
Porting DPPX from the
IBM 8100 to the
IBM ES/9370:
Feasibility and overview

by R. Abraham
B. F. Goodrich

The DPPXISP operating system was converted from
its original implementation on the IBM 8100 Informa-
tion System architecture to a new implementa-
tion"DPPX/370"0n the Systeml370 architecture of
the €Sf9370 Information System processors. Portability
was not an original design objective for DPPX, and yet
the conversion of the operating system was straight-
forward and successful. This paper investigates the
design fundamentals and technical approaches that
led to the successful porting of DPPXISP to the
ESI9370.

I n 1978 IBM announced the IBM 8100 Information
System and the Distributed Processing Program-

ming Executive (DPPX) operating system. These
products were designed to provide distributed proc-
essing capabilities in a centrally controlled and man-
aged network. The 8100 processors were relatively
inexpensive, occupied little space, and were capable
of being run in an operatorless environment. The
control in an operatorless environment was done by
providing such features as autoIPL after power fail-
ure, software controlled reIPL, and extensive error
notification prior to hard failure. DPPX was similarly
designed to operate in a centrally controlled network.
No programmer or operator was required at the
remote sites. This capability was unique within the
IBM product line and generally throughout the in-
dustry. These hardware and software products were
improved and expanded up through the announce-
ments of the 8 150 multiprocessor in 1983 and the
Distributed Processing Programming Executive Sys-
tem Product (DPPXISP), Release 4, in 1987. D P P X ~ P
had by then grown to over one million lines of code.

90 ABRAHAM AND GOODRICH

At this time, there were many hundreds of customers
worldwide running a total of many thousands of
DPPX systems, some with individual networks of
hundreds of DPPX nodes. The smooth operation of
their businesses was dependent on mpx/sP and the
8 100.

A typical network is shown in Figure 1. In this
example, the host system is an MVS (Multiple Virtual
Storage) complex. There is one or more central 8 100
system for application development, initial service
installation, and pilot testing. The central system is
used to create a master copy that is replicated to the
remote systems. The remote network consists of
many 8 100s. Corporate data can be kept in the
remote processors or may be kept in master files at
the host. Transactions are run in the 8 100, and they
in turn can interact with host transactions on either
the Information Management System (IMS) or the
Customer Information Control System (CICS). Ad-
ditionally, terminal users on a remote system can
directly access applications on either the host or
other remote systems. Network management pro-
grams on both the host and the remote systems are
coordinated with one another to keep the central
network operator informed of any problems. A more
detailed overview can be found in Reference 1.

0 Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

During this same time period (1983 to 1986), IBM
was struggling with having too many hardware and
software systems with similar processing power and
function. In addition to the 8100 there were the
System/36, the System/38, the Series/l, the 4300
family, and even the personal computer, with a total
of ten operating systems among them! Other prod-
ucts had in fact added many of the features that had
made DPPX and the 8 100 unique.

Beginning in 1986, IBM made four significant an-
nouncements: (1) In March 1986 IBM announced
that the 8 100 hardware line would not be expanded.
IBM would investigate moving DPPX/SP to sys-
tem/370 processors. (2) In October 1986 the IBM
~ s p 3 7 0 processors were announced. These provided
many of the same features that made the 8100
attractive for distributed processing but within the
framework of System/370 architecture. (3) In March
1987 IBM announced that the investigation of mov-
ing DPPX/SP to System/370 was successful and IBM
intended to provide a version of DPPX that ran on
the ES19370 processors in 1989. (4) In March 1988
IBM made a formal product announcement of
DPPX/YO, the version of DPPX that exeytes on the
~ ~ 1 9 3 7 0 family of processors. D P P X / ~ ~ ~ was made
available to customers in December 1988.

Moving DPPX/SP to the ~ s / 9 3 7 0 family offered cus-
tomers the advantages of preserving their investment
in software and training while at the same time
allowing them to use the System/370 family of proc-
essors, a family with large growth potential and
capable of supporting several different operating sys-
tems.

Portability was not an objective of the original DPPX
design. The decision to do the port was done only
after extensive examination of the alternatives and
thorough planning of how the port would be accom-
plished.

The alternatives

Before deciding that DPPX/SP must be ported to
System/370, extensive analysis was done on the fea-
sibility of providing migration tools that would allow
customers to migrate to other IBM systems. DPPX/SP
customers have large investments in their application
programs. Some customers have many millions of
lines of application code. Any alternative to DPPX/SP
would have to provide a clear and clean migration
from DPPXISP. A number of alternative IBM operating
systems were investigated.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

There are many attributes of operating systems that
make each one unique. During the study several
major areas stood out that prevented us from pro-

DPPX Transaction Processing
Manager (TPM) allows a large

number of users to share
relatively limited storage

resources.

viding a general migration path from DPPX to an-
other operating system. Typical customer applica-
tions were structured in ways that depended on the
following facilities.

