
Effective application
development for
Presentation Manager
programs

The OS/PM Presentation Manager" provides an inte-
grated graphical, windowing user interface to IBM's
OS12 operating system. This paper addresses a pri-
mary area of interest for Presentation Manager appli-
cation developers: the use and development of user
controls. A control in the Presentation Manager envi-
ronment is a program object with a programming inter-
face and application function. The structure and inter-
faces between controls and the system are described
in order to provide an understanding of the correct
procedure for programming the Presentation Manager
efficiently.

717 ith the introduction of a new generation of
workstations and midrange computing sys-

tems, IBM has made several key strategic announce-
ments which set the direction for both IBM products
and applications developed for IBM systems. Systems
Application Architecture'" (sAA~'") and its end-user
interface component, Common User Access (CUA),
define how a system and applications running on it
interact with an individual at a terminal.' Coopera-
tive processing requirements among IBM'S Personal
System/2@ (PS/~@) workstations, midrange systems,
and large systems and IBM'S plan to standardize user
interfaces across hardware product lines have given
the P S / ~ workstation the key role in end-user interface
support. The primary user interface component of
the P S / ~ multitasking operating system, Operating
System/2" OS/^^"), is the Presentation Manager'"

44 FRANKLIN AND PETERS

by S. M. Franklin
A. M. Peters

which gives the user a windowed, graphical inter-
face.* The Presentation Manager is the system-sup-
plied CUA end-user interface tool that provides access
to the file system, system services, and applications.
Also available from IBM is a programmer's toolkit
which allows application developers to develop new,
graphically based applications.

Users who interact with multiple applications are
more productive in their work if the user interface is
consistent across application^.^ This statement be-
comes increasingly true as cooperative processing
requirements continue to grow and application de-
velopers build applications designed for multiple
systems environments. To make applications con-
sistent with one another, each application needs to
follow a set of rules regulating the interface consis-
t e n ~ y . ~ Adhering to such rules is particularly impor-
tant with the incorporation of a graphical user inter-
face such as the Presentation Manager. The sophis-
ticated capabilities of the Presentation Manager have
promoted the growth of advanced user interaction
styles and techniques and make the requirement for

@ Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IEM SYSTEMS JOURNAL, VOL 29. NO 1, 1990

a user interface definition all the more important.'
CUA is IBM's solution to achieve this consistency for
sAA-conforming application^.^ Application sets may
choose, as well, to follow more stringent conform-
ance definitions.

As application developers implement many of these
new concepts, the need for a consistent set of both
graphical and text user interface services for appli-
cations has emerged. Some of this enhanced capa-
bility is provided by the basic services of the Pres-
entation Manager and is accessible to the application
developer through the toolkit. Other services must
be built by the application itself to accommodate
application-specific requirements. Further, these
services will most certainly not remain static as the
program evolves over time. Applications will have
to evolve as user interface techniques advance, and
sophisticated new display technologies will have to
be integrated into existing applications if they are to
remain competitive. To provide for consistency in
the user interface and for evolution, these services
should be implemented in such a way that they are
easily reusable and can be modified a n t extended
without changing existing program code.

This paper discusses a strategy for providing such
sets of services, or building blocks, referred to in
Presentation Manager terminology as controls,
which allow a consistent approach to end-user inter-
face development. A control under the Presentation
Manager is a user interface element with a unique
programming interface and application function. Ex-
amples of system-supplied controls are menus and
dialog boxes. Clearly, any attempt to standardize
application development should not restrict the
usage of the underlying system capabilities. Appli-
cation-defined controls in no way inhibit any of the
sophisticated capability of the Presentation Manager
or the designated manner in which developers im-
plement programs; all Presentation Manager func-
tion remains available to an application. Application
developers can, in fact, enhance the existing function
by developing controls for specific program pur-
poses. Controls can also be structured so that the
burden of change is isolated from the application
and localized within the control, thus promoting an
object-oriented design.

Making application-developed controls available has
been a system design approach used in the develop-
ment of IBM'S OfficeVision/2'" by the Application
Solutions Division. This product is a set of SAA-
compatible, cuA-compliant applications that form

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

an electronic office for system users. The programs
exploit the capabilities of the Presentation Manager
and at the same time provide a tool set that mini-
mizes development effort, enforces user interface
consistency, and maximizes code reusability. Inter-
face consistency gives developers the flexibility to
make internal control changes as CUA develops.

This paper explores the concept of application-de-
veloped controls by examining Presentation Man-
ager-supplied controls and the design and structure
of application-developed controls. We discuss how
controls are used by applications and how developers
can design and develop additional controls. We high-
light aspects of our experience in control develop-
ment and discuss future requirements for building
controls as the Presentation Manager evolves.

Presentation Manager user controls

The Presentation Manager implements a windowing
interface by passing user-generated input events to
underlying windows displayed on a workstation dis-
play screen. An input event is translated into a
message and sent to the window procedure that
processes input for a specific window. For example,
if a user positions a mouse pointer over a button
window and clicks the mouse, the window-process-
ing procedure for the button window class receives
a message indicating that a particular button has
been selected on the screen by the user.

