Concurrent computing
by sequential staging
of tasks

Described is a new approach to parallel formulation of
scientific problems on shared-memory multiprocessors
such as the IBM ES/3090 system. The class of prob-
lems considered is characterized by repetitive opera-
tions applied over the computational domain D. In
each such operation, some fields of interest are extrap-
olated or advanced by an amount of Ar. The integra-
tion variable - may be time, distance, or iteration se-
quence number, depending on the problem under con-
sideration. An extensively studied approach to parallel
formulation of such computational problems is based
on domain decomposition, which attempts to partition
the domain of integration into many pieces, then con-
struct the global solution from these local solutions.
Thus, domain decomposition methods are confined to
D alone at a single = level. An inquiry into the possibili-
ties of formulating parallel tasks in T, or more signifi-
cantly in the D x r domain, opens up new horizons
and untapped opportunities. The aim of this paper is to
detail an approach to exploit this  domain parallelism
that will be referred to as sequential staging of tasks
(SST). Concurrency is realized by means of ordering
the tasks sequentially and executing them in a partially
overlapped or pipelined manner. The SST approach
can yield remarkable speedup for jobs requiring inten-
sive paging 1/0, even when a single processor is avail-
able for executing multiple tasks. Noteworthy features
of the SST method are demonstrated and highlighted
by using results obtained from computer experiments
performed with a numerical solution method of the
Poisson equation and migration of seismic reflection
data.

ver the past four decades the computer industry
has expertenced phenomenal growth. The per-
formance of scientific computers has increased by at
least five orders of magnitude. These improvements
can be attributed to advancements in technology,
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improvements in machine organization, and the de-
velopments of reliable siMD (single-instruction mul-
tiple data) extensions, such as the pipelined vector
Processors.

It is generally believed that single-processor perform-
ance is rapidly reaching its limits, and increase in
performance by orders of magnitude can only come
from further exploitation of the inherent parallelism
in applications.! Consequently, over the past decade
there has been increasing interest in parallel com-
puting. In the context of this paper, the terms parallel
computing or concurrent computing will signify the
use of a number of processors working cooperatively
on a single problem, e.g., a single FORTRAN job.
Computing systems consisting of processors that are
capable of working together by executing separate
sets of instructions asynchronously are known as
MIMD (multiple-instruction multiple data) architec-
tures. It is not necessary that these processors be
dedicated to the same problem or job, since one can
show that load balancing on MIMD systems is simpli-
fied enormously when multiple parallel jobs are ex-
ecuted over multiple processors. MIMD architectures
can be put into many different classes depending on
one’s objective.2 The ideas discussed and the work
reported in this paper have been inspired by and
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implemented on the IBM ES/3090 system, a shared-
memory multiprocessor with vector facilities (VF) on
each of the processors.

To obtain near-optimum performance from a com-
puter, algorithms may be tailored to the architecture
of the computer under consideration, which is also
true for the traditional von Neumann central proc-
essors. As a consequence of the complexity of algo-
rithms, effective exploration of parallel vector archi-
tectures has proven more difficult than that of serial
architectures. The degree of effort required to imple-
ment or enable a given program on any computer is
a very important factor that can determine the ac-
ceptance, and eventually the commercial success, of
the computer under consideration. For convenience,
this1 will be referred to as implementation complex-
ity.

On current shared-memory MIMD systems, develop-
ment of parallel computing methods is motivated
almost exclusively by the desire to improve turn-
around time of a single job. It has been observed
that the size and complexity of a problem is deter-
mined by the turnaround the user is willing to tol-
erate. In turn, the user is only willing to accept a
limited amount of implementation complexity in
order to improve the turnaround time. Thus it ap-
pears that the perceived cost associated with the
implementation complexity compared with the ben-
efit of shorter turnaround time is a key factor in
deciding for or against parallel implementation. The
approach to concurrent computing discussed in this
paper has been motivated by the desire to achieve a
high degree of parallelism with relatively low imple-
mentation complexity. The problems under consid-
eration include time-dependent partial differential
equations and iterative methods for solving large
systems of equations.