Data Base Manager. DPPX Data Base Manager
(DBM) provides indexed, sequential, and random
access to data. It allows up to eight indexes and
does not require any to have unique keys. When
index tree structures become unbalanced or when
room to insert new records is no longer available,
the index or data structure is reorganized auto-
matically, while still on line.
Transaction Processing Manager. DPPX Transac-
tion Processing Manager (TPM) allows a large num-
ber of users to share relatively limited storage
resources. It provides recovery scope manage-
ment, which allows all actions taken by a trans-
action to be viewed by all other users as a single,
atomic operation. That is, all database updates are
made visible together when the transaction com-
pletes successfully, and none is made visible if the
transaction signals an error or if the system should
fail. It provides the ability to keep a transaction’s
recovery scope open across several terminal inter-
actions. It provides the ability to create work for
another user or terminal (or printer), all under the
control of the originating user’s recovery scope.
Display Manager. DPPX Display Manager allows
programmers to interactively describe the layout
for variable data and static descriptive text. It saves
this information in data sets known as maps.
When the application program runs, the display
manager merges maps with the variable data pro-

ABRAHAM AND GOODRICH 91

92

* DP SKILLS NOT REQUIRED
* UNATTENDED OPERATION

* SERVICE ACTIVATION VIA IPL - SERVICE BACKOUT VIA IPL

AUTOMATIC SERVICE DISTRIBUTION

- NONDISRUPTIVE CONFIGURATION CHANGES (ON LINE1
* NLS SUPPORT - EXTENSIVE COMMUNICATIONS

- PEER
- X.25

- SDLC ...

vided by the application program to write panels
on display terminals and output to printers. For
input operations it does the reverse, separating
data entered at the terminal from the static text
and delivering the data to the application in an
easy-to-use format.
Unattended operation. There are many functions
in DPPxIsP that allow unattended operation. Thes!
inclyde components that interact with the DSX,
HCF, and NetView'"' products of the host.
DPPXISP service is provided in a format that allows
simple distribution, installation, and, if necessary,
backout on remote systems. Service can be in-
stalled while the system is on line; it is activated
by a remotely requested, software-initiated IPL
(Initial Program Load). If the newly provided pro-
grams fail, a reIPL can be automatically triggered
to reload the old version of the system. Disk
shadow volumes can be provided to protect
against disk failures.
Embedded commands. D w x / s p commands can
be embedded in application programs. As an
example, a transaction program can contain a
DEFINE.DATASET command, then proceed to write
into the data set, and then issue a SUBMIT.BATCH
command to submit that data set as a batch job.
The router. The router allows a user at a single
IBM 3270 terminal to be logged on concurrently
to several different applications on different proc-
essors in the SNA (Systems Network Architecture)
network and to switch among them at any time.
It is in many ways similar to the multiple-session
capabilities of the IBM 3270 PC or the IBM 3194
display.

These facilities and other user requirements were
matched against other operating systems, and no
suitable match could be found. The other operating
systems did not have the centrally managed, unat-
tended environment of DPPX, and their application
program interfaces were significantly different. The
effort for IBM to alter a potential target operating
system to provide equivalent support, or for cus-
tomers to recode around the missing function, was
deemed too expensive or disruptive to the customer
to be a viable alternative to actually moving DPPXISP
to the ~ s p 3 7 0 .

What makes DPPX/SP portable?

There are many success stories for operating systems
that did have portability as an objective, either orig-
inally or during some intermediate reimpleyenta-
tion. Perhaps most notable of these is UNIX@. DPPX

ABRAHAM AND GOODRICH 93

instead was designed to be extendable and reliable
and was implemented in a manner to provide high
productivity. It is these attributes that have made it
portable in practice, though not in intent!

The extendability objective led to a highly structured
design that provides I/O services via layers of com-
ponents. The lowest layers deal with physical I/O
concerns, whereas the upper layers deal with ever-
increasing generality. The layers have highly archi-
tected interfaces that force any given layer to be
implemented independently of its surrounding lay-
ers. The layers for a particular connection between
a program and the I/O device are chosen and dynam-
ically bound together at “open time,” using infor-
mation provided by the program and, optionally, the
user (Figure 2). A more detailed description can be
found in Reference 7.

Furthermore, the reliability objective led to a highly
structured design. Components tended to encapsu-
late data that they controlled, not externalizing their
internal structure to other components. Interfaces
between components were strictly monitored during
the development of DPPX/SP to prevent numerous
private protocols from being invented.

Last, the high productivity objective led to the exclu-
sive use of a single high-level language for imple-
mentation. The language used was PL/DS, available
externally as part of the Distributed Processing De-
velopment System. This, plus extensive rules for
standardized module prologs, copious comments,
and structured programming led to a standardized
programming style across a large programming or-
ganization.

DPPX benefitted from these objectives long before
the port to the ~ ~ 1 9 3 7 0 was undertaken. Major func-
tions and complex hardware support were contin-
ually added to DPPX/SP for a relatively small amount
of programming cost. Some of the functions include
the following.

Added support for attached processor and multiple
processor architectures. The strict interfaces re-
quirements isolated components that managed the
processors and the actual I/O devices. The changes
required to assure that I/O requests were executed
on the processor side that attached the desired
device were limited to just these two areas (see
Figure 3). There were no changes required in
application programs.

