
AD/Cycle strategy and
architecture

by V. J. Mercurio
B. F. Meyers
A. M. Nisbet
G. Radin

Over the years, IBM has made progress in resolving
many of the issues that deal with improving applica-
tion development (AD) productivity and quality. Sys-
tems Application Architecture", together with IBM's re-
cently announced AD/Cyclem direction, provides a
platform for even greater progress. This paper ad-
dresses the IBM strateg3 that supports ADlCycIe and
gives an overview of the major components of the
ADlCycIe architecture. This paper is an introduction to
other papers that follow in this issue.

T he requirement for significant improvements in
productivity in the application development

process has been present for several years. The im-
portance of this requirement has been the subject of
much attention, as evidenced by a recent joint proj-
ect chayered by the five major international IBM use:
groups, a top concern from the GUIDE organization,
a GUIDE strategy paper on integration of develop-
ment and a SHARE task force,4 as well as
numerous research azd development e 9 r t s in in-
dustry,'"' academia, and government. A recent
survey5 of over 1000 businesses indicated that the
backlog for mainframe applications is approximately
four years, with the demand for mini- and personal
computer applications being somewhat less. In ad-
dition to large backlogs of applications, businesses
are also faced with the high costs of maintaining
existing inventories of applications and a shortage of
experienced programming skills. Businesses are frus-
trated with the current state of application develop-

ment and are confronted with an inability to generate
the applications needed to support their business
processes on a timely basis. This inability, accom-
panied by increasing dependency on data processing
applications, puts businesses at a potential disadvan-
tage in the marketplace and becomes an inhibitor to
their data processing growth.

The approach to improving application development
productivity that evolved in the late 1970s and 1980s
with the emergence of computer-aided software en-
gineering (CASE) tools, has been to focus on individ-
ual tools to process specific activities within each
phase of the application development life cycle. Fig-
ure 1 is a representation of the traditional application
development life cycle that groups specific applica-
tion development activities conceptually into five
phases: requirements, analysis and design, produce,
build and test, and production and maintenance.
The activities in each phase are dependent upon the
completion of activities in the previous phase. For
example, requirements gathering is followed by
analysis, analysis by design, design by produce, pro-
duce by build and test, and so on. In addition to the

Copyright 1990 by International Business MachinesCorporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 1 Application development life cycle

CROSS LIFE-CYCLE ACTIVITIES

(LIFE-CYCLE Ktol ACTIVITIES 1

BUSINESS ENTERPRISE
MODELING

DEFINE PROCESSING
REQUIREMENTS

DEFINE I/O
REQUIREMENTS

DEFINE EXTERNAL DATA

L

DESIGN APPLICATION
STRUCTURE

DEFINE LOGIC

MESSAGES
DEFINE HELP AND

DESIGN SCREENS

DESIGN REPORTS

DESIGN FILES

DESIGN INTERNAL DATA

DESIGN DATABASE

DEFINE ENVIRONMENT

L

ACTIVITIES:

CREATE LOGIC

PRODUCE HELP,
MESSAGES, AND SCREENS

PRODUCE FILE I/O

PRODUCE REPORT I/O

PRODUCE DATABASE I/O

METHODS:

COMPILER BASED

CODE GENERATION

KNOWLEDGE BASED

activities within the five life-cycle phases, there is
another set of activities referred to as "cross life-cycle
activities" that span or are common to multiple life-
cycle phases.

The approach of focusing on individual tools to
accomplish specific activities has resulted in a prolif-
eration of unrelated tools and methodologies that
have provided only incremental improvements,
none of which has been significant enough to effec-
tively reduce the backlog of customer applications.
Some of the reasons for this follow:

The methodologies and tools to support the life-
cycle activities usually do not share data.
A lack of consensus on standards has made it
difficult for tools to be integrated.
Where tools have been integrated into application
development systems, the systems have typically
been built on closed architectures with private data
interfaces, making it difficult to add tools or extend
existing tools to accommodate different method-
ologies or technologies.

The management of the application development
life-cycle process usually requires that each phase be
near completion before the next phase begins. Pro-
totypes are seldom used to provide early views of the

BUILD PROCEDURES

BUILD PROGRAMS

DEFINE TEST DATA

CREATE TEST CASES

TEST AND DEBUG

SYSTEM TEST

VALIDATE RESULTS

TEST MANAGEMENT

TEST COVERAGE

PACKAQE SYSTEM

RELEASE AND
CONTROL

MAINTAIN/CHANGE
EXISTING CODE

CODE INFORMATION
EXTRACT

RESTRUCTURE

product, and requirements and specifications are
passed on paper from product planners to designers
and from designers to coders, often requiring manual
intervention between phases and activities. This pro-
liferation of unrelated tools, methodologies, and
manual data transformations results in a develop-
ment process consisting of a series of discrete steps,
with the boundaries of each step characterized b y a
manual or paper transfer from step to step, as shown
in Figure 2. This process is very inefficient and
requires intensive use of people and paper.

To address the need for significant improvement in
the productivity, quality, and manageability of the
application development (AD) process, a collection of
offerings called AD/Cycle" l 4 was developed at IBM.
Based ,son Systems Application Architecture'"
(sAA'~) and supported by a staged implementation
of integrated tools, data storage facilities, and an
open architecture for interfaces, AD/Cycle follows
an application development strategy that is intended
to enhance customers' ability to better meet their
data processing business needs. The goals of
AD/Cycle are to:

Bring the latest application development technol-
ogy to customers through IBM- and vendor-sup-
plied tools

IBM SYSTEMS JOURNAL, VOL 29. NO 2, 1990 MERCURIO, MEYERS. NISBET. AND RADIN 171

L

Enable centralized control and management of
customer application development data
Establish an open architecture and a base set of
tool services for integration of application devel-
opment tools across the life cycle
Complement and extend SAA

Conceptually, AD/Cycle can be thought of as a
framework for, and a set of, application development
tools. The framework is provided by an AD platform
designed to support the integration of tools through
a consistent user interface, workstation services, an
AD information model, tool services, Repository
Services, and Library Services that provide control
for defining and sharing application development
data. AD tools will offer solutions for the application

development life cycle. Over time, it is planned that
AD/Cycle tools will conform to the architecture as
is technically appropriate for the function of each
tool.

The application development tools can be from sev-
eral sources: from IBM, from vendors, and from the
customers themselves. IBM has entered into relation-
ships with Bachman Information Systems, Index
Technology Corporation, and Knowledgeware, Inc.
wherein selected products from these vendors will be
marketed through an IBM complementary marketing
program to provide offerings that will help to achieve
complete life-cycle coverage.

