Using box structures for
definition of requirements
specifications

Box structures provide a stepwise refinement and veri-
fication methodology for information systems analysis
and design. They are especially useful for recording
and decomposing requirements specifications. The
benefits of using the structures center around making
the requirements clear to readers, helping to make the
requirements complete, and providing an artifact that
will enhance the traceability of the requirements. This
paper describes the methodology of applying box
structures and presents an example of their use in the
definition of requirements specifications.

his paper addresses the problem of writing good

requirements specifications that can be under-
stood by potential customers of an information sys-
tem as well as by the designer who will provide a
solution to the problems that the requirements spec-
ifications define (see Requirement Specification
Process in Figure 1). The characteristics of these
requirements specifications will determine the suc-
cess of the solution and how much rework will have
to be done before it will satisfy customer needs.

The portion of the development process in Figure 1
shows the different processes and artifacts that are
on both sides of the line separating the problem and
solution domains. The artifacts that come out of the
box structure methodology are the box definition
graphics (BDG) and the box definition language (BDL).

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1980

by J. E. Odom

The BDG and BDL are used to describe the same
model and can be used interchangeably. The BDG,
along with supporting text, are very useful in com-
municating high-level concepts and overall system
structure. The BDL is more useful when the design
becomes more detailed. This paper will focus pri-
marily on BDG but will use some BDL when describ-
ing an example problem.

Box structures are limited to three major structures:
black box, state box, and clear box.' The clear box
can contain the four basic procedural structures:
sequence, alternation, iteration, and concurrent,’'
which are sufficient from a structured programming
viewpoint.2 These structures make up the entire set
of basic structures necessary for the definition of any
requirement. The structures can be described in
graphical terms with BDG or in narrative terms with
BDL.

Figure 2 summarizes the three equivalent box struc-
ture views of an information system in a stepwise

@ Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

obom 59

Figure 1 Problem and solution domains

BUSINESS
PROPOSAL
PROCESS

. e oy -

4

[]

]

TEXT, 1
PICTURES, :
|
]
[]
[]
[™

ETC. REQUIREMENT

ANALYSIS
PROCESS

LT T T T - - - -y

TEXT,
PICTURES,
ETC.

BDG

{AND/OR BODL),

TEXT REQUIREMENT

- SFEGIFICATION
PROCESS

4
1
[
1
1
[
i
'
)
[
~

LD LT Y e @ o o e o . -y

PROBLEM DOMAIN

80G
{AND/OR BOL),
TEXT

- - - -y

DESIGN
(COULD BE BDL)

r
¥
]
1
1
'
'
(]

SOLUTION DOMAIN

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Figure 2 The three equivalent box structure views

INFORMATION SYSTEMS

SYSTEM

'--q—----—-*

BLACK BOX STATE BOX

O O A S i W
0 00 98 N O W 2 .
A W -

CLEAR BOX

{ REFINEMENT >

refinement and verification methodology. Each box
exhibits identical stimulus (or stimuli)1 and response
behavior at increasing levels of detail.

The use of box structures builds upon the idea that
the definition of requirements in the form of require-

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

ments specifications is part of the problem domain
as opposed to the solution domain. The definition
of the requirements in this form is not intended to
presuppose a design direction for the final product.
Rather, it is intended to provide a method for estab-
lishing a precise definition of the problem that can

ooom 61

Figure 3 Black box view

STIMULUS
HISTORY

STIMULUS RESPONSE

be used in communicating the final form of the
requirement. Box structures can be used to design
the solution, but that is not within the scope of this

paper.

Different types of problems will need different tech-
niques for collecting and analyzing the requirements,
but a single technique for documenting requirements
would significantly improve human communica-
tion. A requirements methodology exists that pro-
vides an approach to collecting and defining under-
lying problems and to developing a prose functional
speciﬁcation.3 In order that a design, programming,
and testing organization can develop software that is
accura}e, easy to maintain, and is what the customer
wants, without too much rework, a standard tech-
nique for recording the requirements based on a
model should be used. Box structures provide an
approach to recording the requirements with enough
detail and precision to accomplish this.

Developing the black box view of a requirement

The functional definition of black box behavior is:
(Stimulus History, Stimulus) — (Response)

When used with box structures, this definition of a
black box is slightly different from that used in testing
theory. A description of this definition is as follows:

“The black box is a mechanism that accepts stimuli,
and for each stimulus produces a response before
accepting another stimulus; furthermore, each re-
sponse is uniquely determined by the history of
stimuli accepted by the black box.”'

62 ooom

This definition includes the consideration of a stim-
ulus history, as we see in Figure 3. The stimulus
history consists of all of the previous stimuli that
have been received by the system prior to the stim-
ulus being documented. For example, consider the
requirement for a simple system that returns a one
or a zero, alternating between them. The history of
the stimuli received by the system is important be-
cause it determines what the response for this stim-
ulus will be.