94 ABRAHAM AND GOODRICH

Figure 2 I/O layer structure

Change in address space structure. The 8 140
Model C processor quadrupled the amount of
logical storage available, and the 8150 processors
changed the storage protection scheme from a
nested format to a keys-and-locks format. Both of
these changes were accommodated for relatively
minor amounts of programming because of the
strict adherence to component boundaries. Again,
there were no changes required in application
programs.
The insertion of new layers to provide additional

function. The disk 110 paths have had two addi-
tional layers added without requiring any change
to user programs and minimal changes elsewhere
(see Figure 4). One new layer provides the DASD
cache function, increasing performance by using
otherwise unused main storage to hold an image
of most recently used disk records. The other new
layer provides the DASD shadow function, which
provides increased reliability by duplicating one
volume on a backup (shadow) volume. All writes
are done to both volumes; reads are done from
either. In the event of a disk failure, the remaining
volume is automatically used until the broken one
can be repaired. Once again, there were no changes
required in application programs in order to take
advantage of these additions.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Figure 3 Minimal changes required for multiprocessing

STANDARD I/O INTERFACE

"_
SUPER-
VISOR

"_

A new communications protocol. The OSI (open
systems interconnection) X.25 communications
protocols were inserted without the need to change
major portions of the other communication I/O
layers.
Tolerance toward personnel turnover and changes
ofresponsibifity. The programmers and sometimes
even development locations for nearly every mod-
ule of DPPX have changed since DPPX was first
implemented. The single high-level language and
strict adherence to programming standards have
made those changes much less disruptive than they
would otherwise have been.

The extendability and reliability objectives had the
same effect for the port as they did for the 8100
product. Although the System1370 architecture of
the ES/9370 processors is radically different from the
8100, the components needing major changes were
limited to a relative few (Figure 5). These were:

Supervisor. The major areas needing change in-
volved interrupt handlers and serialization, storage
mapping, and timer formats.
I10 Adapter Services (IOAS). Changes were needed
for different status reporting mechanisms from
devices, different low-level command formats and

functions, and use of real addresses for I/O rather
than logical addresses.
Data management. The fixed block architecture
(FBA) for System/370 disks did not support the
256-byte block size that was standard for 8 100
disks. As a result, the lower layers of data manage-
ment were changed to simulate the 256-byte in-
terface to upper layers when necessary.

Similar changes were required in the DPPX/SP stand-
alone utilities. The extensive use of a Programming
Language for Distributed Systems (PLIDS) allowed
most components to be recompiled using a new
PL/DS compiler targeted for System/370. Since the
PL/DS language allowed programmers to "drop
down" to machine instructions (within a macro) for
functions not supported by the language, some pro-
grams had to have these few lines recoded.

In the course of porting, other changes were made
to the operating system. Most of these were done to
remove previous implementation constraints. For
instance, the size of an important systemwide iden-
tifier (the environment id) was changed from 8 to 16
bits. Although not strictly required for the port, this
was done in recognition of the full range of process-
ing power available in the System/370 product line.

ABRAHAM AND GOODRICH 95 IBM SYSTEMS JOURNAL, VOL 29, NO 1. 1990

This change, although bothersome at the time, would
be a major change to introduce if needed at a later
time. It was quite simple to do when the entire
system was being recompiled and retested anyhow.
Another such change was for the DATE function to
return four digits of the year rather than just two.
The year 2000 looms near, and it is no longer
acceptable to assume the year falls within the 1900~!

The remainder of this paper describes the feasibility
and results of porting this large operating system.

Feasibility of porting

Code classification. An early feasibility study of port-
ing DPPX examined each DPPXISP base system com-
ponent (and licensed programs) and identified areas
with the following requirements:

Redesign (high-level design necessary for hard-
ware, RAS [Reliability, Availability, and Servicea-
bility], etc.; inspection of component structure
required because of changed module-to-module
interfaces)
Rewrite (only low-level design necessary; some
changes necessary for hardware, RAS, etc., but no
change to module-to-module interfaces)
Recompile (little or no change, affected only by
items in a checklist)

Estimates were made of thousands of lines of code
(KLOC) in each category per each system component.
These were continually refined throughout the im-
plementation cycle. An early estimate for the
DPPX/370 base system (excluding licensed programs,
such as the COBOL compiler) is shown in Table 1.

Programmer productivity. An estimate of program-
mer productivity rates is shown in Table 2. These
productivity rates translate to an overall productivity
rate of 6204 shipped source instructions (SSI) per
programmer year, or 1440 changed source instruc-
tions (CSI) per programmer year. This includes de-
velopment activity for high-level design, low-level
design, code, functional verification (FV) test, inde-
pendent component test,’ and support of system test,
based on the following assumptions:

Redesign is the same as creating anew and could
occur at the prevailing rate for DPPX/SP 8 100.
Rewrite could occur at a faster rate due to a well-
defined list of changes to be made to well-struc-
tured and well-commented code by an experi-
enced team familiar with each component. Also,
only the changed code flows would be FV tested.

96 ABRAHAM AND GOODRICH

Figure 4 Insertion of new layers

L Y

STANDARD va INTERFACE

Table 1 An early estimate for the DPPX/370

KLOC KLOC KLOC
Recompile Rewrite Redesign

I 196 55.2 124 I

Table 2 Estimate of programming productivity

KLOC per
Programmer

Year

Redesign I .3
Rewrite 1.9
Recompilation 24.0

Recompilation could occur at a very fast rate. This
was based on the following:

A reliable System/370 compiler would be avail-
able.

IBM SYSTEMS JOURNAL. VOL 29, NO 1, 1990

No code changes would be necessary to the
majority of DPPX modules for a successful com-
pilation.
No specific FV test would be required for these
recompiled modules.
No additional system interface changes would
be needed other than the few originally defined.

Implementation compiler

Compiler choices. Various technical approaches had
to be considered. One of the most important to the
success of the project was the choice of the imple-
mentation compiler.

