
Using box structures for
definition of requirements
specifications

by J. E. Odom

Box structures provide a stepwise refinement and veri-
fication methodology for information systems analysis
and design. They are especially useful for recording
and decomposing requirements specifications. The
benefits of using the structures center around making
the requirements clear to readers, helping to make the
requirements complete, and providing an artifact that
will enhance the traceability of the requirements. This
paper describes the methodology of applying box
structures and presents an example of their use in the
definition of requirements specifications.

T his paper addresses the problem of writing good
requirements specifications that can be under-

stood by potential customers of an information sys-
tem as well as by the designer who will provide a
solution to the problems that the requirements spec-
ifications define (see Requirement Specification
Process in Figure 1). The characteristics of these
requirements specifications will determine the suc-
cess of the solution and how much rework will have
to be done before it will satisfy customer needs.

The portion of the development process in Figure 1
shows the different processes and artifacts that are
on both sides of the line separating the problem and
solution domains. The artifacts that come out of the
box structure methodology are the box definition
graphics (BDG) and the box definition language (BDL).

The BDG and BDL are used to describe the same
model and can be used interchangeably. The BDG,
along with supporting text, are very useful in com-
municating high-level concepts and overall system
structure. The BDL is more useful when the design
becomes more detailed. This paper will focus pri-
marily on BDG but will use some BDL when describ-
ing an example problem.

Box structures are limited to three major structures:
black box, state box, and clear box. The clear box
can contain the four basic procedural structures;
sequence, alternation, iteration, and concurrent,
which are sufficient from a structured programming
viewpoint.* These structures make up the entire set
of basic structures necessary for the definition of any
requirement. The structures can be described in
graphical terms with BDG or in narrative terms with
BDL.'

Figure 2 summarizes the three equivalent box struc-
ture views of an information system in a stepwise

0 Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journulreference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Figure 1 Problem and solution domains

I

PICTURES.
TEXT,

ETC. :

BUSINESS
PROPOSAL
PROCESS

""..""
I
I
I
I
I TEXT

I
I

REQUIREMENT

PROCESS
ANALYSIS

LJ : TEXT,
I PICTURES,
I ETC.
I

I I
I

PROBLEM DOMAIN

E W
(AND/OR BDL).
TEXT

I SOLUTION DOMAIN I

60 ODOM IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Figure 2 The three equivalent box structure views

INFORMATION SYSTEMS

I 1 J

BLACK BOX STATE BOX CLEAR BOX

D

D
IBM SYSTEMS JOURNAL, VOL 29, NO 1. 1990 ODOM 61

refinement and verification methodology. Each box ments specifications is part of the problem domain
exhibits identical stimulus (or stimuli] and response as opposed to the solution domain. The definition
behavior at increasing levels of detail. of the requirements in this form is not intended to

presuppose a design direction for the final product.
The use of box structures builds upon the idea that Rather, it is intended to provide a method for estab-
the definition of requirements in the form of require- lishing a precise definition of the problem that can

Figure 3 Black box view

be used in communicating the final form of the
requirement. Box structures can be used to design
the solution, but that is not within the scope of this
paper.

Different types of problems will need different tech-
niques for collecting and analyzing the requirements,
but a single technique for documenting requirements
would significantly improve human communica-
tion. A requirements methodology exists that pro-
vides an approach to collecting and defining under-
lying probleTs and to developing a prose functional
specification. In order that a design, programming,
and testing organization can develop software that is
accurate, easy to maintain, and is what the customer

without too much rework, a standard tech-
nique for recording the requirements based on a
model should be used. Box structures provide an
approach to recording the requirements with enough
detail and precision to accomplish this.

Developing the black box view of a requirement

The functional definition of black box behavior is:

(Stimulus History, Stimulus) + (Response)

When used with box structures, this definition of a
black box is slightly different from that used in testing
theory. A description of this definition is as follows:

“The black box is a mechanism that accepts stimuli,
and for each stimulus produces a response before
accepting another stimulus; furthermore, each re-
sponse is uniquely determined by the history of
stimuli accepted by the black box.’”

62 ODOM

This definition includes the consideration of a stim-
ulus history, as we see in Figure 3. The stimulus
history consists of all of the previous stimuli that
have been received by the system prior to the stim-
ulus being documented. For example, consider the
requirement for a simple system that returns a one
or a zero, alternating between them. The history of
the stimuli received by the system is important be-
cause it determines what the response for this stim-
ulus will be.

Although stimulus history conceptually contains a
record of all previous stimuli, only a portion may be
relevant. Also relevant is the initial condition of the
system. In the previously mentioned example, if we
know that the system initially returns a zero, we need
only know how many stimuli have been received; if
an even number, a zero will be returned, otherwise
a one.

The starting point for the history of each stimulus
should be carefully selected. Only enough stimulus
history is needed to establish a single response for
the stimulus. Once this point has been established,
the history of each stimulus should be documented
along with the resulting response.

