Implementing tool support
for box structures

This paper describes a feasibility study to implement
partial tool support for the graphical component of the
box structure methodology (BSM). By following the de-
fined strategy and process, an existing computer-aided
software engineering (CASE) environment has been ex-
tended with a customizer to provide support for the
box definition graphics (BDG) component of BSM. The
critical functions required from a CASE environment
are also described to provide the reader with a back-
ground for selecting one of the various implementa-
tions available today.

he creation of the box structure methodology

(BsSM) provides systems developers with a new
powerful, yet straightforward, software engineering
methodology. :

After the inception of BSM, a course of study was
developed to educate systems developers in the cre-
ation of requirements specifications® by employing
BSM to solve problems involving the design of sys-
tems. The expectation was that as more developers
became trained in its use, BSM could evolve into one
of the mainstream methodologies used to describe
and define systems.

Since BsM is relatively new, it has had to compete
against other, more established methodologies such
as structured analysis and structured design. Sophis-
ticated support environments were developed to pro-
vide functions for creating and analyzing the deliv-
erables of these methodologies. When BsM was intro-
duced, it lacked a support environment that would
provide functions to enter and analyze BsM data.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

by B. S. Tagg

Without such functions, the strategy for incorporat-
ing BsM in the internal development process was
weakened.

This paper describes the study developed to create a
support environment for BsM. The first section de-
scribes a strategy developed to implement computer-
aided tool support by using a computer-aided soft-
ware engineering (CASE) tool customizer. The con-
ceptual view of a CASE environment is introduced
along with the view of an extended environment
representing the new customized functions created.
With a strategy identified, the next section defines a
process that results in the successful integration of
functions supporting the entry and analysis of box
definition graphics (BDG). The process begins with
learning the methodology from a user’s point of
view, and then describes the methodology with an
entity-relationship diagram so that its components
can be determined. A target CASE environment is
chosen, learned, and implemented. Successful results
are achieved by following the strategy and procedures
explained in the section on BSM tool results. Finally,
the validation process is presented.

The major product of this study was the successful
implementation of limited BsM support. The support

© Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

A6 79

Figure 1 Logical structure of existing CASE environment

METHODOLOGY EDITORS

EDITOR 1 EDITOR 2 EDITOR 3 EDITOR N

o0 0

DICTIONARY

ENTITY AND RELATIONSHIP

- DEFINITIONS
- INSTANCES

Figure 2 Extended CASE environment

METHODOLOGY EDITORS

EDITOR 1 EDITOR 2 EDITOR 3 EDITOR N ‘BSM
EDITOR

DICTIONARY

ENTITY AND RELATIONSHIP

- DEFINITIONS
- INSTANCES

BSM ENTITIES AND RELATIONSHIPS

80 taca

is significant, since it represents a pioneering effort
in providing BSM users with an environment that
allows the creation of BDG in an existing, integrated
CASE environment.

BSM tool support strategy

Numerous papers have been written containing the
evaluation of available CASE technology.’™ The ma-
jority of these papers deal with the methodologies
supported by current CASE environments and how
these methodologies can be applied to design soft-
ware systems. Few, if any, of these papers deal with
the aspect of customizing these environments to
support new software engineering methodologies.

The focus on CASE tool customization has emerged
recently with the creation and increased popularity
of BsM. Proponents of this software engineering
methodology were limited in its use because there
was no tool support. To address this problem, a
strategy was defined that would lead to the creation
of the required computer-aided tool support.

In developing this tool support, the tool builder is
immediately faced with a choice between creating a
stand-alone tool or extending an existing CASE envi-
ronment. Since a critical requirement in providing
tool support for BsM was to have BsM integrated with
other, more mature software engineering methodol-
ogies, the strategy defined here is based on extending
an existing environment that already supported the
more common methodologies and diagramming
techniques such as data flow diagrams, structure
charts, and entity-relationship diagrams. Several ex-
isting CASE environments meet this criteria and pro-
vide customization support. Customizer® from In-
dex Technology Corporation and SYLVA™ Foundry
from Cadware, Inc. are two such environments that
were both used to validate the strategy and process
defined, although this author describes only his own
use of the Index Technology Corporation products.

