Porting DPPX from the
IBM 8100 to the

IBM ES/9370:
Feasibility and overview

The DPPX/SP operating system was converted from
its original implementation on the IBM 8100 Informa-
tion System architecture to a new implementa-
tion—DPPX/370-—on the System/370 architecture of
the ES/9370 Information System processors. Portability
was not an original design objective for DPPX, and yet
the conversion of the operating system was straight-
forward and successful. This paper investigates the
design fundamentals and technical approaches that
led to the successful porting of DPPX/SP to the
ES/9370.

n 1978 1BM announced the 1BM 8100 Information

System and the Distributed Processing Program-
ming Executive (DPPX) operating system. These
products were designed to provide distributed proc-
essing capabilities in a centrally controlled and man-
aged network. The 8100 processors were relatively
inexpensive, occupied little space, and were capable
of being run in an operatorless environment. The
control in an operatorless environment was done by
providing such features as autoIPL after power fail-
ure, software controlled relPL, and extensive error
notification prior to hard failure. DPPX was similarly
designed to operate in a centrally controlled network.
No programmer or operator was required at the
remote sites. This capability was unique within the
1BM product line and generally throughout the in-
dustry. These hardware and software products were
improved and expanded up through the announce-
ments of the 8150 multiprocessor in 1983 and the
Distributed Processing Programming Executive Sys-
tem Product (DPPX/SP), Release 4, in 1987. DPPX/SP
had by then grown to over one million lines of code.

90 ABRAHAM AND GOODRICH

by R. Abraham

B. F. Goodrich

At this time, there were many hundreds of customers
worldwide running a total of many thousands of
DPPX systems, some with individual networks of
hundreds of DPPX nodes. The smooth operation of
their businesses was dependent on DPPX/SP and the
8100.

A typical network is shown in Figure 1. In this
example, the host system is an Mvs (Multiple Virtual
Storage) complex. There is one or more central §100
system for application development, initial service
installation, and pilot testing. The central system is
used to create a master copy that is replicated to the
remote systems. The remote network consists of
many 8100s. Corporate data can be kept in the
remote processors or may be kept in master files at
the host. Transactions are run in the 8100, and they
in turn can interact with host transactions on either
the Information Management System (1MS) or the
Customer Information Control System (CICS). Ad-
ditionally, terminal users on a remote system can
directly access applications on either the host or
other remote systems. Network management pro-
grams on both the host and the remote systems are
coordinated with one another to keep the central
network operator informed of any problems. A more
detailed overview can be found in Reference 1.

© Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

1BM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

During this same time period (1983 to 1986), 1Bm
was struggling with having too many hardware and
software systems with similar processing power and
function, In addition to the 8100 there were the
System/36, the System/38, the Series/1, the 4300
family, and even the personal computer, with a total
of ten operating systems among them! Other prod-
ucts had in fact added many of the features that had
made DPPX and the 8100 unique.

Beginning in 1986, 1BM made four significant an-
nouncements: (1) In March 1986 1BM announced
that the 8 100 hardware line would not be expanded.
1BM would investigate moving DPPX/SP to Sys-
tem/370 processors. (2) In October 1986 the 1BM
ES/9370 processors were announced. These provided
many of the same features that made the 8100
attractive for distributed processing but within the
framework of System/370 architecture. (3) In March
1987 1BM announced that the investigation of mov-
ing DPPX/SP to System/370 was successful and 1BM
intended to provide a version of DPPX that ran on
the ES/9370 processors in 1989. (4) In March 1988
IBM made a formal product announcement of
DPPX/370, the version of DPPX that executes on the
Es/9370 family of processors. DPPX/370° was made
available to customers in December 1988.

Moving DPPX/SP to the ES/9370 family offered cus-
tomers the advantages of preserving their investment
in software and training while at the same time
allowing them to use the System/370 family of proc-
essors, a family with large growth potential and
capable of supporting several different operating sys-
tems.

Portability was not an objective of the original DPPX
design. The decision to do the port was done only
after extensive examination of the alternatives and
thorough planning of how the port would be accom-
plished.

The alternatives

Before deciding that DPPX/sp must be ported to
System/370, extensive analysis was done on the fea-
sibility of providing migration tools that would allow
customers to migrate to other 1BM systems. DPPX/SP
customers have large investments in their application
programs. Some customers have many millions of
lines of application code. Any alternative to DPPX/SP
would have to provide a clear and clean migration
from DPPX/SP. A number of alternative 1BM operating
systems were investigated.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

There are many attributes of operating systems that
make each one unique. During the study several
major areas stood out that prevented us from pro-

DPPX Transaction Processing
Manager (TPM) allows a large
number of users to share
relatively limited storage
resources.

viding a general migration path from DPPX to an-
other operating system. Typical customer applica-
tions were structured in ways that depended on the
following facilities.

s Data Base Manager. DPPX Data Base Manager
(pBM) provides indexed, sequential, and random
access to data. It allows up to eight indexes and
does not require any to have unique keys. When
index tree structures become unbalanced or when
room to insert new records is no longer available,
the index or data structure is reorganized auto-
matically, while still on line.

s Transaction Processing Manager. DPPX Transac-
tion Processing Manager (TpM) allows a large num-
ber of users to share relatively limited storage
resources. It provides recovery scope manage-
ment, which allows all actions taken by a trans-
action to be viewed by all other users as a single,
atomic operation. That is, all database updates are
made visible together when the transaction com-
pletes successfully, and none is made visible if the
transaction signals an error or if the system should
fail. It provides the ability to keep a transaction’s
recovery scope open across several terminal inter-
actions. It provides the ability to create work for
another user or terminal (or printer), all under the
control of the originating user’s recovery scope.