This paper discusses requirements for AD/Cycle tool
function and the AD/Cycle tools strategy that IBM

IBM SYSTEMS JOURNAL, VOL 29. NO 2, 1990 1

has developed to satisfy these requirements. It also
describes the architecture of the AD/Cycle infra-
structure and its interfaces, how it fits into SAA, and
the technical constraints that have affected its design.
This paper serves as an introduction to two sets of
papers that follow in this issue of the IBM Systems

of some of the architectural components; the other
set discusses specific AD/Cycle tools.

Journal. One set provides more detailed discussions

Application development tool technology

AD/Cycle will provide the capability for application
development to focus on enterprise modeling and
analysis and design-that is, toward the front end of
the application development life cycle. At the same

time, AD/Cycle will continue to provide continuous
and enhanced tool function across the traditional
application development life-cycle phases through a
staged set of IBM- and vendor-supplied tools. These
tools, while supporting many different technologies,
including application generators, traditional third-
generation languages, and knowledge-based systems,
should provide significant improvements in appli-
cation development productivity through integration
with the AD platform. This section highlights parts
of the development life cycle to indicate the tool
technology direction and some recommended tool
solutions.

Enterprise modeling. When businesses first started
using computers, they typically automated their

processes on an application-by-application basis,
with each application being a stand-alone entity
having its own private set of input and output data
files. As the state of data processing evolved, busi-
nesses continued to automate more and more of
their processes; however, in many cases, they failed
to step back and look at the overall company or
enterprise structure to focus on how data are used

Early prototyping enables
end-user interfaces and

functionality to be evaluated.

and how data could be shared by multiple processes
within the enterprise. This lack of focus has resulted
in enterprises having to maintain multiple copies of
the same data and maintain applications whose data
underpinnings and process requirements have grown
obscure over the years. Not only does this practice
lead to inconsistent and unreliable values for the
same data item used across different areas of a busi-
ness, it also creates a situation where it is almost
impossible to enhance, modify, and maintain exist-
ing applications.

For the above problem, AD/Cycle offers an enter-
prise modeling approach supported by tools that will
assist in the creation of an enterprise model to be
validated, analyzed, and then used to generate appli-
cations. Enterprise modeling is a technique that en-
ables business professionals and business analysts to
define, relate, and validate the data and processes
that are used. As changes occur in the enterprise, the
model can be updated or related applications can be
viewed, and change can be effectively managed. In
the AD/Cycle implementation of enterprise model-
ing, the enterprise model data, i.e., data and process
requirements, are centrally stored as entity-relation-
ship data by the Repository Manager" (discussed
below), thus making that data available for subse-
quent life-cycle tools. This activity also provides a
permanent record of the process requirements and
the data underpinnings for each application to facil-

174 MERCURIO, MEYERS, NISBET. AND RADIN

itate future enhancements needed to support a grow-
ing enterprise.

The enterprise modeling method of defining proc-
esses also enables prototyping of those processes early
in the development life cycle. Early prototyping en-
ables end-user interfaces and functionality to be
evaluated at the beginning of the life cycle, eliminat-
ing much of the rework that characteristically faces
developers after code has been developed and an
application is in an executable state. Rework at this
later stage is many times more costly and time-
consuming than at the prototype stage.

The enterprise modeling information is created by
business professionals and analysts rather than data
processing professionals such as programmers and
systems analysts. These business professionals are
the experts in their respective processes, e.g., ac-
counts receivable, finance, billing, order entry, pay-
roll, etc. This role change in application development
provides two major benefits:

Knowledge of business processes does not have to
be transferred to data processing professionals to
initiate the application development process.
Costs are reduced significantly and errors resulting
from insufficient business process knowledge are
minimized.
Cycle time for application development can be
reduced through the direct initiation of application
development and changes.

Additionally, assimilation of a process into a se-
quence of processes that includes input, process
steps, and output-as in a payroll calculation and
check statement printer operation-requires signifi-
cant transformation and automation from the enter-
prise model definition steps to production applica-
tion generation. Transformations will initially in-
volve discrete steps of function requiring the
collective effort of both business and data processing
professionals; however, as the integrated tools base
develops, more of the transformation should be re-
placed by automatic tool function.

Figure 3 shows the evolution of programming tech-
nology from the use of machine language technology
when computers were first introduced, to the current
leading edge technology incorporating enterprise
models.

AD/Cycle tools offered by IBM that can be used for
defining enterprise models and for validating models
through prototyping are:

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 3 Evolution of programming technology

C

-INCREASED
PRWRAMMER
PRODUCTMTY

KNOWLEDGE-
BASED
SYSTEMS

-FLEXIBILITY
FOR TEWNOLOOY
INTRODUCTION

GENERATORS

HIGH-LEVEL
LANGUAGES

ASSEMBLER
LANGUAGE

MACHINE

I MACHINE-LEVEL INTERFACES

COMPUTER-
ASSISTED
SOFTWARE
ENGINEERING

ENTERPRISE
MODELS I 1

IBM'S DevelopMate" that focuses on the defini-
tion, refinement, and validation of an enterprise
model through prototyping
Information Engineering Workbench@/Planning
Workstation from Knowledgeware, Inc., for cap-
turing, modeling, and analyzing data about an
organization and its use of information
PC PRISM^" from Index Technology Corporation
for helping organizations develop and analyze en-

they can better align their business and systems
objectives

B terprise models and other planning models so that

Additional information on enterprise modeling can
be found in Reference 16.

Analysis and design. In the analysis and design
phase, business requirements defined in enterprise
modeling can be used to help develop application
design information.

b
IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

The selection of analysis and design tools is depen-
dent on the design methodology established by an
enterprise. The AD/Cycle open framework supports
the integration of analysis and design tools that use
current software engineering principles, modern de-
sign methodologies, and common diagramming
techniques. AD/Cycle tools offered by IBM that can
be used for analysis and design are:

Information Engineering Workbench/Analysis
Workstation and Design Workstation products
from Knowledgeware, Inc., for refining and ana-
lyzing end-user requirements and for logically de-
fining information systems based on the analysis
of end-user requirements
Excelerator" from Index Technology Corporation
for developing process and data models, validating
design information, prototyping screens and re-
ports, and generating system documentation

MERCURIO, MEYERS. NISBET, AND RADIN 175

The BACHMAN Re-Engineering Product Set" from
Bachman Information Systems that includes tools
for advanced data modeling and database design

Generators. The use of a generator is frequently seen
as a more productive way to produce an application.
Applications created by generators may not be as
error prone as coding in a procedural language, and
the level of application specification is often less
detailed. Whereas IBM'S Cross System Prod-
uct/Application Development (CSP/AD) is the stra-
tegic SAA application generator, it is planned that
AD/Cycle evolve to provide more automatic crea-
tion of generator input. An initial step in this direc-
tion is provided by the external source format func-
tion of CSP/AD that allows CSP/AD to be used along
with other application development tools such as
Index Technology's Excelerator and Knowledge-
Ware's Information Engineering Workbench/
Analysis Workstation and Design Workstation prod-
ucts.