Extending an existing CASE environment. The strat-
egy defined here revolves around creating extensions
to an existing environment. To successfully integrate
a new methodology, the tool features that must be
addressed are menus, entity support, relationship
support, screens and data capturing, and methodol-
ogy rules support. Each of these features is addressed
in this paper.

The logical structure of an existing environment is
depicted in Figure 1. In this environment, users

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Figure 3 Process for implementing box definition graphs

LEARN
THE METHODOLOGY

IDENTIFY
THE COMPONENTS

CHOOSE

THE CASE ENVIRONMENT

LEARN
THE CASE ENVRONMENT |

access menus to create deliverables (e.g., graphs) of
the various methodologies supported. The user also
follows the built-in definitions that determine how
the methodology is to be used, how its components
(or entities) are stored in the environments diction-
ary, and how the methodology constructs are related.

Figure 2 depicts an extended CASE environment. New
methodology support has been added and the envi-
ronments dictionary has been extended to allow for
creating and storing instances of entities defined for
the new methodology. Additionally, new relation-
ships have been defined which allow a user to create
and store links between previously existing method-
ologies and the newly defined methodology.

The paper next addresses the process required to
effectively implement the extended environment
strategy.

BSM tool support procedures

Figure 3 illustrates a process consisting of five basic
procedures that have been followed to .successfully

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

implement BDG in an existing CASE environment.
These are now discussed.

Learn the methodology. There are several major
areas that should be of principal consideration in
supporting a new methodology within an existing
environment.

The goal of learning the methodology to be imple-
mented requires one to be able to identify the entities
and relationships which make up the methodology.
By identifying the entities and relationships, the tool
builder will have, in effect, developed a scheme to
be used in actually implementing the methodology.
The entity-relationship diagram for BsM shown in
Figure 4 provides an example of how this helps in
learning and understanding BDG.

Most of the steps and procedures described are in-
dependent of which environment has been chosen
for implementation. Past experience has shown that
learning the methodology may take as much as 80
percent of the time required to implement tool sup-
port for the methodology. The remaining time is

Tacc 81

Figure 4 Entity-relationship diagram representing BSM

CONTAINS

SB sl , 1s0

88 = BLACK BOX

BBD = BLACK BOX DIAGRAM
CBD = CLEAR BOX DIAGRAM
DEC = DECISION

RES = RESPONSE

1 88 = STATE 80X

SBD = STATE BOX DIAGRAM
81 = STATE-IN

SO = STATE-OUT

STl = STIMULUS

B 18l] 80

82 rtaca IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

involved with learning about a particular environ-
ment and its customization functions.

An important step in developing tool support is to
completely understand how that methodology is
used. This involves reading available literature on a
methodology such as box structures and actually
using it to address a sample problem."” The tool
builder can then determine the effect of automating
the methodology using the tool support. Most of the
reference materials written on methodologies include
examples that show the reader how to apply the
methodology. It is important for the tool builder to
follow these examples, since they will provide insight
into ways the methodology has been successfully
applied and where tool support is most required.

While using the new methodology, tool builders will
develop ideas on how they think it should be imple-
mented in conjunction with understanding how the
chosen CASE environment supports its standard set
of methodologies. In this case, BsM diagramming
techniques need to be studied to determine how they
might be used in conjunction with data flow dia-
grams, entity-relationship diagrams, and data mod-
eling.

Identify the components. Once it is learned how BSM
is used to describe a system, the tool builder must
now develop an underlying understanding of what
the components of BsM are and how they relate to
one another. The most efficient method of doing this
is to create an entity-relationship diagram for BSM
(see Figure 4). The following describes the prelimi-
nary work to define the entity-relationship diagram.

There are two basic types of entities in a software
engineering methodology. The first type, a simple
entity, cannot be decomposed and is completely
atomic. The second type, complex entities, are those
which can be thought of as containing or being
composed of one or more simple entities.