Although stimulus history conceptually contains a
record of all previous stimuli, only a portion may be
relevant. Also relevant is the initial condition of the
system. In the previously mentioned example, if we
know that the system initially returns a zero, we need
only know how many stimuli have been received; if
an even number, a zero will be returned, otherwise
a one.

The starting point for the history of each stimulus
should be carefully selected. Only enough stimulus
history is needed tc establish a single response for
the stimulus. Once this point has been established,
the history of each stimulus should be documented
along with the resulting response.

The stimulus and stimulus history can cause several
functionally different stimulus data transitions as
they pass through the system. As an example, assume
a user enters a query transaction in a personnel
system which is supposed to display information
about an employee. If the information was entered
through a previous build transaction, the transition
that occurs when the query transaction for that em-
ployee is entered is the display of information about
the employee. If it has not been entered through a
previous build transaction, the transition will be the
display of some message indicating that no infor-
mation is available on this employee. Each of these
transitions must be documented because in this way
the stimulus and response are related. These transi-
tions are caused by user-view transactions or opera-
tions such as the build and query transactions men-
tioned in the example.

Transaction analysis must be performed at the black
box level to determine whether a system will answer
all the needs of the customer requirement. The first
step in transaction analysis is to decide the context
of the system. Context is defined as the user’s envi-
ronment where the system will reside and the
changes it will invoke on that environment. Next,
the context of the requirement is narrowed by deter-

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1990

mining if all of the user-view transactions, in terms Figure 4 BDL description of black box
of stimulus histories, exist to supply the information
needs of the user by way of responses. While this
transaction analysis is being done, a verification
should be made to ensure that the definition of the
problem includes enough information in the trans- define BB < BB name >
action to cover system integrity, which includes sys-

tem security, system operability, system auditability, stimulus

system reliability, and system capability. Again, the < stimulus name > : < type >
needs of the system are here defined; a solution is

not presented. response

Loy . < response name > : < type >
Establishing the highest-level black box for a system

is important because this level is the true “user view” proc

of the system. This statement means the; analys} will < procedure statement >
not be describing the details of stimuli but will be

concerned with the highest-level demands the user corp

will be placing on the system. The requirements
point of view should not dictate a specific design
direction.

The BDG view of the requirement is helpful in un-
derstanding the requirement, but it is essential that
good narrative documentation is used to back up
these graphics. The BDL, shown in Figure 4, is a more
formal presentation medium and is helpful in adding
precision, although still in need of narrative accom-
paniment.

Figure 5 State box view

Developing the state box view of a requirement

Once the black box view of the system has been
developed, the next step is to develop the state box
view even if the final published documentation of
the system will be left in the black box form. The
state box view allows the completeness of the tran-
sitions that were described to be checked and allows
the analyst to discover whether or not he or she
understood the stimulus history.

The state box view is depicted in Figure 5. Here the
functional definition is:

STIMULUS .| RESPONSE
e N

(Stimulus, Old State) — (Response, New State)

In refining a state box from a black box, the first step
is to examine the stimulus history and abstract from
it the state data that should be retained by the system,
because the stimulus history is not part of the state
box view. The key is to determine the minimal
information needed to fully represent the impact of
the stimulus history on the black box behavior. The
purpose of the state data is to define the retained The behavior of the black box is now restated as the
data necessary to support the system. transition part of the state box. The transition part

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990 ooom 63

Figure 6 State box BDL

define SB < SB name >

stimulus

< stimulus name > : < type >
response

< response name > : < type >
state

< state name > : < type >
transition

description

is a simpler view of the initial black box of the system
since the total stimulus history is no longer consid-
ered.

Next, the system must have transaction closure.
Satisfying this condition helps to determine whether
or not the state data are sufficiently complete. Mills
describes satisfying this condition as follows:

“The condition of transaction closure is satisfied if
the transactions are sufficient to generate all state
data, and the state data are sufficient to generate all
the transactions.”'

Another way of showing transaction closure for the
state selected is to ensure that the following interac-
tions between the transactions and the state data
exist in some form:

1. Initialization. There must be some way for the
state data to be created.

2. Add. There must be some way for new data to be
added to the existing state data.

3. Delete. There must be some way for data to be
deleted from the existing state data.

4. Update. There must be some way of updating
existing state data.

5. Query. There must be some way of using the state
data.

The above five transactions may be required for each
piece of state data created that expands and contracts

64 ooom

like a file. If a single entity that cannot expand or
contract comprises the state data, the initialization,
update, and query transactions are required. The
initialization is especially important to consider since
the initial state should be specified so that the reader
understands what form the data take from the very
beginning. The other four transactions could be com-
bined in various ways.