A control is a special kind of window. When a
control is created, it is an instance of that special
window class. Some controls are predefined by the
Presentation Manager such as the title bar, iconic
maximize and minimize arrows, menus, sizing bor-
ders, push buttons, scroll bars, and text entry fields.
These types of controls are the basic user interface
building blocks for Presentation Manager applica-
tions. A typical application consists of a frame con-
taining an application-specific window known as the
client window. The frame window itself consists of
multiple controls such as the title bar, maximize and
minimize icons, menus, sizing border, and scroll
bars. Figure 1 shows an example of a frame window
made up of frame window controls and the client
window. The application selects the desired controls
that make up the frame window at its creation. Each
of these controls receives and processes messages
from user-generated input events.

A window class definition is analogous to a definition
for a new data type, just like a data-type class in an

FRANKLIN A ND PETERS 45

Figure 1 Standard OfficeVisionlS frame window

Cl
riew Copyright information

I

object-oriented language.’ Window class definitions
describe class-unique data and specify the processing
intelligence for the window class by indicating the
window procedure for processing the class. The win-
dow procedure defines how the control appears to
the user and is responsible for “painting” the control
on the display screen. The procedure also defines
how the control responds to user input because it
processes the user’s input, which comes to the control
in the form of a message.

A simple example will help to illustrate how using
controls impacts the structure of a Presentation
Manager program. Suppose it is necessary for an
application to display selection input fields such as
the button selectors in Figure 2. The user indicates
the desired action by positioning the cursor over the
button selected and clicking the mouse.

The application could implement a button by draw-
ing the oval outline for a button and displaying the
text inside the outline. Whenever the application

receives input from the mouse, the application could
check to determine if the mouse was positioned over
the oval when the mouse was clicked, and if so,
process the command indicated by the text for the
button. In this situation, the application creates and
processes each button separately.

Instead, each button is defined as a “control” having
particular button characteristics. The application
creates the button by using the WinCreateWindow
function call of os/& which specifies the size of the
button, the text to appear in the button, and the
location of the button. The WinCreateWindow func-
tion passes an application-defined amount of infor-
mation to the new control when it is created, there-
fore allowing detailed information about button
color, text fonts, etc., to be specified when the button
is created.

Since the button is a predefined window class, the
application need not draw the button. Instead, the
window procedure of the button “paints” the button.

46 FRANKLIN AND PETERS IBM SYSTEMS JOURNAL, VOL 29. NO 1. 1990

When the user selects a button, it is the button
control that receives notification that the button was
selected. The button control then sends a message
back to the application program indicating that it
was selected. To use buttons the application must
only create the button with a single function call and
accept notification when the button is selected. Th?
control handles the mouse and graphics processing.

The advantages of implementing the button as a
control increase as the requirements for using but-
tons grow more complex. Consider that the appli-
cation may be set up so that buttons are to be used
in various parts of the application which require
different forms of processing. It may be necessary for
the application to use buttons both in the client
window of the application and in dialog boxes. Client
windows are normally created dynamically by the
application program. Dialog boxes are normally cre-
ated implicitly by defining the dialog box in an
application resource file, including the components
of the dialog box, which in this case includes a button
control. If the button control is specified in the
application resource file as part of the dialog box,
the Presentation Manager automatically creates the
button within the dialog box.

Further, the requirements for buttons may change
after the application is developed, or different forms
of buttons may be required in different computing
environments. For example, a button might need to
have both a short and a long form of text inside of
the button, or possibly a variable shape. These
changes are localized within the button control with-
out having an impact on the application program.

We have already shown how the components of the
frame window, exclusive of the client area, are pri-
marily a collection of controls supplied by the Pres-
entation Manager. Below we propose the same meth-
odology within the client window based on an appli-
cation-specific hierarchy of controls. Reusable,
consistent program components can be structured
and provided to calling applications as publicly de-
fined window classes and then used as a control.
Each component that is implemented as a control,
regardless of its complexity, provides the same ben-
efits for an application as the sample button control
previously described. A control initializes itself, proc-
esses relevant information within itself, and interacts
with the application with a minimal amount of
messages. Changes and evolution within the sphere
of a control are encapsulated within the control itself,
making the remainder of the application immune
from change occurring within the control.

IBM SYSTEMS JOURNAL, VOL 29. NO 1, 1990

Figure 2 Button controls in a dialog box

Mouse options
.. ,

CT] /Swap lefthight mouse buttons:

(Enter) (Gancel] [Help]

To illustrate the point, Figure 3 and Figure 4 are
examples of a relatively complex application which
is implemented by constructing the application as a
collection of basic controls. The purpose of the ex-
ample application is to allow the user to define the
colors and various screen components of Presenta-
tion Manager. Virtually every object on the screen
is a predefined control supplied to the application
from a previously existing source. In Figure 3 the
frame window entitled “Control Panel” consists of a
title bar, iconic minimize control, menu, scroll bar,
and text input and output controls. When the user
selects Preferences-Screen colors the dialog box
control labeled “Screen Colors” in Figure 4 is dis-
played, which consists of the same title bar, menu,
scroll bar, and text input and output controls, as well
as list, button, and window sizing controls, along
with an application-defined color selection display
control.

