
REASON: An intelligent
user assistant
for interactive
environments

The provision of intelligent user assistance has been
an ongoing problem in designing computer interfaces.
Interactive computing environments must support ex-
pert as well as novice users when providing advice for
error correction and answers to questions directed to
a system. To address these issues, we have investi-
gated the application of fairly well-understood artificial
intelligence techniques in novel ways to provide intelli-
gent help. This paper describes the design methodol-
ogy used to build REASON (Real-time Explanation And
SuggestiON), an intelligent user-assistant prototype for
a windowed, multitasking environment. REASON'S cen-
tral component is an inference engine that solves
problems arising from a user's activity. When the user
makes one of several different kinds of errors, the in-
ference engine offers dynamically generated sugges-
tions about what the user might have intended. The
user can also query REASON using natural language.
In addition to providing suggestions of corrected input
or answers to questions, REASON can provide two
complementary types of explanations of these re-
sponses, derived from the inferences that led to them.

M uch of the recent work in designing help
systems for computer users has been influ-

enced by the difficulties that people have in learning
how to interact with c~mputers."~ However, one of
the most common, yet arguably least successful,
computer applications is on-line user assistance.

In studying new user interface technology, there is a
considerable base of work in the areas of contextual
assistance, user modeling, planning and problem

IBM SYSTEMS JOURNAL, VOL 29. NO 1, 1990

by J. M. Prager
D. M. Lamberti
D. L. Gardner
S. R. Balzac

solving, and natural-language processing. Much re-
search work has been undertaken investigating the
role that each plays in providing on-line assistance
for computer users. The focus of most research proj-
ects on advisory systems has been on depth of inves-
tigation of a particular component, rather than in-
tegrating multiple components to address the prob-
lem of user These projects fall
primarily into two categories: (1) projects that have
been the source of exciting speculation as opposed
to useful technology, and (2) projects that have been
tightly bound to real-world tasks or the laboratory,
and thus rarely press forward the fundamental issues
that comprise the central goals of artificial intelli-
gence (AI). Furthermore, the effectiveness of most
systems developed in research environments has not
been studied empirically beyond prototyping func-
tions to demonstrate research propositions. For the
most part, no feedback on performance has been
acquired from users. This situation contributes to
the fact that there are essentially no commercially
available systems that integrate these features.
Context-dependent help is a popular issue in the
current literature. Context dependency usually refers

Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

PRAGER ET AL. 141

to a discourse-based assistance that is tailored to a
user’s plans for best accomplishing goals. Inferencing
strategies are used to identify such plans and generate
advice at the appropriate level of detail. For a more
extensive discussion of context dependency refer to
References 9 and 10. ProF,otype systems (e.g., the
TOPS-20 operating system) have been developed
that incorporate contextual help, using plan recog-
nition based on AI method^.^.^^.^^ Information about
the current state of the interaction can be represented
by a plan or plan hypothesis that may be only
partially developed and instantiated. For example, a
system known as the system architect’s apprentice
(SARA) employs a technique whereby help is inte-
grated into the grammar and then processed by a
combined parser generator and an integral help gen-
erator.14 The integral help generator has a concise
representation of the user interface available to it,
making contextual help easier to generate. This tech-
nique provides for consistency and accuracy of syn-
tactic assistance at a lower level and more in-depth
information at a higher level.

Despite the attention given to context-dependent
assistance, it is not easy to see how the various
techniques offered can solve the problems associated
with reliably determining users’ plans. This is partly
because it is difficult to identify and map plan-driven
behavior to context-dependent advice, and partly
because most models of question-answering are
more inclined towards database interrogation than
requests for help or explanation.’ Also, much of the
recent work on contextual assistance identifies the
importance of plans but fails to include in knowledge
bases explicit discourse information needed to satisfy
pedagogical goals.

Similarly, the development of predictive user modek
has been seen as ,:ritical for advisory systems.
Quinn and Russell point out that the value of an
intelligent interface is extremely limited if it is not
based on a strong model of the user. To a large
extent, the work on user modeling has presumed
that users are homogeneous in relevant ways. Al-
though it is true that, for the majority of users, a
system built on such a principle is better than it
would have been without homogeneity assumptions,
it is not true that such a system is likely to be the
best that could be produced.

Despite this emphasis, some researchers have at-
tempted to individualize user models. In an inter-
active help facility for Scribe,” which is a document
formatter, Rich18 has incorporated a user model

142 PRAGER ET AL.

based on patterns of user commands. In Scribe, the
appropriate level of a question response is a function
of the level of the question itself and the level of
knowledge of the user who asked the question. In
presenting the correct level of explanation, the sys-
tem maintains a dictionary that contains an entry
for each of the things that can occur in a set of
condition-action rules describing knowledge about
Scribe. Associated with each entry is information
that describes when it may be appropriate to mention
the associated concepts in an explanation. In an-

The feasibility of a more natural
approach to user-computer
interaction is usually shown

by building and demonstrating
a prototype system.

swering a specific question, the system locates the
rule(s) that apply and compares what it knows about
the concepts in the rule($ to what it knows about
the user, based on patterns of commands issued by
the user during a period of time.

Scribe exemplifies a technique for user modeling that
is based on infemng a user’s skill level and specific
problems and errors from actions and responses.
This technique reflects a desire to place most of the
burden of constructing the model on the system and
thus raises concerns regarding the reliability of user
classifications.

The feasibility of a more natural approach to user-
computer interaction is usually shown by building
and demonstrating a prototype system whose aim is
to minimize the training required to interact effec-
tively and efficiently with a computer. To most per-
sons, this means supplying a system that allows the
use of the words and syntax of a language used in
common discourse, such as standard
Most natural-language systems exist as large-scale
prototypes that can recognize and interpret fairly
extensive vocabularies and sentence s t r u c t ~ r e s . ~ ~ - ~ ~
Unfortunately, very few of these prototype systems
have been evaluated by actually measuring user per-

IBM SYSTEMS JOURNAL, VOL 29, NO 1. 1990

formance through extended system usage. Most of
the commercially available systems have not been
on the market long enough to have been thoroughly
evaluated. Thus, it is nearly impossible to make
empirically reliable conclusions for or against any
particular commercially available natural-language
technology.

In each of the aforementioned areas of research, the
emphasis has been on developing state-of-the-art
techniques to implement theoretical propositions re-
garding the type and amount of assistance users need
when attempting to perform an action on the com-
puter. Numerous programming methodologies, in-
cluding AI techniques, have been applied to solving
the problem of “intelligent help.” Most of the focus
has been on perfecting the various techniques to a
level of depth that advances scientific inquiry. Al-
though these aims have been well-appreciated and
justified, little if any technology currently exists that
effectively integrates these well-documented tech-
niques into a modular system that addresses the
needs of a spectrum of users ranging from the com-
puter novice to experienced programmers. The op-
portunity for the practical implementation of these
concepts and techniques to provide contextual user
assistance currently exists and needs to be addressed.

In general, and especially in the AI realm, there has
been a slow but pervasive recognition of the fact that
the scientific advancement of programming tech-
niques has overshadowed a realistic assessment of
the need for enhanced performance and usability in
computer systems. This reckoning leads to the real-
ization that in the past much of the research work
on designing intelligent help systems has focused on
solving AI problems to the exclusion of practical
concerns about implementing systems in a robust
manner.

Our work should be viewed as an extension of prior
work that has been done on contextual user assis-
tance, using natural language as a means of user-
computer discourse. The purpose of our work is to
enhance the helpfulness of a computer system to
users through the integration and application of sev-
eral well-understood AI techniques in solving real
problems stemming from the usage of commercial
systems. An eminent outcome of this effort is the
design of intelligent command lines that lend them-
selves to a practical implementation for commercial
systems. It is our intention to ensure that this design
be fully conforming to the IBM Systems Application
Architecture (SAA) and Common User Access (CUA)

IBM SYSTEMS JOURNAL, VOL 29, NO 1. 1990

standards2’ These standards govern software inter-
faces, protocols, and conventions for human inter-
action with applications and system services, com-
munication mechanisms that interconnect SAA sys-
tems, and interfaces for program development.**

A primary distinction between our work and that of
past researchers is that we are focusing on breadth
of system function. Specifically, we concentrate on
an interactive computing environment in which
there often is not only more than one way to explain
something, but also more than one way to do some-
thing. We take a user’s goal-centered approach to
problem solving. Therefore, deducing the user’s goals
is intrinsic to our system. In this approach, the
context of interaction is a determining factor in the
generation process that produces the form and con-
tent of the system’s suggestion(s) and explanation(s).
Our suggestions are dynamically generated and au-
tomatically supplemented by complementary forms
of explanation based on a model of the user. Our
objective is to maximize the flexibility of the user’s
interaction with the help function through mixed
interaction modes and to tailor advice to the specifics
of error conditions. This objective leads to a second
aspect of the work that focuses on natural language
as an input medium. In a truly interactive computing
environment, user assistance based on a human-
advisor discourse model needs to be addressed, and
natural language is a clear choice.

