Effective application
development for
Presentation Manager
programs

by S. M. Franklin

The 0S/2™ Presentation Manager™ provides an inte-
grated graphical, windowing user interface to IBM’s
0OS/2 operating system. This paper addresses a pri-
mary area of interest for Presentation Manager appli-
cation developers: the use and development of user
controls. A control in the Presentation Manager envi-
ronment is a program object with a programming inter-
face and application function. The structure and inter-
faces between controls and the system are described
in order to provide an understanding of the correct
procedure for programming the Presentation Manager
efficiently.

With the introduction of a new generation of
workstations and midrange computing sys-
tems, IBM has made several key strategic announce-
ments which set the direction for both 1BM products
and applications developed for 1BM systems. Systems
Application Architecture™ (SAA™) and its end-user
interface component, Common User Access (CUA),
define how a system and applications running on it
interact with an individual at a terminal.' Coopera-
tive processing requirements among IBM’s Personal
System/2® (ps/2®) workstations, midrange systems,
and large systems and 1BM’s plan to standardize user
interfaces across hardware product lines have given
the ps/2 workstation the key role in end-user interface
support. The primary user interface component of
the ps/2 multitasking operating system, Operating
System/2™ (o0s/2™), is the Presentation Manager™

44 FrankiN AND PETERS

A. M. Peters

which gives the user a windowed, graphical inter-
face.” The Presentation Manager is the system-sup-
plied cua end-user interface tool that provides access
to the file system, system services, and applications.
Also available from 1BM is a programmer’s toolkit
which allows application developers to develop new,
graphically based applications.

Users who interact with multiple applications are
more productive in their work if the user interface is
consistent across applications.” This statement be-
comes increasingly true as cooperative processing
requirements continue to grow and application de-
velopers build applications designed for multiple
systems environments. To make applications con-
sistent with one another, each application needs to
follow a set of rules regulating the interface consis-
tency.” Adhering to such rules is particularly impor-
tant with the incorporation of a graphical user inter-
face such as the Presentation Manager. The sophis-
ticated capabilities of the Presentation Manager have
promoted the growth of advanced user interaction
styles and techniques and make the requirement for

© Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

a user interface definition all the more important.”
CUA 1s IBM’s solution to achieve this consistency for
saA-conforming applications.” Application sets may
choose, as well, to follow more stringent conform-
ance definitions.

As application developers implement many of these
new concepts, the need for a consistent set of both
graphical and text user interface services for appli-
cations has emerged. Some of this enhanced capa-
bility is provided by the basic services of the Pres-
entation Manager and is accessible to the application
developer through the toolkit. Other services must
be built by the application itself to accommodate
application-specific requirements. Further, these
services will most certainly not remain static as the
program evolves over time. Applications will have
to evolve as user interface techniques advance, and
sophisticated new display technologies will have to
be integrated into existing applications if they are to
remain competitive. To provide for consistency in
the user interface and for evolution, these services
should be implemented in such a way that they are
easily reusable and can be modified and extended
without changing existing program code.’

This paper discusses a strategy for providing such
sets of services, or building blocks, referred to in
Presentation Manager terminology as controls,
which allow a consistent approach to end-user inter-
face development. A control under the Presentation
Manager is a user interface element with a unique
programming interface and application function. Ex-
amples of system-supplied controls are menus and
dialog boxes. Clearly, any attempt to standardize
application development should not restrict the
usage of the underlying system capabilities. Appli-
cation-defined controls in no way inhibit any of the
sophisticated capability of the Presentation Manager
or the designated manner in which developers im-
plement programs; all Presentation Manager func-
tion remains available to an application. Application
developers can, in fact, enhance the existing function
by developing controls for specific program pur-
poses. Controls can also be structured so that the
burden of change is isolated from the application
and localized within the control, thus promoting an
object-oriented design.

Making application-developed controls available has
been a system design approach used in the develop-
ment of 1BMs OfficeVision/2™ by the Application
Solutions Division. This product is a set of SAA-
compatible, cua-compliant applications that form

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

an electronic office for system users. The programs
exploit the capabilities of the Presentation Manager
and at the same time provide a tool set that mini-
mizes development effort, enforces user interface
consistency, and maximizes code reusability. Inter-
face consistency gives developers the flexibility to
make internal control changes as CUA develops.

This paper explores the concept of application-de-
veloped controls by examining Presentation Man-
ager-supplied controls and the design and structure
of application-developed controls. We discuss how
controls are used by applications and how developers
can design and develop additional controls. We high-
light aspects of our experience in control develop-
ment and discuss future requirements for building
controls as the Presentation Manager evolves.