Not only does this example show how a relatively
complex application is quickly implemented through
the use of existing control components, but it is also
an excellent illustration of how controls are able to
provide user interface consistency. A new applica-
tion, which provides an exact mockup of the user
interface that the user can see and adjust, is created
using existing user interface controls. This example
provides a substantial amount of complex function
in a consistent manner by simply specifying which
controls are to be displayed and processing simple
sets of messages sent to it by each of the controls.
The controls handle most of the processing, without
any involvement by the application. Of course, not
every portion of an application can or should be
structured into a control, but controls are a solution
for those application segments that normally would
be structured in a procedural manner.

FRANKLIN AND PETERS 47

Figure 3 Presentation Manager control-oriented application
~~

Installation Exit I F1 =Help

- Border width ...
4bJacning beep
- Mouse ...
- Logo display ...
- Count ry...

[Slow F~~

Cursor Blink

L 8 -313-89

-Double-Click-

Slow Fast

This concept can be extended to broad categories of
applications. Within the office application several
loosely coupled collections of data objects make up
a substantial set of the office programs such as mail
boxes, file cabinets, file drawers, and folders. Each of
these programs keeps track of and maintains both
similar and diverse sets of objects that have a com-
mon user interface format. This style is a list of
graphics-based iconic representations of the objects
within the collection. The exact style of the list is
dependent on several criteria, including application
requirements and user preferences. For example, the
office window, which provides access to the office
application set (Figure 5) , is displayed in two distinct
styles, one listed vertically and the other as a user-
adjustable matrix.

To achieve user interface consistency, we decided
that the user interface for each office application
should be based on a common set of functions. We
knew early within the development cycle that our
user interface would be developed in an iterative
fashion in conjunction with substantial human fac-
tors testing and would therefore be subject to consid-
erable change throughout development. Develop-
ment costs could soar unrealistically if every appli-
cation within the product set was obligated to
“understand” the intricacies involved in developing
the graphical interface for the entire set of applica-
tions for the product.

Accordingly, we implemented the primary user in-
terface components as controls. Figure 5 shows two

IBM SYSTEMS JOURNAL, VOL 29, NO 1. 1990 48 FRANKLIN AND PETERS

Figure 4 Dialog box from the control-oriented application

i Screen colors 1
Application Workspace
Window Background
Window Text
Window Static Text
Action Ear
Action Ear Text
Active Title Ear

1: I I - ~~

Color

i Shade

Amount

Sample String

File Edit

loutput Text

Help Text
Help Hilite

1

instances of the office window using the same control
to produce different variations of the iconic interface.
This control also provides other office programs with
a simple interface for their own graphical user inter-
face components; each application programmer need
not understand the complexities of the graphical
iconic interface. As changes surfaced and the user
interface evolved, we changed only the controls that
did not involve individual applications. This strategy
ensured that individual application philosophies
were superseded by those of the application set as a
whole. These controls also make it possible for non-
IBM developers to build applications that run as part
of OfficeVision/2 and have the same user interface

as the IBM-supplied applications which make up the
office system.

b

D
IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990 FRANKLIN AND PETERS 49

An example user control

As illustrated previously, it is possible for an appli-
cation to provide substantial function simply by
using system-supplied controls. When these controls
are not appropriate for a specific task, the application
developer may implement the unique requirement
as a “user control.” If the code is structured so that
the function is packaged as a unique window class,
the control may be used in many different places
throughout the application, as well as in other appli-

Figure 5 Office controls

0 Address Book

Dist List

Search List

D an’s Drawer

Dan’s File Cabinet

Daryl’s Office Window

[4 AGG Document

& Dan’s In Basket

cations. In developing an application control, the
logic and data of the control must be structured and
maintained such that each instance of a control
maintains its own set of specific data, while respond-
ing to user interaction in a consistent manner.

We will create a user control called “value set” as an
example of the use and development of application
controls, but first, we explore the requirements for
the value set control.

Function of a value set control

Often, the user of an application must make a selec-
tion from among a list of graphical elements. The
Presentation Manager has controls for choosing
items from lists of words. The value set control
provides a mechanism for discrete, single selections
depicted by icons, text, numeric values, patterns, or
color. When a program requires the user to make a
visual, single selection choice, a value set may be
used to provide the interaction and selection.