The stimulus and stimulus history can cause several
functionally different stimulus data transitions as
they pass through the system. As an example, assume
a user enters a query transaction in a personnel
system which is supposed to display information
about an employee. If the information was entered
through a previous build transaction, the transition
that occurs when the query transaction for that em-
ployee is entered is the display of information about
the employee. If it has not been entered through a
previous build transaction, the transition will be the
display of some message indicating that no infor-
mation is available on this employee. Each of these
transitions must be documented because in this way
the stimulus and response are related. These transi-
tions are caused by user-view transactions or opera-
tions such as the build and query transactions men-
tioned in the example.

Transaction analysis must be performed at the black
box level to determine whether a system will answer
all the needs of the customer requirement. The first
step in transaction analysis is to decide the context
of the system. Context is defined as the user’s envi-
ronment where the system will reside and the
changes it will invoke on that environment. Next,
the context of the requirement is narrowed by deter-

IBM SYSTEMS JOURNAL, VOL 29, NO 1. 1990

mining if all of the user-view transactions, in terms
of stimulus histories, exist to supply the information
needs of the user by way of responses. While this
transaction analysis is being done, a verification
should be made to ensure that the definition of the
problem includes enough information in the trans-
action to cover system integrity, which includes sys-
tem security, system operability, system yditability,
system reliability, and system capability. Again, the
needs of the system are here defined; a solution is
not presented.

Establishing the highest-level black box for a system
is important because this level is the true “user view”
of the system. This statement means the analyst will
not be describing the details of stimuli but will be
concerned with the highest-level demands the user
will be placing on the system. The requirements
point of view should not dictate a specific design
direction.

The BDG view of the requirement is helpful in un-
derstanding the requirement, but it is essential that
good narrative documentation is used to back up
these graphics. The BDL, shown in Figure 4, is a more
formal presentation medium and is helpful in adding
precision, although still in need of narrative accom-
paniment.

Developing the state box view of a requirement

Once the black box view of the system has been
developed, the next step is to develop the state box
view even if the final published documentation of
the system will be left in the black box form. The
state box view allows the completeness of the tran-
sitions that were described to be checked and allows
the analyst to discover whether or not he or she
understood the stimulus history.

The state box view is depicted in Figure 5. Here the
functional definition is:

(Stimulus, Old State) + (Response, New State)

In refining a state box from a black box, the first step
is to examine the stimulus history and abstract from
it the state data that should be retained by the system,
because the stimulus history is not part of the state
box view. The key is to determine the minimal
information needed to fully represent the impact of
the stimulus history on the black box behavior. The
purpose of the state data is to define the retained
data necessary to support the system.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Figure 4 BDL description of black box

define BE < BB name >

8 t h U l U 8

< stimulus name > : < type >

ro.ponse

< response name > : < type >

P=-

< procedure statement >

Gorp

Figure 5 State box view

IESPONSE -

The behavior of the black box is now restated as the
transition part of the state box. The transition part

ODOM 63

Figure 6 State box BDL

define SE < SB name >

8tilLlUlU8

< stimulus name > : < type >

response

< response name > : < type >

s t a t e

< s t a t e name > : < type >

transition

desc r ip t ion

is a simpler view of the initial black box of the system
since the total stimulus history is no longer consid-
ered.

Next, the system must have transaction closure.
Satisfying this condition helps to determine whether
or not the state data are sufficiently complete. Mills
describes satisfying this condition as follows:

“The condition of transaction closure is satisfied if
the transactions are sufficient to generate all state
data, and the stat? data are sufficient to generate all
the transactions.”

Another way of showing transaction closure for the
state selected is to ensure that the following interac-
tions between the transactions and the state data
exist in some form:

1. Initialization. There must be some way for the

2. Add. There must be some way for new data to be

3. Delete. There must be some way for data to be

4. Update. There must be some way of updating

5. Query. There must be some way of using the state

state data to be created.

added to the existing state data.

deleted from the existing state data.

existing state data.

data.

The above five transactions may be required for each
piece of state data created that expands and contracts

like a file. If a single entity that cannot expand or
contract comprises the state data, the initialization,
update, and query transactions are required. The
initialization is especially important to consider since
the initial state should be specified so that the reader
understands what form the data take from the very
beginning. The other four transactions could be com-
bined in various ways.

If this condition is satisfied, it means that we have
been complete in describing our transactions in the
black box view and have selected a proper state to
support these transactions. If the list of transactions
is incomplete, the analyst must return to the black
box view and update the list of transactions, then
examine these new transactions against the stimulus
history.

Again, these graphics should be backed up with a
good narrative that describes the transactions and
the state with enough detail for the reader to under-
stand them. They can also be described in BDL, which
has the format for a state box as shown in Figure 6 .
Note that the defined state box can be verified as a
correct expansion of the black box by converting the
state to stimulus history in a new black box and
comparing the two black boxes for equivalence.