Presentation Manager user controls

The Presentation Manager implements a windowing
interface by passing user-generated input events to
underlying windows displayed on a workstation dis-
play screen. An input event is translated into a
message and sent to the window procedure that
processes input for a specific window. For example,
if a user positions a mouse pointer over a button
window and clicks the mouse, the window-process-
ing procedure for the button window class receives
a message indicating that a particular button has
been selected on the screen by the user.

A control is a special kind of window. When a
control is created, it is an instance of that special
window class. Some controls are predefined by the
Presentation Manager such as the title bar, iconic
maximize and minimize arrows, menus, sizing bor-
ders, push buttons, scroll bars, and text entry fields.
These types of controls are the basic user interface
building blocks for Presentation Manager applica-
tions. A typical application consists of a frame con-
taining an application-specific window known as the
client window. The frame window itself consists of
multiple controls such as the title bar, maximize and
minimize icons, menus, sizing border, and scroll
bars. Figure 1 shows an example of a frame window
made up of frame window controls and the client
window. The application selects the desired controls
that make up the frame window at its creation. Each
of these controls receives and processes messages
from user-generated input events.

A window class definition is analogous to a definition
for a new data type, just like a data-type class in an

FRANKLIN AND PETERS 45

46

Figure 1 Standard OfficeVision/2 frame window

File Edit View Office

OfficeYision/? LAN Series - Dan's

%i.xizrszsisrzi help
Help pa kevs
Hetn index

Tudarial..

&

&

I -

View Copyright information

object-oriented language.” Window class definitions
describe class-unique data and specify the processing
intelligence for the window class by indicating the
window procedure for processing the class. The win-
dow procedure defines how the control appears to
the user and is responsible for “painting” the control
on the display screen. The procedure also defines
how the control responds to user input because it
processes the user’s input, which comes to the control
in the form of a message.

A simple example will help to illustrate how using
controls impacts the structure of a Presentation
Manager program. Suppose it is necessary for an
application to display selection input fields such as
the button selectors in Figure 2. The user indicates
the desired action by positioning the cursor over the
button selected and clicking the mouse.

The application could implement a button by draw-

ing the oval outline for a button and displaying the
text inside the outline. Whenever the application

FRANKLIN AND PETERS

receives input from the mouse, the application could
check to determine if the mouse was positioned over
the oval when the mouse was clicked, and if so,
process the command indicated by the text for the
button. In this situation, the application creates and
processes each button separately.

Instead, each button is defined as a “control” having
particular button characteristics. The application
creates the button by using the WinCreateWindow
function call of os/2, which specifies the size of the
button, the text to appear in the button, and the
location of the button. The WinCreateWindow func-
tion passes an application-defined amount of infor-
mation to the new control when it is created, there-
fore allowing detailed information about button
color, text fonts, etc., to be specified when the button
is created.

Since the button is a predefined window class, the
application need not draw the button. Instead, the
window procedure of the button “paints” the button.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

When the user selects a button, it is the button
control that receives notification that the button was
selected. The button control then sends a message
back to the application program indicating that it
was selected. To use buttons the application must
only create the button with a single function call and
accept notification when the button is selected. The
control handles the mouse and graphics processing.7

The advantages of implementing the button as a
control increase as the requirements for using but-
tons grow more complex. Consider that the appli-
cation may be set up so that buttons are to be used
in various parts of the application which require
different forms of processing. It may be necessary for
the application to use buttons both in the client
window of the application and in dialog boxes. Client
windows are normally created dynamically by the
application program. Dialog boxes are normally cre-
ated implicitly by defining the dialog box in an
application resource file, including the components
of the dialog box, which in this case includes a button
control. If the button control is specified in the
application resource file as part of the dialog box,
the Presentation Manager automatically creates the
button within the dialog box.

Further, the requirements for buttons may change
after the application is developed, or different forms
of buttons may be required in different computing
environments. For example, a button might need to
have both a short and a long form of text inside of
the button, or possibly a variable shape. These
changes are localized within the button control with-
out having an impact on the application program.

We have already shown how the components of the
frame window, exclusive of the client area, are pri-
marily a collection of controls supplied by the Pres-
entation Manager. Below we propose the same meth-
odology within the client window based on an appli-
cation-specific hierarchy of controls. Reusable,
consistent program components can be structured
and provided to calling applications as publicly de-
fined window classes and then used as a control.
Each component that is implemented as a control,
regardless of its complexity, provides the same ben-
efits for an application as the sample button control
previously described. A control initializes itself, proc-
esses relevant information within itself, and interacts
with the application with a minimal amount of
messages. Changes and evolution within the sphere
of a control are encapsulated within the control itself,
making the remainder of the application immune
from change occurring within the control.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Figure 2 Button controls in a dialog box