The theme of this paper is fourfold: to review the
theoretical basis, design organization, functional
components, and development process of the REA-
SON (Real-time Explanation And SuggestiON) sys-
tem. We first highlight some of the critical issues
involved in identifying areas in which users need
intelligent help when using an interactive system.
We describe the basis for the approach we chose to
implement our intelligent help system. An overview
discusses the conceptual design model as imple-
mented in REASON. This section presents a functional
description of the components of the REASON System
and gives a description of the operation of the work-
ing components, highlighting the implementation
choices for our technology. We concentrate on the
design methodology for building an intelligent user
assistant for a command-oriented system, such as an
operating system. The operations of system compo-
nents are explained using a detailed example of a
typical user interaction with an operating system.
We conclude by summarizing the approach to on-
line user assistance that we have chosen and present
our plans for future enhancements.

PRAGER ET AL. 143

Critical issues in addressing user errors and
queries

In providing user assistance, there are essentially two
domains for which computer users need support:
errors in command usage and requests for help in-

Computer users need support
for errors in command usage

and requests for help information.

formation. A conflict arises between creating an
environment simple enough for a novice (i.e., a user
with limited knowledge of computers in general or
within a particular domain) and yet sophisticated
enough to accommodate an expert. There is a wide
continuum of skills between those of a novice, who
knows only the rudiments of a system, and those of
an expert, who has mastery over it. The novice is
constantly learning about the purpose of specific
functions and their interrelationships with other
functions and is usually faced with the burden of
what to learn and how to locate the necessary infor-
mation needed to accomplish a task.

One approach to addressing this problem has bee;
to provide on-line tutorials or training manuals.
This approach is beneficial in allowing users to focus
on their task activity and in providing specific rein-
forcement for tasks that are accomplished. Yet it is
precisely this hand-holding mode of operation that
often makes users unwilling to spend any length of
time learning about a system on its own terms. When
consulting on-line tutors, a user, in effect, ceases
working. Consequently, there is a conflict between
learning and working that encourages novice users
to find ways of by-passing training in order to pro-
ceed $th work, using trial-and-error methodol-
ogies. Of equal importance is the fact that obtrusive
tutorial systems cause expert users to become frus-
trated by the lack of freedom to accomplish tasks
without being saddled with unnecessary details of
system functions and explanations.

144 PRAGER ET AL.

This paper presents a solution to these difficulties
through the use of intelligent on-line user assistance
that mitigates the learning-versus-working conflict
by monitoring user activity to identify errors and
provide advice for error correction that can be selec-
tively viewed at the discretion of users. A natural-
language mode of asking the system for help directly
can also be of benefit. This user-assistance approach
can help to better integrate the time agd effort spent
on learning with actual system usage. This type of
design can also help to counteract the sharp separa-
tion between learning and working that often reduces
the motivation to use verbose training and help
materials.

Commands can be erroneous for any number of
reasons, and sometimes more than one form of error
is present at a time. In an effort to identify categories
of errors, we surveyed users for the most common
and serious types of errors they make in using oper-
ating systems. Based on our findings, we constructed
a taxonomy of error types. The taxonomy breaks
possible errors into four categories:

Errors in execution occur when the user knows
the correct command to issue but does not carry
it out correctly (e.g., a typographical error).
Errors in remembering are situations in which the
user has forgotten all or part of the syntax of a
command.
Errors in understanding occur when the user does
not fully understand the meaning of a command
and so uses it in an invalid way.
Errors in preparation occur when commands are
issued that look good superficially, but are invalid
in the current environment (e.g., negative trans-
ference of commands across operating systems).
This last situation includes errors that occur when
the user has failed to make the necessary prepa-
rations so that a command will execute success-
fully.

Clearly, the first two kinds of errors do not really
require an AI treatment. Typographical errors can be
handled by a spelling checker (e.g., InterLisp
DWIM~') . Syntax help can be provided by improved
on-line help or an input-completing parser. How-
ever, we feel that such components are generally not
widely available as parts of operating systems. Thus
it is necessary to offer assistance in these kinds of
situations, along with the quite sophisticated help we
are providing for understanding and preparation er-
rors.

IBM SYSTEMS JOURNAL, VOL 29. NO 1, 1990

Our design also focuses on the subject of user queries These types of responses differ in their format and
to an operating system, which provides an appealing level of detail as well as in their emphasis and the
domain for the application of natural-language con- amount of related information included. Clarifying
cepts. Given that the goal of our work is to develop
an interactive environment that is both efficient and
easily learned, a promising way to achieve this ob-
jective is to use natural language as an alternative to
command input.

B

In designing a natural-language system, attention
should be given to ways in which a user queries a
system. There is rarely a direct correspondence be-
tween a precise statement or question representing a
user’s goal and a sequence of commands required to
satisfy it. It is more likely that the user’s query is
vague, highlighting a poorly-defined goal, and it can
be answered in multiple ways or by using a number
of different sequences of commands. Thus there is

system answers. We have categorized user questions
into several types in an attempt to reduce the com-
plexity of the mapping problem. Based on observa-
tion of a sample of users ranging in skill level from
novice to expert, we have created the following cat-
egories:

B some difficulty in validly mapping user queries to

Procedural specification. How do I perform a cer-

Function specijication. What does a command do?
Goal or subgoal satisfaction. How can a goal be
accomplished? How can a specific subgoal be ac-
complished within the context of a higher-level
goal?
Analysis of a process. What is the easiest way to
accomplish a goal?

tain action?

1

To address the distinction between question types,
we have constructed the following modified taxon-
omy of system responses as presented in Reference
13:

Introduce new information. Present commands
and actions that are new to a user.

b Remind. Present information about commands
that the user may have forgotten.
Clarifv alternatives. Present information about the
relationships (e.g., preconditions and postcondi-
tions) between commands to which the user has
been exposed, and show alternative commands to
achieve a task.
Elucidate goal hierarchies. Present hierarchical
information regarding the relationships between
goals and subgoals.

1
IBM SYSTEMS JOURNAL, VOL 29, NO 1. 1990

In most systems the presentation
format of help information does not
parallel a user’s view of the task.

and elucidating require a careful mixture of remind-
ing and introducing new information. However,
much of the knowledge needed to regard user plans
in terms of current goals is incomplete. It is also not
possible to predict with certainty what a user’s goal
might be. Hence, the responses must be provided as
effectively as possible by system inferencing strategies
within the constraints of incomplete knowledge.

From a system design perspective, emphasis must be
placed on the inferencing used to attempt to identify
a user’s goal and the application of the appropriate
knowledge to satisfy the context-dependent assis-
tance provided to a user, on the basis of that goal.
Similarly, the choice of the best presentation format
for the information must be decided upon. Our
solution to these problems is a goal-centered ap-
proach to user assistance, which we now describe.

Motivation for goal-centered user assistance

Rarely do on-line help systems marketed today take
the context of a user’s interaction with the computer
into account when presenting canned help informa-
t i ~ n . ~ * Furthermore, in most systems the presenta-
tion format of help information does not parallel a
user’s view of the task. User assistance, in the form
of suggestions and explanations of suggestions,
should be presented in a format that coincides with
a user’s approach to accomplishing a goal. Similarly,
help messages are often poorly understood by users.
It is not sufficient to provide suggestions alone for
accomplishing a goal. Rather, the system needs to
make explicit its reasoning as to why the suggestions
are offered and how suggestions can be implemented.

PRAGER ET AL 145

What a user needs to know about a system at any
given time depends mostly upon the user’s plans and
goals. Even the most rudimentary advisor must take
a user’s goals into account, otherwise there is no
guarantee that the advice given will be appropriate.
Advice is appropriate only to the extent that it helps
a user to derive and debug a plan of action for
achieving his or her aims. The simplest way of re-
sponding to user queries is to anticipate the queries
and store information to answer them as canned

REASON is an intelligent
user-assistant prototype for a
command-oriented system.

text. The simplest sort of canned explanations are
error messages. However, providing predefined
canned text as the basis of help information for all
user queries fails to really satisfy learning needs in
accomplishing a goal. Also, the system has no con-
ceptual model of what it is saying. An advice-giving
system needs to be able to reason about the current
state of the interaction and give explanations at
different levels of abstraction. This, in turn, implies
the ability to present the necessary information in a
scheme that supports the user’s view of a plan for
goal achievement. In addition to a meaningful pres-
entation format, help messages need to be able to be
explained at several levels of detail. Explanations
must tell a user how to interpret suggestions given
as options, as well as how to implement those sug-
gestions.

An objective of our work is to use one explanation
paradigm to integrate dynamically generated expla-
nations that parallel a user’s view of a task with a
precise explication of the system’s reasoning for why
a suggestion is offered. To achieve this objective, we
propose a goal-centered approach to advice-giving.
In this design, suggestions and justifications of the
system’s actions are given as a direct function of a
user’s needs within a current context and treated as
discourse between a user and the computer. Sugges-
tions are provided, based on an analysis of the match

146 PRAGER ET AL.

between the rules in the knowledge base and the user
goals that the system sees as comprising a user model.