Developing a clear box view of a requirement

Prior to developing the clear box view (or procedural
definition) of a requirement, the different transac-
tions and retained state data as defined in the black
box and state box views should be known for the
system. The process of specifying a procedural defi-
nition will force the analyst to continue examining
the interaction of transactions. An example of trans-
action interaction in a simple inventory system is
the requirement that a purchase order must be pre-
pared when an item is removed from the inventory
and the inventory reaches a reorder point. The sys-
tem is to contain update, manual reorder, and au-
tomatic reorder operations. In this example there is
interaction between an update transaction followed
by an automatic reorder transaction, where the au-
tomatic reorder transaction depends on the action
of the update transaction. I f in the black box and
state box view this interaction was not identified, an
addition to the definition of the behavior of the
update transaction must be made so that it will show
the appropriate response.

The process of expanding a state box into a clear box
is accomplished by taking the single transition func-

64 ODOM IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990 1

Figure 7 (A) The sequence clear box; (B) the sequence clear box BDL

l

I I
I
I BB1; I
I I
I
I BB2; f
I I I od I I
I I

I
I
I
I
I

L""""""A

tion specified in the state box and describing it in
terms of the interaction of multiple smaller transi-
tions. The transition part of the state box can be
expanded into a procedural structure by one of four
primitive steps, resulting in a clear box with the same
behavior as the transition part of the state box. The
resulting clear boxes are described below.

The functional definition of a clear box is:

(Stimulus, Old State) + (Response, New State) by
procedure

Part A of Figure 7 shows the sequence clear box. In
this structure the box BBi must come before the box
B B ~ after the system receives the stimulus SI. BBI
also receives as input the state data of the system as
it receives the stimulus S1. The response of BB1,
which is R1, contains a possible update to the state
data NSI and the stimulus S2 for B B ~ . B B ~ also receives
the updated state data as input. The response of BB2
contains a possible update to the state data along
with the response R2, which is the external response
of the system to the stimulus S1. A sequence struc-
ture contains two or more boxes.

The BDL to support the sequence portion of the clear
box is shown in Part B of Figure 7. The remaining
portion of the BDL is the same as the state box except
with CB instead of SB.

Figure 8A depicts the alternation (IF) structure. In
this structure the stimulus S and the state data are
used by the condition C to determine which path
will be followed through the system. Whichever path
is selected, the box BBI or B B ~ will receive as input
the stimulus S and the state data. The output of the
box will potentially update the state and provide the
external response R of the system.

The BDL to support the alternation (IF) portion of
the clear box is shown in Figure 8B.

Figure 9A contains the alternation (CASE) structure.
This structure operates exactly the same as the IF
structure except for the number of different possible
paths through the structure. The BDL to support the
alternation (CASE) portion of the clear box is shown
in Figure 9B.

Figure 10A is the iteration structure. This structure
allows looping in the system. When the system re-

IBM SYSTEMS JOURNAL, VOL 29, NO 1. 1990

Figure 8 (A) The alternation (IF) clear box; (B) the alternation (IF) clear box BDL

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I
I
I
I
I
1
1
I
I
I
I
I
I
I
I
I
I
I
I
I

if

C

then

BB1

else

BB2

fi

ceives a stimulus S, the stimulus and the state data
are used by the condition C to determine whether or
not the system will loop. If it does not loop, S
becomes the response R of the system. If it does
loop, S becomes the stimulus along with the state
data for the box B B I . BBI then provides a potential
update to the state data along with a response R1. S
becomes R1, and the condition C uses this new S
along with the updated state to determine whether
the system will continue to loop. Whenever the
condition C is no longer met, the latest S and old
state contribute to the external response of the sys-
tem.

The BDL to support the iteration portion of the clear
box is shown in Figure 10B.

Figure 1 1 A is the concurrent clear box ~tructure.~ In
this structure the stimulus S and the state data are
received simultaneously by the transactions BBi and

B B ~ (there could be more than two of these). Each
transaction provides a possible update to the state
data and an external response.

If sequencing of the updates to the state (NSI and
N S ~) or the external responses (R1 and R2) if neces-
sary, it is described in the RESOLVE function.

The BDL to support the concurrent portion of the
clear box is shown in Figure 1 1B.

Note that each clear box introduces new black boxes
to continue the stepwise refinement and verification
process. Clear boxes are verified to be correct expan-
sions of their state boxes by reducing the effect of
their procedure parts to a single step in a new state
box and comparing the state box for equivalence.

A transition may be used in more than one place
while the clear box view is being defined. A depen-

66 ODOM IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Figure 9 (A) The alternation (CASE) clear box; (B) the alternation (CASE) clear box BDL

SYSTEM

r--
I
I
I
I
I

STATE

I t

I 0s
I

I
I

I

I
!

I
I
I

I
I
I

I
I
I

r '
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L

I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I

case I
I
I

C I
I

part (value 1) I

part (value 2) I I

part (value 3) I I

part (value 4) j

BB1
I
I
I

I
I

BB2 I
I

I
I

BB3 I
I

I
BB4 I

I
I

""""""2

dency tree should be developed showing the relation- dancy leads to inconsistencies, which is, a major
ship between the transitions. As the definition of the problem in communicating requirements.
system grows, these "common" use transitions will
help minimize redundancy and increase the ability Keep in mind that we want to make the definition
of readers to understand the requirement. Redun- of the problem complete; we should not propose an

0
IEM SYSTEMS JOURNAL, VOL 29, NO 1. 1990 ODOM 67

Figure 10 (A) The iteration clear box; (B) the iteration clear box BDL

I I

implementation solution. The clear box structures
supply the means for examining the interactions of
the different parts of the problem. In this way it may
be discovered that the definition of a particular part
of the problem was not complete and thus save some
rework later.