B Mowe |

Mouse options

CJSwap left’right mouse buttons:

[Enten [CancelJ [Help)

To illustrate the point, Figure 3 and Figure 4 are
examples of a relatively complex application which
is implemented by constructing the application as a
collection of basic controls. The purpose of the ex-
ample application is to allow the user to define the
colors and various screen components of Presenta-
tion Manager. Virtually every object on the screen
is a predefined control supplied to the application
from a previously existing source. In Figure 3 the
frame window entitled “Control Panel” consists of a
title bar, iconic minimize control, menu, scroll bar,
and text input and output controls. When the user
selects Preferences—Screen colors ..., the dialog box
control labeled “Screen Colors” in Figure 4 is dis-
played, which consists of the same title bar, menu,
scroll bar, and text input and output controls, as well
as list, button, and window sizing controls, along
with an application-defined color selection display
control.

Not only does this example show how a relatively
complex application is quickly implemented through
the use of existing control components, but it is also
an excellent illustration of how controls are able to
provide user interface consistency. A new applica-
tion, which provides an exact mockup of the user
interface that the user can see and adjust, is created
using existing user interface controls. This example
provides a substantial amount of complex function
in a consistent manner by simply specifying which
controls are to be displayed and processing simple
sets of messages sent to it by each of the controls.
The controls handle most of the processing, without
any involvement by the application. Of course, not
every portion of an application can or should be
structured into a control, but controls are a solution
for those application segments that normally would
be structured in a procedural manner.

FRANKLIN AND PETERS 47

Figure 3 Presentation Manager control-oriented application

Control Panel
Preferences | Setup Installation Exit

Screen colors...
Border width...

v ¥Warning beep
Mouse... k4
Logo display...
Country...

-Cursor Blink——

Slow Fast

Date
g-30-89

~Double-Click—

Slow Fast

TEST

This concept can be extended to broad categories of
applications. Within the office application several
loosely coupled collections of data objects make up
a substantial set of the office programs such as mail
boxes, file cabinets, file drawers, and folders. Each of
these programs keeps track of and maintains both
similar and diverse sets of objects that have a com-
mon user interface format. This style is a list of
graphics-based iconic representations of the objects
within the collection. The exact style of the list is
dependent on several criteria, including application
requirements and user preferences. For example, the
office window, which provides access to the office
application set (Figure 5), is displayed in two distinct
styles, one listed vertically and the other as a user-
adjustable matrix.

48 FRANKLIN AND PETERS

To achieve user interface consistency, we decided
that the user interface for each office application
should be based on a common set of functions. We
knew early within the development cycle that our
user interface would be developed in an iterative
fashion in conjunction with substantial human fac-
tors testing and would therefore be subject to consid-
erable change throughout development. Develop-
ment costs could soar unrealistically if every appli-
cation within the product set was obligated to
“understand” the intricacies involved in developing
the graphical interface for the entire set of applica-
tions for the product.

Accordingly, we implemented the primary user in-
terface components as controls. Figure 5 shows two

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Figure 4 Dialog box from the control-oriented application

Screen colors

Screen Backqround
Application Workspace
wWindow Background
Yindow Text

Window Static Text
Action Bar

Action Bar Text

Active Title Bar

o e e e A e e A o e o o e R SRR L SR P

Screen Colors

B

A7nS|

Sample String

File Edit

RGB: 165 250 133
wWindow Text
Yindow Static Text
Qutput Text

Help Text
Help Hilite

R R R

o

(OK) (Refresh) [Defaults) (Contrast..] (Cancel] (Help)

o o,

A A A A L A L W A A L B A L A e A U A A M LU S A A A s

3

instances of the office window using the same control
to produce different variations of the iconic interface.
This control also provides other office programs with
a simple interface for their own graphical user inter-
face components; each application programmer need
not understand the complexities of the graphical
iconic interface. As changes surfaced and the user
interface evolved, we changed only the controls that
did not involve individual applications. This strategy
ensured that individual application philosophies
were superseded by those of the application set as a
whole. These controls also make it possible for non-
1BM developers to build applications that run as part
of OfficeVision/2 and have the same user interface

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1980

as the IBM-supplied applications which make up the
office system.

An example user control

As illustrated previously, it is possible for an appli-
cation to provide substantial function simply by
using system-supplied controls. When these controls
are not appropriate for a specific task, the application
developer may implement the unique requirement
as a “user control.” If the code is structured so that
the function is packaged as a unique window class,
the control may be used in many different places
throughout the application, as well as in other appli-

FRANKLIN AND PETERS 49

50

Figure 5 Office controls

==lgi OfficeVision/2 LAN Series - C{ & | 4

File Edit View Office Help

Dan's Whitting Pad
Address Book
Dist List

@ Search List

Project Folder

Dan's Orawer

Dan's File Cabinet
Fg Danl's Office Window
B AGG Document

I!iﬁ’ Dan's In Basket

cations. In developing an application control, the
logic and data of the control must be structured and
maintained such that each instance of a control
maintains its own set of specific data, while respond-
ing to user interaction in a consistent manner.