If this condition is satisfied, it means that we have
been complete in describing our transactions in the
black box view and have selected a proper state to
support these transactions. If the list of transactions
is incomplete, the analyst must return to the black
box view and update the list of transactions, then
examine these new transactions against the stimulus
history.

Again, these graphics should be backed up with a
good narrative that describes the transactions and
the state with enough detail for the reader to under-
stand them. They can also be described in BDL, which
has the format for a state box as shown in Figure 6.
Note that the defined state box can be verified as a
correct expansion of the black box by converting the
state to stimulus history in a new black box and
comparing the two black boxes for equivalence.

Developing a clear box view of a requirement

Prior to developing the clear box view (or procedural
definition) of a requirement, the different transac-
tions and retained state data as defined in the black
box and state box views should be known for the
system. The process of specifying a procedural defi-
nition will force the analyst to continue examining
the interaction of transactions. An example of trans-
action interaction in a simple inventory system is
the requirement that a purchase order must be pre-
pared when an item is removed from the inventory
and the inventory reaches a reorder point. The sys-
tem is to contain update, manual reorder, and au-
tomatic reorder operations. In this example there is
interaction between an update transaction followed
by an automatic reorder transaction, where the au-
tomatic reorder transaction depends on the action
of the update transaction. If in the black box and
state box view this interaction was not identified, an
addition to the definition of the behavior of the
update transaction must be made so that it will show
the appropriate response.

The process of expanding a state box into a clear box
is accomplished by taking the single transition func-

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Figure 7 (A) The sequence clear box; (B) the sequence clear box BDL

os1 NS1 082

- - - -
- - - - -

s o o o s e -y

N§2

A

tion specified in the state box and describing it in
terms of the interaction of multiple smaller transi-
tions. The transition part of the state box can be
expanded into a procedural structure by one of four
primitive steps, resulting in a clear box with the same
behavior as the transition part of the state box. The
resulting clear boxes are described below.

The functional definition of a clear box is:

(Stimulus, Old State) — (Response, New State) by
procedure

Part A of Figure 7 shows the sequence clear box. In
this structure the box BB1 must come before the box
BB2 after the system receives the stimulus S1. BB1
also receives as input the state data of the system as
it receives the stimulus S1. The response of BBI,
which is R 1, contains a possible update to the state
data Ns1 and the stimulus S2 for BB2. BB2 also receives
the updated state data as input. The response of BB2
contains a possible update to the state data along
with the response R2, which is the external response
of the system to the stimulus S1. A sequence struc-
ture contains two or more boxes.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

The BDL to support the sequence portion of the clear
box is shown in Part B of Figure 7. The remaining
portion of the BDL is the same as the state box except
with CB instead of SB.

Figure 8A depicts the alternation (IF) structure. In
this structure the stimulus S and the state data are
used by the condition C to determine which path
will be followed through the system. Whichever path
is selected, the box BBI or BB2 will receive as input
the stimulus S and the state data. The output of the
box will potentially update the state and provide the
external response R of the system.

The BDL to support the alternation (IF) portion of
the clear box is shown in Figure 8B.

Figure 9A contains the alternation (CASE) structure.
This structure operates exactly the same as the I1F
structure except for the number of different possible
paths through the structure. The BDL to support the
alternation (CASE) portion of the clear box is shown
in Figure 9B.

Figure 10A is the iteration structure. This structure
allows looping in the system. When the system re-

ooom 65

Figure 8 (A) The alternation (IF) clear box; (B) the alternation (IF) clear box BDL

ceives a stimulus S, the stimulus and the state data
are used by the condition C to determine whether or
not the system will loop. If it does not loop, S
becomes the response R of the system. If it does
loop, S becomes the stimulus along with the state
data for the box BBI. BB1 then provides a potential
update to the state data along with a response R1. S
becomes R1, and the condition C uses this new S
along with the updated state to determine whether
the system will continue to loop. Whenever the
condition C is no longer met, the latest S and old
state contribute to the external response of the sys-
tem.

The BDL to support the iteration portion of the clear
box is shown in Figure 10B.

Figure 11A is the concurrent clear box structure.’ In
this structure the stimulus S and the state data are
received simultaneously by the transactions BB1 and

66 ooom

BB2 (there could be more than two of these). Each
transaction provides a possible update to the state
data and an external response.

If sequencing of the updates to the state (NS1 and

NS2) or the external responses (R1 and R2) is neces-
o 5

sary, it is described in the RESOLVE function.

The BDL to support the concurrent portion of the
clear box is shown in Figure 11B.

Note that each clear box introduces new black boxes
to continue the stepwise refinement and verification
process. Clear boxes are verified to be correct expan-
sions of their state boxes by reducing the effect of
their procedure parts to a single step in a new state
box and comparing the state box for equivalence.