s Display Manager. pppPx Display Manager allows
programmers to interactively describe the layout
for variable data and static descriptive text. It saves
this information in data sets known as maps.
When the application program runs, the display
manager merges maps with the variable data pro-

ABRAHAM AND GOODRICH @1

Figure 1 A typical DPPX network

92 ABRAHAM AND GOODRICH IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

| » CONTROL POINT FOR NETWORK

» DATA PROCESSING MANAGEMENT
- APPLICATION DEVELOPMENT
- CHANGE AND RELEASE
- DATA DISTRIBUTION

* NETWORK MANAGEMENT
- REPLICATION (25-500}
- SERVICE DISTRIBUTION
-~ PROBLEM DETERMINATION
- CHANGE CONTROL

« DP SKILLS NOT REQUIRED
* UNATTENDED OPERATION
* AUTOMATIC SERVICE DISTRIBUTION
* SERVICE ACTIVATION VIA 1PL
* SERVICE BACKOUT VIA 1PL
* NONDISRUPTIVE CONFIGURATION CHANGES (ON LINE)
*NLS SUPPORT
* EXTENSIVE COMMUNICATIONS
- X.25
- PEER
- 8DLC...

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

vided by the application program to write panels
on display terminals and output to printers. For
input operations it does the reverse, separating
data entered at the terminal from the static text
and delivering the data to the application in an
easy-to-use format.

» Unattended operation. There are many functions
in DPPX/SP that allow unattended operation. These
include components that interact with the DsX,’
Hcr,' and NetView™ products of the host.
DPPX/SP service is provided in a format that allows
simple distribution, installation, and, if necessary,
backout on remote systems. Service can be in-
stalled while the system is on line; it is activated
by a remotely requested, software-initiated 1pPL
(Initial Program Load). If the newly provided pro-
grams fail, a reIPL can be automatically triggered
to reload the old version of the system. Disk
shadow volumes can be provided to protect
against disk failures.

o Embedded commands. DPPX/SP commands can
be embedded in application programs. As an
example, a transaction program can contain a
DEFINE.DATASET command, then proceed to write
into the data set, and then issue a SUBMIT.BATCH
command to submit that data set as a batch job.

o The router. The router allows a user at a single
1BM 3270 terminal to be logged on concurrently
to several different applications on different proc-
essors in the SNA (Systems Network Architecture)
network and to switch among them at any time.
It is in many ways similar to the multiple-session
capabilities of the 1BM 3270 pC or the 1BM 3194
display.

These facilities and other user requirements were
matched against other operating systems, and no
suitable match could be found. The other operating
systems did not have the centrally managed, unat-
tended environment of DPPX, and their application
program interfaces were significantly different. The
effort for 1BM to alter a potential target operating
system to provide equivalent support, or for cus-
tomers to recode around the missing function, was
deemed too expensive or disruptive to the customer
to be a viable alternative to actually moving DPPX/SP
to the ES/9370.

What makes DPPX/SP portable?

There are many success stories for operating systems
that did have portability as an objective, either orig-
inally or during some intermediate reimplementa-
tion. Perhaps most notable of these is UNIX®. DPPX

ABRAHAM AND GOODRICH 93

instead was designed to be extendable and reliable
and was implemented in a manner to provide high
productivity. It is these attributes that have made it
portable in practice, though not in intent!

The extendability objective led to a highly structured
design that provides 1/0 services via layers of com-
ponents. The lowest layers deal with physical 1/0
concerns, whereas the upper layers deal with ever-
increasing generality. The layers have highly archi-
tected interfaces that force any given layer to be
implemented independently of its surrounding lay-
ers. The layers for a particular connection between
a program and the 1/0 device are chosen and dynam-
ically bound together at “open time,” using infor-
mation provided by the program and, optionally, the
user (Figure 2). A more detailed description can be
found in Reference 7.

Furthermore, the reliability objective led to a highly
structured design. Components tended to encapsu-
late data that they controlled, not externalizing their
internal structure to other components. Interfaces
between components were strictly monitored during
the development of DPPX/SP to prevent numerous
private protocols from being invented.

Last, the high productivity objective led to the exclu-
sive use of a single high-level language for imple-
mentation. The language used was PL/DS, available
externally as part of the Distributed Processing De-
velopment System.8 This, plus extensive rules for
standardized module prologs, copious comments,
and structured programming led to a standardized
programming style across a large programming or-
ganization.

DPPX benefitted from these objectives long before
the port to the ES/9370 was undertaken. Major func-
tions and complex hardware support were contin-
ually added to pppx/sp for a relatively small amount
of programming cost. Some of the functions include
the following.

s Added support for attached processor and multiple
processor architectures. The strict interfaces re-
quirements isolated components that managed the
processors and the actual 1/0 devices. The changes
required to assure that 1/0 requests were executed
on the processor side that attached the desired
device were limited to just these two areas (see
Figure 3). There were no changes required in
application programs.

94 ABRAHAM AND GOODRICH

Figure 2 1/0 layer structure

‘DATABASE . © - | DISPLAY
MANAGER . | MANAGER "
MEDIR COMMUNICATION
SERVIGES SERVIOES

1/0 ADAPTER BERVICES

e Change in address space structure. The 8140
Model C processor quadrupled the amount of
logical storage available, and the 8150 processors
changed the storage protection scheme from a
nested format to a keys-and-locks format. Both of
these changes were accommodated for relatively
minor amounts of programming because of the
strict adherence to component boundaries. Again,
there were no changes required in application
programs.