We will create a user control called “value set” as an
example of the use and development of application
controls, but first, we explore the requirements for
the value set control.

Function of a value set control

Often, the user of an application must make a selec-
tion from among a list of graphical elements. The
Presentation Manager has controls for choosing
items from lists of words. The value set control
provides a mechanism for discrete, single selections
depicted by icons, text, numeric values, patterns, or
color. When a program requires the user to make a
visual, single selection choice, a value set may be
used to provide the interaction and selection.

For example, consider an application that displays a
dialog box prompting the user for a color selection.
This choice could be depicted using Presentation
Manager buttons labeled “red,” “white,” and “blue,”
but the value set could also present this choice by

FRANKLIN AND PETERS

ezl OfficeVision/2 LAN Seri K2

File Edit View Office Help

Tutorial

displaying a palette containing red, white, and blue
items. Use of the value set in this situation provides
a more visual choice and may save valuable screen
area.’ It also eliminates the necessity of translating
text as the product is developed for foreign countries.
Figure 6 shows a dialog box containing several dif-
ferent styles of value sets.

Application users may interact with the value set by
using a mouse, keyboard, or a combination of both.
When using the mouse, the user selects an item by
pointing to it and clicking with the mouse button.
The value set control notifies its owner with a mes-
sage whenever one of its items is selected or dese-
lected. It also provides visual feedback of the selec-
tion state by drawing a heavy black line around the
value set selection. The user may deselect items by
clicking a second time, or by clicking on another
item.

Use of the keyboard to navigate through the value
set requires information about the current cursor
position. When a value set receives attention from
the keyboard, it reflects both the current selection
and the current cursor position. The cursor position
is indicated with a broken line drawn around the
value set item. (See “Pie” in the “Chart” value set in
Figure 6.) As the user navigates through the value

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1990

Figure 6 Dialog box containing various value set controls

— Source

Contour

— Pattern

Il

Apply

Cancel

Help

BM SYSTEMS JOURNAL, VOL 29, NO 1, 1990 FRANKLIN AND PETERS 51

Figure 7 Sample value set invocation by calling application

WinRegisterClass ((hab)NULL, /* anchor block handle */
"ValueSet", /* window class name */

ValueSetWndProc, /* window procedure *x/

CS_SIZEREDRAW, /* class style bits */

4); /* bytes of storage */

hCtl = WinCreateWindow (hwndParent, /* parent window */
"ValueSet", /* window class */

"Value Set Text", /* window text */

style, /* style bits */

X, Yr /* position */

cx, ¢y, /* size */

hwndOwner, /* owning window */

HWND_TOP, /* z order */

id, /* window id */

(PVOID) NULL, /* optional */

/* presentation */

/* parameters */

{PVOID) &CtlData); /*

control data */

set items using the cursor keys, the broken outline
follows. When the desired selection is reached, the
Enter key is used to select the item. If the user presses
Enter a second time, the item is deselected.

Although implementation of the value set selection
mechanism could be undertaken as an application-
supplied function, it would not facilitate code reuse.
Other applications with similar requirements would
have an individualized implementation of the value
set which could result in different, perhaps confusing,
interaction styles among similar functions. By struc-
turing the value set function as a control, the func-
tion may be reused throughout the application and
in many related applications.

User control invocation

The two primary requirements of an application
program in creating a user control are to register the
window class for the control and create the window.
Each control is an instance of a particular window
class. Registration tells the operating system what
window procedure to call when a window of that
class receives a message. Registration also specifies
parameters such as storage requirements and the
actions that the operating system is to perform when
moving or sizing operations occur on that window.
Once a window class has been defined to the oper-

52 FRANKLN AND PETERS

ating system through registration, the program can
create as many controls of this specific class as nec-
essary.

Once the window class has been registered, the ap-
plication creates the control by issuing a Win-
CreateWindow call specifying this class. With the
value set serving as the example, it can be seen that
the application issues the WinCreateWindow using
the registered class of ValueSer.

Four basic types of information must be passed when
the control is invoked:

1. Information describing the ownership and paren-
tage of the control. This information is necessary
in defining the messaging matrix to the system
for communication between the owning window
and the subordinate controls.

2. Size information during the creation of the control.
This information can be omitted at creation time
and dynamically supplied by the application
when the control is displayed.