A transition may be used in more than one place
while the clear box view is being defined. A depen-

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Figure 9 (A) The alternation (CASE) clear box; (B) the alternation (CASE) clear box BDL

b
L]
L)
[

o]

173

(o]

1]
- -

1

<
—

P U,

R S S D UG N NS A wn e A
<
~N

;
[

<
(2]

.

<
IN

-

|

[]
:
NS1,
[
[]
13
]
4
|
]
[]
]
1
1
NS2 § c
[
: part (value 1)
[]
BB1
4
: part (value 2)
]
[] BB2
:
NSS: part (value 3)
1
1 BB3
:
part (value 4)
4
1 BB4
i
] esac
:
]
[]
]
[]
]
]

dency tree should be developed showing the relation-
ship between the transitions. As the definition of the
system grows, these “common” use transitions will
help minimize redundancy and increase the ability
of readers to understand the requirement. Redun-

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

dancy leads to inconsistencies, which is4 a major
problem in communicating requirements.

Keep in mind that we want to make the definition
of the problem complete; we should not propose an

ooom 67

Figure 10 (A) The iteration clear box; (B) the iteration clear box BDL

g -

v

implementation solution. The clear box structures
supply the means for examining the interactions of
the different parts of the problem. In this way it may
be discovered that the definition of a particular part
of the problem was not complete and thus save some
rework later.

The last problem we face with each clear box is
whether or not the individual transitions we have
described as part of our procedural definition are
clear enough to stand on their own with any further
definition. This problem is discussed in the next
section.

Using the structures to define the whole problem

A sample hierarchy of the definition of a large re-
quirement is shown in Figure 12. The black box (BB)
in the level designated by (1) is the system-level
definition. The BB in level (1) has been refined into
a state box (SB) view and a clear box (CB) view. The
CB in level (1) had seven different transitions in its

68 ooom

procedural definition which were described as black
boxes. The clear box BBs become the starting point
for the next refinement. Two of these BBs were re-
fined further because of their complexity.

The major question that arises when viewing the
hierarchy in Figure 12 is: How many levels must be
refined before the definition of the requirement is
complete? The answer to this question depends upon
the complexity of the BBs of the CB in the last
refinement. The following are some criteria to be
considered:

1. After the first refinement, there exists a clear box
that has several transitions identified (in the form
of some structure). The clear box description, for
completeness, will document these transitions as
black boxes (stimuli, stimulus history, responses).
If there are no additional transactions to be dis-
covered or no additional state data to be identified
that would require additional transactions (for
transaction closure), refining is finished.

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1990

Figure 11 (A) The concurrent clear box; (B) the concurrent clear box BDL

A O 0 S O

with

RESOLVE

2. If there is any uncertainty about the questions
raised in the clear box expansion, each of the
black boxes needs to be refined from that expan-
sion that bears on the uncertainty. That means a
state box, and possibly a clear box, must be
created for each transition. If the transition of the
state box is clear (and simple), there is no reason
to create a clear box from the state box.

3. It will be certain that an additional level of refine-
ment is unnecessary only if the refinement process
is carried to one more level than needed to estab-
lish the system requirements.

4. Complexity of the overall system is probably not
a determining factor in the number of levels
required. Neither is system size.

Another question might be, “Should definition of
the requirement always start at the top level?” The
answer to this question is “no,” because it may not
always be possible to start at that level. Information

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

may come as a series of major user requirements,
and there is a desire to place them all in a single
system. Work can be done on each of these seemingly
independent requirements, but the work must pro-
gress upward by first combining these requirements
into a single cB view of the system. It is possible to
move upward to the SB view by abstracting. This SB
view is very valuable because it helps in looking for
redundant data in the overall requirement definition.
There is no unique starting place for defining the
requirement for a system because it will depend upon
many different attributes of the problem. Whether
work starts with the top level BB and that level is
iteratively updated as the levels below it are created,
or the top level BB is found by abstracting upward,
the level should be completed because it will be the
view communicated to the user.

If the top level BB is created by abstracting upward,
transaction analysis should be performed when the

ooom B9

Figure 12 Sample requirement hierarchy

g——g—
wsusuen
—

(@ s 88 B8 B8] B8 @B
I 1
! |
s8 b ss |

I -—d | L

T
x

level is defined. This will help narrow the context of
where the system will reside.

As the requirement is refined into the level (2) sB
views, new state data common to two or more dif-
ferent sBs at this level may be discovered. The deci-
sion can be made to migrate this common data up
to the level above to make the data more visible to
the reader and also to guard against redundancy.
However, it is desirable to leave the state data at the
point of origination unless a move will reduce re-
dundancy.