The insertion of new layers to provide additional
Sunction. The disk 1/0 paths have had two addi-
tional layers added without requiring any change
to user programs and minimal changes elsewhere
(see Figure 4). One new layer provides the DASD
cache function, increasing performance by using
otherwise unused main storage to hold an image
of most recently used disk records. The other new
layer provides the DASD shadow function, which
provides increased reliability by duplicating one
volume on a backup (shadow) volume. All writes
are done to both volumes; reads are done from
either. In the event of a disk failure, the remaining
volume is automatically used until the broken one
can be repaired. Once again, there were no changes
required in application programs in order to take
advantage of these additions.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Figure 3 Minimal changes required for multiprocessing

STANDARD 1/0 INTERFACE

DATABASE DISPLAY .-
MANAGER MANAG_ER“ o

MEDIA COMMUNIGATION
SERVICES SERVICES =

1/0 ADAPTER SERVICES

PROCESSOR
AFFINITY

NOT REQUIRED
HERE

AFFINITY
REQUIRED

s A new communications protocol. The 0S1 (open
systems interconnection) X.25 communications
protocols were inserted without the need to change
major portions of the other communication 1/0
layers.

s Tolerance toward personnel turnover and changes
of responsibility. The programmers and sometimes
even development locations for nearly every mod-
ule of ppPx have changed since DPPX was first
implemented. The single high-level language and
strict adherence to programming standards have
made those changes much less disruptive than they
would otherwise have been.

The extendability and reliability objectives had the
same effect for the port as they did for the 8100
product. Although the System/370 architecture of
the ES/9370 processors is radically different from the
8100, the components needing major changes were
limited to a relative few (Figure 5). These were:

s Supervisor. The major areas needing change in-
volved interrupt handlers and serialization, storage
mapping, and timer formats.

s I/0O Adapter Services (10As). Changes were needed
for different status reporting mechanisms from
devices, different low-level command formats and

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

functions, and use of real addresses for 1/0 rather
than logical addresses.

s Data management. The fixed block architecture
(rBA) for System/370 disks did not support the
256-byte block size that was standard for 8100
disks. As a result, the lower layers of data manage-
ment were changed to simulate the 256-byte in-
terface to upper layers when necessary.

Similar changes were required in the DPPX/SP Stand-
alone utilities. The extensive use of a Programming
Language for Distributed Systems (pL/DS) allowed
most components to be recompiled using a new
pL/DS compiler targeted for System/370. Since the
pPL/DS language allowed programmers to “drop
down” to machine instructions (within a macro) for
functions not supported by the language, some pro-
grams had to have these few lines recoded.

In the course of porting, other changes were made
to the operating system. Most of these were done to
remove previous implementation constraints. For
instance, the size of an important systemwide iden-
tifier (the environment id) was changed from 8 to 16
bits. Although not strictly required for the port, this
was done in recognition of the full range of process-
ing power available in the System/370 product line.

ABRAHAM AND GOODRICH Q5

This change, although bothersome at the time, would
be a major change to introduce if needed at a later
time. It was quite simple to do when the entire
system was being recompiled and retested anyhow.
Another such change was for the DATE function to
return four digits of the year rather than just two.
The year 2000 looms near, and it is no longer
acceptable to assume the year falls within the 1900s!

The remainder of this paper describes the feasibility
and results of porting this large operating system.

Feasibility of porting

Code classification. An early feasibility study of port-
ing DPPX examined each DPPX/SP base system com-
ponent (and licensed programs) and identified areas
with the following requirements:

e Redesign (high-level design necessary for hard-
ware, RAS [Reliability, Availability, and Servicea-
bility], etc.; inspection of component structure
required because of changed module-to-module
interfaces)

e Rewrite (only low-level design necessary; some
changes necessary for hardware, RAS, etc., but no
change to module-to-module interfaces)

» Recompile (little or no change, affected only by
items in a checklist)

Estimates were made of thousands of lines of code
(kLOC) in each category per each system component.
These were continually refined throughout the im-
plementation cycle. An early estimate for the
DPPX/370 base system (excluding licensed programs,
such as the coBoL compiler) is shown in Table 1.

Programmer productivity. An estimate of program-
mer productivity rates is shown in Table 2. These
productivity rates translate to an overall productivity
rate of 6204 shipped source instructions (sSI) per
programmer year, or 1440 changed source instruc-
tions (cs1) per programmer year. This includes de-
velopment activity for high-level design, low-level
design, code, functional verification (Fv) test, inde-
pendent component test,9 and support of system test,
based on the following assumptions:

* Redesign is the same as creating anew and could
occur at the prevailing rate for prPx/sp 8100.

s Rewrite could occur at a faster rate due to a well-
defined list of changes to be made to well-struc-
tured and well-commented code by an experi-
enced team familiar with each component. Also,
only the changed code flows would be Fv tested.

06 ABRAHAM AND GOODRICH

Figure 4 Insertion of new layers

STANDARD /0 INTERFACE

DATABASE DISPLAY
MANAGER MANAGER
MEDIA COMMUNICATION
SERVICES SERVICES

DASD

CACHE

DASD

SHADOW

170 ADAPTER SERVICES

Table 1 An early estimate for the DPPX/370

KLOC KLOC KLOC
Recompile Rewrite Redesign
796 55.2 124

Table 2 Estimate of programming productivity

Activity KLOC per
Programmer
Year
Redesign 1.3
Rewrite 1.9
Recompilation 24.0

« Recompilation could occur at a very fast rate. This
was based on the following:

* A reliable System/370 compiler would be avail-
able.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

¢ No code changes would be necessary to the
majority of DPPX modules for a successful com-
pilation.