A study of BsM produced this list of simple entities:

¢ Black box
» State box
¢ Decision
e Stimulus
* Response
¢ State-in
¢ State-out

Further study determined that BsM consists of the
following complex entities:

1BM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Table 1 Contains relationships

Black box
Stimulus
Response

Black box
Stimulus
Response
State box
State-in
State-out
Black box
Stimulus
Response
State box
State-in
State-out
Decision

Black box diagram Contains

State box diagram Contains

Clear box diagram Contains

Table2 Explodes-to relationships

Explodes-to State box diagram
Explodes-to Clear box diagram
Explodes-to Black box diagram

Black box diagram
State box diagram
Clear box diagram

e Black box diagram
e State box diagram
¢ Clear box diagram

The next step is to determine the relationships be-
tween these entities allowed by the definition of BSM.

Two important types of relationships are defined:
The contains relationship indicates that a complex
entity can contain (or be composed of) another
entity. The explodes-to relationship indicates that an
entity (of either type) may be described in further
detail by another entity (usually a complex entity).
Given these relationships, we determined that BSM is
made up of the contains relationships shown in
Table 1. BSM also allows the explodes-to relationships
shown in Table 2.

These core relationships define BSM and are the
minimum relationships which must be supported to
adequately aid in the creation of BDG diagrams.
Other relationships may be created which relate en-
tities of BSM to entities of other methodologies.

Choose a target CASE environment. The topic of
choosing a CASE tool environment has been covered
in many papers that also describe how to match an

Tace 83

implementation with the user’s methodology needs.
Since this paper deals with CASE environment cus-
tomization, the focus here is on requirements that
must be fulfilled to be able to quickly add new
methodologies to an extendable environment. The
following paragraphs discuss a required list of func-
tions that should be considered in addition to the
basic common functions. Each required function
includes a brief description of the aspects of the
environment that it affects.

This list of functions is not meant to be conclusive,
but should give the reader an idea of the critical
aspects of an environment that should be capable of
being customized. The list can then be used to com-
pare different CASE environments.

Standard set of methodologies. Environments should
contain a standard set of methodologies that include
support for data flow, control flow, and modeling.
This allows tool builders to spend their time enhanc-
ing these standard methodologies or creating new
methodologies not in the standard set. The environ-
ment should allow the user to create relationships
between existing methodology support and new
methodology support created as a result of extending
the environment. These relationships can then be
followed to trace the transformation of information
described.

Creation of new entities and shapes. To create tool
support for new methodologies, the environment
must allow tool builders to define new entities to the
dictionary that the environment maintains. The new
entities that are created should have the same sup-
port that any existing entities (included in the stand-
ard set of methodologies) might have.

The environment must support the creation of user-
defined shapes that will represent the physical attri-
butes of the entities that they have defined. Primitive
shapes should be provided to the tool builder from
which to make simple modifications and create cus-
tomized shapes and symbols.

Screen and menu customization. Screen customiza-
tion that captures information is a necessary func-
tion. Tool builders should be able to use functions
of the environment to alter the content and format
of any screen used by the tool. Additionally, the
environment should allow the creation of any new
screens required by the introduction of new meth-
odologies.

84 Tace

Menu customization must be allowed. The environ-
ment should also allow the user to create new menus,
menu hierarchies, and chains of menus and screens.
Tool builders should be given functions that allow

Existing users must be given
a simple migration path.

them to view the existing menu hierarchies and
change them to fit their requirements for new meth-
odologies and extensions to existing methodologies.

Analysis extendability. A critical function of any
environment is the ability to analyze the dictionary
elements created as a result of using the environ-
ment. This type of analysis involves using the meth-
odology rules to check for completeness, accuracy,
and consistency. Analysis can be categorized into
two types, static analysis and dynamic analysis.

Analysis consisting of rules that check the usage of
the methodology, that is performed after the meth-
odology has been used, and occurs after the tools
dictionary has been populated with design informa-
tion is called static analysis. These rules are invoked
by users whenever they decide that they have a
sufficient level of information to begin verification.
Invocation of these rules takes place outside of the
diagram editing environment, usually by the creation
of a report. A user-definable query capability should
be provided by the environment to allow users to
generate reports that meet their unique needs.