Over 90 percent of DPPX/SP 8100 had been coded
using the Programming Language for Distributed
Systems (PL/DS), which was also available to DPPX/SP
customers as Programming RPQ P88016.' The PL/DS
language provides PL/I-like coding power and is very
similar to the Programming Language/Systems
(PL/S) and Programming Language/Advanced Sys-
tems (PL/AS) languages used internally by IBM to
produce other System/370 operating systems and
control programs. It is a high-level programming
language with preprocessor-like macro support, and
provides simplified intramodular linkage for pro-

grams that will be executed under DPPX/SP. PL/DS
provides an optimization option that generates
highly optimized code, allowing a skilled PL/DS pro-
grammer to produce very efficient code.

A task force consisting of DPPX/SP designers and
developers, a PL/DS expert, and a PL/AS expert de-
fined the recompilation requirements and considered
three compiler alternatives.

The recompilation requirements were:

1. Generate optimal System/370 object code.
2. Support structured declarations of registers of

length 1, 2, or 4 bytes.
3. Map 8100 registers to System/370 registers and

generate System/370 code sequences that simu-
late the register operations of the 8 100.

4. Support assignment and comparison statements
of all bits (that is, not just 1 bit and multiple of 8
bits).

5. Support a small set of 8 100 built-in instructions
(BIIS), based on frequency of use in existing
DPPXISP modules considered as recompilation,
and generate System/370 code sequences that
simulate their operation. A built-in instruction is
a PL/DS compiler statement that corresponds to a

Figure 5 Changes required for conversion to EWE370

: SUPER-
VISOR

_"""" ~

"

APPLICATIONS
IINTERACTIVE USERS.
DTMS. BATCH. ETC)

"

J

D
IEM SYSTEMS JOURNAL, VOL 29, NO 1, 1990 ABRAHAM AND GOODRICH 97

machine instruction. The operands of the BII are
PL/DS expressions.

6. Support DPPXISP linkage conventions (that is,
CALL/END/LINK/EXIT and DPPX PROCEDURE state-
ment options) and generate System/370 code se-
quences that simulate the action of the conven-
tions of DPPX/SP.

7. Support 8 100 DECLARE defaults-that is, default
declare precision of BIT(15).

The three compiler alternatives considered were:

1. Get the PL/AS compiler to support all D P P X ~ ~ O
requirements.

2. Get minimum PL/AS compiler support and de-
velop macros and tools to convert DPPXISP source
from PL/DS to PL/AS.

3. Get the PL/DS compiler to support all ~PPx/370
requirements. This meant retargeting the PL/DS
compiler to generate System/370 Assembler (the
PL/DS compiler was in the process of being restruc-
tured). This is the alternative that was chosen.
The second version of the PL/DS compiler is called
PL/DSZ.

The decision to develop and use the PL/DSZ compiler
was made on the basis of the following objectives:

Minimize development cost for recompile effort
(that is, the number of DPPX/SP modules requiring
manual rewrite must be kept to a minimum).
Minimize the risk to quality, schedules, and cost.
Maximize the overall ~ ~ ~ ~ 1 3 7 0 development re-
source (that is, minimize cost of compiler, macros,
and conversion tools).
Maximize the performance of D P P X / ~ ~ ~ on the
~s/9370 hardware.

Following the completion of the task force, a com-
piler development group was formed and a group
consisting of DPPX designers and developers, DPPX
tool support personnel, and PL/DS compiler person-
nel developed a detailed set of requirements for the
PL/DS System/370 compiler (called PL/DSZ). These
requirements addressed the following areas:

Support for key 8100 DPPX/SP conventions, in-
cluding mapping of 8 100 registers on System/370
hardware and linkage conventions
PLIDS language compatibility
New language requirements
New linkage convention requirements
Support for System/370 operations

Support for built-in instructions (BIIS), both 8100

Compiler optimization
and System/370

Compiler development. Compiler development pro-
ceeded in parallel with the development of ~ ~ ~ ~ 1 3 7 0 .

Compiler development proceeded in
parallel with the development of

DPPX/370.

Incremental versions of the PL/DSZ compiler were
made available. as follows:

1. Most language function supported
2. Some BII support, some optimization
3. All language function and BIIS supported, addi-

4. Significant optimization
5. Some incremental optimization

tional optimization

D P P X / ~ ~ O development personnel knowledgeable
with DPPX linkage conventions developed the com-
piler function for the linkage conventions for
D P P X / ~ ~ O (6000 lines of compiler code).

In addition to the incremental versions, a “throw-
away” version of a PL/DSZ compiler was used to
identify parts of DPPX impacted by the port. The
“throw-away’’ version of the compiler generated
unique messages when a specified condition was
encountered-for example, multiplication of
FIXED(15). The entire DPPXISP system (over 5000
modules) was compiled with the “throw-away’’ PL/DS2
compiler, and the compiler-produced message files
were scanned for the condition under study.

Also, as incremental versions of the PL/DSZ compiler
became available, the entire DPPX/SP system was
“quick compiled” and scanning of compiler-gener-
ated messages occurred. This was done to assess the
overall extent of the DPPX recompilation effort and
to identify which DPPX components were signifi-
cantly affected. The first occurrence of the “quick

98 ABRAHAM AND GOODRICH IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990 1

compile” showed that 2 123 DPPX/SP modules, out of
5 158 total, successfully compiled and assembled
using the PLIDSZ compiler (using only 32 macros
modified for D P P X ~ O) . The third (and last) occur-
rence of the “quick compile” showed that 3632
DPPX/SP modules successfully compiled and assem-
bled (using 100 macros and 75 control blocks mod-
ified for ~ ~ ~ ~ 1 3 7 0) . This activity also allowed assess-
ment of incremental PL/DSZ compiler improvements.
Note that all “quick compiles” and the use of a
throw-away compiler were auxiliary to the real proc-
ess of porting code to DPPX/370, since they were
performed with minimal development programmer
involvement and only the PLIDSZ compiler and Sys-
tem 370 Assembler message files were saved (not the
listing and assembler output files).