The method presented has an important character-
istic of recognizing that in solving time-dependent
simulation problems, the processors may be assigned
tasks representing work at different time levels, and
the work need not be divided within a single time
level. Similarly an iterative method may assign proc-
essors tasks representing work for different iteration
sequence numbers and need not divide the work
within a single iteration. By defining a task as one or
more time steps or iterations over the computational
domain, one can initiate a set of tasks in a sequence
displaced from each other. Each task represents all
computing to be done at a given physical time or
iteration sequence number. Since no more than one
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task is assigned to a processor at any given time, one
can visualize the scheme as a number of processors
sweeping over the computational domain, moving
in unison, and processing successive time levels in a
sequentially-ordered but partially overlapped or
pipelined manner. This pipelined approach to con-
current processing of macro tasks will be referred to
as sequential staging of tasks (SST).

The organization of the paper is as follows. First, the
relevant solution methods for partial differential
equations are reviewed. Next, the basic principles of
the ssT method and programming considerations for
its practical implementation are discussed, followed
by numerical examples taken from electrostatics and
exploration geophysics. The advantages of the SST
method are then explained in the light of the simu-
lation results. The paper concludes with a reflection
and speculation on future trends from the end user’s
point of view.

Domain decomposition for exploiting spatial
parallelism

An important class of numerical solution methods
calls for repeated application of algorithms over large
multidimensional data arrays. A sweep over the data
usually corresponds to a numerical integration
whereby some physical fields are extrapolated with
respect to a variable 7, the physical significance of
which depends on the problem under consideration.
Parallel formulation of such computational prob-
lems requires the creation of multiple tasks that can
be executed concurrently in two distinct ways: (1)
Partition the work at one r level, i.e., within one
sweep, into multiple tasks associated with subsets of
the computational domain. (2) Define any task as
the work to be done at one or more 7 levels, thereby
partitioning the total work with respect to 7.

The first approach is known as domain decomposi-
tion and is described below. The second corresponds
to the ssT method described in the latter part of this

paper.

The most popular method of parallel programming
is known as domain decomposition.>* The compu-
tational domain D is partitioned into some # sub-
domains D, j =1, ..., n. A computational task T
defined over D is also partitioned into n subtasks 7',
j =1, ..., n, corresponding to the » subdomains.
Parallel (concurrent) processing is accomplished by
assigning N, subtasks to NV, available processors. The
concept is illustrated on one of the simplest, but
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Figure1 lllustration of an ordered sequence of tasks pro-
pagating from the bottom to the top of the
L-shaped domain. At the instant of this observa-
tion, three tasks are being actually processed.

TJASK 1: CPU 2

TASK 2 WAITING

TASK 3: CPU 4
TASK 4: WAITING

TASK &: CPU 1

TASK 6: WAITING

B8]

widely used and frequently referenced, equations of
mathematical physics, the Poisson equation. Under
the simplifying assumption that the physical domain
of interest is homogeneous and isotropic, the two-
dimensional Poisson equation may be written as

TRy) | FBXY) _

ox’ 6y2
For simple boundary conditions, e.g., a rectangular
domain, direct solvers are available (for example,
Hockney, p. 534).2 On the other hand, even for
slightly irregular boundaries such as the L-shaped
domain D, shown in Figure 1, no simple direct
solvers are available. To take advantage of simple
and well-tested programs, one is tempted to decom-
pose the domain into two or more rectangular do-
mains to which direct solvers can be applied readily.
Since D, is the union of three rectangular regions,
A, B, C, one plausible approach is to work with two
domains 4 and B U C, or alternatively, with domains
A U B and C. The procedure steps follow:

o(x.y). (D

1. Obtain an approximate solution for Equation 1
on A.
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2. Obtain an approximate solution for Equation 1
on BUC.

3. Compare the results on the boundary between A
and B.

4. Make corrections in boundary conditions aimed
at obtaining matching & values along this bound-
ary.

Steps 1 to 4 are repeated until the solutions along
the interfaces are in agreement within some pre-
scribed tolerance. Two tasks, e.g., T, and T, of
finding an approximation to Equation 1 can be
performed independently, and therefore may be as-
signed to two different processing units, P, and P,.
There are, however, serious problems with such a
domain decomposition approach, some of which are
listed below.

~ Load balancing: T, and T, . may require differ-
ent amounts of computing, causing P, and P, to
wait for each other.

«~ Matching & along the interface between subre-
gions is additional overhead of programming and
computing.

~ The accommodation of a different number of
processors would require recoding.