The last problem we face with each clear box is
whether or not the individual transitions we have
described as part of our procedural definition are
clear enough to stand on their own with any further
definition. This problem is discussed in the next
section.

Using the structures to define the whole problem

A sample hierarchy of the definition of a large re-
quirement is shown in Figure 12. The black box (BB)
in the level designated by (1) is the system-level
definition. The BB in level (1) has been refined into
a state box (SB) view and a clear box (CB) view. The
CB in level (1) had seven different transitions in its

procedural definition which were described as black
boxes. The clear box BBS become the starting point
for the next refinement. Two of these BBS were re-
fined further because of their complexity.

The major question that arises when viewing the
hierarchy in Figure 12 is: How many levels must be
refined before the definition of the requirement is
complete? The answer to this question depends upon
the complexity of the BBS of the CB in the last
refinement. The following are some criteria to be
considered:

1. After the first refinement, there exists a clear box
that has several transitions identified (in the form
of some structure). The clear box description, for
completeness, will document these transitions as
black boxes (stimuli, stimulus history, responses).
If there are no additional transactions to be dis-
covered or no additional state data to be identified
that would require additional transactions (for
transaction closure), refining is finished.

IBM SYSTEMS JOURNAL, VOL 29. NO 1. 1990

Figure 11 (A) The concurrent clear box; (B) the concurrent clear box BDL

ai r""""""

1 with
I
I
I RESOLVE
I
I
I con

I BB1
I

I

I
I BB2

i noc
I
I
I
I
I
I
I
I
I
I
I
I
I

L""""""

I

2. If there is any uncertainty about the questions
raised in the clear box expansion, each of the
black boxes needs to be refined from that expan-
sion that bears on the uncertainty. That means a
state box, and possibly a clear box, must be
created for each transition. If the transition of the
state box is clear (and simple), there is no reason
to create a clear box from the state box.

3. It will be certain that an additional level of refine-
ment is unnecessary only if the refinement process
is carried to one more level than needed to estab-
lish the system requirements.

4. Complexity of the overall system is probably not
a determining factor in the number of levels
required. Neither is system size.

Another question might be, "Should definition of
the requirement always start at the top level?" The
answer to this question is "no," because it may not
always be possible to start at that level. Information

may come as a series of major user requirements,
and there is a desire to place them all in a single
system. Work can be done on each of these seemingly
independent requirements, but the work must pro-
gress upward by first combining these requirements
into a single CB view of the system. It is possible to
move upward to the SB view by abstracting. This SB
view is very valuable because it helps in looking for
redundant data in the overall requirement definition.
There is no unique starting place for defining the
requirement for a system because it will depend upon
many different attributes of the problem. Whether
work starts with the top level BB and that level is
iteratively updated as the levels below it are created,
or the top level BB is found by abstracting upward,
the level should be completed because it will be the
view communicated to the user.

If the top level BB is created by abstracting upward,
transaction analysis should be performed when the