Compiler optimization. When the first version of the
compiler became available, there were over 600
DPPXISP modules, all of which had to execute as re-
entrant with no automatic storage, that failed to
compile. Re-entrant modules provide the ability to
have a single copy of a module be invoked concur-
rently by two or more tasks. Re-entrant modules
with no automatic storage are usually invoked very
frequently and can not afford the performance over-
head of allocating and deallocating automatic storage
each time the module is invoked, or they are a part
of the supervisor core that does not have storage
management services available to it. Re-entrant
modules with no automatic storage must have all
module variables assigned to hardware registers by
the compiler. (A register can have more than one
variable assigned, depending upon where in the mod-
ule each variable is used.)

The compiler was unable to assign all of a module’s
variables to registers because the level of compiler
optimization available used too many registers for
intermediate calculations. Also, there is one less
register available for compiler use on System/370, as
compared to 8100, because one of the 16 registers
has to be used as a base register.

If a frequently invoked module cannot be compiled
as re-entrant with no automatic storage, then one
alternative is to change the module to be nonre-
entrant and serialize the module’s invocation via
system disable (the module runs to completion un-
interrupted). But this would have serialized the exe-
cution of key portions of the D P P X / ~ ~ ~ operating
system and would not be practical in many cases
(some modules invoke system services which have
to run enabled).

IBM SYSTEMS JOURNAL, VOL 29, NO 1. 1990

An analysis of the compiler-generated object code
resulted in a set of additional compiler optimization
requirements, which were scheduled for implemen-
tation in subsequent versions of the compiler, in
time to have almost all of these 600 modules compile
successfully.

D P P X ~ ~ O designers and developers, D P P X / ~ ~ O tool
support personnel, and PL/DSZ compiler personnel
met periodically (usually monthly) to discuss addi-
tional requirements, problems, compiler usage, etc.
Plans for incremental improvements to the PLIDSZ
compiler were jointly arrived at and periodically

The performance of the object code
generated by the PL/DS2 compiler

was closely monitored.

reviewed. Compiler problems found by DPPX/370
development were formally reported and tracked via
the same problem-reporting tool used for tracking
DPPX problems.

The compiler group was provided a set of 40
~ ~ ~ ~ 1 3 7 0 modules to use for testing of the compiler.
Also provided was a particularly large D P P X / ~ ~ ~ mod-
ule that was re-entrant and required zero automatic
storage to compile successfully.

The performance of the object code generated by the
P L / D S ~ compiler was closely monitored. One person
kept a single program, an efficiency test case written
in PL/DSZ, containing numerous situations where the
System/370 object code produced by the PL/DSZ
compiler needed to be improved to shorten execu-
tion time. Whenever an incremental version of the
P L / D S ~ compiler became available, the program was
compiled and the object code analyzed. As devel-
opers discovered other instances of object code that
could be improved, the efficiency test case was ex-
panded. Requirements were prioritized and added
to the PLIDSZ compiler implementation plan to im-
prove the performance of situations in this program.

L

4

Throughout the development of D P P X / ~ ~ O , PL/DSZ DPPX macro changes (for example, deleted or
compiler upgrades were received as significant com- changed macros due to 8 100 System/370 hard-
piler fixes became available. The upgraded version ware differences, etc.)
of the PL/DSZ compiler would be established as the System control block changes (for example,
version to be used for all subsequent development changes to supervisor services control blocks, etc.)
Of DPPX/370. Error processing (for example, recovery from proc-

Also, many instances of compromise occurred be- 8 100 built-in instructions (BIIS) and assembly code
tween PL/DSZ compiler development and DPPX/370 (for example, only eight 8 100 BIIS [out of more
development. If a problem prevented a ~ ~ ~ ~ 1 3 7 0 than 1501 are supported by PL/DS~, changed full-
module from compiling or executing correctly, and word division routines, etc.)
a PL/DSZ compiler fix would be difficult, then an PL/DS2 Source language differences (for example,
analysis would determine whether the PL/DS2 com- higher-precision arithmetic, implicit truncation,
piler or D P P X ~ ~ O should be changed. The impact to compiler-created temporaries for CALL parame-
D P P X / ~ ~ O development of how many modules and ters, different result for some signed-unsigned
lines of code change are required (sometimes requir- comparisons, etc.)
ing extensive scanning of DPPX/370 modu1es)”plus PL/DS2 linkage Convention differences (for exam-
testing, etc.-would be compared with the impact ple, base register [called CODEREG] per each 4Kb
on PL/DSZ compiler externals or scheduled availabil- of module code storage, changed format of module
ity of optimization improvements. A joint decision save area, labels on secondary entry points, etc.) (I
would be amved at to change either the PL/DSZ
compiler or D P P X ~ ~ O modules, or sometimes both. A list of DPPX modules impacted was developed for

the majority of checklist items via automated scan-
When the first version of the P L / D S ~ compiler became ning of DPPX s ~ r c e code, scanning DPPX
available, it was realized that significant optimization module compilation listings Produced by both the
improvements would be needed to achieve reasona- W D S compiler and early versions of the W D S 2
ble performance. This meant that the D P P X ~ ~ O sys- compiler.
tem would have to be recompiled when compiler
optimization improvements became available. Choice of COBOL compiler

ess checks) 4

A checklist was developed to provide a list of items
a developer must consider when porting an existing
DPPX/SP component or subcomponent to D P P X / ~ O ,
for both recompilation and partial rewrite. This
checklist was updated periodically as new items ap-
peared. It listed items for each of the following areas:

Operating System Architecture changes (for ex-
ample, the size of an environment ID expanded
from 1 byte to 2 bytes, usage of 24-bit addressing
converted to 32-bit addressing, page size changed
from 2Kb to 4Kb, maximum logical record length
increased from 4Kb to 16Kb, etc.)
DPPX command changes (for example, deleted
commands for specific 8 100 hardware and devices
not supported by System/370, etc.)