A need might exist to describe part of the system
that must be isolated from the rest because:

1. That part of the system will reside apart from the
rest of the system;

2. That part is subject to change in a future release
of the system; or

3. There will be different versions of that part for
different environments.

In Figure 12 the area indicated by (4) shows where
one leg of the hierarchy must be isolated for one of
these reasons. By having this pointed out during
requirements specification the designers will have a
clear message of a major impact on their design.

70 ooom

Example: Workstation printer requirement

Within this section is an illustration of the use of
box structures in defining (and refining) require-
ments for a workstation printer. This example builds
from the following (incomplete) statement of capa-
bilities:

e The printer will operate in a workstation environ-
ment where it will be connected to a workstation
that is similar to a personal computer.

e The printer will have standard fonts and print
control features available in the hardware that can
be referenced.

« The printer will be able to print custom fonts that
can be created and maintained by the user.

¢ The printer will have the ability to print graphics.

We will go through the black box and state box views
for all of these requirements and through the clear
box view that supports the custom fonts part of the
requirements, Notice that some of the facts are not
known at all, and rather than take a wild guess, the
notation TBD (to be determined) is inserted so infor-
mation can be filled in later. Also included with the
example is a glossary of terms and items, which
provides a place for the data items to be defined and
for additional information to be added to them as
the requirement is refined. The glossary will also help
with the consistency issue (items being defined in
multiple places under the same name or different
names).

Comments about the requirement will be inserted at
the point where the comment is being made and will
be distinguished from the rest of the text.

Workstation printer requirement black box.

Comment—The first step is to determine the stimulus response
pairs. These pairs are shown with the same numbers on each
side of the black box for the system in Figure 13. The stimuli
contain multiple parts and are so labeled on the diagram and
detailed in the text.

1. Print Text

Comment—The three subheadings—stimulus parame-
ters, response, and behavior—used for each stimulus
response pair, provide a place for an in-depth descrip-
tion.

a. Stimulus parameters (stimulus history)

Comment—The second step taken during the defi-
nition of the black box is to determine the stimulus

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

history for each of the stimulus and response pairs.
The stimulus history is shown in parentheses after
the name of the data item that is part of the stimulus.
Further definition of the stimuli can be found in the
glossary.

Figure 13 Printer black box

s Text-data (codes established in font en-
tered through operation 3 or as part of
the standard fonts)

+ Font-id (identification for font previously 1. PRINT TEXT | PRINTER 1. PRINTED
entered into system through Create/ MESSAGE
Update or as part of the standard fonts 2, gn;lrgH cs 2. PRINTED
identifications) : - OUTPUT
Comment—The following two stimuli come from 2 ‘éggﬁ:’r'g/‘_.om 3. MESSAGES
outside the software system. These could be
viewed as other black boxes with which this sys-
tem must communicate. 4 ggf%’;és 4. MESSAGES

¢ Standard fonts (available from hardware)

¢ Standard print controls (available from
hardware)

b. Response—Printed copy or error message
¢. Behavior

Comment—The third step in defining the black box ¢ Graphics mode (TBD)

is to describe the behavior that will tie each stimulus .

. Lo . . —Prin
to its response. The behavior is stated in terms of b ReSpo'nse Printed copy
the stimulus and response pair using the stimulus c. Behavior

history. BDL is used in this description. « Print graphic-data in the graphics mode.

if no font-id is specified TBD

then use the last font specified in the

> t 3. Update/Create Font
stimulus history

a. Stimulus (stimulus history)
¢ Request

- Create (if the font identified by font-id
has not been specified in the create
stimulus history or is not a standard
font)

. . - Update (if the font identified by font-
then use this font to print the text-data id has been specified in the create stim-

else return an error message ulus history and an update of the font
fi is desired)
fi - Delete (if the font identified by font-id
has been specified in the create stimulus
history and removal of the font is de-
sired)

¢ Images

else

if the font matching the font-id
(either a standard font or one
specified in the stimulus history
through a Create/Update stimu-
lus) is specified

2. Print Graphics
a. Stimulus parameters (stimulus history)

Comment—The requirement was quite vague about
what printing graphic files meant. It means addi-
tional information must be found to support this
area.

¢ Graphic-data (TBD)

- New-images (no history)

— Replace-images (if the font identified
by font-id was specified in the create
stimulus history)

¢ Font-id (see request and images above)

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

ooov T1

72 opom

¢ Standard fonts (available from the hard-
ware)

b. Response—Message indicating success or

failure

¢. Behavior

¢ Create request

if the create request was specified,
and font-id is not one of the
standard fonts and is not one that
has been specified in the create
stimulus history

the new font-id, along with its
characters and their mappings,
will be entered into the system,
and a message indicating that a
new font has been entered will be
returned to the user

else an error message will be returned
for this create request

then

fi

¢ Update request

if the update request was specified
and the font-id is the identifica-
tion for a font that is in the create
stimulus history

the referenced font characters and
their mappings will be entered
into the system, and a message in-
dicating that the font has been
changed will be returned

else an error message will be returned
for this update request

then

¢ Delete request

if the delete request was specified
and the font-id is the identifica-
tion for a font that is in the create
stimulus history

a message indicating that the font
has been deleted will be returned

else an error message will be returned
for this delete request

then

4. Specify Features

a.

b.