The concerns about load balancing, i.e., overall sys-
tem utilization and implementation complexity, can
increase dramatically when one graduates from text-
book problems to those with realistic size and diffi-
culty. The reluctance of the scientific programmer
to accept the implementation complexity associated
with this kind of approach to parallel computing is
one important reason why some observers think that
parallel computing is not driven by the user.” Neither
the computer architect who designs complex parallel
systems, nor the theoretical numerical analyst whose
job ends with a proof that the solution exists, has
demonstrated much appreciation for the implemen-
tation complexity that programmers must address to
improve turnaround time.

Iterative methods. Fortunately, a significant portion
of engineering and scientific problems is governed
by linear partial differential equations (PDE), such as
Equation 1, and may be solved numerically by one
of the several well-tested iterative procedures. A brief
overview of these procedures will be given with
reference to Equation 1, a numerical approximation
of which on a rectangular mesh can be expressed as
a difference equation:

gt ¥ s T iy T bpury — 4 iy = Py 2
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Iterative procedures are defined by starting with a

0 . n
guess ¢, , at all mesh points. Improved values ¢, ; are
calculated by using Equation 2. The superscript n
signifies the results from the nth Iivteration. The proc-
ess is repeated N times until ¢, , converges to the
solution of Equation 2 at all mesh points.

In the Jacobi method, new values ¢, ; are computed
from old values ¢, , of the last iteration. This can be
stated more formally as:

n n ” n
o = it T G T Gcry t brrrs — Py
ki 4 .

This equation can be evaluated for all mesh points
independently from the others, which makes it
ideally suited to implementation on parallel com-
puters. Unfortunately, it has a slow convergence rate,
and therefore it is useless for practical computations.

3)

A more successful iterative method is the SOrR method
(successive over-relaxation). It is based on the follow-
ing replacement algorithm:

n+i n n+1 n
oy By T Gppet T Guiy t Prwry — Piy
by =@ 4

+ (1 - w)d):,,, (4)

where w is a constant relaxation factor assuming
values within the range of {1 < w < 2}. The conver-
gence rate, which is a function of w, is significantly
better than that of Equation 3. This improvement is
due to the fact that new values replace old ones as
soon as they become available. For that very same
reason, the algorithm has recurrences with respect to
both indices k and /, and considering a single itera-
tion, i.e., one sweep over the data arrays under
consideration, the SOR method appears sequential
and unsuitable for implementation on vector or
parallel computers.

If the evaluation of Equation 4 is ordered according
to the classical Red/Black ordering of the mesh
points, then an SOR sweep can be substituted by two
Jacobi-like sweeps of the mesh. The two sweeps
correspond to computing the new values of d):;' at
red and black mesh points. This procedure is also
known as Odd/Even partitioning, since the mesh is
partitioned into two groups, red or black, according
to whether k + [/ is odd or even, respectively. The
SOoR method based on Odd/Even ordering can be
effectively implemented on vector or parallel com-
puters. This strategy is limited to finite difference
discretizations involving five points (in two dimen-
sions). For higher-order finite difference discretiza-
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tions or for equations involving mixed partial deriv-
atives, one needs more than two colors to implemﬁent
the SOR method on vector or parallel computers.

Consider a method similar to Equation 4 but with
the following changes. The sweeps are done in row

Creative reordering of the sequence
of computations can result in
efficient parallel algorithms.

order and intermediate ¢ values are computed si-
multaneously for all mesh points of the kth row
from using the new values of the (k — 1)th row and
the old value of the (k + I)th row. This can be
expressed for an interior mesh point as:
q~5k,/ =025 (a’k‘l—l + ‘;’k,m + ¢Zt:,1

+ ¢Z+1,1 - pk,1) . (5)

When applied to all mesh points along a row, Equa-
tion 5 forms a tridiagonal system of equations, the
solution of which yields é. The new 4)"“ values are
computed from the old ¢” values and those obtained
from Equation 5 by implementing

o = @b+ (1= W)y, (©6)
Solving for new values at successive rows defines an
iteration step of the SLOR method (successive line
over-relaxation). The SLOR method, which reduces
to repeated application of a tridiagonal solver (the
possibility of parallel execution of which is not ex-
pected to be of great benefit and therefore is ignored),
1s essentially a sequential algorithm. Red/Black par-
titioning of lines can help to remove recurrence
relations and render the modified SLOR method suit-
able for parallel computers.