In addition, the compiler supports extensions to the
language that are unique to DPPX. These extensions
were added to integrate the Transaction Processing
Manager and Data Base Manager control statements
closer into the application programs.

Two approaches were examined to handle these
COBOL problems. The first was to recode the DPPX
COBOL compiler to produce System/370 object code
and then to compile it using PL/DSS like the rest of
the system. The other alternative was to convert the
existing System/370 COBOL compiler, vs COBOL 11, to
run on D P P X ~ ~ O . The latter approach was chosen so
as to provide closer affinity to the COBOL compiler
available to our customers on their MVS host. This

100 ABRAHAM AND GOODRICH IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

approach also provides a cross-compilation capabil- corresponding 8 100 object code (due to the more
ity, allowing D P P X ~ ~ O programs to be compiled on powerful System/370 instruction set).
System/370 VM and MVS hosts.

These numbers assumed a 10 percent penalty on
The COBOL II compiler and run-time library were System/370 for byte and halfword register manipu-
modified to request system services using the DPPX lation. Also, it was assumed that the PL/DSZ compiler
macros rather than the MVS macros in the existing would be as efficient as that of PL/S.

b
product. The language incompatibility problems

A separate comparison of 8100 and System/370
ES/WO hardware instruction timings concluded that

DPPX/370 is designed to run on
today’s ES/9370 class machines,

including the IBM ES/9370
D Model 90 processor.

were solved by providing a preprocessor that can
convert the DPPX incompatibilities and extensions
into a form that can be successfully compiled and
run by the modified vs COBOL 11 compiler and run-
time library.

System performance

The main impact on the performance of D P P X ~ ~ O ,
versus 8 100 DPPX/SP, comes from the different hard-
ware instruction set. Specifically, if a DPPX/SP func-
tion took n 8100 instructions, then how many Sys-
tem/370 instructions would be required for the same
function? An early study examined five modules that
existed in both a DPPX 8 100 licensed program and a
System/370 licensed program. The programs were
written in a common subset of the PL/DS and PLJS
languages. All five were compiled with PL/DS (which
generated 8 100 object code) and PL/S (which gener-
ated System/370 object code) and a comparison
showed:

B

B

System/370 object code size, in bytes, was approx-
imately 25 percent larger than 8100 (due to pre-
dominance of 4-byte instructions on System/370
compared with 2-byte instructions on 8 100).
System/370 object code took approximately 18
percent fewer System/370 instructions than the

the midrange ES/WO models were about as powerful
as the high-end 8 150B processor, in terms of instruc-
tion processing capability. Thus, no drastic redesign
of DPPX was necessary to achieve an increased system
throughput with D P P X ~ O executing on the most
powerful models of the ~ s p 3 7 0 . The supervisor func-
tions GETMAIN/FREEMAIN and LOADJDELETE are the
only exceptions to this.

DPPX/370 is designed to run on today’s ~ ~ / 9 3 7 0 class
machines, including the largest model, the IBM ~ ~ / 9 3 7 0
Model 90 processor. Performance analysis of existing
DPPX/SP systems showed that in some configura-
tions a large amount of system time was spent in
GETMAIN/FREEMAIN processing. The Model 90 pro-
vides significantly more throughput than the IBM
8 150B. It was feared that “large system effects” might
start appearing when running on this model. Since
storage management needed redesigning anyhow to
account for the differences in the logical storage
mapping mechanism between the IBM 8 100 and the
IBM System/370 architectures, performance en-
hancements were included. DPPX/SP had a simple
linked list structure for maintaining free storage
blocks in ascending address order. The D P P X ~ O
implementation uses a similar structure but main-
tains multiple pointers into the list to locate the first
entry greater than or equal to specific sizes. These
sizes were determined by analysis of DPPX/SP trace
data.

It was also discovered that DPPX/SP systems running
large Cross System Product” applications tended to
spend a large amount of time in the supervisor
LOAD/DELETE functions, even if the modules were
already resident or were not actually deleted.
Changes were made to these functions to execute
much faster paths, both in the event that a LOADed
module was already resident and when a DELETEd
module would not be deleted (either because of other
users or because it had been preloaded during IPL).
Essentially, the appropriate control block updates
are done while executing disabled rather than going
to the expense of obtaining software locks to control
concurrency.