¢ No specific Fv test would be required for these
recompiled modules.

e No additional system interface changes would
be needed other than the few originally defined.

Implementation compiler

Compiler choices. Various technical approaches had
to be considered. One of the most important to the
success of the project was the choice of the imple-
mentation compiler.

Over 90 percent of prpx/sP 8100 had been coded
using the Programming Language for Distributed
Systems (PL/Ds), which was also available to DPPX/SP
customers as Programming RrQ P88016.% The pL/DS
language provides pL/1-like coding power and is very
similar to the Programming Language/Systems
(pL/s) and Programming Language/Advanced Sys-
tems (PL/AS) languages used internally by IBM to
produce other System/370 operating systems and
control programs. It is a high-level programming
language with preprocessor-like macro support, and
provides simplified intramodular linkage for pro-

grams that will be executed under DPPX/SP. PL/DS
provides an optimization option that generates
highly optimized code, allowing a skilled pL/DS pro-
grammer to produce very efficient code.

A task force consisting of DPPX/SP designers and
developers, a PL/DS expert, and a PL/AS expert de-
fined the recompilation requirements and considered
three compiler alternatives.

The recompilation requirements were:

1. Generate optimal System/370 object code.

2. Support structured declarations of registers of
length 1, 2, or 4 bytes.

3. Map 8100 registers to System/370 registers and
generate System/370 code sequences that simu-
late the register operations of the 8100.

4. Support assignment and comparison statements
of all bits (that is, not just 1 bit and multiple of 8
bits).

5. Support a small set of 8100 built-in instructions
(B11s), based on frequency of use in existing
pPPX/SP modules considered as recompilation,
and generate System/370 code sequences that
simulate their operation. A built-in instruction is
a PL/DS compiler statement that corresponds to a

Figure 5 Changes required for conversion to ES/8370

APPLICATIONS
VISOR g {INTERACTIVE USERS,
DTMS, BATCH, ETC)

STANDARD 170 INTERFACE

DATABASE DISPLAY
MANAGER MANAGER
———] -~ ——|—~ MEDA COMMUNICATION
] \\SERVICES SERVICES

a3

SERVICES

HARDWARE
ADAPTERS

M- 170 ADAPTER — . |

MOSTLY
RECOMPILE

REWRITE/
REDESIGN

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

ABRAHAM AND GOODRICH 97

machine instruction. The operands of the BII are
PL/DS expressions.

6. Support DPPX/SP linkage conventions (that is,
CALL/END/LINK/EXIT and DPPX PROCEDURE state-
ment options) and generate System/370 code se-
quences that simulate the action of the conven-
tions of DPPX/SP.

7. Support 8100 DECLARE defaults—that is, default
declare precision of BIT(15).

The three compiler alternatives considered were:

1. Get the PL/AS compiler to support all DPPX/370
requirements.

2. Get minimum PL/AS compiler support and de-
velop macros and tools to convert DPPX/SP source
from PL/DS t0 PL/AS.

3. Get the pL/DS compiler to support all DPPX/370
requirements. This meant retargeting the PL/DS
compiler to generate System/370 Assembler (the
PL/DS compiler was in the process of being restruc-
tured). This is the alternative that was chosen.
The second version of the pL/DS compiler is called
PL/DS2.

The decision to develop and use the PL/DS2 compiler
was made on the basis of the following objectives:

« Minimize development cost for recompile effort
(that is, the number of DPPX/SP modules requiring
manual rewrite must be kept to a minimum).

«~ Minimize the risk to quality, schedules, and cost.

s~ Maximize the overall bPPX/370 development re-
source (that is, minimize cost of compiler, macros,
and conversion tools).

& Maximize the performance of DPPX/370 on the
ES/9370 hardware.

Following the completion of the task force, a com-
piler development group was formed and a group
consisting of DPPX designers and developers, DPPX
tool support personnel, and PL/DS compiler person-
nel developed a detailed set of requirements for the
PL/Ds System/370 compiler (called pL/DS2). These
requirements addressed the following areas:

s Support for key 8100 pppPX/SP conventions, in-
cluding mapping of 8100 registers on System/370
hardware and linkage conventions

s PL/DS language compatibility

s New language requirements

» New linkage convention requirements

» Support for System/370 operations

08 ABRAHAM AND GOODRICH

» Support for built-in instructions (BIis), both 8100
and System/370
~ Compiler optimization

Compiler development. Compiler development pro-
ceeded in parallel with the development of DPPX/370.

Compiler development proceeded in
parallel with the development of
DPPX/370.

Incremental versions of the PL/DS2 compiler were
made available, as follows:

1. Most language function supported

. Some BII support, some optimization

All language function and BUs supported, addi-
tional optimization

Significant optimization

Some incremental optimization

w N

vk

DPPX/370 development personnel knowledgeable
with DPPX linkage conventions developed the com-
piler function for the linkage conventions for
DPPX/370 (6000 lines of compiler code).

In addition to the incremental versions, a “throw-
away” version of a PL/DS2 compiler was used to
identify parts of DPPx impacted by the port. The
“throw-away” version of the compiler generated
unique messages when a specified condition was
encountered—for example, multiplication of
FIXED(15). The entire DPPX/sP system (over 5000
modules) was compiled with the “throw-away” PL/DS2
compiler, and the compiler-produced message files
were scanned for the condition under study.