Static analysis and dynamic analysis can have the
same rules. The distinction between the two types of
analysis is in the way that the rules are invoked.
With dynamic analysis, the environment parameters
determine when to invoke the rules that evaluate the
correctness of what has been entered. This would
allow the identification of an error as it was made,
such as in the diagram editing environment. For an
environment to support the customization of dy-
namic analysis rules, functions must be provided to
the tool builders, thereby allowing them to create
and change rules for new or existing diagrams and
components of diagrams.

BM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Migration of customized product. Existing users of
the CASE environment must be given a simple migra-
tion path to utilize the new features and functions
of any new customized versions. The environment
should not require the user or tool builder to write
additional functions to perform any migrations.

As tool customizers become increasingly popular,
more and more unique versions of customized en-
vironments will be developed. Since some of these
environments will have features and support that
others do not have, the requirement to merge the
various versions becomes critical. Additionally, in-
tegration with existing tools is a necessary function.
The cASE environment should employ an architec-
ture that fosters enabling the environment to allow
users to invoke their own functions and tools. A
prime example of this would be the support for
allowing a pc-to-host communication product to
remain active while the CASE environment is run-
ning. This provides the user with the capability of
switching easily to the host session and performing
functions on the host.

Printing support. Support should be provided for
creating embedded files which can become part of
large design documents. New graphs should have the
same workstation printing support as graphs from
the standard set of methodologies found in the en-
vironment. Diagrams and other dictionary elements
should be capable of being exported from the envi-
ronment in a format which can be converted and
printed on a host-connected page printer. The dic-
tionary should allow a fast easy way of exporting
dictionary elements to support tool builders in writ-
ing their own functions to export the elements, trans-
fer them to the host, and transform them to the
required printer format.

Programming interface. No environment can antic-
ipate all the possible ways in which users will want
to access and use their design information. To allow
for customized access to the design information in
the dictionary, a programming interface is required.
This programming interface would define functions
and methods for retrieving stored information, such
as instances of new and existing entities.

Learn the target CASE environment. Once an envi-
ronment has been chosen, the tool builder must
become familiar with the end-user functions pro-
vided. This involves learning the environments dic-
tionary capabilities, standard methodology support,
user interface functions, and menu structure. The
following describes these areas in further detail.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

A most important aspect of an environment is the
support provided to capture and maintain informa-
tion in a dictionary. Characteristics of a dictionary
include entity definition where the components of a
methodology must be stored as distinct entities that
have attributes and relationships also maintained in
the dictionary, and entity reporting where the dic-
tionary should allow the retrieval of the attributes
and relationship information.

The tool builder must understand the level of sup-
port provided for the creation and maintenance of
entities. To do this, the tool builder must use the
functions of the environment that support entity
definition.

Most environments have a standard set of method-
ologies that cover some subset of the software devel-
opment life cycle. For tool builders to implement a
new methodology in the environment, they must
first understand the existing methodologies and how
they are meant to interact and relate to each other.
This includes understanding which existing meth-
odologies should connect and tie into the new meth-
odology. Additionally, the tool builder should note
any similarities between existing and new method-
ology constructs, so that aspects of these constructs
can be reused in the new methodology.

The user interface defines the look-and-feel of the
user’s interactions with the environment. Tool build-
ers should become familiar with the following user
interface related functions:

e Zooming allows the user to physically view a graph
at different levels of detail.

* Scaling allows the user to change the size of the
shapes that represent a methodology construct.

e Line drawing represents connections, inputs, or
outputs and how those lines are redrawn whenever
the methodology construct to which they are con-
nected is moved or deleted.

e Text labeling allows the user to enter and view
text associated with methodology constructs (for
example, the user-defined name of a shape).

¢ Scoping allows the user to select methodology
constructs to make them the focus of an operation,
such as moving or deleting.

¢ Delete verification allows the user to be prompted
for verification before a delete is actually per-
formed.

In general, any new methodologies will have a user
interface similar to the standard one provided by the

Tacc 85

environment. Trade-offs and shortcomings in the
standard methodologies will be present in any new
methodology implemented with the chosen environ-
ment.

The menu structure of the environment defines the
menus from which the environments functions are
selected. The tool builder needs to understand all of
the menus which could be affected as a result of the
addition of a new methodology. Additionally, the

Customization is disjoint
from end-user functions.

tool builder may wish to rearrange the existing menu
structure. This would allow tool builders to replace
or delete existing menu entries for functions of the
environment that their target users do not use.