D
IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990 ABRAHAM AND GOODRICH 101

Table 3 Total lines of code to develop the base DPPXI37Q
system

Item KLOC KLOC KLOC
Recompilation Rewrite Redesign

Original estimate 796 55 124
Actual 782 80 299

3. Via peer-to-peer transmission, using Peer Data
Transfer (PDT), new for D P P X / ~ ~ O , which allows
data transfer between a DPPXISP system and
D P P X ~ ~ O system or between two D P P X ~ O peer
systems

Refer to “Porting DPPX from the IBM 8 100 to the IBM
ES/WO: Migration,” a companion article in this issue,
for additional migration information.12

Table 4 Planned and actual productivity rates

Item CSI SSI
KLOC per KLOC per

Programmer Programmer
Year Year

Original estimate 1.440 6.204
Actual 2.362 8.468

Migration

Functions to aid migration were added to the
D P P X ~ ~ O development effort. This was done to en-
sure that a customer moving from DPPX/SP 8100 to
~ ~ ~ ~ 1 3 7 0 would be able to migrate the system and
not have to undertake a costly conversion. Migration
of customer applications occurs as follows: The
DPPX/SP COBOL application programs are preproc-
essed and recompiled. The Cross System Product
applications on D P P X ~ ~ O are object-code-compatible
with DPPX/SP 8 100 (no regeneration is required). The
command lists (CLISTS) are copied unchanged to
DPPXWO. The Display Manager maps are copied to
D P P X ~ ~ O (no regeneration is required). The user data
and most profiles” are copied to D P P X ~ ~ O .

However, it was necessary to provide assistance to
enable easy movement of user applications and data.

Three methods of transmitting customer parts (in-
cluding customized parts) from DPPX/SP 8100 to
DPPX/370 are provided for different customer envi-
ronments:

1. Via tape, using stand-alone DASD dump/restore
(SADDR), which allows dumping of DASD volumes
on the 8 100 to tape and a subsequent restoration
from tape to DASD on ES/WO

2 . Via host transmission, using Distributed Systems
Executive (DSX) or NetView Distribution Man-
ager (NetView DM), which allows data to be trans-
mitted from DPPX/SP 8 100 to ~ ~ ~ ~ 1 3 7 0 via a Sys-
tem/370 host

102 ABRAHAM AND GOODRICH

Results

All of D P P X ~ ~ O (including the first- and second-level
interrupt handlers) is written in the PL/DS language.
Components that had been changed because of items
in the checklist did not experience the usual high
rate of errors per KLOC associated with changed code.
This was attributed to the availability of the checklist
with its detailed descriptions of changes required.
The result is a System/370 operating system that was
developed by reusing more than 800 KLOC of code
originally implemented for the 8 100.

Total effort expended

Table 3 illustrates total thousand lines of code (KLOC)
required to develop the base DPPX/370 system.

The increase in the KLOC for redesign is due to several
new functions added to D P P X / ~ ~ O . Table 4 shows the
planned and actual productivity rates, where CSI is
changed source instructions and SSI is shipped source
instructions.

The SSI includes the recompiled lines of code. The
actual rates include development activity for high-
level design, low-level design, code and FV test. In
both cases the productivity rate exceeded the original
estimate. Some recompilation components were
ported at a rate in excess of 30 KLOC per programmer
year (versus the original estimate of 24 KLOC per
programmer year). Some new components were de-
veloped for D P P X / ~ ~ O at a rate as high as 8 KLOC per
programmer year (versus the original estimate of 1.9
KLOC per programmer year).

Performance

The original comparison of 8100 and ~s /9370 hard-
ware instruction timings, which predicted that the
midrange ES/WO processors were about as powerful
as the high-end 81 50B processor, turned out to be
correct. Figure 6 shows this, comparing internal
throughput rates ratio (ITRR) measured for D P P X ~ P

IBM SYSTEMS JOURNAL, VOL 29, NO 1. 1990

Figure 6 DPPXlSP 8100"DPPX/370 ESl9370 relative processor performance

81508 ES/9370
60

ES/9370
30

ES/9370
50

E W 9 3 7 0
80

ES/9370
90

on the 8 150B processor versus those measured for
D P P X / ~ ~ ~ on the various Es19370 models. ITRR is the
number of completed jobs or transactions per proc-
essor busy second.

Compatibility

With few exceptions, the functions provided by
D P P X / ~ ~ O are essentially the same as DPPX/SP 8100.
These functions have the same user externals on
D P P X / ~ ~ O as on DPPX/SP 8 loo, so no retraining of end
users or operators is necessary. Also, DPPX/SP and
~ ~ ~ ~ 1 3 7 0 have a similar appearance and can coexist
in the same network.

New functions

A number of new functions were incorporated into
DPPX/370:

IBM token-ring network support, to take advantage
of the ES/WO token-ring adapter

System Configuration Manager to simplify hard-

Maintenance via tape, not diskette
Enhancements to SADDR to improve performance
Peer Data Transfer (PDT), to aid migrating user
data, plus customer maintenance and develop-
ment within a mixed network. PDT is a batch
transfer facility to send data sets, catalogs, and
CLISTS between two DPPX systems using commu-
nications facilities.

ware configuration

Enhancements to IPL to improve usability
Use of display panels by stand-alone I/O functions
to improve usability
Performance functions such as multivolume user
catalogs (also known as data striping)
New printer office support for printing Document
Content Architecture (DCA) documents on Intel-
ligent Printer Data Stream (IPDS) printers
New data management functions-for example,
on-line compression of catalogs and logical disk
volume

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Migrator tool to assist the customer moving ap-
plication programs and data from the DPPX/SP
system to the D P P X / ~ ~ ~ system

A detailed description of these and other functions
incorporated into D P P X ~ ~ O can be found in Refer-
ence 2. The lines of code necessary and the resource
needed to implement these additional functions are
shown in Tables 3 and 4.