See Reference 17 for additional information about
CSP/AD.

Languages. Today's application development world
has significant financial investments in procedural
languages, sometimes called third-generation lan-
guages. The vast majority of existing customer code
has been written using third-generation languages,
and recent use of the C programming language in-
dicates the continuing importance of procedural lan-
guages for developing sophisticated software.

In AD/Cycle, third-generation language products
will be enhanced to provide integrated functions to
increase the productivity of the development pro-
grammer. Increased programmer productivity
should be achieved through integration of language-
sensitive editors, preprocessors, compilers, front-end
tools, static and dynamic debuggers, and other sup-
port functions. This integrated function should give
cohesive edit/compile/debug capability and will fa-
cilitate the integration of code from generators and
knowledge-based applications with traditionally pro-
duced code. It is planned that information captured
from the front-end analysis and design tools, such as
prototypes, code skeletons, data structures, screen
definitions, and report formats, will be accessible by
users of tools supporting the third-generation lan-
guages.

Most large third-generation development projects
rely heavily on library management systems to con-

176 MERCURIO. MEYERS, NISBET, AND RADIN

trol source code versions and synchronize program-
mer access to code. In AD/Cycle, Library Services
will provide the function of library management as
well as the function of configuration management
that automatically keeps track of module interde-
pendences and synchronizes compilations and link-
edits when necessary.

Integration will extend to the execution environ-
ment. A common run-time environment would
streamline calls between programs written in differ-
ent languages. With communication among lan-
guages, customers will be able to take advantage of
the special strengths of each programming language,

Process management is one of the
key functions provided in AD/Cycle.

without having to write function all in one language.
It is also planned that language debugging and test
analysis tools will be integrated with editors and
compilers to provide a consistent context for pro-
grammers as they test applications.

This capability will evolve to take full advantage of
the productivity of the programmable workstation,
from program creation through unit testing. Over
time, it is planned that AD/Cycle will give the de-
velopment programmer the capability to edit/com-
pile/debug and unit test applications on the worksta-
tion, thus offering improved productivity and usa-
bility. The SAA languages will continue to support
system test and execution on the host for worksta-
tion-developed applications.

Knowledge-based systems. Strategic application-
enabling tools for knowledge-based systems will
participate in the AD/Cycle tools strategy. Many
application solutions can be developed with knowl-
edge-based systems alone, but many can be more
effectively developed using a combination of knowl-
edge-based systems and other approaches such as
procedural code. The intent is that developers of
procedural and knowledge-based code applications
will be able to develop entire applications with tools
that work consistently and that provide for seamless

IBM SYSTEMS JOURNAL, VOL 29. NO 2, 1990

tool-to-tool transition. (IBM'S The Integrated Reason-
ing Shell, Expert System Environment, and Knowl-
edgeTool'" are application-enabling tools for knowl-
edge-based systems.)

Reference 18 describes the role knowledge-based
systems will play in AD/Cycle.

Testing and maintenance. Testing new applications
and maintaining existing ones are key activities in
the development life cycle, along with the process
management facilities to manage and control these
activities. It is our plan that new tools for analysis,
creation, management, and coverage of test data will
be provided as part of a comprehensive verification
environment. IBM will provide aids such as the COBOL
Structuring Facility to help users understand and
maintain existing applications. Additional integrated
tools will help programmers assess the impact of
making changes to existing systems, which is the
most time-consuming part of application mainte-
nance.

Support for program testing and debugging is aided
by IBM'S INSPECT for c/370 and PL/I. INSPECT is a single
product that allows application developers to control
the execution of C and PL/I programs, inspecting and
modifying variables as they execute. INSPECT runs in
either an interactive mode with multiple windows
and extensive on-line help or it will operate in a
batch mode. Over time, it is planned that program
debugging will be extended to support all of the SAA
languages from a single source-level debugging tool.

IBM also provides the Software Analysis Test Tool
for test coverage analysis of PL/I and COBOL pro-
grams, and the Workstation Interactive Test Tool
for regression testing support of interactive applica-
tions in SAA environments.

Cross life-cycle tools. Whereas some application de-
velopment tools provide functional support for a
single phase of the application development life
cycle, management of projects, the process itself,
documentation, and changes (impact analysis) ex-
tend across all phases.

Process management (discussed in Reference 19) is
one of the key functions provided in AD/Cycle. This
function, implemented as an AD/Cycle tool itself, is
based on the IBM product, Application Development
Project Support. The product enables the user to
define a model of the application development proc-
ess, to save that model, and then to guide the process

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 4 AD/Cycle architecture

- USER INTERFACE I
,I WORKSTATION SERVICES I - WORK MANAGEMENT

0 0 ... nz AD

AD
PLATFORM

TOOL SERVICES

by execution of the activities defined in the model.
Control over the application development process is
expected to improve the quality, as well as decrease
the time required for development.

The direction of AD/Cycle is to also provide the
ability to identify and locate components across the
life cycle (for example, enterprise models, designs,
programs, etc.) that can or must be integrated in new
application definitions.

AD/Cycle architecture

The AD/Cycle architecture has been defined as an
infrastructure of services and interfaces to enable
integration of application development tools across
the life cycle. Figure 4 illustrates the layered archi-

MERCURIO, MEYERS, NISBET. AND RADIN 177

tecture of AD/Cycle. The technical objectives, re-
quirements, and constraints that influenced this ar-

Having consistency and integration
at the end-user interface is a major

factor in the structure of the
AD/Cycle architecture.

chitecture are discussed first. Following this discus-
sion, each of the architectural components is
described.

AD/Cycle technical objectives. Meeting the objective
of accelerating and improving the delivery of appli-
cation systems requires not only a full complement
of AD tools that apply existing and emerging devel-
opment techniques and methodologies to activities
across the development life cycle; it also requires a
supporting architecture that delivers and fully uti-
lizes both well-established and evolving technologies
and facilities within the operating systems and their
application-enabling components. The technical ob-
jectives that influenced the design of the AD/Cycle
architecture are now discussed. Many of these objec-
tives and architectural fundamentals are identified
in Reference 9, which is a description of the internal
IBM application development architecture that
evolved into AD/Cycle.