3. Application-specific parameters. In the value set,
these parameters describe the row and column
structure of the items within the control.

4. System-required parameters. Applications must
supply identification (1D) for a window, identify-
ing the control to the operating system.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

When a window is created, the operating system
returns a unique window identifier to be used by the
application in communicating with the control. This
identifier is called a window handle.

Figure 7 shows the sample calling sequence for in-
voking a value set.

General requirements for user control
implementation

Although the implementation of a specific Presen-
tation Manager user interface control will vary de-
pending on the requirements, there are general
guidelines for implementing a control. Successful
development of a control begins by understanding
the general characteristics and the skeletal structure
of a control. This template can then be expanded to
include the specific functional requirements of the
control.

Message handling. From an implementation view-
point, a control is nothing more than a specialized
window class which is expected to field certain mes-
sages and return the expected values. The internal
structure of a control is simply a window procedure.
There is no main program or invoking routine; these
tasks are performed by the application creating the
control. The functionality of a control is determined
simply by the types of messages that are accepted.

A control generally accepts two types of messages:
window messages predefined in the Presentation
Manager and new messages defined by the control.
A subset of the former group is fielded by all controls.
For example, the control must always be prepared
to redraw its contents when the WM_PAINT message

is received. Likewise, the contents of the control
may need to be repositioned or resized when the
WM_SIZE message is encountered. WM_CREATE proc-
essing gives the control a chance to initialize data
and set up storage blocks, whereas the WM_DESTROY
message is the appropriate time to release all re-
sources allocated for the control. Beyond these four
messages, the specific purpose of the control deter-
mines what additional system window messages
(such as WM_BUTTONIDOWN) or specific control-
defined messages must be fielded.

The value set control processes system messages such
as WM_BUTTONIDOWN and WM_CHAR in order to
determine mouse and keyboard navigation and se-
lection. The remaining messages fielded by the value
set are control-specific. The control provides a mes-
sage set that allows the application developer to
dynamically add, delete, and alter selection items in
the value set control. The text and graphics inside
the value set items may also be queried. Table 1
summarizes the value set messages.

Control parent and owner relationships. In addition
to fielding certain messages and returning values,
controls often post messages when certain specified
events occur. The value set generates messages as an
item is selected or deselected. Notification messages
are posted to a window known as the owner of the
control, the owner being specified during creation of
the control. The only logical relationship between a
control and its owner is the fact that notification
messages are posted to the owner. It is the parent of
the window that determines positioning of the con-
trol. The parent and owner may be the same window
but do not necessarily have to be. For example,
Figure 8 shows an application which has placed the

Table 1 Value set messages

Cause and Processing

VSM_INSERTITEM
VSM_DELETEITEM
VSM_SETTEXT
VSM_DELETEALL
VSM_SELECTITEM
VSM_QUERYSELECTION
VSM_QUERYTEXTLENGTH
VSM_QUERYTEXT
VSM_QUERYITEMCOUNT
VSM_QUERYITEMPOSFROMID
VSM_QUERYITEMIDFROMPOS
VSM_SETITEMSTRUCT
VSM_QUERYITEMSTRUCT

Inserts an item into the value set.

Deletes an item from the value set.

Sets the text of the control.

Removes all items from the value set.

Sets the selection state of the item.

Returns the selected item.

Gets the size of the value set field text in bytes.

Copies field text of the control.

Returns a count of the number of items in the value set.

Returns the zero-based index of an item given its item identifier.
Returns the item identifier of an item given its zero-based index.
Resets the structure of the specified item to the new structure supplied.
Fills the structure supplied with the current information for the specified item.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

FRANKLN AND PETERS 53

Figure 8 Value set in dialog box signaling client window

value set control inside a dialog box. In this case, the
dialog box is the parent of the control, although the
client window will receive notification messages and
act on selections that occur within the dialog box. In
order to receive notification messages, the client
window of the application is specified as the owner
of the control. The role of the parent and owner with
respect to a control is often muddled by control
implementations. A simple rule is that all outgoing
messages from a control are posted to the owner.
There should never be any reason for a control to
communicate with its parent.

Control status and instance data. Since a user inter-
face control is a resource made available to all ap-
plications, a control cannot make any assumptions

54 FRANKLIN AND PETERS

Value Set Selectio

Calendar

() o]

regarding its origin. For example, the control may
be invoked several times by the same application or
by many different applications. Associated with each
invocation of a control is a particular state. For
example, each value set contains a certain number
of items positioned in particular locations within the
control. Data which describe such information are
called instance data and must be stored such that
each individual instance of a control can access its
instance data at all times during execution of the
control.