It is important to note that determining user goals is
the focus of discourse-based systems that have been
prototyped in the past.’2333 However, our design can
be differentiated by the assumption that the output
of goal determination is taken as an input into an
inferencing component and matched against knowl-
edge to generate useful responses that are directly
relevant to the context of the situation.

REASON design and implementation

Design considerations. REASON is an intelligent user-
assistant prototype for a command-oriented system,
such as the operating system The purpose
of REASON is to monitor user actions in order to (1)
identify user errors and provide advice for correcting
such errors, and (2) allow a user to ask for help
directly through a natural-language front end. The
operation of REASON is based on a user-centered
systems design approach in which the identification
of user goals or intentions is critical for accurate
responses. Using this design, REASON operates in a
mixed initiative mode, reacting to conditions in the
environment as well as to explicit requests from
users.

User interaction with an operating system provides
an appealing domain for study and application of
the AI techniques employed by REASON. Basically, all
of the problems of language processing and reasoning
(i.e., requirements for REASON to understand lan-
guage, hypothesize user goals, access knowledge
about goals, and form reasonable responses) are pres-
ent in some fashion. The domain is complex enough
to provide substantial subproblems, but not so un-
bounded that a useful working system must possess
an extraordinary repertoire of knowledge.”

As discussed earlier, we see the major contribution
of REASON to be not so much from a state-of-the-art
solution to one or more very narrow fields of en-
deavor, but rather to be in the combination of ad-
vances from several fields over recent years into an
effective, robust, working system. Consequently,
REASON’S performance in any one area is likely to be
less than what might be found in any leading-edge
laboratory, but we believe that the very provision of
multiple features suitably integrated can lead to a
working system that is able to solve real-world prob-
lems in real time. We, therefore, find ourselves fre-
quently invoking an “80-20 rule” (or other variants

IBM SYSTEMS JOURNAL, VOL 29. NO 1. 19%

of the law of diminishing returns). If a component
can provide a large percentage of the function of the
state-of-the-art at a small percentage of the cost
(memory, speed), we will happily settle for that.

Making the domain knowledge
separate from the inferencing
mechanism would allow easier

porting to other domains.

Although we have not performed any quantitative
measurements of those properties, we can usually
tell when we are at the knee in the development-
effort curve.

This philosophy was very important with respect to
our goal of building a working system. We did not
want to spend excessive effort in any one area, at the
expense of the breadth of the system. Building REA-
SON has caused us to get involved in the areas of
problem solving, knowledge representation, natural-
language understanding, planning, plan recognition,
explanation, and text generation, each one of which
is a substantial subfield of AI. We feel that limiting
the effort in each area was the only way to build a
complete system. However, we structured REASON in
such a way that most components could be replaced
by more advanced versions in the future.

We anticipate that the ways in which the REASON
system will be used will generate new problems that
can drive future research efforts in the areas of AI,
intelligent user assistance, and interface design. For
example, analysis of the structure of questions asked
by users varying in skill level might lead to modifi-
cations in the interface supporting natural-language
input, leading to a more formalized, constrained
natural-language dialog as an alternative form of
input. Overall, we are enthusiastic about the poten-
tial value of the design methods chosen to build
REASON. We outline here some of the critical issues
and decisions that have been guideposts in our design
efforts.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Generalization of the REASON system. We have
been developing REASON as an intelligent help system
for os/2. We do not believe that the concept of an
intelligent help system is limited to os/2 or to oper-
ating systems generally. Any environment in which
the user issues commands via a command line
should be amenable to incorporating the REASON
technology-for example, text editors. Conse-
quently, we have been seeking to develop REASON as
far as is possible in a domain-independent manner.

REASON as a rule-based system. REASON was con-
ceived as a mechanism to solve two seemingly in-
dependent problems: (1) to respond to direct ques-
tions from the user about how to use the system, and
(2) to intercede when it is noticed that the user is
committing, or is about to commit, an error. Both
situations require a problem-solving capability, al-
though in the latter case an extra component is
necessary to set up the problem to be solved. Both
situations generally require the same body of knowl-
edge about the subject domain. Thus, at the outset,
it seemed to us that a single program could be built
to achieve both of our major goals.

It seemed natural that this program would be a
general-purpose problem solver combined with a
knowledge base describing the domain in which it
was to operate. Making the domain knowledge sep-
arate from the inferencing mechanism would allow
easier porting to other domains, as well as easier
debugging of the REASON system itself.

Inference mechanism

For an inferencing mechanism, we faced a choice of
using backward-chaining or forward-chaining or a
combination of both. The problems to be solved
would generally be of the kind of determining a
route (set of steps) to take the system from one state
(the user’s current state) to another state (the user’s
goal state). We felt that in addition to being largely
goal-driven, there would be many cases for which we
would want to find all solutions or at least a large
subset of all solutions. Consequently, we decided on
a depth-first, backward-chaining inferencing strategy
much like the control strategy used by Prolog. We
also saw that REASON would require a great deal of
pattern-matching for which the Prolog unification
mechanism would work well, which was another
reason we decided to use Prolog. We built our own
meta-interpreter in Prolog, because, although we
wanted to take advantage of Prolog’s search strategy
as a control mechanism. we wanted some control

PRAGER E i T AL. 147

Figure 1 Model of REASON user-assistant design

USER INPUT

CO"ANDS/QUESTIONS

USER DECLARATIONS/GOALS

REASON
OPERATOR
INTERFACE (ROI)

RBE OUTPUT

USER INPUT

REASON BACK END (RBE)

I I
r"""""""""_

I I
I I
I I
I I
I I
I I
I I
I I
I I

I I

over the search strategy, as well as the pattern-match-
ing, ourselves.

Natural language

We wanted a natural-language front end to REASON,
but we did not want to undergo an extensive research
project in this area. As previously mentioned, we
performed some preliminary studies with potential
users to determine the kinds of questions they would
ask an intelligent help system. While the totality of
questions was spread over a large range-from short
to long, simple to complex-the majority were of
the "HOW do I . . ." or "What does . . . do" variety.
Based on the 80-20 rule, we judged that a fairly
simple grammar could be constructed to represent
the majority of these questions.35 We correspond-
ingly ffcided to use a Definite Clause Grammar
(DCG), because it was easy to write a DCG that
parsed most of these questions. This decision fitted
in very well with the choice of programming lan-
guage, because DCGS are very easily implemented in
Prolog.

The components of REASON

We now present an overview of the conceptual
model upon which REASON is based. This model,
showing the functional components of REASON, is
presented in Figure 1. It is seen that REASON consists
of two major components: (1) the REASON operator
interface (ROI, which we pronounce "roy"), and (2)
the REASON back end (RBE, which we pronounce
"ruby"). These components handle the user-inter-
action and inferencing processes, respectively, and
as such require a relatively low bandwidth for com-
munication between one another. The logical sepa-
ration of the user interface from the inference engine,
as depicted in Figure 1, is maintained in the physical
implementation. ROI and RBE can be implemented
either as separate processes in a multitasking oper-
ating system, such as os/2, or on different physical
machines on a local area network (LAN).

REASON operator interface. ROI handles REASONS
communications with the user. This largely entails
capturing the user's input and transmitting it to RBE
and capturing RBE'S response and displaying that to
the user. In its present form, REASON requires the

148 PRAGER ET AL. IBM SYSTEMS JOURNAL, VOL 2 9 , NO 1, 1990

existence of an operating system shell, because it
must gain access to the commands that the user
types in and to the return codes issued by the oper-
ating system. Under os/2 Standard Edition 1.1, ROI
is implemented as a Presentation Manager applica-
t i ~ n . ~ ~ It should be noted that REASON itself currently
monitors only the user’s input in the system’s com-
mand line. The user, however, can view REASON’S
response (suggestions and explanations) by direct

-

REASON back end is the component
of REASON that actually solves the

user’s problems.

manipulation. Later in this paper there are several
examples of ROI in execution, presenting windows of
text containing REASON’S suggestions and explana-
tions.

In designing REASON, a primary aim has been to
minimize the intrusiveness of the system on the user.
Usually the user does not want to surrender control
of the interaction with the computer and does not
work efficiently and effectively with an intelligent
agent that is continually interrupting to give advice.
In an effort to address these concerns, REASON sits as
a guardian monitoring the user’s interaction, thereby
allowing it to play as unobtrusive a role as possible.
If an error is made or question is asked in a com-
mand-line environment, the user is given a visual
cue (e.g., an icon appears), indicating that REASON is
ready to give a response that can be viewed if so
desired. In communicating this advice to the user,
ROI does not take control over the user’s interaction
with the computer. Rather, it allows the user to have
the option of viewing suggestions and explanations
at the desired level of depth, depending upon the
expertise of the user. REASON neither automatically
corrects the command for the user on the command
line nor executes it. Once the suggestions are re-
viewed, the user has control over their execution.