C.

Stimulus (stimulus history)

e Font-id (identification of a font that is
either a standard font or one that is in the
stimulus history of the create request)

* Print features (available from hardware)
» Standard fonts (available from hardware)

Response—Message indicating success or
failure

Behavior

if the requested features are available
from the hardware and the font
identified by font-id is one which is
in the stimulus history of the create
request or is a standard font

a message indicating that the printer
settings have been made will be re-
turned

else an error message will be returned

fi

then

Comment—Once the black box has been described, ensure
that the description includes all of the requirements. Systems
much more complex than this will require clumping (abstract-
ing) of the parts of the requirement until a manageable number
of stimulus response pairs (seven or fewer) is left.

Workstation printer requirement state box.

1. Print Text

Comment—The first step in creating the state box view
(Figure 14) of a black box is to derive the state data
from the stimulus history of each stimulus. With nec-
essary stimulus history items retained in the state, the
stimulus history can be dropped from the stimulus
parameters.

a.

Stimulus parameters

e Data

e Font-id

* Standard fonts

* Standard print controls

. Response—Printed copy or error message

States

Comment—The following two pieces of state data
are used to support this stimulus and response pair.
The standard fonts and standard print controls are
not included since they come from outside the sys-
tem. Also, it is good to note the action that is taken
with the state data, such as INPUT, OUTPUT, or

BM SYSTEMS JOURNAL, VOL 28, NO 1, 1990

Figure 14 Printer state box

PRINTER
A. CUSTOM FONTS B, GURRENT ACTIVE FONT
re- AND PRINT CONTROLS =
1 '
' '
' '
1 H
1. PRINT TEXT] s 1. PRINTED
! H OUTPUT OR
H ! MESSAGE
'
2. PRINT H) 2, PRINTED
GRAPHICS i ' OUTPUT
o I o
3. UPDATE/ 3. MESSAGES
CREATE FONT
4, SPECIFY 4, MESSAGES
FEATURES
UPDATE. The state data will also be described in 2. Print Graphics

the glossary along with their initial states. Eventually .
we will want to make sure that there is transaction a. Stimulus parameters
closure for every part of the state data. ¢ Graphic-data

¢ Graphics mode

¢ Custom fonts (INPUT ONLY) b R Printed
. Response—Printed copy

¢ Current active font and print controls

(INPUT, UPDATE) c. State—TBD
d. Behavior d. Behavior
¢ Print the file in the graphics mode. TBD
Comment—The second step for creating the state
box is to restate each of the behaviors described in
the black box view in terms of the stimulus and 3. Upd?te/ Create Font
response pair and the state data. a. Stimulus parameters
. - . ¢ Request
if no font-id is specified
. - Create
then use the current active font - Update
else - Delete
if the requested font exists in the ¢ Images
standard fonts or in the custom - New-images
fonts - Replace-images
then take the referenced font from the e Font-id
standard fonts or custom fonts « Standard f
and use it to set the current active tandard fonts _
font and to print the data b. Response—Message indicating success or
else return an error message failure
fi c. State
fi ¢ Custom fonts (INPUT, UPDATE)

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990 ooom 73

d. Behavior

¢ Create request

if

then

else

fi

the create request was specified,
and the font does not currently
exist as a standard font

the new font, along with its char-
acters and their mappings, will be
entered into the system, and a
message indicating that a new font
has been entered will be returned
to the user

an error message will be returned
to the user

* Update request

if

then

else

fi

the update request was specified,
and the referenced font exists as
one of the custom fonts

the referenced font characters and
their mappings will be entered
into the system, and a message in-
dicating that the font has been
changed will be returned

an error message will be returned
to the user

* Delete request

if

then

else

fi

the delete request was specified,
and the font-id specified exists as
one of the custom fonts

the referenced font will be re-
moved from the custom fonts,
and a message indicating the font
has been deleted will be returned

an error message will be returned
for this delete request

4. Specify Features

a. Stimulus parameters
e Font-id
* Print features
¢ Standard fonts
* Standard print controls

b. Response—Message indicating success or
failure

c. State
¢ Custom fonts (INPUT ONLY)

e Current active font and print controls
(UPDATE)

d. Behavior

if the requested font exists in either
the standard fonts or custom
fonts

the requested features including
the font will be used to set the
current active font and print con-
trols, and a message indicating
the new settings will be returned
else an error message will be returned

fi

then

Comment—The third step is to check for transaction closure
for each piece of state data. Below are the five criteria suggested
earlier for transaction closure:

1. Initialization—both described in the glossary
2. Add
¢ Custom fonts—Create request

» Current active font—~Only one can be active at a time.
This can be set through the print text request or
through the specify feature request.