Conclusion

The port of DPPX demonstrates the unplanned value
of structured design beyond the expected benefits of
extendability, reliability, and high productivitv.

The port of the DPPX/SP operating system from the
8 100 to the ES/WO processors was made possible due
to a number of factors. Originally DPPXISP had been
designed to be extendable and reliable, with highly
structured design and data encapsulation, and had
been coded in a single high-level language. The PL/DS
implementation compiler was retargeted to Sys-
tem/370. There was close cooperation between the
development of D P P X / ~ ~ ~ and the PLIDSZ compiler,
both of which were developed in parallel. An expe-
rienced synergistic team with detailed knowledge of
DPPX performed the development and test of
DPPX/370. The functions used to migrate user appli-
cations and data were incorporated into DPPX/370.

As a result, D P P X ~ ~ O provides new function as well
as DPPX/SP functions with the same user externals,
and can coexist with DPPXISP.

Acknowledgment

It is not possible to list all the people who contributed
to the original design of DPPX, to the analysis of
alternatives to the 8100, and to the actual porting.
Therefore, we wish to acknowledge the work of all
the skilled professionals who have contributed to
DPPX since its inception.

NetView is a trademark of International Business Machines Cor-
poration.
UNIX is a registered trademark of AT&T.

Cited references and notes

I . DPPXISP General Information, GC23-0600, IBM Corpora-

2. DPPX/370 General Information, GC23-0640, IBM Corpora-
tion; available through IBM branch offices.

tion: available through IBM branch offices.

3. DSX is the Distributed Systems Executive product. It manages
transmission of data sets between a host system (MVS or VSE)
and remote nodes of the network. When used with DPPX, it
can also execute command lists (CLISTs) on those remote
systems. This product has been superceded by NetView Dis-
tribution Manager (NetView DM).

4. HCF is the Host Command Facility product. It allows a user
at a host-attached terminal (which itself can be anywhere in
the network) to log on to a remote system and appear to that
system as a local user.

5. NetView provides centralized error management capability. It
provides displays useful to a central network operator to
highlight trouble spots throughout the network. It also pro-
vides programmed operator capability and allows access to
HCF and other applications from NetView DM terminals.

6. D. E. Bodenstab, T. F. Houghton, K. A. Kelleman, G. Ronkin,
and E. P. Schan, “UNIX Operating System Porting Experi-
ences,” AT&T Bell Lab Technical Journal 63, Part 2, No. 8,
1769-1790 (October 1984).

7. H. R. Albrecht and L. C. Thomason, “I/O Facilities of the
Distributed Processing Programming Executive (DPPX),”
IBM Systems Journal 18, No. 4, 526-546 (1979).

8. Distributed Processing Development System (DPDS) General
Information, GC27-0505, IBM Corporation; available through
IBM branch offices.

9. Independent component test is described in the companion
article by G. E. Boehm, A. M. Palmiotti, and D. P. Zingaretti,
“Porting DPPX from the IBM 8100 to the IBM ES/9370
Installation and Testing,” IBM Systems Journal 29, No. I ,
124- 140 (1990, this issue).

IO. Cross System Product is IBM’s primary fourth-generation
language application generator for data processing profes-
sionals. Cross System Product/Application Development
(CSPIAD) is a licensed program that guides users in writing
application programs by requesting responses to prompts at
display terminals. Cross System Product/Application Execu-
tion (CSP/AE) is a licensed program that executes application
programs developed with CSP/AD.
A profile is data that describes the significant characteristics
of one or more computer resources. Examples of these re-
sources are data sets, programs, catalogs, commands, and
users.

I,!. C. Goodrich and M. B. Loughlin, “Porting DPPX from the
IBM 8100 to the IBM ES/9370 Migration,” IBM Systems
Journal 29, No. 1, 106- 123 (1990, this issue).

Robert Abraham IBM Industrial Sector Division, Atlanta, Geor-
gia. Mr. Abraham is a senior programmer in the Engineering
Management System group at IBM’s Atlanta laboratory. He joined
IBM in 1971 at the Advanced Systems Development Division
(ASDD) Mohansic laboratory. In 1976 he started work on the
CPU management component of DPPX in Kingston, New York.
He continued to work on DPPX in Kingston in various develop
ment and design activities until June 1987. These activities in-
cluded work on the attached processor and multiple processor
designs and the DPPX follow-on activity. Mr. Abraham received
his B.A. in applied mathematics from Brown University in 1971.
He is a member of the Association for Computing Machinery.

Brian F. Goodrich IBM Data Systems Division, Neighborhood
Road, Kingston, New York 12401. Mr. Goodrich is a senior
programmer in the Distributed Systems Programming Develop-

104 ABRAHAM AND GOODRICH IBM SYSTEMS JOURNAL, VOL 29 NO 1. 1990

ment group at IBM’s kngston laboratory. He joined the Kingston

and worked on DOS and OS BTAM support for the IBM 3270
Programming Center in 1968 as a junior associate programmer

terminal. From 1972 to 1976 he participated in the design of
VTAM. Since early 1976 he has been active in the design and
development of several components of DPPX, including data
management (for which he received a Division Award), Host
Transaction Facility, and DASD cache. Since 1981 he has been t

active in the development and coordination of DPPX follow-on
plans. Mr. Goodrich received his M.S. in mathematics from the
State University of New York at Albany in 1964.

Reprint Order No. G321-5388.

b

IBM SYSTEMS JOURNAL, VOL 29, NO 1. 1990 ABRAHAM AND GOODRICH 105