A major objective for AD/Cycle is to provide the
user or tool developer with the capability to incre-
mentally extend functional capabilities and to allow
selective substitution of existing functions. This ob-
jective dictated that the architecture would clearly
define interfaces to be published so that others could
become part of our solution. The Repository Inter-
face provides the functional interface to the Reposi-
tory Manager, and the AD information model pro-
vides the model of shared data so that an AD tool
conforming to the architecture can work in concert
with other conforming AD tools.

The architecture must define the central control
facility for enterprise administration. The scope of

178 MERCURIO, MEYERS. NISBET, AND RADIN

such a facility is necessarily larger than just applica-
tion development. The Repository Services, which
uses the recovery, integrity, and data-sharing capa-
bilities of an underlying relational database manage-
ment system (DBMS), and the Library Services, which
controls storage of multiple versions of flat file data,
provide this facility for data used by AD/Cycle tools.

A set of generic and reusable AD services that will be
used by AD/Cycle tools and developers is required
in order to ensure consistency in AD tool implemen-
tation and semantics, and to avoid redundant pro-
gramming. The AD tool services and AD workstation
services provide this capability.

The objective of having consistency and integration
at the end-user interface is a major factor in the
structure of the AD/Cycle architecture. It is neces-
sary to give a common "look and feel" to the various
AD tools. Consistency is especially important because
AD tools from various sources will become part of
the solution. Initially, AD/Cycle user interface con-
sistency is based on the use of Presentation Man-
ager" of Operating System/2'" Extended Edition
(Os/2'"' EE)"the operating system on a workstation-
and the graphical model guidelines of the Common
User Access (cuA).~' This is the base from which the
user interface will evolve into a common workplace
model. This user interface component will be ex-
tendable so as to make tools accessible in a consistent
way by using work management." A significant pro-
totyping activity developed the user interface2' and
ensured that the interface would be well-designed
from the human factors point of view.

Technical requirements and constraints. In addition
to the major objectives discussed above, several other
technical requirements and constraints affected the
design of the AD/Cycle architecture.

Cooperative SAA development environment. A re-
quirement of the architecture of AD/Cycle was to
merge the advanced graphical presentation and in-
teractive characteristics of the intelligent workstation
with the ability of mainframe facilities that centrally
control and share application development re-
sources. The Personal System/2@ (PS/~@), with its
supporting software in os/2 EE, provides the appli-
cation developer with an interactive, graphical user
interface and provides AD tools with a multiwin-
dowed, concurrent activity display needed to inte-
grate multiple AD tool functions at the end-user level.
The Repository Services and the Library Services
will provide the ability to centrally control, admin-

ISM SYSTEMS JOURNAL, VOL 29, NO 2. 1990

ister, share, and recover application development
data across the enterprise. Additionally, merging the
workstation and host capabilities permits optimizing
the activities of an individual developer (such as
editing a single source program) and the activities of
an administrator (such as building a complete appli-
cation system comprised of numerous parts).

To support a cooperative environment between the
psi2 workstation and the Application System/400@
(AS/~OO") or System/370 hosts, the AD/Cycle archi-
tecture permits optimum placement of data and
function between the processors. In other words, the
architecture has the ability to route function requests
to data location, bring data to the function location,
and route single data requests from the workstation
to the host. Additionally, these facilities are designed
so that the location of function and data, on work-
station or host, will be transparent to the end user.

It was required that the AD/Cycle architecture spec-
ify the application development solution for SAA.
This requirement led to a cooperative structure with
a PS/Z workstation running os12 EE as a front end and
an SAA host-either the Multiple Virtual Storage/
Time Sharing Option-Extensions (MVS/TSO-E) or Vir-
tual Machine/Conversational Monitor System
(VM/CMS) operating system on the System/370 hard-
ware architecture, or Operating System/400"
(os/400TM) on the A S ~ O O hardware architecture-as a
back end.

Multiple data storage facilities. To support shared,
centrally controlled data, the AD/Cycle architecture
was required to support application development
data, within a single framework, with a wide range
of storage requirements. Data captured at the front
end of the development cycle, such as enterprise or
design models, can be most naturally structured into
entities and relationships between the data elements.
Much of the data at the back end of the development
cycle, such as source programs, are typically stored
in flat file forms. The AD/Cycle architecture sup-
ports both storage forms with control information
and relationships between the data being maintained
with the entity-relationship model.

Data integrity and library management functions.
The ADICycle architecture was required to merge
the data integrity and recovery requirements tradi-
tionally supported by database management systems
with the version, configuration, and build facilities
traditionally offered by library control systems. The
AD/Cycle data handling architecture addresses these
requirements with a mixture of protocols that will

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

be provided by the underlying relational database
managers, the Repository Services, and the Library
Services. Over time, it is planned to have enhance-
ments defined and delivered to improve the level of
consistency among protocols regardless of the storage
form of the data.

Software technology. The ADICycle architecture was
itself required to use, as well as allow AD tools to
fully utilize, currently existing software technology
so as to bring it to bear on the problem of improving

Each component of the AD/Cycle
architecture plays a role in
enabling tool integration.

~~

both productivity and quality within application de-
velopment. The existing technologies thus supported
include advances in graphical displays, interactive
techniques, connectivity and networking capabili-
ties, database management and control facilities,
configuration and library control functions, and
mainframe capacity and performance. In addition
to these technologies, it also implements other im-
portant technologies such as the entity-relationship
(ER) model" and the object-oriented paradigm for
persistent data.

Technology extensions. Finally, the AD/Cycle archi-
tecture was required to provide an infrastructure that
is extendable and able to accommodate advances in
technology within the AD/Cycle structure itself,
within the underlying SAA enterprise system, and
within the AD tools and methodologies that operate
within this environment. AD/Cycle architecture is
required, for example, to be extendable to a local
area network (LAN) server and fully distributed con-
figurations, incorporate artificial intelligence tech-
nology, and enable the use of extensions to SAA.

Components of the AD/Cycle architecture

Each component of the AD/Cycle architecture plays
a role in enabling tool integration. The totality of

MERCURIO, MEYERS, NISBET, AND RADIN 179

the base consisting of the user interface, workstation
services, AD information model, tool services, and
Repository Services is referred to as the ADplatjorm.
AD tools, which supply specific AD function, are built
using the services of this platform. The following
discussion parallels Figure 4 from the top to the
bottom, giving a descriptive overview of the AD
platform and AD tools and relating their roles in the
AD/Cycle architecture. More detailed descriptions
of some of these components are found in other
papers in this issue to which the reader is referred.