Implement the methodology. At this point in the
process, the tool builder should have a documented
description (by following the previous procedures)
of the new methodology. The tool builder will also
have an understanding of the capabilities of the
environment selected. With this information, the
tool builder can then begin to implement support
for BSM using the customizing functions of the CASE
environment.

So far, the procedures in this process have not been
specific to the selection of a particular environment.
During this step, however, the tool builder will begin
to use functions which are specific to each individual
environment implementation. The tool builder will
begin by following the documentation provided by
the environment and must determine exactly how
to define the following types of information: menus
and menu flow, entity definition, relationship defi-
nition, physical definition of entities and relation-
ships (shapes), data capturing screens and their flow,
and methodology rule enforcement.

Existing CASE environments that provide customi-
zation have that function disjoint from the actual

86 Tacs

end-user functions. This prevents the user from cre-
ating unvalidated versions of tool support for the
methodology. Once an implementation is created
and tested, the last step is to validate the new tool
support. This includes using the newly created tool
to enter and analyze a sample problem. While this
can be done by the tool builder, it is best to have the
validation step performed by another group, such as
one responsible for educating new users of the meth-
odology. It is also beneficial to include people from
the user organization who may have application-
specific insight into how the methodology will be
used. As a result of validation, the implementation
may require changes to the methodology to make it
more amenable to computer-aided tool support.

BSM tool results

By following the strategy and procedures defined in
the previous sections, computer-aided tool support
for the box definition graphics component of the box
structure methodology was created. This section de-
scribes this tool support and explores its current and
future use.

Using an existing tool environment. A commercially
available vendor tool environment (Excelerator® and
Customizer) was utilized to create the Bsm tool sup-
port described in this paper. The customizer com-
ponent of the tool environment (Customizer) en-
abled the creation of new functions required for BSM,
and the run-time product (Excelerator) was then
used to test the newly added functions.

The principal reason for choosing an existing CASE
environment for this exercise was the need to quickly
create prototype BSM tool support and evaluate its
impact on increasing the effectiveness and accep-
tance of the methodology. Since the BSM user com-
munity required immediate tool support, creating a
specific stand-alone BSM environment was not an
option. By customizing an existing CASE tool envi-
ronment, a prototype could be developed quickly
and different versions of the BSM support could be
compared to determine which version best supports
the methodology. Additionally, by using an available
environment, several distinct advantages are ob-
tained.

One advantage with this strategy is the ability to
integrate BsM with other methodologies. For exam-
ple, by integrating BsM support in Excelerator, users
could use the entity-relationship support to create

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

entity-relationship diagrams for their system. Fol-
lowing this exercise they could then create box defi-
nition graphs that could be linked to the entity-
relationship diagrams. This would provide the users
with two powerful views of their system, with the
connections between these views maintained by the
tool environment. With this strategy, the BsMm data
are stored in the same dictionary as the data created
from using other methodologies. This allows the user
to reuse this information in the creation of graphs.
Additionally, the information defined in the graphs
can be reused in other methodologies.

Another advantage is the seamless environment that
is presented to the user. When the CASE tool user
sees the BDG support, it looks and feels like the same
support provided for the other methodologies in the
tool set. This common user interface provides a large
degree of productivity since the user of BDG does not
have to learn a new interface to be able to enter BDG
data.

Not all of the advantages of this strategy are tied
directly to BsM. The fact that Excelerator is an estab-
lished tool with a large user community is also an
advantage. This wide user acceptance means that
there is a large set of potential users who are already
using the methodologies supported by Excelerator
with help and installation support in place. Addi-
tionally, classes are available that educate the new
Excelerator user about the user interface and base
dictionary support.

Excelerator with BSM. The following paragraphs
describe the various components of Customizer and
how they were used to create a customized version
of Excelerator that supports the entry and analysis
of box definition graphs.