Storage of instance data can be accomplished by
storing a pointer to the data in a Presentation Man-
ager window word. During class registration, an ap-
plication may specify a specific amount of data to

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Figure 9 Value set input structure

typedef struct _VALUEITEM {

} VALUEITEM;

USHORT idItem; /* unique id for data item */
LONG cBytes; /* length of data in pGPI */
USHORT rgfFormat; /* data format flags *x/
char szItem{64]; /* string name of item */
unsigned char far *pGPI; /* pointer to bits or orders */
PBITMAPINFO pbmapinfo; /* pointer to bitmap table */
HBITMAP hBitmap; /* bitmap handle */

be reserved for each instance of the window class.
These data blocks, or window words, are accessible
through a standard Presentation Manager applica-
tion program interface (ap1) call. Given any window
handle, the Presentation Manager can return a
pointer to any of the requested window words. The
window class of the value set is registered with an
additional four bytes of window word data in order
to maintain and access instance data. This window
word is requested in the last parameter of class
registration as illustrated in Figure 7. It is used to
hold a long pointer to the instance data block of the
control and may be accessed at any time during
execution of the control. Since one of the parameters
to a window procedure is the handle of the window
receiving the message, there is no confusion as to
which invocation of the control is executing. This
handle may be used to access the pointer to the
correct instance data block.

With use of this design approach, each value set
control has a standard four-byte window word that
points to its unique instance data block. The size
and contents of the instance data block will vary
widely in different controls. In the value set this
block contains information concerning the number
of items present, the size of the items, the presenta-
tion format of the items, and pointers to the data
concerning each individual item. The contents of
the instance data block are likely to change as the
developer iterates on the implementation of a user
interface control. These iterations have no effect on
any other applications, since the instance block
pointer remains the same.

Control input structure. Each user control generally
has a specialized data structure which is used by

1BM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

the application to supply information regarding
the objects in the control. The value set defines a
VALUEITEM structure containing the text and graph-
ics that comprise an element in the value set. Figure
9 illustrates the VALUEITEM structure. A primary goal
of the value set implementation is to provide a
flexible set of input formats for the graphical data,
so that the supplying application may use any draw-
ing method to enter the graphics. Figure 10 shows a
client window which has two value set controls con-
taining graphics in raster and vector format. The
value set accepts graphics as both bitmaps and draw-
ing orders deposited into a memory block.

Bitmaps are a commonly used input format for
standard Presentation Manager user interface con-
trols such as buttons and menus. Bitmaps provide a
fast mechanism for drawing graphics, but they are
very device-dependent. Bitmaps may change some-
what in size and appearance, depending on the par-
ticular hardware display device that is being used.
However, they provide a simple way for applications
to load or create graphics and pass them to a control.
The value set provides two methods for supplying
bitmap data. First, a bitmap handle created by the
system may be supplied. This method is used by the
menu and button controls. An application utilizes
system calls to load a bitmap from resources or to
create one dynamically. The system returns a unique
handle describing the bitmap. This handle may be
used within the 0s/2 process that created the bitmap
but may not be shared with other processes. Since
an application and its control execute in the same
process, this format is usually acceptable. However,
in some cases it may be necessary for the application
to use graphical data supplied by another indepen-
dent application. To facilitate the input of bitmaps

FRANKUN AND PETERS BB

56

Figure 10 Value sets containing multiple data formats

Value Set 3z4

Value Set 2xb6

=2
ol | |l |

N

HE @

received from outside sources, the value set also
accepts bitmaps in a raw format consisting of a
Presentation Manager BITMAPINFOHEADER structure
which describes the bitmap followed by the actual
bit settings for each pixel. In this case, the value set
generates its own private bitmap handle.

Applications may provide graphics in a format that
is independent among devices. In such a case, the
Presentation Manager Graphical Programming In-
terface (GPI) may be used to generate drawing orders
that describe the picture in vector format, as opposed
to the raster image described by bitmaps. The stan-
dard Presentation Manager controls do not accept
drawing orders as inputs. If applications are to utilize
the GPI interface to draw control items, they must
explicitly request that the control notify the appli-
cation when the item is to be drawn. This method is
called OWNERDRAW. If a control item is set with the
OWNERDRAW style bit, the owning application will
receive a message every time the item must be
painted. The application is provided with a presen-
tation space for drawing and a description of the size
and location of the item and may then use the GpI

FRANKLIN AND PETERS

interface or any other preferred drawing APIs to draw
the item. This method requires that the application
process the WM_DRAWITEM message in order to draw
any item as owner-drawn.