User interface. The AD/Cycle user interface imple-
ments the CUA rules and guidelines and will evolve
to the workplace model2’ as the consistent point of
display integration for all AD tools and support func-
tions needed by an application developer using the
workstation. CUA, complemented by work manage-
ment facilities discussed below, will result in these
independently developed AD tools presenting a rea-
sonably consistent interface to application devel-
opers.

More information on the use of CUA in AD/Cycle
can be found in Reference 2 1.

Workstation services. Code running on the worksta-
tion requires the availability of services for displaying
information on the screen and for providing access
to application development data. The workstation
services component uses the SAA Presentation
Manager23 for screen display and a set of user inter-
face services” that enhances tool builder productiv-
ity in building displays and consistent display for-
mats. Workstation services also provides os/2 serv-
ices that allow Repository Manager data and library
data to be accessed by workstation-resident AD tools.
They materialize the data on the workstation either
as a flat file or in entity-relationship structures.
Workstation services also allows routing function
invocation to a host function and direct Repository
Manager access by workstation-resident AD tools.

Work management. Work management is the facility
in the AD/Cycle architecture that provides for con-
sistency of AD tool invocation for all AD/Cycle tools.
This facility is a common one that allows the user to
list possible activities and to select one on which to
work. This consistent task invocation capability in-
cludes how lists are displayed, selected from, manip-
ulated, updated, and refreshed.

In a given enterprise, the methodology preferred to
develop applications may be encoded using a process

180 MERCURIO. MEYERS. NISBET, AND RADIN

manager. Such a methodology will embrace a pre-
ferred set of AD tools for application development
and a specific sequence of process steps. The process
management facilities of work management can be
used to encode the methodology to accomplish AD
tool initiation automatically. The use of process
management within application development is
given in Reference 9.

Architecturally, work management is classified
within AD tools. It is in the tool category known as

Repository Services provides
centralized, shared management of
all application development data.

~~ ~~~~~~ ~ ~~~~~~~ ~~~ ~ ~ ~

cross life-cycle tools, since it is used across the entire
AD life cycle. However, it has a special architectural
role since it controls the invocation of the other tools
and has thus been singled out here.

More information about work management can be
found in Reference 19.

AD tools. On the AD platform base, IBM and IBM’s
Business Partners are developing AD tools that either
are applicable across all of the development tasks or
are specific to a single activity. In addition, IBM
encourages vendors to enable their AD/Cycle tools
to operate with this architecture to complement the
IBM offerings. AD tool function can be delivered as a
combination of os12 programs, objects, Repository
Manager functions, and host programs. These tools,
and the categories into which they have been classi-
fied in AD/Cycle, were discussed above.

Tool services. Tool services is common function that
multiple tools require regardless of whether they
execute on the host, the workstation, or coopera-
tively. Examples are profile and error message serv-
ices. Tool services can be implemented as a combi-
nation of os/2 programs, objects, Repository Man-
ager functions, and host programs. Definition and
delivery will be staged over time.

IBM SYSTEMS JOURNAL, VOL 29, NO 2. 1990

Repository Services and Library Services. The Re-
pository Services component provides centralized,
shared management of all application development
data. It is the point-of-control for defining, admin-
istering, and controlling access to AD data shared by
users through multiple workstations. It is built on
top of the SAA relational DBMS, which provides facil-
ities for safe, shared access to all of the data that
define applications in the enterprise. It extends the
SAA Common Programming Interface (CPI) by means
of the SAA Repository Interface. On MVS, Repository
Manager/MVS’” is the product that implements Re-
pository Services.

Repository Services presents an entity-relationship
(ER) model of these data. The ER services allows the
specification of relationships among these defini-
tional data, constraints on the data and on the rela-
tionships, and views that different programs may
have of these data.

For example, an entity called PROGRAM and another
called PROGRAMMER can be defined, with a set of
attributes on each. A relationship called OWNS be-
tween PROGRAMMER and PROGRAM (and an inverse
relationship called OWNED-BY) can be defined. It
can be specified that a PROGRAM may be owned by
only one PROGRAMMER, but that it must always have
an owner. (So, if an attempt is made to delete a
PROGRAMMER, it is prevented if either he or she owns
any PROGRAMS or these PROGRAMS are deleted.) It
can be specified that if an attempt is made to update
the SALARY attribute of PROGRAMMER so that it ex-
ceeds a specified amount, a message is to be sent,
and an authority check is to be made. A view avail-
able to a set of AD tools that does not include the
SALARY attribute can be defined.

Some uses of the Repository Services require manip-
ulation of many entities and relationships. Because
of this, a need for a higher-level interface to
AD/Cycle data has been identified. To address these
problems, the Repository Services has provided ob-
ject capability whereby a set of programs, called
methods, can be registered in the Repository Man-
ager to present a high-level abstraction of the data to
the AD tools. If objects are used, the AD tool code
need not see the data model directly, but rather see
a set of object types and the method programming
interfaces for these types. Note that objects can be
used by tool services as well as by individual tools
that want the benefits of the higher level of abstrac-
tion provided by objects.

IBM SYSTEMS JOURNAL, VOL 29. NO 2, 1990

Figure 5 Example of a library hierarchy

EDIT

PRODUCTION

PROMOTE

PROMOTE

More information about the Repository Services
component is found in Reference 24.

AD/Cycle has populated the Repository Manager
with a set of entities, relationships, and constraint
definitions that represent the data that may be shared
between AD tools at various stages in the develop-
ment life cycle. A standard model specifying, for
example, the representation of COBOL data structures
and Information Management System (IMS) database
definitions necessary in building an application has
been created. This model of AD/Cycle data that may
be shared is the AD information model. As enterprise
modeling, design, generator, and editor AD tools
populate the Repository Manager with these ele-
ments, the tool data from each tool will be integrated
with data from other tools.

It is planned to have the interfaces to the Repository
Services available to AD tools whether they execute
on the host or on an attached workstation.

Library Services provides support for versioning and
automatic application build. It allows an installation
to set up a project database in which data reside in
flat file data sets. The project database is organized
into groups, each group being subordinate to the one
above it. This form of data organization is known as
a hierarchy. Hierarchies are allocated from bottom
to top, each level being a different version of the
application. Thus, when data is referenced, the lower
positions in the hierarchy take precedence over
members at a higher position. Figure 5 shows an

MERCURIO, MEYERS. NISBET. AND RADIN 181

I

example of a library hierarchy, with the root PRO-
DUCTION. When a user wants to edit a file that is not
currently at the USER level of the hierarchy, the file
is brought down to the USER level and locked at the
PRODUCTION level. When the USER level has com-
pleted its changes, it is moved back up the tree, one
level at a time (e.g., USER to TEST, TEST to PRODUC-
TION). The upward process is called promote. Library
functions allow the user to browse, create, update,
delete, compile, link, build, promote up the hier-
archy, and report on data stored in the database of a
project. The build function, sometimes called conjig-
uration management, ensures project integrity by
verifying that all components are present and com-
plete. It keeps track of data set interdependences and
will automatically perform necessary compilations

182 MERCURIO, MEYERS, NISEET, AND RADIN

and links so that out-of-date components are re-
placed with up-to-date ones.

