementing a Self-Defining Entity/Relationship Model to 
Hold Conceptual View Information,” Proceedings of the  Sec- 
ond  International  Conference on Entity-Relationship Approach 
to Information Modelinn and Analvsis. ER Institute (October 
I 98 i), pp.  569-5s I. I 

19. MIRAGE  (MInisDec and ReDositorv  based  ADDlication GEn- 
erator) w k  thk advanced technology prototype for 
DevelopMate’”. It was a fully functional tool for Yourdon- 
DeMarco-based requirements and application analysis and 
prototype generation. 

20. OCTOPUS (Old Code TO Properly Understood Software)  is 
an interactive tool to allow queries on the component structure 
of products with multiple versions under concurrent devel- 
opment. It allows unlimited bidirectional and recursive queries 
of a “bill  of material,” including macros,  modules, and pro- 
gram  symbol  usage. 

_ _  

James M. Sagawa IBM  Programming Systems, Santa Teresa 
Laboratory, P.O. Box 49023, San Jose, California 95161-9023. 
Mr. Sagawa received a B.S. in electrical  engineering  from the 
California Institute of  Technology in 1963. He joined IBM at the 
Burbank branch office where from 1963 to 1969  he  was a systems 

IBM SYSTEMS XWRNAL. VOL 2 9 ,  NO 2. 1990 



t 

D 

D 

engineer  specializing  in engineering and scientific applications, 
operating systems, time sharing, and graphics. As a member of the 
CADAM@ implementation team at the Lockheed California Com- 
pany, he wrote the graphic attention handler and various perform- 
ance prediction  tools.  From  1969 to 1971  he  was on assignment 
as a consultant to IBM United Kingdom for marketing and 
implementing engineering  graphics,  scientific applications, and 
operating systems.  In  1971 and 1972  he was on assignment at the 
IBM World Trade Manufacturing Industry Marketing Center in 
Munich, Germany, where  he  provided guidance to European 
country-level marketing for engineering and scientific applications. 
From 1972 to 1977  he was a member of the Information Manage- 
ment System development team in Palo Alto, California, and 
served  as  chief programmer for IMS/VS I .O. 1. In 1977 he helped 
start the Sundance advanced technology project, which  evolved 
into the Repository  Manager (RM). As architect and chief  designer, 
he  led the effort to apply RM (in its implementation as Common 
Tool Services) to  the development and execution of  IBM internal 
system development tools as the base for the Software  Engineering 
Support Facility  (SESF) architecture. Later, he  led the effort to 
apply it  to  the development and execution of application devel- 
opment tools as the base for AD/Cycle'".  Mr.  Sagawa  is a past 
member of the SESF Architecture Review  Board and ADE  System 
Design  Council. He currently is a member of the Santa Teresa 
Laboratory Technical Review Council and  the AD/Cycle  System 
Architecture Board. 

Reprint Order No. G321-5394. 

)I 
IBM SYSTEMS  JOURNAL, VOL 2 9 ,  NO 2, 1990 SAGAWA 227 