For example, consider an application that displays a
dialog box prompting the user for a color selection.
This choice could be depicted using Presentation
Manager buttons labeled “red,” “white,” and “blue,”
but the value set could also present this choice by

Address Tutorial

J. r
Dan‘s

I Search Lst Mu I

I Dist List Pad I

displaying a palette containing red, white, and blue
items. Use of the value set in this situation provides
a more visual choice and may save valuable screen
area.8 It also eliminates the necessity of translating
text as the product is developed for foreign countries.
Figure 6 shows a dialog box containing several dif-
ferent styles of value sets.

Application users may interact with the value set by
using a mouse, keyboard, or a combination of both.
When using the mouse, the user selects an item by
pointing to it and clicking with the mouse button.
The value set control notifies its owner with a mes-
sage whenever one of its items is selected or dese-
lected. It also provides visual feedback of the selec-
tion state by drawing a heavy black line around the
value set selection. The user may deselect items by
clicking a second time, or by clicking on another
item.

Use of the keyboard to navigate through the value
set requires information about the current cursor
position. When a value set receives attention from
the keyboard, it reflects both the current selection
and the current cursor position. The cursor position
is indicated with a broken line drawn around the
value set item. (See “Pie” in the “Chart” value set in
Figure 6.) As the user navigates through the value

50 FRANKLIN AND PETERS IBM SYSTEMS JOURNAL, VOL 2 9 NO 1, 1990

Figure 6 Dialog box containing various value set controls

Chart

t Pie i Bar Line Scatter Contour

I
I""""- 1

I.""""'

r Pattern I

1 I

[Cancel]

D
IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990 FRANKLIN AND PETERS 51

Figure 7 Sample value set invocation by calling application

WinRegisterClass ((hab) NULL, /* anchor block handle */
"ValueSet", /* window class name */
ValueSetWndProc, /* window procedure */
CS-SIZEREDRAW, /* class style bits */
4) i /* bytes of storage */

hCtl = WinCreateWindow(hwndParent, /* parent window */
"ValueSet", /* window class */
"Value Set Text", /* window text */
style, /* style bits */
XI Y, /* position */
cx. cy, /* size */
hwndOwner ,
HWND-TOP ,

/* owning window */
/* z order */

id, /* window id */
(PVOID) NULL, /* optional */

/* presentation */
(PVOID)&CtlData); /* control data */

/* parameters */

set items using the cursor keys, the broken outline
follows. When the desired selection is reached, the
Enter key is used to select the item. If the user presses
Enter a second time, the item is deselected.

Although implementation of the value set selection
mechanism could be undertaken as an application-
supplied function, it would not facilitate code reuse.
Other applications with similar requirements would
have an individualized implementation of the value
set which could result in different, perhaps confusing,
interaction styles among similar functions. By struc-
turing the value set function as a control, the func-
tion may be reused throughout the application and
in many related applications.

User control invocation

The two primary requirements of an application
program in creating a user control are to register the
window class for the control and create the window.
Each control is an instance of a particular window
class. Registration tells the operating system what
window procedure to call when a window of that
class receives a message. Registration also specifies
parameters such as storage requirements and the
actions that the operating system is to perform when
moving or sizing operations occur on that window.
Once a window class has been defined to the oper-

52 FRANKLIN AND PETERS

ating system through registration, the program can
create as many controls of this specific class as nec-
essary.

Once the window class has been registered, the ap-
plication creates the control by issuing a Win-
Createwindow call specifying this class. With the
value set serving as the example, it can be seen that
the application issues the WinCreateWindow using
the registered class of ValueSet.

Four basic types of information must be passed when
the control is invoked:

1. Information describing the ownership and paren-
tage of the control. This information is necessary
in defining the messaging matrix to the system
for communication between the owning window
and the subordinate controls.

2. Size information during the creation of the control.
This information can be omitted at creation time
and dynamically supplied by the application
when the control is displayed.

3. Application-specific parameters. In the value set,
these parameters describe the row and column
structure of the items within the control.

4. System-required parameters. Applications must
supply identification (ID) for a window, identify-
ing the control to the operating system.

IBM SYSTEMS JOURNAL, VOL 29. NO 1. 1990

When a window is created, the operating system
returns a unique window identifier to be used by the
application in communicating with the control. This
identifier is called a window handle.

Figure 7 shows the sample calling sequence for in-
voking a value set.

General requirements for user control
implementation

Although the implementation of a specific Presen-
tation Manager user interface control will vary de-
pending on the requirements, there are general
guidelines for implementing a control. Successful
development of a control begins by understanding
the general characteristics and the skeletal structure
of a control. This template can then be expanded to
include the specific functional requirements of the
control.

Message handling. From an implementation view-
point, a control is nothing more than a specialized
window class which is expected to field certain mes-
sages and return the expected values. The internal
structure of a control is simply a window procedure.
There is no main program or invoking routine; these
tasks are performed by the application creating the
control. The functionality of a control is determined
simply by the types of messages that are accepted.