Defining the BSM shapes. Each of the simple entities
of BsM has a physical shape associated with it. These
shapes were defined in the document which intro-
duced BsM.” One of the first steps in creating a
customized version of Excelerator is to define these
shapes using the Customizer shape editor that sup-
ports the creation of customized shapes used to
represent the entities of a graphical methodology.
With the exception of a diamond shape for the
decision entity, the shapes corresponding to the other
BSM entities are simple boxes.

Defining BSM entities and relationships. Most of the

work defining entities and relationships utilized
functions of the Customizer system dictionary. Ex-

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

celerator menus were extended to include options
for box structures constructs. This includes allowing
the user to choose to work with black box, state box,
and clear box diagrams from the main menu. Addi-
tionally, new menus were created for each of these
types of diagrams containing the constructs available
for use in that diagram. Other Excelerator menus
were also extended to include the BSM entities and
relationships. An example of this would be the
menus that allow the exporting of Excelerator data.

The Excelerator dictionary (XLDictionary) was ex-
tended to include the definition of the entities de-
scribed during the “learn the methodology” phase of
the procedures. These entities were defined and,
where appropriate, matched to shapes created with
the shape editor. The black box, state box, and
decision entities all had corresponding shapes. The
stimulus, response, state-in, and state-out entities
were defined with the Customizer as connections,
with stimulus and response being represented by
straight lines and state-in and state-out represented
by dotted lines. XLDictionary was also extended to
include the definition of the relationships.

The contains relationships were created implicitly by
allowing the entities to be available on certain
menus. The explodes-to relationships were created
using a standard Customizer explodes-to screen. This
allowed explodes-to relationships to be created in
two directions, from BSM to other methodologies and
from other methodologies to BSM.

Validation with methodology educators and
potential users

After the extended version of Excelerator was cre-
ated, a process was performed to determine the
validity of using the tool to create box definition
graphs. To maximize the effectiveness of this process,
a representative from the area responsible for edu-
cating developers in the use of BSM and representa-
tives of potential users of the new BSM support were
included to ensure that the new tool environment
not only supported the methodology from a theoret-
ical view but also from a practical view.

At the core of the validation process was a real life
problem for which box definition graphics had al-
ready been cx;eated without the use of a CASE tool
environment.” The problem was represented in the
extended environment using the newly created tool
(Figure 5) and the computer-assisted BSM support
was then analyzed and changed to more closely

Tacc 87

Figure 5 Excelerator with box definition graphics

TPRINTER

PRINT PRINTED
GRAPHICS OUTPUT
gggﬁﬁ_s UPDATE/ Sy MESSAGES
PRINT CREATE FONT ~ Lo :
OTHER ‘ —
E EXIT -
"BLACK BOX i
DECISION
STATE BOX SPECIFY MESSAGES
\ FEATURES

PRINTER .

CREATED BY: BST
REVISED B8Y: BST 7

match the methodology and to improve on its ease
of use.

Once the customized Excelerator prototype had been
validated, education, tool-usage procedures, and on-
line help text was then developed. These procedures
were developed in a cooperative effort between the
area responsible for methodology education and a
user representing the potential user community.

Finally, the customized Excelerator environment
and the education material were successfully used
on a pilot project for a computer-integrated manu-
facturing system being created by the 1BM Applica-
tion Solutions Division.

What was learned. Several important results were
derived from the creation of tool support for BSM.
Most important was the validation of the strategy of
using a tool customizer to quickly create effective
tool support for BsM. The steps involved in imple-
menting BSM with a tool customizer took only several
days, once the strategy and procedures were defined
and followed. After the methodology had been mas-
tered, the time to create different versions of tool
support was minimal, providing the opportunity to
choose the best implementation.

88 TacG

Since BSM was a new methodology that had not been
used extensively, there was no definitive example or
precedent detailing its use. This became apparent in
the development of the entity-relationship diagram
for BsM. While performing this part of the process, it
was evident that the available literature was lacking
in helpful examples. To solve this shortcoming, an
area responsible for technical education assisted in
the determination of those decisions in tool support
resulting in the best tool implementation.

When questions arose regarding tool support for Bsm,
they usually originated from an incomplete or inac-
curate understanding of the methodology. From this
we learned that the most important step of the
procedure is learning the methodology. During this
step it was very important to get the experts in the
methodology involved to ensure that any ambiguities
in the definition of the methodology were clarified
and that a solution was agreed upon.