The value set expands the notion of owner-drawn
items by providing an input format which consists
of drawing orders written into memory. The appli-
cation may draw its control item into a presentation
space and then use system-supplied calls to write the
drawing orders to memory. These drawing orders
are then saved by the control and re-executed each
time that the item must be drawn. By using this
input format, the application need only draw the
item once and pass it to the control. When redrawing
is necessary, the control executes the stored drawing
instructions, rather than requesting that the appli-
cation redraw the items.

Keyboard support. Any function provided by a user
interface control must be accessible through a key-
board as well as a mouse. Although actions such as
selection or direct manipulation may seem more
natural using a mouse, the control must provide

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

equivalent function for the keyboard user. This im-
plies that the control instance data block must con-
tain information concerning the current cursor po-
sition along with other status data. Even if the items
in the control have no real logical ordering, the
control must order the items such that keyboard
navigation permits access to all of the objects in a
control.

User control expansion. Understanding the basic
guidelines in designing and implementing a user
control is the first step in developing application
code which can be shared and reused. Once the basic
structure for a control is designed, the function of
the control may be extended by processing a greater
number of messages and adding information to its
instance data or input structure as application re-
quirements change. These changes can be made
without dramatically altering the original structure
or the processing performed by the control. If the
control message interfaces and input structures re-
main stable, applications may obtain expanded func-
tion without any modification.

Concluding remarks

Our development of controls for the 1BM office en-
vironment product has proved to be a successful
method for both propagating consistent user inter-
action requirements throughout all components of
the office system and reducing the programming
effort for the individual applications. The develop-
ment of specific controls as well as the use of the
system-supplied controls encapsulates very specific
functional requirements into specialized objects that
can be used by all applications that are a part of the
office environment. The user is presented with a
visual interface that behaves consistently across office
components, and the application programmer ben-
efits from the availability of these controls when
designing and programming an office application.

As workstation interaction techniques continue to
mature, the need for user interface consistency across
applications will become increasingly important. Def-
inition of a uniform interaction style is the frame-
work for this consistency. However, this definition
is no guarantee of conformance unless tools are
developed that enable an application to conform to
user interface definitions while preserving the free-
dom of the application. Controls serve as flexible
application enabling tools by providing programs
with a set of user interface building blocks for appli-
cation development. Properly structuring our con-

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

trols allows us to take a first step toward an object-
oriented application programming interface by
hiding the data and internal control processing
mechanisms and surfacing only a message set to the
applications. The object-oriented approach to Pres-
entation Manager application development can be
expanded by developing base classes of control ob-
jects upon which can be built more specialized con-
trols that inherit behavior from the base classes.

We have seen how the implementation of applica-
tion function as user controls has many practical
advantages. In addition, the evolution of controls
toward objects in an object-oriented environment
provides an opportunity for continuing research and
development in the use and design of Presentation
Manager controls. Controls may be designed and
implemented not only as individual building blocks
for specific application function, but as integrated
sets of objects related in a hierarchical fashion and
sharing certain levels of behavior.

Acknowledgments

The authors wish to acknowledge the support of
Sandy Cureton, Bill Braley, and Dorene Palermo in
writing this article. We also acknowledge Nancy
Jackson, Tony Temple, Ellen Cohen Sonenthal, and
Art Goldstein for their support of the OfficeVision,/2
Presentation Manager platform. We extend special
thanks to Dave McGehe, Randy Black, and Dan
Kardell for their help with the manuscript and to
Mark Estes for his programming efforts.

0S/2, Presentation Manager, Systems Application Architecture,
SAA, Operating System/2, and OfficeVision/2 are trademarks, and
Personal System/2 and PS/2 are registered trademarks of Interna-
tional Business Machines Corporation.

Cited references

1. E. F. Wheeler and A. G. Ganek, “Introduction to Systems
Application Architecture,” IBM Systems Journal 27, No. 3,
250-263 (1988).

2. M. Vellon, *OS/2 Windows Presentation Manager: Microsoft
Windows on the Future,” Microsoft Systems Journal 2, No. 2,
13-18 (May 1987).

3. R. E. Berry, “Common User Access—A Consistent and Usable
Human-Computer Interface for the SAA Environments,” IBM
Systems Journal 27, No. 3, 281-300 (1988).

4. S. Uhlir, “Enabling the User Interface,” IBM Systems Journal
27, No. 3, 306-314 (1988).

5. S. Franklin and T. Peters, “Graphical Interface Services for
Application Integration,” Graphics Interface ‘89 Proceedings,
Canadian Information Processing Society and Canadian
Man-Computer Communications Society (June 1989),
pp. 105-112.

6. B. Cox, Object-Oriented Programming, Productivity Products
International, Inc., Sandy Hook, CT (1986).

FRANKLIN AND PETERS BT

7. C. Petzold, “Object Oriented Programming,” PC Magazine 8,
No. 1, 317-324 (January 17, 1989).

8. Systems Application Architecture Common User Access Ad-
vanced Interface Design Guide, SC26-4582, IBM Corporation;
available through IBM branch offices.