Also, as incremental versions of the pL/DS2 compiler
became available, the entire DPPX/SP system was
“quick compiled” and scanning of compiler-gener-
ated messages occurred. This was done to assess the
overall extent of the pppXx recompilation effort and
to identify which DPPX components were signifi-
cantly affected. The first occurrence of the “quick

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

compile” showed that 2123 DPPX/SP modules, out of
5158 total, successfully compiled and assembled
using the pL/Ds2 compiler (using only 32 macros
modified for prpx/370). The third (and last) occur-
rence of the “quick compile” showed that 3632
DPPX,/SP modules successfully compiled and assem-
bled (using 100 macros and 75 control blocks mod-
ified for pPPX/370). This activity also allowed assess-
ment of incremental PL/DS2 compiler improvements.
Note that all “quick compiles” and the use of a
throw-away compiler were auxiliary to the real proc-
ess of porting code to DPPX/370, since they were
performed with minimal development programmer
involvement and only the PL/DS2 compiler and Sys-
tem 370 Assembler message files were saved (not the
listing and assembler output files).

Compiler optimization. When the first version of the
compiler became available, there were over 600
DPPX/SP modules, all of which had to execute as re-
entrant with no automatic storage, that failed to
compile. Re-entrant modules provide the ability to
have a single copy of a module be invoked concur-
rently by two or more tasks. Re-entrant modules
with no automatic storage are usually invoked very
frequently and can not afford the performance over-
head of allocating and deallocating automatic storage
each time the module is invoked, or they are a part
of the supervisor core that does not have storage
management services available to it. Re-entrant
modules with no automatic storage must have all
module variables assigned to hardware registers by
the compiler. (A register can have more than one
variable assigned, depending upon where in the mod-
ule each variable is used.)

The compiler was unable to assign all of a module’s
variables to registers because the level of compiler
optimization available used too many registers for
intermediate calculations. Also, there is one less
register available for compiler use on System/370, as
compared to 8100, because one of the 16 registers
has to be used as a base register.

If a frequently invoked module cannot be compiled
as re-entrant with no automatic storage, then one
alternative is to change the module to be nonre-
entrant and serialize the module’s invocation via
system disable (the module runs to completion un-
interrupted). But this would have serialized the exe-
cution of key portions of the DPPX/370 operating
system and would not be practical in many cases
(some modules invoke system services which have
to run enabled).

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

An analysis of the compiler-generated object code
resulted in a set of additional compiler optimization
requirements, which were scheduled for implemen-
tation in subsequent versions of the compiler, in
time to have almost all of these 600 modules compile
successfully.

DPPX/370 designers and developers, DPPX/370 tool
support personnel, and PL/DS2 compiler personnel
met periodically (usually monthly) to discuss addi-
tional requirements, problems, compiler usage, etc.
Plans for incremental improvements to the pL/DS2
compiler were jointly arrived at and periodically

The performance of the object code
generated by the PL/DS2 compiler
was closely monitored.

reviewed. Compiler problems found by DPPX/370
development were formally reported and tracked via
the same problem-reporting tool used for tracking
DPPX problems.

The compiler group was provided a set of 40
DPPX/370 modules to use for testing of the compiler.
Also provided was a particularly large DPPX/370 mod-
ule that was re-entrant and required zero automatic
storage to compile successfully.

The performance of the object code generated by the
PL/Ds2 compiler was closely monitored. One person
kept a single program, an efficiency test case written
in PL/DS2, containing numerous situations where the
System/370 object code produced by the pL/DS2
compiler needed to be improved to shorten execu-
tion time. Whenever an incremental version of the
PL/DS2 compiler became available, the program was
compiled and the object code analyzed. As devel-
opers discovered other instances of object code that
could be improved, the efficiency test case was ex-
panded. Requirements were prioritized and added
to the pL/DS2 compiler implementation plan to im-
prove the performance of situations in this program.

ABRAHAM AND GOODRICH 99

Throughout the development of DPPX/370, PL/DS2
compiler upgrades were received as significant com-
piler fixes became available. The upgraded version
of the pL/Ds2 compiler would be established as the
version to be used for all subsequent development
of DPPX/370.

Also, many instances of compromise occurred be-
tween PL/DS2 compiler development and DPPX/370
development. If a problem prevented a DPPX/370
module from compiling or executing correctly, and
a PL/DS2 compiler fix would be difficult, then an
analysis would determine whether the PL/DS2 com-
piler or DPPX/370 should be changed. The impact to
DPPX/370 development of how many modules and
lines of code change are required (sometimes requir-
ing extensive scanning of DPPX/370 modules)—plus
testing, etc.—would be compared with the impact
on PL/Ds2 compiler externals or scheduled availabil-
ity of optimization improvements. A joint decision
would be arrived at to change either the pL/Ds2
compiler or DPPX/370 modules, or sometimes both.

When the first version of the PL/DS2 compiler became
available, it was realized that significant optimization
improvements would be needed to achieve reasona-
ble performance. This meant that the DPPX/370 sys-
tem would have to be recompiled when compiler
optimization improvements became available.

Two major system-wide recompiles of DPPX/370 oc-
curred during its development. The end result was
25 percent reduction in both DPPX/370 instruction
path and module size, and a good quality compiler
used for all DPPX/370 modules.

Checklist

A checklist was developed to provide a list of items
a developer must consider when porting an existing
DPPX/SP component or subcomponent to DPPX/370,
for both recompilation and partial rewrite. This
checklist was updated periodically as new items ap-
peared. It listed items for each of the following areas:

* Operating System Architecture changes (for ex-
ample, the size of an environment ID expanded
from 1 byte to 2 bytes, usage of 24-bit addressing
converted to 32-bit addressing, page size changed
from 2Kb to 4Kb, maximum logical record length
increased from 4Kb to 16Kb, etc.)