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990


~~~~ ~~~ 

Figure 12 Sample requirement hierarchy 

BB 

I 

level is  defined. This will help narrow the context of 
where the system  will  reside. 

As the requirement is  refined into  the level (2) SB 
views,  new state data  common  to two or  more dif- 
ferent SBS at this level may be discovered. The deci- 
sion  can  be made to migrate this common  data  up 
to the level  above to make the  data more visible to 
the reader and also to guard against redundancy. 
However, it is  desirable to leave the state data at the 
point of origination unless a move will reduce re- 
dundancy. 

A need  might  exist to describe part of the system 
that must be  isolated from the rest  because: 

1. That part of the system will reside apart from the 

2. That part is  subject to change in a future release 

3. There will  be  different  versions  of that part for 

rest of the system; 

of the system; or 

different environments. 

In  Figure 12 the area indicated by (4) shows where 
one leg  of the hierarchy must be isolated for one of 
these  reasons. By having this pointed out during 
requirements specification the designers will have a 
clear message  of a major impact on their design. 

70 ODOM 

Example:  Workstation  printer  requirement 

Within this section is an illustration of the use  of 
box structures in defining (and refining) require- 
ments for a workstation printer. This example builds 
from the following (incomplete) statement of capa- 
bilities: 

The printer will operate in a workstation environ- 
ment where it will be connected to  a workstation 
that is similar to  a personal computer. 
The printer will have standard fonts and  print 
control features available in  the hardware that  can 
be  referenced. 
The printer will  be able to print custom fonts that 
can be created and  maintained by the user. 
The printer will have the ability to  print graphics. 

We  will  go through the black  box and state box views 
for all  of these requirements and through the clear 
box  view that supports the custom fonts part of the 
requirements. Notice that some of the facts are  not 
known at all, and rather than take a wild  guess, the 
notation TBD (to be determined) is inserted so infor- 
mation can be  filled in later. Also included with the 
example is a glossary  of terms and items, which 
provides a place for the  data items to be  defined and 
for additional information to be added to them as 
the requirement is  refined. The glossary will also help 
with the consistency issue (items being defined in 
multiple places under  the same name or different 
names). 

Comments  about  the requirement will be inserted at 
the point where the  comment is being made  and will 
be distinguished from the rest of the text. 

Workstation printer requirement black box. 

Comment-The first step is to  determine  the  stimulus response 
pairs. These pairs are shown with the  same  numbers on each 
side of the black box for the system in Figure 13. The stimuli 
contain  multiple  parts and  are so labeled on the diagram and 
detailed in the  text. 

1. Print Text 

Comment-The three subheadings-stimulus parame- 
ters, response, and behavior-used for each stimulus 
response pair,  provide  a place for an in-depth descrip- 
tion. 

a. Stimulus parameters (stimulus history) 

Comment-The second step  taken  during  the defi- 
nition of the black box is to  determine  the  stimulus 

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990 



history for each of the stimulus  and response pairs. 
The stimulus history is shown in parentheses  after 
the name  of the data item that is part of the stimulus. 
Further definition of the stimuli can be found in the 
glossary. 

Text-data (codes established in  font en- 
tered through operation 3 or as part of 
the standard fonts) 
Font-id (identification for font previously 
entered into system through Create/ 
Update or as part of the standard fonts 
identifications) 

Comment-The following two stimuli come from 
outside  the software system. These  could be 
viewed as  other black boxes with which this sys- 
tem must communicate. 

Standard fonts (available from hardware) 
Standard print controls (available from 
hardware) 

b. Response-Printed  copy or error message 
c. Behavior 

Comment-The third  step in defining the black box 
is to describe the  behavior that will tie  each stimulus 
to its response. The behavior is stated in  terms of 
the  stimulus and response pair using the  stimulus 
history. BDL is  used in this description. 

if no font-id is  specified 
then use the last font specified in  the 

else 
stimulus history 

if the font matching the font-id 
(either a standard font or one 
specified in the stimulus history 
through a Create/Update stimu- 
lus) is  specified 

then use this font to print the text-data 
else return an error message 
fi 

fi 

2. Print Graphics 
a. Stimulus parameters (stimulus history) 

Comment-The requirement was quite vague about 
what printing  graphic files meant.  It means addi- 
tional information must be found  to  support  this 
area. 

Graphic-data (TBD) 

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990 

Figure 13 Printer black box 

1 I PRINTEO 

MESSAGE 
OUTPUT OR " 2. PRINT 

GRAPHICS 
2. PRINTED 

OUTPUT 

3. UPDATE/ 3. MESSAQES 
CREATE FONT 

4. SPECIFY 4. MESSAQES 
FEATURES 

Graphics mode (TBD) 

b.  Response-Printed  copy 
c. Behavior 

Print graphic-data in the graphics mode. 
TBD 

3. Update/Create Font 
a. Stimulus (stimulus history) 

Request 
- Create (if the font identified by font-id 

has not been  specified in the create 
stimulus history or is not a standard 
font) 

- Update (if the font identified by font- 
id has been specified in the create stim- 
ulus history and  an  update of the  font 
is desired) 

- Delete (if the font identified by font-id 