On MVS, Library Services is implemented by the
Softwa52 Configuration and Library Manager
(SCLM), which is a component of the Interactive
System Productivity Facility/Program Development
Facility (ISPF/PDF) Version 3.

Over time, it is planned that AD/Cycle define and
deliver additional support to enhance the integration
of tool services, Repository Services, and Library
Services with the goal of providing consistent ver-
sioning across all AD/Cycle data, maintaining rela-
tionships between modeled and file data, and ensur-
ing a single point of control for all operations.

IEM SYSTEMS JOURNAL, VOL 29, NO 2, 1990 .I

1. An enterprise model, which represents the point
of data integration after an enterprise-modeling
AD tool has completed its task. A good industry
consensus on this model has been obtained, and
its implementation and use are planned by var-
ious enterprise-modeling tools from IBM and its
Business Partners.

2. A design model, which represents the point of
data integration after a design AD tool has com-
pleted its task. Initially, there is no industry agree-
ment on a common design model; so, although it
is part of the architecture, it will not be standard-
ized in early versions of AD/Cycle.

3. A technology model, which represents the point
of data integration after a “produce” AD tool has
completed execution. (“Produce” AD tools consist
of such things as compiler, generator, and knowl-
edge-based system AD tools, i.e., AD tools that
“produce” user application code.) The technology
model reflects the types of tools that use it, and
thus it is expected to grow over time as new tools
are added.

It is planned to have these points of integration met
by all applicable AD/Cycle tools in an AD/Cycle
system, thus allowing data to be shared among AD
tools from many different sources, both within and
outside of IBM. They are used regardless of the meth-
odology being followed or the style of user interac-
tion being offered.

More information about the AD data architecture
can be found in Reference 26.

AD/Cycle complements and extends SAA

AD/Cycle is based on IBM’S Systems Application
Architecture and will evolve using the same ele-
ments. The functions provided by AD/Cycle will be
sAA-conforming applications and will support the
range of SAA environments. An example is the in-
corporation into AD/Cycle of the graphjial model
of the SAA Common User Access support provided
by the os12 Extended Edition Presentation Manager
for use by the AD/Cycle application development
tools and tool services.

With AD/Cycle based on SAA, the skills learned in
one implementation of AD/Cycle will be transferable
to the other SAA environments. Training costs and
migration costs to move to a new application devel-
opment environment, to add tools to an existing
one, or to change methodologies will be substantially
reduced.

MERCURIO, MEYERS. NISBET. AND RADIN 183

An example of SAA extension introduced by
AD/Cycle is the programming interface to Reposi-
tory Manager, defined as a new element of the SAA

AD/Cycle tools conform to
Common User Access guidelines.

Common Programming Interface (CPI). This com-
ponent of the SAA CPI will be important to AD/Cycle
by providing for controlled communications and
sharing of data between the tools.

AD/Cycle utilizes an evolutionary strategy. It is de-
signed to build upon existing IBM and vendor prod-
ucts in a staged manner, allowing users to develop
their own timetable for moving into new application
development technologies and methodologies. The
AD/Cycle implementation is based on enhance-
ments to existing application development tools and
on the introduction of new tools by IBM, customers,
and software vendors. Existing capabilities will be
enhanced and new functions will be added in stages
in the different SAA environments. This evolution
will result in consistent, integrated application de-
velopment tools and services across the SAA environ-
ments.

Application development under AD/Cycle

The key difference in application development as it
emerges under AD/Cycle (portrayed in Figure 6) , as
opposed to application development today (see Fig-
ure 2), is in the following four areas unique to
AD/Cycle:

1. AD tools share data through common use of the
AD information model.

2. Tool-to-tool user transition will be simplified as
a result of having AD/Cycle tools conform to the
CUA guidelines and the standards associated with
a tool developer’s guide to be published for appli-
cation development.

3. Reduction in the necessity for unique skills is
achieved in the application development process

184 MERCURIO. MEYERS, NISBET, AND RADIN

by enabling application development through re-
finements of the enterprise model. The analysis
and refinement tools can be invoked by the same
individual who creates the application model, and
this individual is assisted by automated transfor-
mation operations that create the executable ap-
plication from the refined application design.
These transformations occur by using tools such
as application generators or compilers.

4. The open architecture of the AD platform pro-
vides a mechanism through services and standard
definitions to enable IBM, customers, and tool
vendors to add and extend the capability of the
application development process. For example,
new technology emerging in user interface facili-
ties can be easily enhanced through ongoing tool
additions to this foundation.

Figure 7 shows the AD/Cycle application develop-
ment function model that provides the foundation
for an integrated and efficient application develop-
ment process. At the top of the figure, SAA is shown
as the umbrella under which AD/Cycle serves as an
SAA application and the IBM SAA solution for appli-
cation development. The AD/Cycle tools encom-
passing the application development life-cycle model
will provide support for the entire application devel-
opment life cycle. They can be provided by IBM,
customer-written, or vendor-supplied because of the
openness of AD/Cycle established by the AD infor-
mation model. Supporting the life-cycle tools at the
bottom of the figure, the AD platform provides access
to the Repository Manager for application develop-
ment data, an interface to the Repository Manager
for the access and manipulation of the data, and an
information model that defines the structure and
format of the data. The platform also provides a
cuA-conforming user interface and a tool invocation
and execution environment located at the worksta-
tion. This function model defines the key tool areas
required for full life-cycle support of application
development. It also includes the key AD platform
services that provide the base for all tools and ensures
their integration and sharing of appropriate appli-
cation development data, processes, and parts.