3. Delete
e Custom fonts—Delete request

* Current active font—It is replaced by the action of the
print text request or the specify feature request.

4. Update
» Custom fonts—Update request
* Current active font—1It can be changed by replacing it.

5. Query—Both can be used by the print text and specify
features requests.

Workstation printer requirement clear box.

Comment—The clear box will show the procedural represen-
tation of the state box. The most typical representations at this
level are alternation, concurrent, or sequence. If a combination
of these is used, keep the reader in mind and keep the structure
simple.

Only the Update/Create Font will be documented in this
example.

Comment—The first step in defining the clear box for a state
box is to decompose the transitions from stimulus to response
into procedural steps. In this case the procedural steps for the
stimulus response pairs are independent of one another.

The second step is to use one of the structures to describe that
interaction. The structure selected for the example is an alter-

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1990

Figure 15 Printer requirement clear box

PRINTER
pmme A CUSTOM FONTS
s
[]
'
|
1
1
1
:
1. PRINT TEXT H
|
|
1
1
'
1
1
1
1
1
[]
[]
]
[]
2. PRINT '
GRAPHICS :
1
]
1
[]
{ — c
3. UPDATE/
CREATE FONT]
4. SPECIFY v4
FEATURES

B. CURRENT ACTIVE FONT
AND PRINT CONTROLS ~ [#"=1

[]

'

]

1

1

1

]

H 1. PRINTED

' OUTPUT OR

' MESSAGE

i

1

]

[]

[]

'

1

1

1

i

' 2. PRINTED

] OUTPUT

1

]

]

[]

]

] -
3. MESSAGES
4, MESSAGES

nation structure since each of the paths is independent and
will not be occurring concurrently.

Comment—The use of BB 1.7 in the clear box shown in Figure
15 could be replaced with a name. Transactions within the
boxes should not be described; instead the text following the
diagram should be used for the description.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Comment—What is new in the description that follows is the
section describing the condition “C.” This directs the reader
to the correct path in the alternation structure of Figure 15.
Also, the BB 1. tags are related to the proper behaviors.

1. Print Text

ooom 75

2. Print Graphics

3. Update/Create Font
a. Stimulus parameters
* Request
- Create
- Update
- Delete
* Images
~ New-images
- Replace-images
e Font-id
¢ Standard fonts
b. Response (R3)—Message indicating success
or failure
c. State—Custom fonts (INPUT, UPDATE)
d. Behavior (BB 1.3)
¢ Create request

if the create request was specified,
and the font does not currently
exist as a standard font

then the new font, along with its char-
acters and their mappings, will be
entered into the system, and a
message indicating that a new font
has been entered will be returned
to the user

else an error message will be returned
to the user

fi
¢ Update request

if the update request was specified,
and the referenced font exists as
one of the custom fonts

then the referenced font characters and
their mappings will be entered
into the system, and a message in-
dicating that the font has been
changed will be returned

else an error message will be returned
to the user
fi
¢ Delete request

if the delete request was specified,

76 ooom

and the font-id specified exists as
one of the custom fonts

then the referenced font will be re-
moved from the custom fonts,
and a message indicating the font
has been deleted will be returned

else an error message will be returned
for this delete request
fi

4. Specify Features

Comment—The third step in defining the clear box is to
examine each of the black boxes that have been defined within
the clear box to determine if enough detail was given for the
reader to understand this part of the requirement,. If there is
not enough information available for a particular box, that
box will become the black box for refinement into a lower-
level state box and clear box.

Workstation printer requirement glossary.

Comment—The glossary provides a place for the data descrip-
tions and functional descriptions that relate to this require-
ment. As more information is needed about a particular piece
of data, it can be added here.

The glossary contains the description and the elab-
oration of the data. If the description contains
(global), the data type is used in more than one place
and will be described under global data descriptions.

1. Classes of stimuli description
a. Print Text)

1) Text-data—Print file created using code of
font

2) (global) font-id

3) Standard fonts—These are fonts that are
available from the hardware and can be
referenced by the font-id for each particular
font.