REASON back end. REASON back end (RBE) is the
component of REASON that actually solves the user’s

IBM SYSTEMS JOURNAL, VOL 29. NO 1. 1990 PRAGER ET AL 149

problems. It does this by an inferencing process and
as such can be thought of as being the AI component
of REASON. RBE has access to a description of the
user’s current environment, and ROI passes the com-
mands and questions that the user issues to RBE. RBE
responds to all questions and to those commands
that are in error. Its response is usually in the form
of one or more suggestions, each suggestion being
accompanied by an explanation. A suggestion may
be anything from do nothing to a series of several
actions to be carried out. These responses are passed
back to ROI for display to the user.

RBE consists of a compiled Arity/Prologa application,
as well as an external file containing its rule/frame
bases. Most of the domain-dependent knowledge for
an implementation of REASON is located in this file,
but those functions that are inextricably linked with
the syntax of the commands in the domain are part
of the compiled module. This means that changing
domains generally entails recompiling the REASON
system. This would be a drawback if REASON were
thought $f as a general-purpose, expert system shell
like ESE: For the reason that most users are not
going to be porting REASON between domains, this
lack of flexibility is not regarded as serious. Work is
being done to extend the number of built-in func-
tions that can be used to describe a domain, so as to
minimize the domain-dependent code.

RBE functional components

The main components of RBE are the parser, the
inference engine, and the knowledge bases. This
section contains descriptions of these components.
However, we introduce the subject with a discussion
of the methods of knowledge representation used in
REASON.

Goal expressions. The domain knowledge is repre-
sented in the form of frames, within which are
locations or slots where information is necessarily
represented with a finer granularity. The format used
here is what we call goal expression and is used
throughout REASON. For example, the output of the
natural-language parser is a case frame, which is
transformed into a goal expression.

A goal expression consists of a predicate name-
representing an action-and arguments-represent-
ing the objects and attributes involved in the action.
The objects are represented (depending on the level
of detail required) either by atoms or by five-part
lists that we call object descriptors. The components

of object descriptors are: (1) the object’s generic
name; (2) its given name or label; (3) its adjectival
descriptor; (4) an all/one/none flag; and (5) possible
containing object. The last field is used to talk about

A special variant of the goal
expression is known as the

condition.

files in directories as well as other instances of con-
tainment. For example, the goal expression repre-
senting erase all files abc.* in directory def would be

erase ([file, abc. * , -, all,
[d i r e c t o r y , d e f , - , o n e , -]])

It can be seen that goal expressions are syntactically
Prolog predicates, although they are never evaluated
directly by the base Prolog system. We use the square
brackets for lists, and the Prolog notation for iden-
tifiers. In this notation, identifiers beginning with a
lowercase letter are atoms, those beginning with a
capital letter or the underline character are variables.
The underline character used by itself is the anony-
mous variable. Variables are initially unbound, that
is, not matched to any atom or structure. When
bound, all variables within a goal expression or one
of our frames (described later in this paper) are
bound to the same value. Each instance of an anon-
ymous variable can bind to (or match) any value.
Being unnamed, however, it can not be referred to.
Therefore, this essentially represents a “don’t care”
condition.

Goal eGpressions may be mapped to a subset of
Sowa’s Conceptual Graphs representation. We
have considered using Conceptual Graphs directly,
but have so far found the reduced expressive power
of goal expressions to be sufficient to meet our needs.

Conditions. A special variant of the goal expression
is known as the condition, which is a predicate with
name condition. Condition represents a system state
by means of an assertion that an attribute of a certain
aspect of the system has a certain value. Specifically,

150 PRAGER ET AL.

the first argument is the property name, the second
its value, the rest determine the aspect of the system
being described. For example, consider the following
condition:

condition(exists-file,t, c: ,
\dirl\dir2,myfile.txt)

This condition asserts that the file c:\dirZ\dir2
\myJle.txt exists (where t stands for true). These
conditions are not asserted into the Prolog clause
space but are processed by our own meta-inter-
preter. Mentioning the truth value directly allows
us to assert:

condition(exists-file,€, c : ,
\dirl\dir2,myfile.txt)

which would be difficult to do if we relied simply on
the Prolog negation-by-failure. In addition, these
conditions can take values other than true and false.
Consider the following example:

condition(screen-model mono)

This condition says that the current screen mode is
MONO, where other values include c040 and c080.

We have defined conditions so that if the name and
the third argument and beyond of two conditions
are equal, the second arguments (or values of the
conditions) are equal. This effectively makes our
conditions into functions. This has great value be-
cause it helps us determine what prior knowledge is
invalidated when new knowledge is gained. For ex-
ample, if we have the following condition,

condition(exists-directory, t, dirl)

then the assertion of the following condition

condition(exists-directory,t, dir2)

will not affect it, because directories can coexist.
However, consider the following condition:

condition(exists-directory, f, dirl)

This condition causes the former assertion to be
cancelled, because a directory cannot simultaneously
exist and not exist. It should be noted that the values
t and f are not special to REASON. If they were
uniformly substituted by red and blue, say, the pro-
gram would work the same way.

IBM SYSTEMS JOURNAL, VOL 29. NO 1. 1990

Figure 2 Command frame for the erase command

command-f rame (
command :: [erase, erase, [-Argl,

parse-routine :: parse-erase,
intent : : [erase ([file,-Arg ,-,-,- I) ,

increase(slots-in-directory,-Drive,-Path)],
must :: [condition(exists-file,t,-Drive,-Path,-Name)],

post : : [condition(exists-file, f,-Drive,-Path,-Name) 1,
pre :: [I,

tells :: [I ,
prop :: [wild-card : : y , int-ext : : intl) .

[drive::-Drive, path::-Path, filename::-Name]],

Knowledge bases. REASON maintains its domain-
specific information in four different collections or
knowledge bases. These knowledge bases resemble
rule bases, even though not all of the information is
strictly in the antecedent-consequent form that is
typical of an expert system’s rule bases. The knowl-
edge bases represent knowledge of the commands
and actions available to the user, certain relation-
ships between goals and states, and ready-made so-
lutions to anticipated goals. This information is in
the form of frames, which-in combination with
REASON’S generic rules described later-form actual
rules. These frames employ goal expressions heavily.

Command frames. The REASON command knowl-
edge base consists of objects called command frames
that represent the commands the user can issue in
the current operating domain. Command frames
have the following slots:

A list containing the command name, its class,
and two different representations of the argument
list
The parse routine, which is the name of the routine
used to parse the arguments
The intents of the command, namely, the possible
user goals that this command accomplishes, rep-
resented as a list of goal expressions
The preconditions of the command, namely, those
conditions that must be true before the command
can be executed: Two slots, denoted by the labels
must andpre, contain these conditions. These slots
contain lists of disjunctions of conditions. The
difference between the must and pre slots is that if
a command is tried whose pre conditions fail,
REASON tries to create a state in which they suc-
ceed, whereas if the must conditions fail, REASON
does not pursue this line of reasoning.

IBM SYSTEMS JOURNAL, VOL 29. NO 1, 1990

The postconditions of the command, namely,
those conditions that become newly true after the
command is executed: This slot is a list of condi-
tions.
The tells of the command, namely, the informa-
tion that running the command provides: This
slot is a list of goal expressions.
A property list for miscellaneous information,
such as whether the command takes wild cards or
is part of the operating system kernel.

For example, the command frame for the erase
command in shown in Figure 2.

As described later, command frames such as this are
used in conjunction with the REASON generic rules
to determine corrections of the user’s input. One of
these generic rules makes an incorrect command
valid by constructing one or more commands to be
issued in advance to create a state in which the
former command’s preconditions hold. This can give
rise to undesirable consequences if the allocation of
preconditions to the must and pre slots are not
carefully considered. In the case of the erase com-
mand, putting the condition that the named file must
exist as a must rather than a pre condition prevents
REASON from suggesting that the user create a file
and then erase it, when trying to erase a nonexistent
file.

Action frames. The REASON action knowledge base
consists of objects called action frames, which rep-
resent the noncommand actions that the user can
issue. Typical actions might be those of inserting or
removing diskettes on pressing certain key combi-
nations, etc. Actions are syntactically very similar to
commands, except that they have no associated parse
routines or property lists.

PRAGER AL. 151

Figure 3 The action frame for inserting a diskette

action-frame (
action :: ['insert diskette', [-Drive]],
intent :: [insert([disk,-,floppy,-,-, I) ,

must : : [condition(exists,t,drive, Drive) 1,
pre : : [condition(occupied, f,-DriYe) I ,
post : : [condition(occupied, t,-Drive) I) .

insert ([diskette ,-,-,-,- I)T,

Figure 4 A consequence frame

For example, the action frame for inserting a diskette
might look as shown in Figure 3. Note the two intents
are used to cover the possibility that the user might
refer to the object being inserted as either a diskette
or floppy disk.

Consequenceframes. Consequence frames are essen-
tially if-then rules used to interrelate goals and states.
The primary use of these objects is in cases where
what the user wants to do is a subset or side-effect of
a more major operation. For example, viewing a file
can be accomplished by editing it, but that is not the
primary purpose of the editor, so view is not among
the intents of an editor, though edit is. A conse-
quence frame (shown in Figure 4) is used to state
that viewing is a possible consequence of editing.