Summary

The application development process under
AD/Cycle is markedly different from current appli-
cation development processes. Tool integration, both
data and functional, along with the relationships
established between parts of applications and the
successive stages of application refinement, combine

IBM SYSTEMS JOURNAL, VOL 2 3 , NO 2, 1990

Figure 7 ADlCycle life-cycle function model

1

-IEM
-VENDOR SUPPLIED
-CUSTOMER WRITTEN

CROSS LIFE-CYCLE ACTMTIES PROCESS MANAGEMENT
PROJECT MANAQEMENT
IMPACT ANALYSIS

DOCUMENTATION
REUSE

PROTOTYPING I

c.Ixzl K ~ W L E ~ E - e A S E D WSTEMS

TEST AND MAINTAIN

-BUILD, RELEASE, AND CONTROL - PACKAGWG
-MAINTENANCE

-USER INTERFACE
-WORKSTATION SERVICES
-AD INFORMATION MODEL
-TOOL SERVICES
-REPOSITORY SERVICES

to enhance and simplify application construction
and control. Figure 8 portrays this simplified appli-
cation development environment. (Contrast Figure
8 with Figure 2, showing the current application
development process as an inefficient people- and
paper-intensive process characterized by manual in-
tervention and paper transfers of information from
step to step.) Integration and efficiency are supported
by AD/Cycle, which provides multiple methodol-
ogies and enables tools to share data throughout the
life cycle, and by the centralized Repository Services
for the control and management of application de-
velopment data.

Although the AD/Cycle tools strategy and architec-
ture has focused on tool integration and tool tech-

nology, the overall net effect is a strategy that will
eliminate the application development inhibitors to
customer data processing and overall customer
growth. Tool builders are able to focus more on tool
specifics without having to be concerned about im-
plementing underlying data facilities. Thus they can
provide a wealth of high-quality, integrated tools for
tool users. Tool users in turn are able to move easily
from tool to tool and are assured of a high degree of
integration and data sharing. Application data can
be defined and entered once and can be easily shared
and reused at different steps along the development
process. Applications can now be defined at the
source of the requirements to improve responsive-
ness to end-user requirements; they can be evaluated
earlier, reducing costly and time-consuming rework

IBM SYSTEMS JOURNAL, VOL 29. NO 2. 1990 MERCURIO, MEYERS. NISBET, AND RADIN 185

Figure 8 Application development is simplified under ADiCycle

T i n T

at later stages. As information concerning the under-
lying processing and data requirements of an appli-
cation are stored in the Repository Manager, appli-
cations are able to grow as customers’ businesses
grow.

Acknowledgments

The AD/Cycle strategy and architecture summarized
by this paper represent the joint work of a team of

people throughout IBM. The authors would like to
acknowledge the work done by Dave Harvey and his
staff in Cary who worked with the Santa Teresa and
Toronto Programming Systems development labo-
ratories in the formulation of the AD/Cycle tools
strategy. We would also like to acknowledge the work
on the AD/Cycle architecture done in Santa Teresa
in Bob Costain’s and Steve Uhlir’s departments
working with the Cary and Toronto development
laboratories, with internal tools efforts, and with

186 MERCURIO. MEYERS, NISEET, AND RADIN IBM SYSTEMS JOURNAL, VOL 29. NO 2, 1990

IBM’S Business Partners. We also wish to acknowledge
the leadership of Jim Archer, the IBM director of
integrated development environments in Santa Ter-
esa, for his overall AD/Cycle product and strategy
coordination.

ADICycle, Systems Application Architecture, SAA, Repository
Manager, DevelopMate, KnowledgeTool, Presentation Manager,
Operating System/2, AS/400, Operating System/40O,OS/400, and
Repository ManagerIMVS are trademarks, and OS/2, Personal
System/2, PS/2, and Application System/400 are registered trade-
marks, of International Business Machines Corporation.
PC PRISM is a trademark, and Excelerator is a registered trade-
mark, of Index Technology Corporation.
BACHMAN Re-Engineering Product Set is a trademark of Bach-
man Information Systems.
Information Engineering Workbench is a registered trademark of
Knowledgeware, Inc.

Cited references and notes

1 . Application Development Productivity Strategy, worldwide
IBM user group made up of Australasian SHAREIGUIDE,
GUIDE International (U.S.A.), G.U.I.D.E. (Europe), SHARE
European Association (SEAS), and SHARE (U.S.A.) Appli-
cation Development Joint Project (ADJP) (May 1989).

2. Application Development Productivity. A GUIDE Top Con-
cern, GUIDE (December 1986).

3. MP-1409 Integration cf Development Tools Project Strategy
Paper, GUIDE, Montreal, Canada (November 1986).

4. SHARE Interactive Systems Task Force Report, SSD #223,
SHARE(1983).

5. CASE87, a survey conducted in August 1987 and published
by Software News’ Sentry Research Division.

6. J. Martin, Application Development Without Programmers,
Prentice-Hall, Inc., Englewood Cliffs, NJ (1982).

7. W. S. Humphrey, “The IBM Large-Systems Software Devel-
opment Process: Objectives and Direction,” IBM Systems
Journal 24, No. 2, 76-78 (1985).

8. R. A. Radice, J. T. Harding, P. E. Munnis, and R. W. Phillips,
“A Programming Process Study,” IBM Systems Journal 24,

9. G. F. Hoffnagle and W. E. Beregi, “Automating the Software
Development Process,” IBM Systems Journal 24, No. 2, 102-
120 (1 985).

IO. “Programming Aids,” Section D80, Datapro Directory qfSofr-
ware 15, No. 1 I , D80-000-001-D80-900-005, Datapro Re-
search, McGraw-Hill Information Services Company, Delran,
NJ (November 1989).

I I . ICP Sqjiware Directory, Mainframe & Minicomputer Series-
Systems and Utilities, 62nd Edition, International Computer
Programs, ICP Incorporated (Autumn 1989).

12. T. Teitelbaum and T. Reps, “The Cornell Program Synthe-
sizer: A Syntax-Directed Programming Environment,” Com-
munications ofthe ACM 24, No. 9, 563-573 (1981).

13. D. E. McConnell, An Investigation of [he State of the Art
Trends in the LI$ Support of Complex Embedded Computer
Sys~ems, Naval Weapons Center, Dahlgren, VA (September
1979).

14. ADICycle: Application Development for the SAA Environ-
ments, Programming Announcement 289-456, IBM US Mar-
keting & Services (I9 September 1989); available through IBM
branch offices.

NO. 2,91-101 (1985).

15. Systems Application Architecture: An Overview, GC26-4341,
IBM Corporation; available through IBM branch offices.

16. K. P. Hein, “DevelopMate: A New Paradigm for Information
System Enabling,” IBM Systems Journal 29, No. 2, 250-264
(1990, this issue).

17. M. E. Dewell, “Cross System Product Application Generator:
Application Design,” IBM Syslems Journal 29, No. 2, 265-
273 (1990, this issue).

18. D. M. Hembry, “Knowledge-Based Systems in the AD/Cycle
Environment,” IBM Systems Journal 29, No. 2, 274-286
(1990, this issue).