has been  specified in  the create stimulus 
history and removal of the font is  de- 
sired) 

Images 
- New-images (no history) 
- Replace-images (if the font identified 

by font-id was  specified in  the create 
stimulus history) 

Font-id (see request and images above) 



Standard fonts (available from the hard- 

b.  Response-Message indicating success or 
failure 

c. Behavior 

ware) 

Create request 

if the create request was  specified, 
and font-id is not  one of the 
standard fonts and is not  one  that 
has been specified in  the create 
stimulus history 

then the new font-id, along with its 
characters and their mappings, 
will be entered into  the system, 
and a message indicating that a 
new font has been entered will  be 
returned to  the user 

else an error message  will be returned 
for this create request 

fi 

Update request 

if the  update request was  specified 
and  the font-id is the identifica- 
tion for a font that is in  the create 
stimulus history 

then the referenced font characters and 
their mappings will  be entered 
into  the system, and a message in- 
dicating that  the font has been 
changed will  be returned 

for this  update request 
else an error message  will be returned 

fi 

Delete request 

if the delete request was  specified 
and  the font-id is the identifica- 
tion for a font that is in the create 
stimulus history 

then a message indicating that  the font 
has been deleted will be returned 

else an error message  will be returned 
for this delete request 

fi 

72 ODOM 

4. Specify Features 
a. Stimulus (stimulus history) 

Font-id (identification of a font that is 
either a standard font or one  that is in the 
stimulus history of the create request) 
Print features (available from hardware) 
Standard fonts (available from hardware) 

b. Response-Message indicating success or 
failure 

c. Behavior 

if the requested features are available 
from the hardware and  the font 
identified by font-id is one which  is 
in the  stimulus history of the create 
request or is a standard font 

then a message indicating that  the  printer 
settings have been made will be re- 
turned 

else an error message  will be returned 
fi 

Comment-Once the black box has been described, ensure 
that  the description  includes all of the requirements.  Systems 
much  more complex than  this will require clumping (abstract- 
ing) ofthe parts ofthe  requirement until  a  manageable number 
of stimulus response pairs (seven or fewer) is left. 

Workstation  printer  requirement state box. 

1. Print Text 

Comment-The first step  in creating the state box view 
(Figure 14) of a black box is to derive the  state  data 
from the  stimulus history of  each  stimulus.  With nec- 
essary stimulus history items retained in  the state, the 
stimulus history can  be  dropped  from  the  stimulus 
parameters. 

a. Stimulus parameters 
Data 
Font-id 
Standard fonts 
Standard print controls 

b. Response-Printed copy or error message 
c. States 

Comment-The following two pieces of  state data 
are used to support this stimulus  and response pair. 
The  standard fonts and  standard  print controls are 
not included  since  they come from  outside the sys- 
tem. Also, it is good to  note  the action that is taken 
with the state data, such as  INPUT,  OUTPUT, or 

IBM SYSTEMS JOURNAL, VOL 29. NO 1, 19% 



t 

B 

b 

Figure 14 Printer  state box 

PRINTER 

A.  CUSTOM  FONTS B. CURRENT  ACTIVE  FONT 
AND  PRINT  CONTROLS 

1. PRINT TEXT 1. PRINTED 

2. PRINTED 

CREATE  FONT 
3. MESSAGES 

4. MESSAGES 

UPDATE. The state data will also be described in 
the glossary along with their initial states.  Eventually 
we  will want to make sure that there is transaction 
closure for every part of the state data. 

Custom fonts (INPUT ONLY) 

Current active font and  print controls 
(INPUT, UPDATE) 

d. Behavior 

Comment-The  second step for creating the state 
box  is to restate  each of the behaviors described in 
the black  box  view in terms of the stimulus and 
response  pair and the state data. 

if 
then 
else 

if 

then 

else 
fi 

fi 

no font-id is  specified 
use the current active font 

the requested font exists in  the 
standard fonts or in  the custom 
fonts 
take the referenced font from the 
standard fonts or  custom fonts 
and use it to set the  current active 
font and  to  print  the  data 
return an error message 

2. Print Graphics 
a. Stimulus parameters 

Graphic-data 
Graphics mode 

b. Response-Printed  copy 

d. Behavior 
C.  State-TBD 

Print  the file in the graphics mode. TBD 

3. Update/Create Font 
a. Stimulus parameters 

Request 
- Create 
- Update 
- Delete 
Images 
- New-images 
- Replace-images 
Font-id 
Standard fonts 

failure 
b. Response-Message indicating success or 

c. State 
Custom fonts (INPUT,  UPDATE) 

D 
IBM SYSTEMS JOURNAL, VOL 29. NO 1,  1990 ODOM 73 



d. Behavior 

Create request 

b.  Response-Message indicating success  or 
failure 

c. State 

if the create request was  specified, 
and the font does not currently 
exist  as a standard font 

then the new font, along  with its char- 
acters and their mappings, will  be 
entered into the system, and a 
message indicating that a new font 
has  been entered will  be returned 
to the user 

else an error message  will  be returned 
to the user 

fi 

Update request 

if the update request was  specified, 
and the referenced font exists  as 
one of the custom fonts 

then the referenced font characters and 
their mappings will  be entered 
into the system, and a message in- 
dicating that the font has  been 
changed will  be returned 

to the user 
else an error message  will  be returned 

fi 

Delete  request 

if the delete  request was  specified, 
and the font-id  specified  exists  as 
one of the custom fonts 

then the referenced font will be  re- 
moved  from the custom fonts, 