DPPX command changes (for example, deleted
commands for specific 8100 hardware and devices
not supported by System/370, etc.)

100 ABRAHAM AND GOODRICH

DPPX macro changes (for example, deleted or
changed macros due to 8100 System/370 hard-
ware differences, etc.)

System control block changes (for example,
changes to supervisor services control blocks, etc.)
Error processing (for example, recovery from proc-
ess checks)

8100 built-in instructions (Bils) and assembiy code
(for example, only eight 8100 Bis [out of more
than 150] are supported by pL/Ds2, changed full-
word division routines, etc.)

PL/DS2 source language differences (for example,
higher-precision arithmetic, implicit truncation,
compiler-created temporaries for CALL parame-
ters, different result for some signed-unsigned
comparisons, etc.)

PL/Ds2 linkage convention differences (for exam-
ple, base register [called CODEREG] per each 4Kb
of module code storage, changed format of module
save area, labels on secondary entry points, etc.)

A list of DPPX modules impacted was developed for
the majority of checklist items via automated scan-
ning of DPPX module source code, scanning DPPX
module compilation listings produced by both the
pL/DS compiler and early versions of the PL/DS2
compiler.

Choice of COBOL compiler

The DpPx COBOL compiler supports a dialect of
COBOL that is unique to DPPX. There are two reasons
for this. First, the compiler was written to compile
the coBOL language as specified by the then-proposed
1978 standard. The standard was later adopted, but
not before some very subtle but important changes
were made to the proposal, mainly dealing with such
scope-ending phrases as END-READ.

In addition, the compiler supports extensions to the
language that are unique to DPPX. These extensions
were added to integrate the Transaction Processing
Manager and Data Base Manager control statements
closer into the application programs.

Two approaches were examined to handle these
coBoL problems. The first was to recode the DPPX
coBoL compiler to produce System/370 object code
and then to compile it using pL/Ds2 like the rest of
the system. The other alternative was to convert the
existing System/370 COBOL compiler, vS COBOL 11, to
run on DPPX/370. The latter approach was chosen so
as to provide closer affinity to the cOBOL compiler
available to our customers on their MvS host. This

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

approach also provides a cross-compilation capabil-
ity, allowing DPPX/370 programs to be compiled on
System/370 vM and MVS hosts.

The coBoL 11 compiler and run-time library were
modified to request system services using the DPPX
macros rather than the MvS macros in the existing
product. The language incompatibility problems

DPPX/370 is designed to run on
today’s ES/9370 class machines,
including the IBM ES/9370
Model 90 processor.

were solved by providing a preprocessor that can
convert the DPpX incompatibilities and extensions
into a form that can be successfully compiied and
run by the modified vs COBOL 11 compiler and run-
time library.

System performance

The main impact on the performance of DPPX/370,
versus 8100 DPPX/sSP, comes from the different hard-
ware instruction set. Specifically, if a DPPX/SP func-
tion took » 8100 instructions, then how many Sys-
tem/370 instructions would be required for the same
function? An early study examined five modules that
existed in both a pppx 8100 licensed program and a
System/370 licensed program. The programs were
written in a common subset of the PL/DS and PL/S
languages. All five were compiled with pL/Ds (which
generated 8100 object code) and PL/S (which gener-
ated System/370 object code) and a comparison
showed:

~ System/370 object code size, in bytes, was approx-
imately 25 percent larger than 8100 (due to pre-
dominance of 4-byte instructions on System/370
compared with 2-byte instructions on 8100).

» System/370 object code took approximately 18
percent fewer System/370 instructions than the

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

corresponding 8100 object code (due to the more
powerful System/370 instruction set).

These numbers assumed a 10 percent penalty on
System/370 for byte and halfword register manipu-
lation. Also, it was assumed that the PL/DS2 compiler
would be as efficient as that of pL/s.

A separate comparison of 8100 and System/370
ES/9370 hardware instruction timings concluded that
the midrange ES/9370 models were about as powerful
as the high-end 8150B processor, in terms of instruc-
tion processing capability. Thus, no drastic redesign
of DPPX was necessary to achieve an increased system
throughput with DPPX/370 executing on the most
powerful models of the ES/9370. The supervisor func-
tions GETMAIN/FREEMAIN and LOAD/DELETE are the
only exceptions to this.

DPPX/370 1s designed to run on today’s ES/9370 class
machines, including the largest model, the 1BM ES/9370
Model 90 processor. Performance analysis of existing
DPPX/SP systems showed that in some configura-
tions a large amount of system time was spent in
GETMAIN/FREEMAIN processing. The Model 90 pro-
vides significantly more throughput than the 1BM
8150B. It was feared that “large system effects” might
start appearing when running on this model. Since
storage management needed redesigning anyhow to
account for the differences in the logical storage
mapping mechanism between the 1BM 8100 and the
IBM System/370 architectures, performance en-
hancements were included. DppPx/sP had a simple
linked list structure for maintaining free storage
blocks in ascending address order. The DPPX/370
implementation uses a similar structure but main-
tains multiple pointers into the list to locate the first
entry greater than or equal to specific sizes. These
sizes were determined by analysis of DPPX/SP trace
data.