In summary, the most effective iterative algorithms
do not always lend themselves conveniently to par-
allel architectures. Creative reordering of the se-
quence of computations can result in efficient par-
allel algorithms, although at some added implemen-
tation complexity. There is, of course, always a
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chance for surprises, such as an 1/0-bound (e.g.,
paging in a virtual-system environment) job becom-
ing even more 1/0 bound if the standard sor method
is traded for the Odd/Even sor. The turn-
around time would roughly double regardless of how
many processors are being used, since the two sweeps
over ¢ on each iteration double the number of pages
transferred. The next section discusses a strategy for
adapting iterative schemes to shared-memory paral-
lel computers based on the sequential staging of
tasks. The sST method has a low implementation
complexity, does not depend strongly on the equa-
tion or discretization being considered, allows speed-
ups to be achieved on multiprocessor systems, and
can even allow speedups of 1/0-bound jobs in single-
processor environments.

Sequential staging of tasks

A significant portion of the numerically intensive
engineering and scientific computations deals with
time-dependent partial differential equations and it-
erative methods applied to large systems of equa-
tions. Implementations of such problems have an
important common characteristic. The same (or sim-
ilar) set of algorithms is executed repeatedly by
sweeping the data arrays in some organized fashion.
In each such sweeping operation, some fields of
interest are extrapolated or advanced by a Ar
amount. The integration variable » may be time,
distance, or iteration sequence number, depending
on the problem under consideration. As it was seen
in the previous section, domain decomposition
methods are confined to the computational domain
D alone at a single 7 level. It is, therefore, natural to
inquire into the possibility of defining tasks to be
processed concurrently with respect to 7, or more
precisely in the D X r domain. The extra dimension,
7, provides much greater freedom for organizing
tasks conveniently. In the sST method a task corre-
sponds to one or more iterations (sweeps) over D.
Tasks are dispatched in a sequence and their execu-
tion is controlled to assure that each computes on a
unique subdomain of D as well as at unique 7 level.

Definition of tasks. A rask is defined as a disjoint set
of subroutines or the computing associated with the
execution of these subroutines. Each task can be
called independently of all other tasks, and by shar-
ing data, different tasks can interact and work co-
operatively. For the sake of precision, consider Equa-
tion 4 being applied iteratively to all interior points
of the domain shown in Figure 1. Assume that
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computing is advanced from the left to the right
boundary of each row. Such a horizontal sweep is
represented by the following subroutine, HSWEEP.

SUBROUTINE HSWEEP(PHI,RHO,KMAX,L)

DO 100 K = 2,KMAX(L)
PHI(K,L) = 0.25 * OMEGA * (PHI(K,L-1)
$ + PHI(K,L+1) + PHI(K-1,L)
$ + PHI(K+1,L) - RHO(K,L))
$ + (1.0 - OMEGA) * PHI(K,L)
100 CONTINUE

In this particular example, a task can be defined as
the computations associated with one or more com-
plete iterations over the domain D. One such itera-
tion requires N,, HSWEEP calls, where N, is the
number of rows to be processed. While the tasks are
executed asynchronously, it is important that they
maintain their relative positions in the sequence in
which they were initiated. Moreover, each task must
maintain some minimum distance from its preced-
ing neighbor in order to prevent interference be-
tween them. This requires inter-task communication
through data shared between tasks. This can be done
by posT and WAIT events which are capabilities pro-
vided by Parallel FORTRAN.

The staging process. After the first task is initiated,
execution proceeds at a rate determined by the task
being scheduled for processing to one of the available
central processing units (CPUs). The second task may
be started immediately after the first one but will
have to wait until the first task will have completed
at least two HSWEEP calls. To avoid interference
among tasks, at any stage of processing the ith task
must have completed two more horizontal sweeps
than task / + 1. The hypothetical snapshot of rows
being associated with the dispatched tasks is shown
in Figure 1. Some of the tasks are assigned to proc-
essing units as shown, while others are waiting for
their turn. While the tasks are staged sequentially
and displaced with respect to each other, there is
considerable overlap among them as illustrated in
Figure 2, which resembles a timing diagram of pipe-
lined vector processors. There are, however, a few
subtle differences:

~ A vector unit exploits spatial parallelism; the sST
method exploits temporal parallelism.

» In a vector unit identical (SIMD) subtasks are exe-
cuted synchronously; in the ssT method different
(MIMD) subtasks are executed asynchronously.
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» In vector processing, the operations are shifted in
time to coordinate the arrival of subtasks at func-
tionally different pipeline stages; in the SST
method, the operations are displaced in space to
prevent interference among functionally identical
processing units.