General references

D. M. Chess and M. F. Cowlishaw, “A Large-Scale Computer
Conferencing System,” IBM Systems Journal 26, No. 1, 138-153
(1987).

W. P. Dunfee, J. D. McGehe, R. C. Rauf, and K. O. Shipp,
“Designing SAA Applications and User Interfaces,” JBM Systems
Journal 27, No. 3, 325-347 (1988).

S. Franklin and T. Peters, “A Technical Study of Dynamic Data
Exchange Under Presentation Manager,” Microsoft Systems Jour-
nal 4, No. 3, 1-16 (May 1989).

E. lacobucci, OS/2 Programmer’s Guide, McGraw-Hill, Inc.,
Berkeley, CA (1988).

“IBM Operating System/2,” IBM Personal System/2 Seminar
Proceedings 5, No. 5, 32-45 (May 1987).

1BM Operating System/2 Internals Volume 2: Presentation Man-
ager, IBM International Technical Support Center, Boca Raton,
Florida (1988).

IBM Operating System/2 Version 1.1 Programmer’s Toolkit, Part
No. 6280211, IBM Corporation; available through IBM branch
offices.

IBM Operating System/2 Version 1.1 Technical Reference, Part
No. 6280212, IBM Corporation; available through IBM branch
offices.

“IBM 0OS/2 Standard Edition Version 1.1, IBM Operating Sys-
tem/2 Update, Presentation Manager (Part 1),” IBM Personal
System/2 Seminar Proceedings 6, No. 1, 13-62 (April 1988).

“IBM OS/2 Standard Edition Version 1.1, Presentation Manager
(Part 2),” IBM Personal System/2 Seminar Proceedings 6, No. 2,
2-41 (April 1988).

M. S. Kogan and F. L. Rawson III, “The Design of Operating
System/2,” IBM Systems Journal 27, No. 2, 90-104 (1988).

C. Petzold, “The Graphics Programming Interface: A Guide to
0OS/2 Presentation Spaces,” Microsoft Systems Journal 3, No. 3,
9-18 (May 1988).

C. Petzold, “OS/2 Graphics Programming Interface: An Introduc-
tion to Coordinate Spaces,” Microsoft Systems Journal 3, No. 4,
23-40 (July 1988).

C. Petzold, Programming the OS/2 Presentation Manager, Micro-
soft Press, Redmond, WA (1988).

K. Welch, “Creating User-Defined Controls for Your Own Win-
dows Applications,” Microsoft Systems Journal 3, No. 4, 54-66
(July 1988).

K. Welch, “Inter-Program Communication Using Windows’ Dy-
namic Data Exchange,” Microsoft Systems Journal 2, No. 6,
13-23 (November 1987).

Susan Franklin IBM Application Solutions Division, 5 West Kirk-
wood Boulevard, Roanoke, Texas 76299. Ms. Franklin is a senior
associate programmer who joined IBM in 1987. She received a
B.S. degree in computing science from Texas A&M University at
College Station in 1987. Since joining IBM, she has worked at the

58 FRANKUN AND PETERS

ASD Software Development Laboratory in Westlake, Texas, in
user interface design and platform development of OfficeVison/2.
Ms. Franklin has received two Invention Achievement Awards
and one Outstanding Technical Achievement Award for her work
in enhancing OS/2 interapplication data transfer techniques.

Tony Peters IBM Application Solutions Division, 5 West Kirk-
wood Boulevard, Roanoke, Texas 76299. Mr. Peters is a senior
programmer who has been with IBM since 1982. He received a
B.S. degree in mathematics and computer science from the Uni-
versity of Tennessee at Nashville in 1977 and an M.S. degree in
computer science from the University of Tennessee at Knoxville
in 1979. Prior to joining IBM, Mr. Peters was a member of the
technical staff at Bell Telephone Laboratories in Naperville, Illi-
nois. From 1982 to 1984, he was a project leader on the UNIX®
development effort in Dallas, Texas. In 1984 and 1985 he was on
international assignment in Boblingen, Germany, where he worked
on the IX/370 project. Since 1986, he has been working on the
Office Vision/2 project in the Westlake ASD laboratory. Mr. Peters
has received five Invention Achievement Awards and two Out-
standing Technical Achievement Awards for his work in develop-
ing the OS/2 Dynamic Data Exchange (DDE) protocol for the
0S/2 Presentation Manager and for his work on the Office Pres-
entation Manager user interface platform.

Reprint Order No. G321-5385.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