It was also discovered that DPPX/SP systems running
large Cross System Product'® applications tended to
spend a large amount of time in the supervisor
LOAD/DELETE functions, even if the modules were
already resident or were not actually deleted.
Changes were made to these functions to execute
much faster paths, both in the event that a LOADed
module was already resident and when a DELETEd
module would not be deleted (either because of other
users or because it had been preloaded during 1pL).
Essentially, the appropriate control block updates
are done while executing disabled rather than going
to the expense of obtaining software locks to control
concurrency.

aBRAHAM anD GoooricH 101

Table 3 Total lines of code to develop the base DPPX/370

system
Item KLOC KLOC KLOC
Recompilation Rewrite Redesign
Original estimate 796 55 124
Actual 782 80 299

Table 4 Planned and actual productivity rates

item csl SS|
KLOC per KLOC per
Programmer Programmer
Year Year
Original estimate 1.440 6.204
Actual 2.362 8.468
Migration

Functions to aid migration were added to the
DPPx/370 development effort. This was done to en-
sure that a customer moving from pPPx/sP 8100 to
DPPX/370 would be able to migrate the system and
not have to undertake a costly conversion. Migration
of customer applications occurs as follows: The
DPPX/SP COBOL application programs are preproc-
essed and recompiled. The Cross System Product
applications on DPPX/370 are object-code-compatible
with DPPX/sP 8100 (no regeneration is required). The
command lists (CLISTs) are copied unchanged to
DPPX/370. The Display Manager maps are copied to
DPPX/370 (no regeneration is required). The user data
and most profiles'' are copied to DPPX/370.

However, it was necessary to provide assistance to
enable easy movement of user applications and data.

Three methods of transmitting customer parts (in-
cluding customized parts) from pppx/sp 8100 to
DPPX/370 are provided for different customer envi-
ronments:

1. Via tape, using stand-alone pASD dump/restore
(SADDRY), which allows dumping of DASD volumes
on the 8100 to tape and a subsequent restoration
from tape to DASD on ES/9370

2. Via host transmission, using Distributed Systems
Executive (Dsx) or NetView Distribution Man-
ager (NetView DM), which allows data to be trans-
mitted from prpx/sp 8100 to DPPX/370 via a Sys-
tem/370 host

102 ABRAHAM AND GOODRICH

3. Via peer-to-peer transmission, using Peer Data
Transfer (pDT), new for DPPX/370, which allows
data transfer between a DPPX/SP system and
DPPX/370 system or between two DPPX/370 peer
systems

Refer to “Porting DPPX from the 1BM 8100 to the 1BM
ES/9370; Migration,” a companion articllg: in this issue,
for additional migration information.

Results

All of DPPX/370 (including the first- and second-level
interrupt handlers) is written in the pL/DS language.
Components that had been changed because of items
in the checklist did not experience the usual high
rate of errors per KLOC associated with changed code.
This was attributed to the availability of the checklist
with its detailed descriptions of changes required.
The result is a System/370 operating system that was
developed by reusing more than 800 KLOC of code
originally implemented for the 8100.

Total effort expended

Table 3 illustrates total thousand lines of code (KLOC)
required to develop the base DPPX/370 system.

The increase in the K LOC for redesign is due to several
new functions added to pDrpx/370. Table 4 shows the
planned and actual productivity rates, where ¢s7 is
changed source instructions and ss7is shipped source
instructions.

The ssI includes the recompiled lines of code. The
actual rates include development activity for high-
level design, low-level design, code and Fv test. In
both cases the productivity rate exceeded the original
estimate. Some recompilation components were
ported at a rate in excess of 30 KLOC per programmer
year (versus the original estimate of 24 KLOC per
programmer year). Some new components were de-
veloped for DPPX/370 at a rate as high as 8 KLOC per
programmer year (versus the original estimate of 1.9
KLOC per programmer year).

Performance

The original comparison of 8100 and Es/9370 hard-
ware instruction timings, which predicted that the
midrange ES/9370 processors were about as powerful
as the high-end 8150B processor, turned out to be
correct. Figure 6 shows this, comparing internal
throughput rates ratio (ITRR) measured for DPPX/SP

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Figure 6 DPPX/SP 8100—DPPX/370 ES/9370 relative processor performance

ES/9370 E£S8/9370
60 30

ES/9370
50

ES/9370
90

ES/9370
80

on the 8150B processor versus those measured for
DPPX/370 on the various ES/9370 models. ITRR is the
number of completed jobs or transactions per proc-
essor busy second.

Compatibility

With few exceptions, the functions provided by
DPPX/370 are essentially the same as DPPX/SP 8100.
These functions have the same user externals on
DPPX/370 as on DPPX/SP 8100, so no retraining of end
users or operators is necessary. Also, DPPX/SP and
DPPX/370 have a similar appearance and can coexist
in the same network.

New functions

A number of new functions were incorporated into
DPPX/370:

¢ 1BM token-ring network support, to take advantage
of the Es/9370 token-ring adapter

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

System Configuration Manager to simplify hard-
ware configuration

Maintenance via tape, not diskette
Enhancements to SADDR to improve performance
Peer Data Transfer (pDT), to aid migrating user
data, plus customer maintenance and develop-
ment within a mixed network. PDT is a batch
transfer facility to send data sets, catalogs, and
CLISTs between two DPPX systems using commu-
nications facilities.

Enhancements to IPL to improve usability

Use of display panels by stand-alone 1/0 functions
to improve usability

Performance functions such as multivolume user
catalogs (also known as data striping)

New printer office support for printing Document
Content Architecture (DCA) documents on Intel-
ligent Printer Data Stream (IPDS) printers

New data management functions—for example,
on-line compression of catalogs and logical disk
volume

agraraM AN GoooricH 103

» Migrator tool to assist the customer moving ap-
plication programs and data from the DPPX/sp
system to the DPPX/370 system

A detailed description of these and other functions
incorporated into DPPX/370 can be found in Refer-
ence 2. The lines of code necessary and the resource
needed to implement these additional functions are
shown in Tables 3 and 4.