The above indicates that symmetry exists between
the vector concept and the SST approach.

Parallel formulation of tasks with respect to the =
variable and their sequential staging is characterized
by simplicity that has noteworthy practical conse-
quences. Since each task is defined by a serial pro-
gram that requires no further debugging and the
tasks are executed in a well-defined sequence, the
necessity for extensive analysis for data dependencies
is avoided. Concurrency is achieved by means of the
sequential arrangement of tasks that-minimize im-
plementation complexity. In many applications,
tasks corresponding to unique 7 levels could be
partitioned into many smaller subtasks based on the
ideas of domain decomposition. Such attempts to
achieve a higher degree of parallelization would in-
crease implementation complexity and, in view of
the very few processors of present-day shared-mem-
ory multiprocessors, would not be of much practical
value in the near future.

Parallel FORTRAN overview

Implementation and execution of parallel programs
requires a means of identifying parallel pieces of
work and assigning them to available processors. IBM
Parallel FORTRAN’ (PF) is a facility to specify the
parallelism in an application, and only its execution
environment and design philosophy will be high-
lighted. Parallel FORTRAN provides the following
items:

« Extensions to the compiler for automatically gen-
erating parallel code

» Extensions to the language for explicitly program-
ming in parallel

» Extensions to the library for synchronizing parallel
execution through locks and events

From the FORTRAN programmer’s point of view, the
Paralle] FORTRAN environment, as shown in Figure
3, consists of multiple tasks ready for execution,
multiple FORTRAN processors associated with the
program, and multiple real processors available for
doing the work.
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Figure 2 Timing diagram of sequentially staged tasks. Their
processing is asynchronous. Their order in the
sequence, with specified buffer space between
consecutive tasks, is maintained by the language
extension of the IBM Parallel FORTRAN.

TASK m-1

TASK m

t
l
i
:(——————'— TOTAL ELAPSED TIME ———-——-—’:

The programmer controls only the first two of these
items, whereas the number of real processors avail-
able depends on the machine configuration and
other jobs being executed on the system. The Parallel
FORTRAN language and the compiler are used to
identify parallel tasks, and a run-time option is used
to specify the number of FORTRAN processors, The
computing in this execution environment (Figure 3)
is managed as follows.

» Tasks to be executed in parallel are identified
within the FORTRAN application program either
automatically by the compiler or manually by the
programmer.

* FORTRAN library programs assign these tasks to
the FORTRAN Processors.

» The operating system schedules the FORTRAN proc-
essors for execution on available real processors.

Each task is placed in a queue as it is encountered
during execution. As a FORTRAN processor completes
execution of a task, the FORTRAN library selects the
next available task from this queue to be executed
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Figure 3 Parallel FORTRAN execution environment

REAL
PROCESSORS

oPU, CPU, CPUR

OPERATING SYSTEM

FORTRAN
PROCESSORS
FP, FP, FP, . FPy
PARALLEL FORTRAN LIBRARY
TASKS ASSIGNED TO FORTRAN PROCESSORS
T T, Ty . T
TASKS IN QUEUE WAITING FOR EXECUTION
TN+ Th+2 Tns+L Tiast

PARALLEL FORTRAN APPLICATION: P
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on the processor. Such a transition from one task to
another one is accomplished with relatively little
effort, since the operating system job scheduler is not
invoked.

There is no one-to-one or many-to-one correspon-
dence between FORTRAN processors and real proces-
sors. This was an extremely important design deci-
sion, some advantages of which have already been
described in detail.”® The user’s ability to specify the
number of tasks, N, and the number of FORTRAN
processors, N, enable the user to exploit the po-
tential of an MIMD system. The user’s control of N, ,
and N, are important to a practical and commer-
cially sound parallel computing environment.

Numerical experiments

Numerical experiments were conducted on problems
taken from two different disciplines to verify the
concept of the ssT method and to evaluate the prac-
tical feasibility of exploiting temporal parallelism.
The first example deals with the Poisson equation
and its solution by the SLOR method. The second
example is taken from exploration geophysics. It
addresses the problem of seismic migration, an in-
verse problem aimed at imaging the cross section of
reflectivity of the subterrain from measurements
made at the surface of the earth.