19. G. Chroust, H. Goldmann, and 0. Gschwandtner, “The Role
of Work Management in Application Development,” IBM
Systems Journal 29, No. 2, 189-208 (1990, this issue).

20. Systems Application Architecture, Common User Access-
Advanced Interface Design Guide, SC26-4582, IBM Corpora-
tion: available through IBM branch offices.

21. J. M. Artim, J. M. Hary, and F. J. Spickhoff, “User Interface
Services in AD/Cycle,” IBM Systems Journal 29, No. 2,236-
249 (1 990, this issue).

22. P. P. S. Chen, “The Entity-Relationship Model-Toward a
Unified Vlew of Data,” ACM Transactions on Dalabase Sys-
tems 1, No. I , 9-36 (March 1976).

23. Systems Application Architecture, Common Programming In-
terface Presentation Reference, SC26-4359, IBM corporation;
available through IBM branch offices.

24. J. M. Sagawa, “Repository Manager Technology,” IBM Sys-
tems Journal 29, No. 2, 209-227 (1990, this issue).

25. Interactive System Productivity FacilitylProgram Develop-
ment Facility (ISPFIPDF) Sofrware Configuration and Library
Manager (SCLM) Guide and Reference, Version 3 for MVS,
SC34-4235, IBM Corporation; available through IBM branch
offices.

26. R. W. Matthews and W. C. McGee, “Data Modeling for
Software Development,” IBM Systems Journal 29, No. 2,
228-235 (1990, this issue).

General references

D. R. Barstow, H. E. Shrobe, and E. Sandewall, Editors, Interactive
Programming Environments, McGraw-Hill Book Co., Inc., New
York (1 984).
Common APSE InterfLlce Set (CAIS), Proposed Military Standard,
Version 1.3, Report AD-Al3482519, Office of the Secretary of
Defense, Ada Joint Program Office, Washington, DC (August
1984).
C. Davis, et al., Editors, Entity-Relationship Approach to Sojiware
Engineering, North Holland Publishers, Amsterdam (1983).
Proceedings oj’a Conjiwnce on Language Issues in Programming
Environments, Seattle, WA, June 1985, ACM SIGPLAN Notices
20, No. 7 (July 1985).
Proceedings ofthe ACM SIGSOFTISIGPLAN Sofiware Engineer-
ing Symposium on Practical Sojwure Development Environments,
Pittsburgh, PA, April 1984, ACM SIGPLAN Notices 19, No. 3
(May 1984).
Proceedings ofthe ACM SIGSOFTISIGPLAN Sofrware Engineer-
ing Symposium on Practical Sofiwurr Development Environments,
Palo Alto, CA, December 1986, ACM SIGPLAN Notices 22, No.
I (January 1987).
Proceeding.s oj‘the ACM SIGSOFTISIGPLAN Sofrware Engineer-
ing Symposium on Practical Sofruwv Development Environments,
Boston, MA. November 1988, ACM SIGPLAN Notices 24, NO. 2
(February 1989) and SIGSOFT Software Engineering Notes 13,
No. 5 (November 1988).

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990 MERCURIO, MEYERS. NISBET. AND RADIN 187

Systems Application Architecture: ADICycle Concepts, GC26- throughout his career including: leader of the PL/I language defi-
453 I , IBM Corporation; available through IBM branch offices. nition, member of the design team of both the OS/360 and TSS

operating systems, systems design and architecture manager in the
former Systems Development Division, member of the IBM Cor-
porate Technical Committee, Director of Architecture in the Sys-

J. IBM Programming p.O. Box Research (including the 80 I minicomputer project which defined
tem Products Division, and manager of several projects in IBM

60000, Cary, North Carolina 27512-9968. Mr. Mercurio is cur- IBMys RISC architecture), H~ is currently Chief Architect of the

architecture department in the application development products Laboratory,
rently an advisory planner in the AD/Cycle systems planning and A D / c ~ ~ ~ ~ project in programming Systems at the Santa T~~~~~

business area at the Programming Systems Development Labora-
tory, Cary. Since joining IBM in 1970, he has been involved in
the development of Multiple Virtual Storage in Poughkeepsie,
New York, store systems and point-of-sale control programs in
Raleigh, North Carolina, and the Realtime Programming System Reprint Order No. G321-5392.
and Event Driven Executive Series/l operating systems in Boca
Raton, Florida. In addition to his involvement in systems devel-
opment, Mr. Mercurio has also worked in telecommunications
market analysis and in product assurance as the product admin-
istrator for application development tools. Mr. Mercurio obtained
a B.S. degree in mathematics from Ohio State University and an
MS. degree in operations research from Union College.

Barbara F. Meyers IBM Programming Systems, Santa Teresa
Laboratory, P.O. Box 49023, San Jose, California 95161-9023.
Dr. Meyers was educated at the University of California, Los
Angeles, obtaining her Bachelors, Masters, and Ph.D. degrees in
computer science in 1969, 1970, and 1975, respectively. She joined
IBM in 1975 as a performance analyst and worked on the perform-
ance of disks and control units, databases, transaction manage-
ment, and data management. In 1980, she started and managed a
performance group for the programming language area at the
Santa Teresa Laboratory of IBM’s General Products Division. Dr.
Meyers has held technical staff positions in the programming
language and application development area in the Santa Teresa
Laboratory, with responsibility for helping to determine strategy,
plans, and advanced technology directions in these areas. In her
current position as senior programmer, she is a member of the
AD/Cycle architecture department.

AI M. Nisbet IBM Programming Systems, P. 0. Box 60000, Cary,
North Carolina 27512-9968. Mr. Nisbet is currently manager of
application development products-systems planning and archi-
tecture at the Programming Systems Development Laboratory in
Cary, involved in AD/Cycle plan and architecture. Mr. Nisbet
joined IBM in 1964 in Chicago where he worked in program field
support. He then moved to Raleigh to participate in research and
development for many software support programs as programmer,
planner, planning manager, and development manager. Some of
the systems and products he supported include the Telecommu-
nications Test Center, the Retain System, and the Branch Office
Support System. He was development manager for IBM’s Cross
System Product and ISPF/PDF.

George Radin IBM Programming Systems, Santa Teresa Labo-
ratory, P.O. Box 49023, San Jose, California 95161-9023. Mr.
Radin, an IBM Fellow, has Masters degrees in both mathematics
and English literature from Columbia University. He joined IBM
in 1963. Mr. Radin has held several key technical positions

188 MERCURIO, MEYERS. NISBET, AND RADIN IBM SYSTEMS JOURNAL, VOL 29. NO 2, 1990