Goal frames. Goal frames are used to tell REASON
the algorithm for breaking certain goals into
subgoals. The purpose is to relieve REASON of having
to work out from first principles well-known tech-
niques. A goal frame has the following components:

The goal
What to do if some or any of the parameters are

Conditions or other relations to test (i.e., the proc-
unbound (i.e., the default slot)

ess slot)

152 PRAGER ET AL.

The subgoals which, if achieved, guarantee the
goal will be satisfied

For example, if the system has been given the goal
of formatting a diskette, it must determine the drive,
if unspecified, and then have the user insert the
diskette before running the format command. This
is achieved by means of the goal frame shown in
Figure 5.

Currently the frames must be coded by hand, but an
aid to automate the process is being built. All the
frames are maintained in an external file that REASON
reads in at run time. Consequently, users are free to
customize the file as they see fit. For example, they
can add command frames to describe new applica-
tions they may import or goal frames to describe
new procedures.

Natural-language parser

The REASON parset9is based on a modified Definite
Clause Grammar, with built-in spelling corrector
and semantic role analyzer. The analysis is case-
based,40 thereby producing a case frame that is later
converted to a goal expression. The lexicon (vocab-
ulary) is maintained in an external file, along with
the semantic/syntactic role relations, thus allowing

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Figure 5 Goal frame

goal-frame (
goal : : format ([diskette,-Drive ,-,-,- I) ,
default :: [ask-user-then-default(-Drive,’What drive?’,a)l,
process :: [condition(exists,t,diskette,-Drive)],
subgoal : : [insert ([diskette ,-,-,-,- I) I ,

format ([disk,-Drive ,-,-,- I) I) .

I I

Figure 6 Case frame from the question “How can I send a file to the printer?”

quest-frame (wh (nocase,manner, location-or-manner, [how]) ,
case-frame (send,

sub j (actor, agent, [I1) ,
obj(concrete-thing,patient,[a,file]),
pp(goal1, [to, the,printerl) ,
vmod(1ocation-or-manner, [how])))

them to be updated at run time without recompila-
tion. At one time, the parser contained a built-in
morphological parser; however, we found that be-
cause almost all questions issued by users in our
studies were in the present tense, it was more efficient
to include plural forms of nouns and third-person,
singular forms of verbs in the lexicon.

The verbs in the lexicon are tagged with one or more
different labels that are used both in the selection of
the grammar rule and in the construction of the case
frame. For example, the set of labels used includes
vi (intransitive verb, such as quit) and v-recipient-np
(verb taking a recipient, then a noun phrase, such as
send).

As an example, the case frame that would be gener-
ated from the question “How can I send a file to the
printer” is shown in Figure 6.

The components of a case frame are the verb and its
various cases. For example, the subject sub^] of the
verb send is in this case the word I, which is an
example of an actor and plays the role of agent. For
this question and others like it, the parser generates
two nested case frames; the outer one is called a
question frame.

When the parser succeeds in generating a case frame,
it invokes a function we call the caseframejilter to
produce a goal expression and an associated flag
called the question type. For the previous example,
the generated goal expression is:

with the associated question type of how.

Inference mechanism. REASON employs a depth-first,
backward-chaining inference mechanism to solve
problems. This mechanism employs a set of what we
call generic rules, processed by a second-level inter-
preter. These rules specify different ways that REASON
solves the current problem as follows: a given rule
may completely solve the problem; it may solve part
of it and generate one or more subgoals for the rest;
or it may simply redefine the problem. Solving the
problem is defined to mean either taking an incorrect
command and converting it to a sequence of com-
mands that do what the incorrect command is
guessed to be attempting to do, or taking a goal and
generating a sequence of commands which will
achieve the goal. This sequence of commands be-
comes what is presented to the user as a suggestion.

TIAGER ET AL. 153 IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

A suggestion often consists merely of a single com-
mand, and occasionally it is empty if REASON deter-
mines the user is already in the desired goal state.
Sometimes the suggestion contains actions, such as
inserting a diskette, but for brevity in this section we
assume all of the components of a suggestion are
commands.

Overall strategy. Input to REASON back end (RBE) is
either an incorrect command issued by the user or a
question or command in English. RBE tests the input
according to the following criteria in turn. If it meets
success in any one test it deals with the input appro-
priately. This might result in multiple solutions, but
RBE does not proceed with any further tests in the
list. The input is tested for being:

A correct command
A command that is correct so far but incomplete

9 An English question or command
An incorrect command

9 A goal expression
An English question or command with spelling
errors

If the input is an incorrect command, RBE tries to
find possible ways to correct the input before termi-
nating. This often results in several suggestions.

RBE accepts goal-expression inputs directly, primarily
as a debugging tool. They are processed by the same
mechanism that handles incorrect commands. The
value of exposing this interface to the user must be
evaluated in future testing of the REASON system.

When REASON seeks to interpret the input as an
English question, it passes the input to our natural-
language parser. If a parse is generated, the resulting
case frame is processed by a case-framejilter, which
produces a goal expression along with a flag indicat-
ing what kind of question was asked (i.e., what, how,
etc.). This goal expression is then processed by RBE.

If the input is parsed as English with spelling errors,
a goal expression representing the input (correctly
spelled) is generated, along with a description of the
corrections made. These corrections are viewable,
along with other information about the parse process
under the REASON operator interface (ROI).

Generic rules. Generic rules may be thought of as
transformations that take a command or a goal and
produce a set of subgoals. Secondary outputs of the
application of a rule are commands to be recom-

154 PRAGER ET AL.

mended to the user, along with an explanation frag-
ment and a set of rules to be tried further. The
process comes to an end when a rule generates no
subgoals. The totality of commands is collected and

The rules that pertain to the syntax
of commands are not usually

domain independent.

presented as a suggestion, and the explanation frag-
ments are collected and converted into coherent
English text.

The REASON generic rules include the following:

Correct the spelling of the command
9 Correct the spelling of the arguments

Correct the argument
Complete the command
Change the command to one with similar meaning
Select a command to satisfy the given command’s

Select a command whose intention matches the

Transform the given goal into a more general one
Break a goal into subgoals

Domain dependence of generic rules. The rules that
pertain to the syntax of commands are not usually
domain independent. They do in fact represent the
bulk of the domain-dependent component of REA-
SON that is not yet able to be extracted into an
external file. Consequently, on changing domains,
this part of REASON is recompiled.

To REASON, actions have a designated, predefined
syntax. If the new domain consists entirely of actions,
REASON is not recompiled, because command-ori-
ented generic rules are not applicable. To demon-
strate this, we implemented a “monkey-and-ba-
nanas” problem entirely as action frames and goal
frames. The monkey-and-bananas problem places a
monkey and a crate at opposite comers of a room.
From the center of the ceiling hang some bananas.

preconditions

given goal

IBM SYSTEMS JOURNAL, VOL 2 9 , NO 1. 1990

To be successful, the monkey must move the crate
under the bananas and then climb on the crate to
reach the bananas. This problem is often used as a
benchmark for comparing the performance of infer-
ence engines. We have used it to demonstrate that
REASON is capable of solving such problems. We
were able to merge the new knowledge bases with
those we had to describe the operating system, and
REASON could solve problems from either domain
without being recompiled. Monkey-and-banana
problems were posed to REASON by means of the
goal-expression input mechanism, described earlier.

RBE operation

REASON solves problems by the repeated application
of the process described in this section and depicted
in Figure 7. This figure shows how one of the generic
rules named in the input is selected, merged with a
frame, and applied to the current problem to produce
a new problem and a new set of rules to try, along
with the suggestions and explanations produced to
this point. The process takes as primary input what
we call the current problem and a set of rule names.
The current problem may be a command to be
issued, a condition to be satisfied, or a goal to be
solved. The rule names list those rules that either the
starting conditions or the previous application of this
procedure have determined are appropriate for the
current problem. The secondary input to the process
is the generic rule base, which is the collection of
frames for the current domain and a description of
the current environment.

The problem solver takes each rule named in its
input, in turn, and tries to use it to solve the current
problem. It does this by selecting an appropriate
frame with which it unifies to form a specific rule.
The problem solver then applies this specific rule to
the current problem. If the application succeeds, it
generates the following: a new problem, a new set of
rule names (dictated by the rule that succeeded), a
suggestion fragment, and an explanation fragment.
The process terminates when no new problem is
generated. In this case, the chain of suggestion and
explanation fragments is processed and sent to ROI
to be presented to the user.

More than one suggestion can be produced if either
of the following situations occurs during the infer-
ence process:

More than one rule name is listed in the input.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

A given rule unifies with more than one frame.

Whenever a sequence of rules ends, the suggestion
and explanation is generated and the inference en-
gine backtracks to the prior choice point, in order to
try the next alternative.