Conclusion

The port of bppX demonstrates the unplanned value
of structured design beyond the expected benefits of
extendability, reliability, and high productivitv.

The port of the DPPX/SP operating system from the
8100 to the E5/9370 processors was made possible due
to a number of factors. Originally DPPX/SP had been
designed 1o be extendable and reliable, with highly
structured design and data encapsulation, and had
been coded in a single high-level language. The PL/DS
implementation compiler was retargeted to Sys-
tem/370. There was close cooperation between the
development of DPPX/370 and the PL/DS2 compiler,
both of which were developed in parallel. An expe-
rienced synergistic team with detailed knowledge of
pppx performed the development and test of
ppPPx/370. The functions used to migrate user appli-
cations and data were incorporated into DPPX/370.

As a result, DPPX/370 provides new function as well
as DPPX/SP functions with the same user externals,
and can coexist with DPPX/SP.

Acknowledgment

It is not possible to list all the people who contributed
to the original design of DPPX, to the analysis of
alternatives to the 8100, and to the actual porting.
Therefore, we wish to acknowledge the work of all
the skilled professionals who have contributed to
DPPX since its inception.

NetView is a trademark of International Business Machines Cor-
poration.

UNIX is a registered trademark of AT&T.

Cited references and notes

I. DPPX/SP General Information, GC23-0600, IBM Corpora-
tion; available through IBM branch offices.

2. DPPX/370 General Information, GC23-0640, IBM Corpora-
tion; available through IBM branch offices.

104 AsraHAM AND GOODRICH

3. DSX is the Distributed Systems Executive product. It manages
transmission of data sets between a host system (MVS or VSE)
and remote nodes of the network. When used with DPPX, it
can also execute command lists (CLISTs) on those remote
systems. This product has been superceded by NetView Dis-
tribution Manager (NetView DM).

4. HCEF is the Host Command Facility product. It allows a user
at a host-attached terminal (which itself can be anywhere in
the network) to log on to a remote system and appear to that
system as a local user.

5. NetView provides centralized error management capability. It
provides displays useful to a central network operator to
highlight trouble spots throughout the network. It also pro-
vides programmed operator capability and allows access to
HCF and other applications from NetView DM terminals.

6. D.E. Bodenstab, T. F. Houghton, K. A. Kelleman, G. Ronkin,
and E. P. Schan, “UNIX Operating System Porting Experi-
ences,” AT&T Bell Lab Technical Journal 63, Part 2, No. 8,
1769-1790 (October 1984).

7. H. R. Albrecht and L. C. Thomason, “I/O Facilities of the
Distributed Processing Programming Executive (DPPX),”
IBM Systems Journal 18, No. 4, 526-546 (1979).

8. Distributed Processing Development System (DPDS) General
Information, GC27-0505, IBM Corporation; available through
IBM branch offices.

9. Independent component test is described in the companion
article by G. E. Boehm, A. M. Palmiotti, and D. P. Zingaretti,
“Porting DPPX from the IBM 8100 to the IBM ES/9370:
Installation and Testing,” IBM Systems Journal 29, No. 1,
124-140 (1990, this issue).

10. Cross System Product is IBM’s primary fourth-generation
language application generator for data processing profes-
sionals. Cross System Product/Application Development
(CSP/AD) is a licensed program that guides users in writing
application programs by requesting responses to prompts at
display terminals. Cross System Product/Application Execu-
tion (CSP/AE) is a licensed program that executes application
programs developed with CSP/AD.

11. A profile is data that describes the significant characteristics
of one or more computer resources. Examples of these re-
sources are data sets, programs, catalogs, commands, and
users.

12. C. Goodrich and M. B. Loughlin, “Porting DPPX from the
IBM 8100 to the IBM ES/9370: Migration,” IBM Systems
Journal 29, No. 1, 106-123 (1990, this issue).

Robert Abraham [BM Industrial Sector Division, Atlanta, Geor-
gia. Mr. Abraham is a senior programmer in the Engineering
Management System group at IBM’s Atlanta laboratory. He joined
IBM in 1971 at the Advanced Systems Development Division
(ASDD) Mohansic laboratory. In 1976 he started work on the
CPU management component of DPPX in Kingston, New York.
He continued to work on DPPX in Kingston in various develop-
ment and design activities until June 1987. These activities in-
cluded work on the attached processor and multiple processor
designs and the DPPX follow-on activity. Mr. Abraham received
his B.A. in applied mathematics from Brown University in 1971.
He is a member of the Association for Computing Machinery.

Brian F. Goodrich IBM Data Systems Division, Neighborhood
Road, Kingston, New York 12401. Mr. Goodrich is a senior
programmer in the Distributed Systems Programming Develop-

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

ment group at IBM’s Kingston laboratory. He joined the Kingston
Programming Center in 1968 as a junior associate programmer
and worked on DOS and OS BTAM support for the IBM 3270
terminal. From 1972 to 1976 he participated in the design of
VTAM. Since early 1976 he has been active in the design and
development of several components of DPPX, including data
management (for which he received a Division Award), Host
Transaction Facility, and DASD cache. Since 1981 he has been
active in the development and coordination of DPPX follow-on
plans. Mr. Goodrich received his M.S. in mathematics from the
State University of New York at Albany in 1964.

Reprint Order No. G321-5388.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

araHam anp coooricH 105