A control generally accepts two types of messages:
window messages predefined in the Presentation
Manager and new messages defined by the control.
A subset of the former group is fielded by all controls.
For example, the control must always be prepared
to redraw its contents when the WM-PAINT message

is received. Likewise, the contents of the control
may need to be repositioned or resized when the
WM-SIZE message is encountered. WM-CREATE proc-
essing gives the control a chance to initialize data
and set up storage blocks, whereas the WM-DESTROY
message is the appropriate time to release all re-
sources allocated for the control. Beyond these four
messages, the specific purpose of the control deter-
mines what additional system window messages
(such as WM-BUTTONIDOWN) or specific control-
defined messages must be fielded.

The value set control processes system messages such
as WM-BUTTONlDOWN and WM-CHAR in order to
determine mouse and keyboard navigation and se-
lection. The remaining messages fielded by the value
set are control-specific. The control provides a mes-
sage set that allows the application developer to
dynamically add, delete, and alter selection items in
the value set control. The text and graphics inside
the value set items may also be queried. Table 1
summarizes the value set messages.

Control parent and owner relationships. In addition
to fielding certain messages and returning values,
controls often post messages when certain specified
events occur. The value set generates messages as an
item is selected or deselected. Notification messages
are posted to a window known as the owner of the
control, the owner being specified during creation of
the control. The only logical relationship between a
control and its owner is the fact that notification
messages are posted to the owner. It is the parent of
the window that determines positioning of the con-
trol. The parent and owner may be the same window
but do not necessarily have to be. For example,
Figure 8 shows an application which has placed the

Table 1 Value set messages

Message Cause and Processing

VSM-INSERTITEM Inserts an item into the value set.
VSM-DELETEITEM Deletes an item from the value set.
VSM-SETTEXT Sets the text of the control.
VSM-DELETEALL Removes all items from the vaiue set.
VSM-SELECTITEM Sets the selection state of the item.
VSM-QUERYSELECTION Returns the selected item.
VSM-QUERYTEXTLENGTH Gets the size of the value set field text in bytes.
VSM-QUERYTEXT Copies field text of the control.
VSM-QUERYITEMCOUNT Returns a count of the number of items in the value set.
VSM-QUERYITEMPOSFROMID Returns the zero-based index of an item given its item identifier.
VSM-QUERYITEMIDFROMPS Returns the item identifier of an item given its zero-based index.
VSM-SETITEMSTRUCT Resets the structure of the specified item to the new structure supplied.
VSM-QUERYITEMSTRUCT Fills the structure supplied with the current information for the specified item.

I
IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990 FRANKLIN AND PETERS 53

Figure 8 Value set in dialog box signaling client window

- File Edit Help

Value Set 3x4 -

~~~~ ... ..... ..... 