In such domains as medical diagnosis, for which
expert systems have been built, it is often advanta-
geous to be able to deal in varying degrees of abstrac-

Unification of the rule is tried
with all command frames in turn.

tion, particularly when it comes to giving explana-
t i o n ~ . ~ ’ Depending on the nature of the domain and
the domain expert’s knowledge of it, abstract knowl-
edge may or may not be available to the expert
system. That is, it may not be possible to enumerate
all the possible domain principles. Here, by contrast,
because of the artificial and generally systematic
nature of the problem domain, we can in a relatively
simple way start with abstractions (our generic rules)
and get to specifics in a straightforward manner.

Example. This problem-solving process can be illus-
trated by means of an example. In this example, we
see how one of REASON’S responses to a user’s failed
attempt to issue a cd mydir command might be to
issue a md mydir command first.

Suppose the user issues the command cd mydir
(change to directory mydir), where directory mydir
does not exist. The input to the process (the current
problem) is the command cd mydir, along with a set
of rule names that includes the rule comm-prem
(command premature). This rule states, in effect,
that when you wish to issue a command C1 and
cannot do so because its preconditions P are not
met, find a command C2 whose postconditions in-
clude P, solve for C2, then issue command C1. This
rule is generic because C1, C2, and P are unbound.

Unification of the rule is tried with all command
frames in turn. At some point the md command

PRAGER ET AL 155

Figure 7 REASON problem solver

INPUT

I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I .
I
I
I
I
I
I
I
L _

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

PROBLEM SOLVER
r"""""""""""""-
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

I
I
I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L -I

L-"""""""""""""

I
I
I

!
I
I
I
I

I
I

I
I
I
I
I
I
I
I
I
I

I
I

I
I
I
I
1
I
I
I
I
I
I
I
I

I
I

I
I

L . " """"""

' 7

I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I

d

J

156 PRAGER ET AL IBM SYSTEMS JOURNAL, VOL 2 9 , NO 1. 1990

(make directory) is attempted. In this case, the uni-
fied rule becomes the following: when you wish to
issue a command C1, and cannot because its precon-
dition-i.e., directory D exists-is not met, solve for
command md D, then issue C1. This rule applies to
the input cd mydir, in so doing binding D to mydir.
The new problem to be solved becomes the viability
of the command md mydir.

When the unified rule is applied to the input, it is in
effect constructing the highly specific rule: when you
wish to issue a command cd mydir, and cannot
because its precondition-directory mydir exists-is
not met, solve for command md mydir, then issue
cd mydir. It is this rule, in a transformed state, that
is used to construct the explanation of this step.

It should be noted that this fully specified rule rep-
resents a small chunk of specific domain knowledge
and corresponds to the level of granularity of a rule
in a typical expert system. It is by the regular nature
of the artificial environment in which REASON oper-
ates that we are spared having to deduce all of the
thousands (potentially) of similar rules. Instead, we
deal with a few dozen command frames and about
a dozen generic rules.

The application of the comm-prem rule was just
described. It was mentioned that this was one of
several rule names passed as input to the problem-
solving process. All named rules are tried, and any
others that succeed have generated alternative sug-
gestions. For example, if there had existed a directory
mydirl, say, then the args-misspelled rule would
have succeeded.

Explanation paradigm paralleling user task
activity

REASON offers suggestions when the user issues an
incorrect command, as well as when the user asks
the system directly for help using natural-language
queries. Explanations of suggestions are necessary to
aid the user in understanding the system’s reasoning
strategies for why commands are erroneous and how
to recover from the errors.

As noted earlier, historically, most explanation facil-
ities for help systems have been merely static traces
of system rules or canned text that resembles an on-
line manual. A primary problem with using static
traces as explanations is that the system can state
what it does or did to amve at a suggestion, but it
cannot state why the system recommends a particu-

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1990

lar suggestion. These types of explanation do not
take into account the context in which the error was
made or that in which the question was asked. Also,
the presentation format of help information usually
does not parallel the user’s view of the task. Sugges-
tions and explanations must be presented in a format
that coincides with the user’s approach to accom-
plishing a goal. It might be mentioned that help
messages are often poorly understood. It is not suf-
ficient to provide a single suggestion for accomplish-
ing a goal, but rather the system needs to make
explicit its reasoning as to why the suggestion is
offered and how a suggestion can be implemented.

In studying new user interface technology, intelligent
help appears to be a way of providing context-de-
pendent advice that can operate as a partner with
the user by offering advice based on user intentions
or goals. What the user needs to know about a system
at any given time depends mostly upon those plans
and goals. Providing predefined canned text as the
basis of help information for all user queries fails to
satisfy such needs in accomplishing a goal. An ad-
vice-giving program must be able to reason about
the current state of the interaction.’ This in turn
implies the ability to present the necessary informa-
tion in a scheme that supports the user’s view of the
plan for goal achievement. In other words, the expla-
nations should be tailored to the specifics of the
situation at hand. In addition to a meaningful pres-
entation format, advice must be explained at several
levels of detail. Explanations must tell the user how
to interpret suggestions given as options, as well as
how to implement these suggestions.

To accomplish these objectives, REASON implicitly
interprets the user’s statements and then adapts the
advice accordingly. We have chosen to implement
one explanation paradigm that can be used to inte-
grate dynamically generated explanations that par-
allel the user’s view of a task providing information
on why a particular set of suggestions are recom-
mended, as well as how to perform the steps required
to achieve a goal.

The basic idea is to establish an explanation para-
digm, based on stated or inferred goals of the user.
Its components are generated dynamically through
system inferencing and are presented using two com-
plementary formats that are derived from a solution-
tree trace converted into connected English sen-
tences. This explanation paradigm parallels the hi-
erarchical nature of the user’s knowledge about a
task, when attempting to achieve a goal using the

PRAGER ET AL. 157

Figure 8 Explanation process

RULES

QUESTION GOAL

INCORRECT COMMAND

0

computer system. The explanation process is de-
picted in Figure 8. Suggestions and two kinds of
explanations are generated when the user asks a
question or types an incorrect command.

Before generating an explanation for the user, the
system must first determine what the user wishes to
accomplish and how it should be done. The aim of
the system is to take the user’s problem as expressed
in terms of either an incorrect command or a natu-
ral-language question and produce one or more sug-

gestions. Each suggestion consists of one or more
steps for the user to take to achieve the inferred goal.
In the event that the system finds that the user’s
desired goal state already exists, the suggestion will
be to do nothing. In any case, the solution to the
problem must take place in such a way as to be
amenable to explanation.

All user queries to the system are represented inter-
nally as goal expressions, whether originating in in-
correct commands or natural-language questions. All

158 PRAGER ET AL IBM SYSTEMS JOURNAL, VOL 29. NO 1, 1990

parts of an explanation are generated dynamically
on-the-fly by passing these goal expressions to the
problem solver and applying the appropriate infer-
ence rules. In generating explanations, for each rule
sequence that is applied, a trace is kept of the essen-
tial details of each rule, such as name and appropriate
parameters. By applying suitable text templates to
this solution tree, an English-like explanation of the
inferencing process is generated.

The system offers one or more suggestions. The
explanation paradigm includes two types of expla-
nation of the steps for these suggestions. The first
focuses on how the recommended steps fit together
to solve the subgoals of the problem (i.e., how-it-
works). The second type presents the reason why a
particular suggestion is offered by the system, thereby
providing a logical connection between each step of
the suggestion and the original problem or question.
Both types of explanation are used to support a
logical mapping from the suggestions offered, to the
achievement of user goals. Figure 9 shows a response
to the question, “How do I install and run program
TEsTjom drive A to directory MYDIR on drive C?”

As shown in Figure 10, the basic idea of the how-it-
works explanation is to show the procedures or steps

that can be implemented to satisfy a set of subgoals
leading to an overall goal. This explanation shows
how multiple steps in a suggestion fit together to
solve all or part of the original problem. The how-it-
works explanation is derived from the solution tree
in a hierarchical top-down manner. Each high-level
goal is successively broken down into lower-level
subgoals and finally into leaf nodes representing
system commands or actions that the user must issue
in order to achieve his or her overall goal. How-it-
works is available when the solution process involves
matching users’ goals or subgoals against a prede-
fined goal hierarchy.

The explanations for the suggestions to a problem or
question are intended to provide information on
errors and why alternative suggestions are recom-
mended. A why explanation is always provided for
each step in a single or multistep suggestion. The
why explanation is derived from the solution tree
using a bottom-up trace from each single leaf node
in the hierarchical tree structure to the highest goal
(e.g., Install and run program TEST). The sequence
of rule-firings in the trace is converted into a se-
quence of English sentences that read fluently and
explain the logic of the suggestion. If the user asks
for an explanation of why md mydir is given as part

Figure 9 Example of a REASON suggestion to a natural-language question

User Input : How do I i n s t a l l and run program TEST from
dr ive A t o d i r e c t o r y MYDIR on dr i ve C ?