and a message indicating the font 
has  been  deleted will  be returned 

else an error message  will  be returned 
for this delete  request 

fi 

4. Specify Features 
a. Stimulus parameters 

Font-id 
Print features 

c Standard fonts 
Standard print controls 

Custom fonts (INPUT ONLY) 

Current active font and print controls 
(UPDATE) 

d. Behavior 

if the requested font exists  in either 
the standard fonts or custom 
fonts 

the font will  be  used to set the 
current active font and print con- 
trols, and a message indicating 
the new settings will  be returned 

then the requested features including 

else an error message  will  be returned 
fi 

Comment-The third step is to check for transaction closure 
for each  piece of state data. Below are the five criteria suggested 
earlier for transaction closure: 

1. Initialization-both  described  in the glossary 
2. Add 

Custom fonts-Create  request 
Current active  font-Only one can be active at a time. 
This can be  set through the print text  request or 
through the specify feature request. 

3. Delete 
Custom fonts-Delete  request 
Current active font-It  is replaced by the action of the 
print text request or the specify feature request. 

4. Update 
Custom fonts-Update request 
Current active font-It can be changed by replacing it. 

5.  Query-Both  can  be  used by the print text and specify 
features requests. 

Workstation printer  requirement  clear box. 

Comment-The  clear  box will show the procedural represen- 
tation of the state box. The most typical representations at this 
level are alternation, concurrent, or sequence. If a combination 
of these  is  used,  keep the reader in mind and keep the structure 
simple. 

Only the Update/Create Font will  be documented in this 
example. 

Comment-The  first step in defining the clear  box for a state 
box  is to decompose the transitions from stimulus to response 
into procedural steps. In this case the procedural steps for the 
stimulus response pairs are independent of one another. 

The second step is to use one of the structures to describe that 
interaction. The structure selected for the example is an alter- 

74 ODOM IBM SYSTEMS JOURNAL, VOL 2 9 ,  NO 1, 1990 



D 

Figure 15 Printer  requirement  clear box 

1. PRINT TEXT 

2. PRINT 
GRAPHICS 

3. UPDATE/ 
CREATE  FONT 

4. SPECIFY 
FEATURES 

WINTER 

A.  CUSTOM  FONTS E. CURRENT  ACTIVE  FONT 
AND  PRINT  CONTROLS 1 

: I I : 

: 
: 
: 
: 
: 
: 
I 
: 
: 
: 
: 
: 

: 
: 
: 

i 

1. PRINTED 

MESSAGE 
OUTPUT OR 

2. PRINTED 
OUTPUT 

~~ 

3. MESSAQES 

4. MESSAGES 

nation structure since each of the  paths is independent  and Comment-What is new in the  description that follows is the 
will not be occurring  concurrently. section describing the  condition “C.” This directs the reader 

to  the correct path in the  alternation  structure of Figure 15. 

D 
IBM SYSTEMS JOURNAL, VOL 29. NO 1, 1990 ODOM 75 



2. Print Graphics 

3. Update/Create Font 
. . .  

a. Stimulus parameters 
Request 
- Create 
- Update 
- Delete 
Images 
- New-images 
- Replace-images 
Font-id 
Standard fonts 

or failure 
b. Response (R3)"essage indicating success 

c. State-Custom fonts (INPUT, UPDATE) 

d. Behavior (BB 1.3) 
Create request 

if the create request was specified, 
and  the font does not currently 
exist as a standard  font 

then the new font, along with its char- 
acters and their mappings, will  be 
entered into  the system, and a 
message indicating that a new font 
has been entered will  be returned 
to the user 

else an error message  will be returned 
to  the user 

fi 

Update request 

if the update request was  specified, 
and  the referenced font exists as 
one of the custom fonts 

then  the referenced font characters and 
their mappings will  be entered 
into  the system, and a message in- 
dicating that  the font has been 
changed will be returned 

to the user 
else an error message  will be returned 

fi 

Delete request 

if the delete request was specified, 

76 ODOM 

and  the font-id specified  exists as 
one of the custom fonts 

then  the referenced font will be re- 
moved from the custom fonts, 
and a message indicating the font 
has been deleted will be returned 

else an error message  will be returned 
for this delete request 

fi 

4. Specify Features 
... 

Comment-The third step in defining the clear box is to 
examine  each  of the black boxes that have  been  defined  within 
the clear box to  determine if enough detail was given for the 
reader to understand this  part of the  requirement. If there is 
not  enough information available  for  a  particular box, that 
box will become the black box for refinement into a lower- 
level state box and clear box. 

Workstation printer requirement glossary. 

Comment-The glossary provides  a place for the  data descrip- 
tions  and functional  descriptions that relate to this  require- 
ment. As more  information is needed about a  particular piece 
of data, it can be added here. 

The glossary contains  the description and  the elab- 
oration of the data. If the description contains 
(global), the  data type is used in more  than  one place 
and will be described under global data descriptions. 

1. Classes  of stimuli description 
a. Print Text 

1) Text-data-Print  file created using code of 

2) (global) font-id 
3) Standard fonts-These are  fonts  that  are 

available from the hardware and can be 
referenced by the font-id for each particular 
font. 

4) Standard print controls-These are  the 
print controls available from the hardware 
and can be  referenced by the proper 
(global-standard fonts) features keyword 
and value for each desired print character- 
istic. 

b. Print Graphics 

font 

1) Graphic-data 
2) Graphics mode 

c. Update/Create Font 
1) Request-One of the following three would 

be  valid: 

IBM SYSTEMS JOURNAL,  VOL 29, NO 1, 1990 



B 