~~~~ .-... ... ....a ... ..... ..... ... 
~~~~ ..... ... ..... ..... ..... ... ... ..... ..... 

r Calendar 

value  set control inside a dialog box. In this case, the 
dialog box is the parent of the control, although the 
client window will receive notification messages and 
act on selections that occur within the dialog box. In 
order to receive notification messages, the client 
window of the application is  specified as the owner 
of the control. The role of the  parent  and owner with 
respect to a control is often muddled by control 
implementations. A simple rule is that all outgoing 
messages from a control are posted to the owner. 
There should never  be any reason for a control to 
communicate with its parent. 

Control status and instance data. Since a user inter- 
face control is a resource made available to all ap- 
plications, a control cannot make any assumptions 

regarding its origin. For example, the control may 
be invoked several times by the same application or 
by many different applications. Associated  with each 
invocation of a control is a particular state. For 
example, each value set contains a certain number 
of items positioned in particular locations within the 
control. Data which describe such information are 
called instance data and must be stored such that 
each individual instance of a control can access its 
instance data  at all times during execution of the 
control. 

Storage  of instance data  can be accomplished by 
storing a pointer to the  data in a Presentation Man- 
ager window word. During class registration, an  ap- 
plication may  specify a specific amount of data to 

54 FRANKLIN  AND PETERS IBM SYSTEMS JOURNAL,  VOL 29, NO  1. 1990 



I 
D 

Figure 9 Value  set  input  structure 

typedef  struct -VALUEITEM I 
USHORT idItem; 
LONG 

/*  unique i d   f o r  data item */ 
cBytes; 

USHORT 
/* length  of  data  in pGPI */ 

rgfFormat; /* data format flags */ 
char  szItem[ 641 ; /* s tr ing  name of  item */  
unsigned  char  far *pGPI; /*  pointer   to   b i t s  or orders */ 
PBITMAPINFO 
HBITMAP 

pbmapinfo; /* pointer   to  bitmap table  */ 
hBitmap; /* bitmap handle */  

) VALUEITEM; 

I I 

be  reserved for each instance of the window class. 

through a standard Presentation Manager applica- 
tion program interface (API) call. Given any window 
handle, the Presentation Manager can  return a 
pointer to  any of the requested window words. The 
window class of the value  set  is  registered  with an 
additional four bytes  of  window word data  in  order 
to maintain and access instance data.  This window 
word is requested in  the last parameter of class 
registration as illustrated in Figure 7. It is used to 
hold a long pointer to  the instance data block of the 
control and may be accessed at any time  during 
execution of the control. Since one of the parameters 

receiving the message, there is no confusion as to 
which invocation of the control is executing. This 
handle may be  used to access the  pointer  to  the 
correct instance data block. 

With use  of this design approach, each value set 
control has a standard four-byte window word that 
points to its unique instance data block. The size 
and  contents of the instance data block will vary 
widely in different controls. In the value set this 
block contains information concerning the  number 
of items present, the size of the items, the presenta- 

concerning each individual item. The  contents of 
the instance data block are likely to change as the 
developer iterates on  the  implementation of a user 
interface control. These iterations have no effect on 
any other applications, since the instance block 
pointer remains the same. 

Control  input structure. Each user control generally 
has a specialized data  structure which  is  used by 

D These data blocks, or window words, are accessible 

D to a window procedure is the handle of the window 

R tion format of the items, and pointers to the  data 

the application to supply information regarding 
the objects in the control. The value set defines a 
VALUEITEM structure containing the text and graph- 
ics that comprise an element in  the value set. Figure 
9 illustrates the VALUEITEM structure. A primary goal 
of the value set implementation is to provide a 
flexible set of input  formats  for  the graphical data, 
so that  the supplying application may use any draw- 
ing method to  enter  the graphics. Figure 10 shows a 
client window  which has two value set controls con- 
taining graphics in raster and vector format. The 
value set accepts graphics as both bitmaps  and draw- 
ing orders deposited into a memory block. 

Bitmaps are a commonly used input  format for 
standard Presentation Manager user interface con- 
trols such as buttons and menus. Bitmaps provide a 
fast mechanism for drawing graphics, but they are 
very device-dependent. Bitmaps may change some- 
what in size and appearance, depending on  the par- 
ticular hardware display device that is being used. 
However, they provide a simple way for applications 
to load or create graphics and pass them to a control. 
The value set provides two methods for supplying 
bitmap  data. First, a bitmap handle created by the 
system may be supplied. This method is  used  by the 
menu  and  button controls. An application utilizes 
system  calls to load a bitmap from resources or  to 
create one dynamically. The system returns a unique 
handle describing the bitmap. This handle may be 
used within the os12 process that created the  bitmap 
but may not be shared with other processes. Since 
an application and its control execute in  the same 
process, this format is  usually acceptable. However, 
in some cases it may be  necessary for the application 
to use graphical data supplied by another indepen- 
dent application. To facilitate the  input of bitmaps 

b 
IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990 FRANKLIN  AND PETERS 55 



Figure 10 Value sets containing multiple data formats 