I

IBM SYSTEMS JOURNAL, VOL 29. NO 1, 1990

md mydir
cd mydir

i n s e r t d i s k e t t e i n d r i v e A
i n s t a l l
C:
t e s t

a :

PRAGER ET AL. 159

Figure 10 Example HOW-IT-WORKS explanation

Bold faced words denote

the goa l s and subgoa l s

i n t o which the problem

i s broken down.

I t a l i c i z e d words denote

commands a n d a c t i o n s t h a t

t h e u s e r m u s t i s s u e t o

a c h i e v e t h e s t a t e d g o a l s .

(Gi

You can u s e t h e f o l l o w i n g s t e p (s) t o i n s t a l l and run
program TEST from drive A to directory MYDIR on
drive C:

To change the current directory type :

md mydir

cd mydir

To copy the program TEST from A t o C:MYDIR:

To switch to dr ive A type :

a :

To ensure diskette in drive A:

i n s e r t d i s k e t t e i n d r i v e A

To run the insta l l program type :

i n s t a l l

To switch to dr ive C type :

C :

To run program C:TEST type :

t e s t

of the suggestion to install and run program TEST,
the help shown in Figure 1 1 is offered.

This explanation paradigm addresses the stated prob-
lem by dynamically generating explanations that
take the context of the user-computer interaction
into account. In addition, the explanation content,
which consists of a goal-based rationale, parallels the
user's view of a task, and complementary explana-
tion types (i.e., why and how-it-works) are used to
enhance the user's understanding of the information
pre~ented.~'

Summary and conclusions

This paper has concentrated on our attempt to design
and implement a prototype for a commercially fea-
sible advisory system that is based on the integration

of AI-based advances from several fields. It describes
our extensions of previous research on designing
advisory systems. Our aim is to enhance the helpful-
ness of computers through the use of an intelligent
command line designed to support a mixed-initiative
mode of interaction for correcting command errors
and responding to natural-language questions. On
the basis of our experience in this endeavor, it ap-
pears that leverage can be obtained by providing the
following:

The integration of several AI techniques to build a
robust, commercially feasible intelligent advisory
system
The need for context-sensitive advice, based on a
goal-centered approach to user assistance
The development of taxonomies to enhance an
understanding of user errors and typical requests

IBM SYSTEMS JOURNAL, VOL 2 9 , NO 1. 1990

Figure 11 Example WHY explanation

Suggestion Steps Explanation

md mydir

[7 cd mydir

[7 a :

i n s e r t d i s k e t t e i n d r i v e A

[7 i n s t a l l

0 c:

[7 t e s t

0 Show ALL Explanat ions
r""""""""""-

I Show SELECTED E x p l a n a t i o n d OL ""_"""""""" A

The suggest ion to md m y d i r i s o f f e r e d f o r t h e
fol lowing reason (s) :

You need t o md m y d i r (make d i rec tory mydi r)
t o e n s u r e t h a t directory mydir e x i s t s .

You have t o make s u r e directory mydir ex i s t s ,
b e f o r e you can c d m y d i r (c h a n g e t h e a r r e n t
d i r e c t o r y t o m y d i r) .
Changing the cur ren t d i rec tory to mydi r
i s o n e s t e p i n insta l l ing and running
program TEST from drive A to directory MYDIR
on drive C .

for help, which can serve as a means to ensure
that the advice provided is compatible with the
user's requirements
The right balance of function to effort required for
implementation
Development in a domain-independent manner,
with the aim of porting the technology across
operating system environments as well as task
domains

These considerations have led us to concentrate on
the following features of the REASON system:

The definition of a goal language as a knowledge-
representation medium for user goals and inter-
mediate subgoals
A mixed-initiative input mode to accommodate
varying levels of user expertise

Unobtrusive interaction with the user, allowing
for the selective viewing of suggestions and expla-
nations
The development and presentation of an expla-
nation model to integrate dynamically generated
suggestion explanations that parallel the user's
view of a task
An emphasis on making the system user extend-
able with respect to the various rule bases

Although our experience with the general problem-
solving capability of REASON is limited, we are opti-
mistic about the prospects for porting the rule bases
and inference mechanism beyond the operating sys-
tem domain and into other domains. In its current
form, REASON is not ready for general use. Neverthe-
less, it has demonstrated a capability for inferring
user goals, processing natural-language queries, and

IBM SYSTEMS JOURNAL, VOL 29, NO 1. 1990 PRAGER ET AL 161

formulating a set of suggestions to achieve desired
goal states in a robust manner.

Future directions

At present, we are working on several fronts toward
giving REASON the ability to build a more refined
model of the user. Our main objective is to deduce
the user’s plan by observing command and question
patterns, which is the task of plan recognition. We
also intend to use traces of user errors and the types
of help previously sought as criteria for inferring user
expertise. It is our hope that by using individualized
user models, based on expertise and prior history,
the system will be able to reason more deeply about
the user’s actions and plans. This information will
allow REASON both to deduce plans that might oth-
erwise be missed and to determine which of many
equally plausible plans is most appropriate in a given
context.

Currently, the REASON knowledge base must be
coded by hand. We are building an interactive de-
velopment aid to ease the developer’s task consider-
ably. Not only will it cut down on the possibility of
syntax errors in the knowledge base, but also it will
be able to show the developer all possible matches
of the rules and frames being entered. This will help
ensure that the rules and frames are used as the
developer expects. In addition, this extension will
enable partial precompilation of the knowledge base,
which will improve REASON’S performance.

An empirical investigation of REASON with users in
varying working environments is also being planned.
We are quite eager to evaluate REASON’S inferencing
power across a range of users with differing needs for
advice from the system. Included within this evalu-
ation is an assessment of the validity and effective-
ness of the explanation model incorporated in the
REASON design. This usability testing will also pro-
vide us with valuable information as to the robust-
ness of our natural-language capabilities, thereby
helping us to determine the feasibility of the language
restrictions built into the REASON natural-language
parser. Such an evaluation will indicate whether the
natural-language front end is complete enough to be
used as intended.

In the longer term, we plan to address whatever
deficiencies are found by experimental use. We also
plan to extend our natural-language parser to be able
to differentiate between hypothetical questions and
questions referring to the current state of the system.

162 PRPGER ET AL

Similarly, we plan to implement multiple explana-
tion modes characterized by different depths of help
and tutorial information that is present in on-line
documentation, possibly stored as hypertext/
h~pe rmed ia .~~ Finally, we would like to do experi-
mental research to find a way to incorporate REASON
into noncommand-driven systems, such as those
with direct manipulation interfaces, with the hope
of continuing to broaden the scope of potential
applications of intelligent help.

0 s / 2 is a trademark of International Business Machines Corpo-
ration.

AntyProlog is a registered trademark of the Arity Corporation.

Cited references

1. J. L. Alty and M. J. Coombs, “Communicating with Univer-
sity Computer Users: A Case Study,” in Computing Skills and
the User Infedace, M. J. Coombs and J. L. Alty, Editors,
Academic Press, London (1981), pp. 7-71.

2. R. Burton and J. S. Brown, “An Investigation of Computer
Coaching for Informal Learning Activities,” in Intelligent
Tutoring Systems, D. Sleeman and J. S. Brown, Editors,
Academic Press, New York (1982), pp. 79-98.

3. N. K. Sondheimer and N. Relles, “Human Factors and User
Assistance in Interactive Computing Systems: An Introduc-
tion,” IEEE Transactions on Systems, Man, and Cybernetics
12, No. 2, 102-107 (March/April 1982).

4. C . Lewis and D. A. Norman, “Designing for Error,” in User
Centered System Design, D. A. Norman and S. W. Draper,
Editors, Lawrence Erlbaum Associates, Hillsdale, NJ (l986),
pp. 41 1-432.

5. E. Rich, “User Modeling Via Stereotypes,” Cognitive Science
3, 329-354 (1979).

6. J. Faletti, “PANDORA-A Program for Doing Commonsense
Planning in Complex Situations,” Proceedings of the National
Conference on Artificial Intelligence (AAAI-82), Carnegie-Mel-
Ion University, Pittsburgh, PA (1982), pp. 185-188.

7. J. F. Kelley, “An Iterative Design Methodology for User-
friendly Natural-language Office Information Applications,”
ACM Transactions on Ofice Information Systems 2, 26-41
(1984).

8. K. R. McKeown, M. Wish, and K. Matthews, “Tailoring
Explanations for the User,” Proceedings of the Ninth Interna-
tional Joint Conference on Artificial Intelligence (1985), pp.
794-798.

9. P. Jackson and P. Lefrere, “On the Application of Rule-based
Techniques to the Design of Advice-giving Systems,” in De-
velopments in Expert Systems, M. J. Coombs, Editor, Aca-
demic Press, London (1984), pp. 177-200.

I O . J. M. Carroll and J. McKendree, Interface Design Issues for
Advice-Giving Expert Systems, Research Report RC 11984,
IBM Thomas J. Watson Research Center, Yorktown Heights,
NY (1986).

1 1. C. Holg, The Joy of TENEX and TOPS-20 ... in Two Parts,
Technical Report ISI/TM 79-15, USC Information Sciences
Institute, Marina del Rey, CA (January 1979).