Another outcome of this study was the familiarity
gained with tool customizers. It was learned that
these customizers have extensive capabilities, allow-
ing almost every aspect of the CASE tool environment
to be tailored.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Having successfully implemented tool support for
BSM, other methodologies are now being considered
for implementation. These methodologies could be
included in the same CASE tool environment as was
BSM support, allowing potential users more options
in choosing methodologies that match their prob-
lems and work well together. An example of this is
the current study to develop support for the inte-
grated computer-aided manufacturing definition
model (IDEFO)8 methodology. This methodology is
used to model enterprise data and functions and can
be used in conjunction with BSM.

Conclusion

Development of computer-aided tool support for
new software engineering methodologies can be
achieved quickly and efficiently once a strategy and
set of procedures is developed and followed. Most of
the tool builder’s time is invested in becoming fa-
miliar with the methodology and a CASE environ-
ment to support it. Implementing a new methodol-
ogy is actually the most straightforward task and
takes the least amount of effort.

The available tool customizers evaluated are both
powerful and easy to use. By choosing to create tool
support for BSM in existing environments, several
implementations of BSM can be created, reviewed,
and validated in a short period of time by following
the procedures described in this paper. As tool sup-
port for BSM matures, the methodology may increase
in popularity and acceptance, allowing it to become
more widely used in the development community,

The tool support that was described in this paper
(Excelerator with BSM) is currently being used inter-
nally in IBM to develop systems using the box struc-
ture methodology.

Acknowledgments

The author would like to thank Jack Odom, Len
Marchese, Bruce Sicherman, and Janet Slyman for
their roles in the work described in this paper. A
special thanks to Jay Friedman for his tireless and
careful editing of the original version of this paper.

Customizer and Excelerator are registered trademarks of Index
Technology Corporation.

SYLVA is a trademark of Cadware, Inc.

Cited references
1. H. D. Mills, R. C. Linger, and A. R. Hevner, “Box Structured

Information Systems,” IBM Systems Journal 26, No. 4, 395-
413 (1987).

IBM SYSTEMS JOURNAL, VOL 29, NO t, 1990

2. J. E. Odom, “Using Box Structures for Definition of Require-
ments Specifications,” /BM Systems Journal 29, No. 1, 59-78
(1990, this issue).

3. P. Judge. “Support Stage for Analysts (CASE Tools Survey),”
System International (Surrey, England) 17, No. 3, 37-42
(March 1989).

4. R.J. Norman and J. F. Nunamaker, Jr., “Integrated Develop-
ment Environments: Technological and Behavioral Productiv-
ity Perceptions,” Proceedings of the Twenty-Second Annual
Hawaii International Conference on System Sciences, Vol. II:
Software Track, IEEE Computer Society Press (1989), pp. 996-
1003.

5. P. N. Robillard, “On the Evolution of Graphical Notations for
Program Design,” ACM SIGSOFT Software Engineering Notes
14, No. 1, 84-88 (January 1989).

6. C. R. Necco, N. W, Tsai, and K. W. Hogelson, “Current Usage
of CASE Software,” Journal of Systems Management 4, No. 5,
6~11 (May 1989).

7. H. D. Mills, R. C. Linger, and A. R. Hevner, Principles of
Information Systems Analysis and Design, Academic Press,
Inc., New York (1986).

8. “Integrated Computer-Aided Manufacturing Final Report:
IDEF0 Functional Modeling Manual,” U.S. Government Con-
tract No. F33612-73-C-5158, SOFTECH Inc., Waltham, MA
(January 1981).

Bradley S. Tagg /BM Enterprise Systems Division, P.O. Box
700, Suffern, New York 10901. Mr. Tagg is a staff programmer
who designs and implements IBM computer-integrated manufac-
turing (CIM) systems. He graduated from Ohio State University
in 1982 with a B.S. in computer and information science, and
joined IBM in 1984 as a programmer. He has worked on a variety
of development assignments, including IBM internal computer-
aided software engineering (CASE) and CIM systems.

Reprint Order No. G321-5387.

Tacc 89