- File Edit Help 

- Value Set 3x4 1 

L 

I Value Set 2x6 
I""" 

I 

received  from outside sources, the value set also 
accepts bitmaps in a raw format consisting of a 
Presentation Manager BITMAPINFOHEADER structure 
which  describes the  bitmap followed by the actual 
bit settings for each pixel. In  this case, the value set 
generates its own private bitmap handle. 

Applications may provide graphics in a format  that 
is independent among devices. In such a case, the 
Presentation Manager Graphical Programming In- 
terface (GPI) may be used to generate drawing orders 
that describe the picture in vector format, as opposed 
to the raster image described by bitmaps. The stan- 
dard Presentation Manager controls do  not accept 
drawing orders as inputs. If applications are  to utilize 
the GPI interface to draw control items, they must 
explicitly  request that  the control notify the appli- 
cation when the item is to be drawn. This method is 
called OWNERDRA w. If a control item is set  with the 
OWNERDRAW style bit, the owning application will 
receive a message  every time  the item must be 
painted. The application is provided with a presen- 
tation space for drawing and a description of the size 
and location of the item and may then use the GPI 

interface or any other preferred drawing APIS to draw 
the item. This method requires that  the application 
process the WM-DRAWITEM message in order to draw 
any item as owner-drawn. 

The value set expands the  notion of owner-drawn 
items by providing an  input format which consists 
of drawing orders written into memory. The appli- 
cation may draw its control item into a presentation 
space and  then use system-supplied calls to write the 
drawing orders to memory. These drawing orders 
are then saved by the control and re-executed each 
time  that  the item must be drawn. By using this 
input format, the application need only draw the 
item once and pass it to  the control. When redrawing 
is  necessary, the control executes the stored drawing 
instructions, rather than requesting that  the appli- 
cation redraw the items. 

Keyboard support. Any function provided by a user 
interface control must be accessible through a key- 
board as well as a mouse. Although actions such as 
selection or direct manipulation may seem more 
natural using a mouse, the control must provide 

56 FRANKLIN AND PETERS IBM SYSTEMS JOURNAL, VOL 3, NO 1, 1990 



equivalent function for the keyboard user. This im- 
plies that  the control instance  data block must con- 
tain information concerning the  current cursor po- 
sition along with other  status  data. Even if the items 
in the control have no real  logical ordering, the 
control must order the  items such that keyboard 
navigation permits access to all of the objects in a 
control. 

User control expansion. Understanding the basic 
guidelines in designing and implementing a user 
control is the first step in developing application 
code which can be shared and reused. Once  the basic 
structure  for a control is designed, the function of 
the control may be extended by processing a greater 
number of  messages and adding information to its 
instance data  or  input  structure  as application re- 
quirements change. These changes can be made 
without dramatically altering the original structure 
or  the processing performed by the control. If the 
control message interfaces and  input structures re- 
main stable, applications may obtain expanded func- 
tion without any modification. 

Concluding  remarks 

Our development of controls for the IBM office en- 
vironment product has proved to be a successful 
method for both propagating consistent user inter- 
action requirements throughout all components of 
the office system and reducing the programming 
effort for the individual applications. The develop- 
ment of  specific controls as well as the use  of the 
system-supplied controls encapsulates very  specific 
functional requirements into specialized objects that 
can be used  by  all applications that  are a part of the 
office environment.  The user  is presented with a 
visual interface that behaves consistently across office 
components, and the application programmer ben- 
efits from the availability of these controls when 
designing and programming an office application. 

As workstation interaction techniques continue to 
mature, the need for user interface consistency across 
applications will become increasingly important. Def- 
inition of a uniform interaction style is the frame- 
work  for this consistency. However, this definition 
is no guarantee of conformance unless tools are 
developed that enable. an application to conform to 
user interface definitions while  preserving the free- 
dom of the application. Controls serve as flexible 
application enabling tools by providing programs 
with a set of user interface building blocks for appli- 
cation development. Properly structuring our con- 

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990 

hiding the ~ data  and internal control processing 
mechanisms and surfacing only a message  set to  the 
applications. The object-oriented approach to Pres- 
entation Manager application development can be 
expanded by developing base classes  of control ob- 
jects upon which can be built more specialized con- 
trols that  inherit behavior from the base  classes. 

We have  seen  how the  implementation of applica- 
tion function as user controls has many practical 
advantages. In addition,  the evolution of controls 
toward objects in an object-oriented environment 
provides an  opportunity for continuing research and 
development in  the use and design of Presentation 
Manager controls. Controls may be designed and 
implemented not only as individual building blocks 
for specific application function,  but as integrated 
sets of objects related in a hierarchical fashion and 
sharing certain levels  of behavior. 

Acknowledgments 

The  authors wish to acknowledge the  support of 