12. R. Wilensky. Y. Arens, and D. Chin, “Talking to UNIX in
English: An Overview of UC,” Communications of the ACM
27, No. 6 (June 1984), pp. 574-593.

13. U. Wolz and G. E. Kaiser, “A Discourse-based Consultant for

IBM SYSTEMS JOURNAL, VOL 29. NO 1. 1990

c

Interactive Environments,” IEEE Proceedings of the Fourth
Conference on Artificial Intelligence Applications (March 14-

14. R. S. Fenchel and G. Estrin, “Self-describing Systems Using
Integral Help,” IEEE Transactions on Systems, Man, and
Cybernetics 12, No. 2, 162-167 (March/April 1982).

15. D. Sleeman and J. S. Brown, Intelligent Tutoring Systems,
Academic Press, New York (1982).

16. L. Quinn and D. M. Russell, “Intelligent Interfaces: User
Models and Planner,” Proceedings ofCHI ’86: Human Factors
in Computing Systems, Boston, MA (April 13-17, 1986), pp.

17. B. K. Reid, Scribe: A Document Specification Language and
Its Compiler, Ph.D. thesis, Carnegie-Mellon University (1980).

18. E. Rich, “Users Are Individuals: Individualizing User
Models,” International Journal of Man-Machine Studies 18,
199-214 (1983).

19. L. A. Miller, “Natural Language Programming: Styles, Strat-
egies, and Contrasts,” IBM Systems Journal 20, No. 2, 184-
215 (1981).

20. A. W. Bierman, B. W. Ballard, and A. H. Sigmon, “An
Experimental Study of Natural Language Programming,” In-
iernational Journal ofMan-Machine Studies 18,7 1-87 (1 983).

Grammar on Interactive Natural Language,” Proceedings qf
CHI ‘83: Human Factors in Computing Systems, New York
(1983), pp. 190-192.

22. T. Winograd and C. F. Flores, Understanding Computers and

23. E. F. Codd, “HOW ABOUT RECENTLY?” (English dialog
Cognition, Ablex Publishers, Nonvood, NJ (1986).

with relational databases using RENDEZVOUS Version I),
in Databases: Improving Usability and Responsiveness, Aca-
demic Press, New York (l978), pp. 3-8.

24. D. Waltz, “An English Language Question Answering System
for a Large Relational Database,” Communications of the
ACM21, No. 7, 526-539 (July 1978).

25. M. Templeton, “EUFID A Friendly and Flexible Frontend
for Data Management Systems,” Proceedings of the 1979
National Conference of the Association for Computational
Linguisiics (August 1979).

26. J. J. Robinson, DIAGRAM: A Grammar for Dialogues, AI
Center Technical Note 205, SRI International, Menlo Park,
CA (February 1980).

27. Systems Application Architecture-Common User Access
Panel Design and User Interaction, SC26-4351-0, IBM Cor-
poration (1987); available through IBM branch offices.

28. E. F. Wheeler and A. G. Ganek, “Introduction to Systems
Application Architecture,” IBM Systems Journal 27, No. 3,

29. R. Kimball, “A Self-improving Tutor for Symbolic Integra-
tion,” in Intelligent Tutoring Systems, D. Sleeman and J. S.
Brown, Editors, Academic Press, New York (1982), pp. 283-
307.

30. A. P. Aaronson and J. M. Carroll, The Answer Is in the
Question: A Protocol Study of Intelligent Help, Research Re-
port RC 12034, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY (1986).

3 1, W. Teitelman and L. Masinter, “The InterLisp Programming
Environment,” Computer 14, No. 4 (April 1981), pp. 25-34.

32. R. C. Houghton, “Online Help Systems: A Conspectus,” Com-
munications of the ACM 27, No. 2 (February 1984), pp. 126-
133.

33. T. Finin, “Providing Help and Advice in Task Oriented Sys-
tems,” Proceedings of the Eighth International Conference on
Artificial Intelligence, Karlsruhe, West Germany (1983), pp.
176-178.

18, 1988), pp. 28-33.

B

3 14-320.

B 21. J. A. Hendler and P. R. Michaelis, “The Effects of Limited

D

250-263 (1988).

B

34. Operating SystemJ2 Standard Edition 1.1. Volume I ,
90x7934, IBM Corporation (1988); available through IBM
branch offices.

35. M. D. Ringle and R. Halstead-Nussloch, “Shaping User Input:
A Strategy for Natural Language Dialog Design,” to be pub-
lished in Interacting with Computers (1990).

36. F. C. Pereira and D. H. Warren, “Definite Clause Grammars
for Language Analysis: A Survey of the Formalism and a
Comparison with Augmented Transition Networks,” Artificial
Intelligence 13,23 1-278 (1 980).

37. Expert System Consultation EnvironmentJVM and Expert
System Development EnvironmentJVM, IBM IPS Service Sup-
port Center, Irving, TX (1985).

38. J. F. Sowa, Conceptual Structures: Information Processing in
Mind and Machine, Addison-Wesley Publishing Company,
Reading, MA (1984).

39. M. McCord, “Natural Language Processing in Prolog,” in
Knowledge Systems and Prolog, A. Walker, Editor, Addison-
Wesley Publishing Company, Reading, MA (1987), pp. 316-
324.

40. C. J. Fillmore, “The Case for Case,” in Universals in Lan-
guage, E. Bach and R. T. Harms, Editors, Holt, Rinehart &
Winston, New York (1968).

41. W. R. Swartout, “Explaining and Justifying Expert Consulting
Programs,” Proceedings ofthe 7th International Joint Confer-
ence on Artificial Intelligence (IJCAI), Vancouver, BC (1 98 I),
pp. 8 15-822.

42. B. R. Gaines and J. N. Vickers, “Design Considerations for
Hypermedia Systems,” Microcomputersfor Information Man-
agement 5, No. I , 1-27 (March, 1988).

John M. Prager IBM Cambridge Scientific Center, 101 Main
Street, Cambridge, Massachusetts 02142. Dr. Prager is a project
leader at the IBM Cambridge Scientific Center, which he joined in
1979. He worked initially on office systems, in particular on the
POLITE project. His research contributions from that effort have
earned him an Outstanding Innovation Award and two Invention
Achievement Awards. His current activities include the develop-
ment of user interfaces for powerful personal workstations, using
techniques from artificial intelligence. He has published several
papers and technical reports and is a member of the Association
for Computing Machinery and the Institute of Electrical and
Electronic Engineers Computer Society. Dr. Prager received a B.A.,
a Diploma in Computer Science (with Distinction), and an M.A.,
all from the University of Cambridge, and a Ph.D. in computer
science from the University of Massachusetts at Amherst.

Donna M. Lamberti IBM Cambridge Scient$c Center, IO1 Main
Street, Cambridge, Massachusetts 02142. Dr. Lamberti is a re-
search staff member in the artificial intelligence (AI) and user
interface area. She received a B.A. in Experimental Psychology
from Vassar College, Poughkeepsie, New York, in 1982 and an
MS. degree in Cognitive Psychology, as well as a Ph.D. in Man-
agement Information Systems/Decision Sciences from Rensselaer
Polytechnic Institute, Troy, New York. in 1987. Her thesis research
was the development and empirical evaluation of an intelligent
interface for a diagnostic expert system. This work was sponsored
by an IBM Fellowship for research in information systems. She
joined the Cambridge Scientific Center in 1987. Hcr current
research interests include intelligent interface design for decision
support technology, the design of AI-based advisory systems for
organizations, and the implementation of decision support/
knowledge-based systems.

D IBM SYSTEMS JOURNAL, VOL 29. NO 1, 1990 PRAGER ET AL 163

David L. Gardner IBM Systems Integration Division, 6300 Di-
agonal Highway, Boulder, Colorado 80301. Mr. Gardner was
research staff member on the REASON project. He received a
bachelor's degree in electrical engineering from Brigham Young
University in 1982 and a high technology M.B.A. degree from
Northeastern University, Boston, Massachusetts, in 1989. From
1982 to 1986, he was involved in test engineering at the IBM Boca
Raton, Florida, facility. From 1986 to 1989, he was a staff member
at the IBM Cambridge Scientific Center. His interests include
personal computers, workstations, computer-human interfaces,
artificial intelligence, and the application of computing systems in
the high-technology industry.

Stephen R. Balzac IBM Palo Alto Scientific Center, 1530 Page
Mill Road, Palo Alto, California 94304. Mr. Balzac is a research
staff member at the Palo Alto Scientific Center. He first worked
for IBM as a co-op at the Thomas J. Watson Research Center. He
received his S.B. and S.M. degrees in computer science from the
Massachusetts Institute of Technology, Cambridge, Massachusetts,
in 1987. His thesis work was the development of an interactive
knowledge classification system using a semantic inheritance net-
work. His current interests include artificial intelligence and
knowledge representation.

Reprint Order No. G321-5391

164 1 'RAGER ET AL IBM SYSTEMS JI 3URNAL. VOL 29, NO 1, 1990