a) Update-Keyword for indicating that 
an update to a custom font is  desired. 

b)  Create-Keyword for indicating that 
the operation for creating a new custom 
font is  desired. 

c) Delete-Keyword for indicating that 
the operation for deleting a custom font 
is desired. 

2) Images 
a) New-images-Entire font character 

graphics and ASCII mappings 
b) Replace-images-Same as new-images 

except contains only the font character 
graphics and ASCII mappings for the 
characters that are to be changed. 

3 )  (global) font-id 
4) (global) standard fonts 

1) (global) font-id 
2) Print features-Printer settings such as 

lines  per inch, characters per inch, etc., that 
are part of the hardware 

d. Specify Features 

3 )  (global) standard fonts 
4) (global) standard print controls 

2. State data descriptions 
a. Custom fonts-Contains the user-entered cus- 

tom fonts which are referenced by their font- 
id and contains the characters and their map- 
pings (the code by which the characters will be 
referenced  from within a text file). 

D Initialization: Empty. 

b. Current active font and  print controls-Con- 
tains the current active font and  print features 
(print features are defined under global data 
descriptions). 

Initialization: At IPL (initial program load) 
time the printer will  be  set up with (TBD). 

3 .  Global data descriptions 
a. Font-id-Name  of font desired 
b. Standard fonts-These fonts are available 

from the hardware and can be referenced by 
the font-id for  each particular font. 

c. Standard print controls (for print features)- 
These print controls are available from the 
hardware and  can be  referenced by the proper 
features keyword and value for each desired 
print characteristic. 

I 

Observations on the printer example. The example 
contains all three views  of the same level  of the 

1 
1EM SYSTEMS JOURNAL,  VOL 29. NO 1, 1990 

requirement. There is  still  work to be done  for this 
level  because there are several “TBDS” to be removed. 
The question about what it means  to  print graphic 
text is far from understood, but we have put a place 
holder into  the requirement specification for it  and 
have created a model for the entire system that can 
be  reviewed with users and designers. It may not be 
necessary to use  all three of these views in a particular 
document. They are  meant  to show the progression 
of refinements, and each view has its own audience. 

The glossary supplies a “where used” understanding 
of the  data associated with the stimuli, states, and 
responses. The descriptions of those data  are fairly 
primitive, but they can be enhanced as it becomes 
necessary. At this stage they should help support 
consistency by minimizing redundant descriptions 
and making the  document more modifiable. 

The next activity would be to supply information 
for the TBDS and  then to consider the need to take 
each  of the BB 1.n boxes and decompose them  into 
the next level  of BB + SB + CB diagrams. 

Conclusion 

Box structures allow us to  document a requirement 
using  easily understood models. Since these models 
give the reader a perception of where to look in  the 
models for different pieces  of information about  the 
requirement, they help to convey what the require- 
ment is  saying to both the user and  to  the developer 
who implements it. 

A requirement written in this way can be further 
refined by someone else  before a particular imple- 
mentation is started. If one person documents a 
requirement in this way, other people could take  the 
requirement and  continue  to refine it to  determine 
whether they understand all of its subsystems. In this 
way it becomes the  communication vehicle  between 
the requirements writer and  the developer. 

Finally, a requirement that  communicates well  will 
be  used and will  be maintained as changes occur. 
This will help to make the product that is  delivered 
be closer to what was initially desired by the user. 

Cited  references 

1. H. D. Mills, R. C. Linger, and A. Hevner, Principles of Infor- 

New York (1986). 
mation  Systems  Analysis  and Design, Academic Press, Inc., 

2 .  R. C. Linger, H. D. Mills, and B. 1. Witt, Structured Program- 
ming:  Theory  and Practice, Addison-Wesley Publishing Com- 
pany, Inc., Reading, MA (1979). 

ODOM 77 



R. G. Mays, L. S. Orzech, W. A. Ciafella, and R. W. Phillips, 
“PDM:  A  Requirements  Methodology  for Software System 
Enhancements,” IBM Systems Journal 24, No. 2, 134-149 
(1 985). 
ANSI/IEEE Std. 830-1984, “An  American  National  Standard 
IEEE Guide  to Software Requirements Specifications,” Institute 
of Electrical and Electronics Engineers, New York (1984). 
H. D. Mills, “Stepwise Refinement  and Verification in Box- 
Structured Systems,” Computer 21, No. 6, 23-36 (June 1988). 

General reference 

H. D. Mills, R. C. Linger, and A. R. Hevner, “Box Structured 
Information Systems,” IBM Systems Journal 26, No.  4, 395-413 
( 1  987). 

John  E. Odom IBM US Education. 500 Columbus Avenue, 
Thornwood, New York 10594. Mr.  Odom  joined IBM in 1980. He 
is currently  part  of  the Software Development  Technology  Center 
where he teaches and  consults with IBM organizations on software 
requirements  and design. Since joining IBM, Mr. Odom worked 
in systems programming  and software engineering  education.  Prior 
to  joining IBM he was an associate professor of  computer science 
at  Mankato  State University in  Minnesota where he spent  ten 
years on  the faculty. He also served for  two years as  the executive 
manager  of  a  data processing organization  in  Minnesota.  He 
received his B.S., M.A., and  Educational Specialist degrees from 
Mankato  State University in 1968, 1969, and  1974, respectively. 
Mr.  Odom is a  member  of  the IEEE Computer Society. 

Reprint  Order No. G321-5386. 

78 ODOM IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990 