4) Standard print controls—These are the
print controls available from the hardware
and can be referenced by the proper
(global-standard fonts) features keyword
and value for each desired print character-
istic.

b. Print Graphics

1) Graphic-data

2) Graphics mode

¢. Update/Create Font

1) Request—One of the following three would
be valid:

BM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

a) Update—Keyword for indicating that
an update to a custom font is desired.
b) Create—Keyword for indicating that
the operation for creating a new custom
font is desired.
¢} Delete—Keyword for indicating that
the operation for deleting a custom font
is desired.
2) Images
a) New-images—Entire font character
graphics and ASCII mappings
b) Replace-images—Same as new-images
except contains only the font character
graphics and Ascll mappings for the
characters that are to be changed.
3) (global) font-id
4) (global) standard fonts
d. Specify Features
1) (global) font-id
2) Print features—Printer settings such as
lines per inch, characters per inch, etc., that
are part of the hardware
3) (global) standard fonts
4) (global) standard print controls

2. State data descriptions
a. Custom fonts—Contains the user-entered cus-
tom fonts which are referenced by their font-
1d and contains the characters and their map-
pings (the code by which the characters will be
referenced from within a text file).

Initialization: Empty.

b. Current active font and print controls—Con-
tains the current active font and print features
(print features are defined under global data
descriptions).

Initialization: At IPL (initial program load)
time the printer will be set up with (TBD).

3. Global data descriptions

a. Font-id—Name of font desired

b. Standard fonts—These fonts are available
from the hardware and can be referenced by
the font-id for each particular font.

¢. Standard print controls (for print features)—
These print controls are available from the
hardware and can be referenced by the proper
features keyword and value for each desired
print characteristic.

Observations on the printer example. The example
contains all three views of the same level of the

1BM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

requirement. There is still work to be done for this
level because there are several “TBDs” to be removed.
The question about what it means to print graphic
text is far from understood, but we have put a place
holder into the requirement specification for it and
have created a model for the entire system that can
be reviewed with users and designers. It may not be
necessary to use all three of these views in a particular
document. They are meant to show the progression
of refinements, and each view has its own audience.

The glossary supplies a “where used” understanding
of the data associated with the stimuli, states, and
responses. The descriptions of those data are fairly
primitive, but they can be enhanced as it becomes
necessary. At this stage they should help support
consistency by minimizing redundant descriptions
and making the document more modifiable.

The next activity would be to supply information
for the TBDs and then to consider the need to take
each of the BB 1.n boxes and decompose them into
the next level of BB — SB — CB diagrams.

Conclusion

Box structures allow us to document a requirement
using easily understood models. Since these models
give the reader a perception of where to look in the
models for different pieces of information about the
requirement, they help to convey what the require-
ment 1s saying to both the user and to the developer
who implements it.

A requirement written in this way can be further
refined by someone else before a particular imple-
mentation is started. If one person documents a
requirement in this way, other people could take the
requirement and continue to refine it to determine
whether they understand all of its subsystems. In this
way it becomes the communication vehicle between
the requirements writer and the developer.

Finally, a requirement that communicates well will
be used and will be maintained as changes occur.
This will help to make the product that is delivered
be closer to what was initially desired by the user.

Cited references

1. H. D. Mills, R. C. Linger, and A. Hevner, Principles of Infor-
mation Systems Analysis and Design, Academic Press, Inc.,
New York (1986).

2. R. C. Linger, H. D. Mills, and B. 1. Witt, Structured Program-
ming: Theory and Practice, Addison-Wesley Publishing Com-
pany, Inc., Reading, MA (1979).

ooom TT

3. R. G. Mays, L. S. Orzech, W. A. Ciafella, and R. W, Phillips,
“PDM: A Requirements Methodology for Software System
Enhancements,” IBM Systems Journal 24, No. 2, 134-149
(1985).

4, ANSI/IEEE Std. 830-1984, “An American National Standard
IEEE Guide to Software Requirements Specifications,” Institute
of Electrical and Electronics Engineers, New York (1984).

5. H. D. Mills, “Stepwise Refinement and Verification in Box-
Structured Systems,” Computer 21, No. 6, 23-36 (June 1988).

General reference

H. D. Milis, R. C. Linger, and A. R. Hevner, “Box Structured
Information Systems,” IBM Systems Journal 26, No. 4, 395-413
(1987).

John E. Odom /BM US Education, 500 Columbus Avenue,
Thornwood, New York 10594. Mr. Odom joined IBM in 1980. He
is currently part of the Software Development Technology Center
where he teaches and consults with IBM organizations on software
requirements and design. Since joining IBM, Mr. Odom worked
in systems programming and software engineering education. Prior
to joining IBM he was an associate professor of computer science
at Mankato State University in Minnesota where he spent ten
years on the faculty. He also served for two years as the executive
manager of a data processing organization in Minnesota. He
received his B.S., M.A., and Educational Specialist degrees from
Mankato State University in 1968, 1969, and 1974, respectively.
Mr. Odom is a member of the IEEE Computer Society.

Reprint Order No. G321-5386.

78 ooom IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