Sandy Cureton, Bill Braley, and  Dorene Palermo in 
writing this article. We also acknowledge Nancy 
Jackson, Tony Temple, Ellen Cohen Sonenthal,  and 
Art Goldstein for their support of the OfficeVision/2 
Presentation Manager platform. We extend special 
thanks  to Dave McGehe, Randy Black, and  Dan 
Kardell for their help with the  manuscript  and  to 
Mark Estes for his programming efforts. 

OS/2, Presentation Manager, Systems  Application  Architecture, 
SAA, Operating  System/2,  and OfficeVision/2 are  trademarks,  and 
Personal System/Z and  PS/2  are registered trademarks  of  Interna- 
tional Business Machines  Corporation. 

Cited  references 

I .  E. F. Wheeler and A. G. Ganek, ‘‘Introduction to Systems 
Application Architecture,” IBM Systems Journal 27, No. 3, 
250-263 ( 1  988). 

2. M. Vellon, “OS/2 Windows  Presentation Manager: Microsoft 
Windows on  the  Future,” Microsoft Systems Journal 2, No. 2, 
13-18 (May 1987). 

3. R. E. Berry, “Common User Access-A Consistent  and  Usable 
Human-Computer  Interface for the SAA Environments,” IBM 
Systems Journal 27, No. 3, 281-300 (1988). 

4. S. Uhlir,  “Enabling  the  User  Interface,” IBM Syslems Journal 

5 .  S. Franklin  and T. Peters, “Graphical  Interface Services for 
Application Integration,” Graphics InterJiace ’89 Proceedings, 
Canadian  Information Processing Society and  Canadian 
Man-Computer  Communications Society (June 1989), 
pp. 105-1 12. 

6. B. Cox, Ohject-Oriented Programming, Productivity  Products 
International, Inc., Sandy  Hook, CT ( 1  986). 

27, NO. 3, 306-3 14 (1988). 

FRANKLIN AND PETERS 57 



7. C. Petzold, “Object Oriented  Programming,” PC  Magazine 8, ASD Software Development  Laboratory  in Westlake, Texas, in 
No. I ,  317-324(January 17, 1989). user interface design and  platform  development of OfficeVison/2. 

8. Systems Application Architecture Common User ~ c c e ~ ~  Ad- Ms. Franklin  has received two  Invention  Achievement Awards 
vunced Interface Design Guide, SC26-4582, IBM Corporation; and  one  Outstanding  Technical  Achievement Award for  her work 
available through IBM branch offices. in enhancing OS12 interapplication  data  transfer  techniques. 

General  references 

D.  M. Chess and M. F. Cowlishaw, “A Large-Scale Computer 
Conferencing System,” IBM  Systems Journal 26, No. 1, 138-153 
(1987). 
W. P. Dunfee, J. D. McClehe, R.  C.  Rauf,  and K. 0. Shipp, 
“Designing SAA Applications and  User Interfaces,” /EM Systems 
Journal 27, No. 3,  325-347 (1988). 
S. Franklin  and  T. Peters, “A Technical  Study  of  Dynamic  Data 
Exchange Under  Presentation  Manager,” Microsoft Systems Jour- 
na14, No. 3,  1-16 (May 1989). 
E. Iacobucci, OS12 Programmer’s Guide, McGraw-Hill, Inc., 
Berkeley,  CA (1988). 
“IBM Operating System/2,” IBM Personal System/2  Seminar 
Proceedings 5, No. 5, 32-45 (May 1987). 
IBM Operating System12 Internals Volume 2: presentation Man- 
uger, IBM International  Technical  Support  Center, Boca Raton, 
Florida (1988). 
IBM Operating System12 Version 1.1 Programmer’s Toolkit, Part 
No. 628021 1, IBM Corporation; available through IBM branch 
offices. 
IBM Operating System12 Version I .  I Technical Reference, Part 
No. 6280212, IBM Corporation; available through IBM branch 
offices. 
“IBM OS12 Standard  Edition Version 1.1,  IBM Operating Sys- 
tem/2 Update, Presentation  Manager  (Part I),” IBM Personal 
Systeml2  Seminar Proceedings 6, No. 1, 13-62 (April 1988). 
“IBM OS12 Standard  Edition Version 1. I ,  Presentation  Manager 
(Part 2),” IBM Personal Systeml2  Seminar Proceedings 6, No. 2, 

M. S. Kogan and F. L. Rawson 111, “The Design of Operating 
System/2,” IBMSystems Journal 27, No. 2, 90-104 (1988). 
C. Petzold, “The  Graphics  Programming Interface: A  Guide  to 
OS12 Presentation Spaces.” Microsoft Systems Journal 3, No. 3, 
9-18 (May 1988). 
C. Petzold, “OS/2 Graphics  Programming Interface: An  Introduc- 
tion  to  Coordinate Spaces,” Microsoft Systems Journal 3, No. 4, 

C. Petzold, Programming the OS12 Presentation Manager, Micro- 
soft  Press, Redmond, WA (1988). 
K. Welch, “Creating User-Defined Controls  for Your Own Win- 
dows Applications,” Microsoft Systems Journal 3, No. 4, 54-66 
(July 1988). 
K. Welch, “Inter-Program  Communication  Using Windows’ Dy- 
namic  Data Exchange,” Microsoft Systems Journal 2, No. 6 ,  
13-23 (November 1987). 

2-41 (April 1988). 

23-40 (July 1988). 

Susan Franklin IBMApplicution  Solutions Division, 5 West Kirk- 
wood Boulevard, Rounoke,  Texas  76299. Ms. Franklin is a  senior 
associate programmer who joined IBM in 1987. She received a 
B.S. degree in  computing science from  Texas A&M University at 
College Station  in 1987. Since joining IBM, she has worked at  the 

58 FRANKLIN AND PETERS 

Tony  Peters IBM Application Solutions Division, 5 West  Kirk- 
wood Boulevard, Roanoke,  Texas  76299. Mr. Peters is a senior 
programmer  who has been with IBM since 1982. He received a 
B.S. degree in  mathematics  and  computer science from  the  Uni- 
versity of Tennessee  at Nashville in 1977 and  an MS.  degree in 
computer science from  the University of Tennessee at Knoxville 
in 1979. Prior to joining IBM, Mr. Peters was a  member  of  the 
technical staff at Bell Telephone  Laboratories  in Naperville, Illi- 
nois. From 1982 to 1984, he was a project leader on  the  UNIX“ 
development effort in Dallas, Texas. In 1984 and 1985 he was on 
international  assignment  in Boblingen, Germany, where he worked 
on  the  1x1370 project. Since 1986, he has  been  working  on  the 
OfficeVision/2 project in  the Westlake ASD laboratory.  Mr.  Peters 
has received five Invention  Achievement Awards and  two  Out- 
standing  Technical Achievement Awards for his work in develop- 
ing the OS12 Dynamic  Data Exchange (DDE)  protocol  for  the 
OS12 Presentation Manager and for his work on  the Office Pres- 
entation Manager user interface  platform. 

Reprint  Order No. G321-5385. 

IBM  SYSTEMS JOURNAL, VOL 29, NO 1, 1990 