Poisson equation. The numerical solution of the
three-dimensional Poisson equation

LR I

SIS+ S =0 (7)
ax ay oz

by an SLOR method is similar to that of the two-
dimensional one, In this case, Equations 5 and 6
become

n+l

Dictm = 1/6(¢k,1—1,m t bppim T Prmrim

n+1

+ ¢Z+1,1,m + biima ¢Z,I,m+l_ Pk,l,m) s t))
and
l ~
Sretm = OBiepm + (1 = @)l ©)

The computational domain is a regular parallele-
piped of dimensions N,; N, N,. Computations begin
with the first interior row (along x) within the first
interior (x,y) plane at z = Az and proceed plane-by-
plane to the last interior plane at z = (N, — 1)Az.
The relaxation of each row involves the solution of
a tridiagonal system of order N — 2. Each experi-
ment consists of 24 complete iterations over the
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volume under consideration. Since the computations
are the same no matter how many tasks are used,
the error after these 24 iterations is the same for all
cases. In the sst formulation, the 24 iterations are
partitioned into N, tasks. Successive iterations are
assigned to successive tasks. Thus for example, in
the case N, = 8, the third task T, performs the
3rd, 11th, and 19th iterations. The Paralle]l FORTRAN
library and language extensions used in implement-
ing the SLOR method for Equation 7 are shown in
Appendix A. Results will be discussed in the next
section.

Migration of seismic data. Migration calls for the
numerical solution of partial differential equations,
which govern the propagation of the recorded signals
from the surface to the reflector locations, in reverse
time. These methods, generally referred to as wave-
equations migration, consist of two steps: (1) wave
extrapolation and (2) imaging. Downward extrapo-
lation results in a wave field that is an approximation
to the one that would have been recorded if both
sources and recorders had been located at depth z.
Thus, events appearing at ¢ = 0 are at their correct
lateral position, and the extrapolated zero-offset data
at 1 = 0 are taken as being the correctly migrated
data at the current depth. These data are then
mapped onto the depth section at z, the depth of
extrapolation. This mapping process is also referred
to as imaging.

Let p = p(x, z, ?) be the zero-offset seismic data,
where x is the horizontal distance, z is depth, and ¢
is the two-way travel time. The downward extrapo-
lation of zero-gffset data is governed by the one-way
wave equation

. k 29172
aP=£9[1—<"v>] P, (10)

dz v 2w

where P is the Fourier Transform of p, v is the
velocity, k, is the wave number with respect to x,
and  is the temporal frequency. Equation 10 is
expressed in the wave-number-frequency domain
(k,, @) and does not have an explicit representation
in the midpoint-time domain (x, f).

For practical reasons, the discussion of which is
beyond the scope of this paper, the square root
expression is often substituted by its approximate
equivalent. For example, a rational approximation
of Equation 10 is calculated by truncated continued
fractions and splitting, which results in two extrap-
olators"
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Table 1 Performance of the SLOR method on the IBM 3090
600S computer with 256 megabytes of available
processor storage (problem size = 80Mbytes;

N, = 400, N, = 400, N, = 125)

FORTRAN CPU Time  Elapsed Speedup
Processors (s) Time Ratio
(s)

Case 1. Parallel tasks initiated: N, = 4

Serial run 243 248 1.00
N,o=1 245 254 0.976
Ny =2 246 129 1.92
Ny =3 246 88 2.82
Ny = 4 246 68 3.65
N,.=5 246 68 3.65
N,,m( =6 246 68 3.65
N =12 246 68 3.65

Case 2. Parallel tasks initiated: N, = 8

Serial run 243 248 1.00
Ne=1 244 252 0.984
N =2 245 129 1.92
N,,.=3 245 88 2.82
N,.=4 245 68 3.65
Ny =5 245 56 443
Ny =6 245 48 5.17
Ny = 12 245 50 4.96

Case 3. Parallel tasks initiated: N, = 12

Serial run 243 248 1.00
Nyo=1 247 255 0.973
Nppe=2 247 131 1.89
No=3 248 89 2.89
N, =4 248 69 3.59
No=s 248 56 4.43
N, =6 248 48 5.17
N.=12 248 49 5.06
5
oP _ (ﬂ) P, m
9z v

which is known as the thin lens term, and

2 0
[1 + v 6_} IP(x,w,z)

160° 9x*] 9z ;
_ (v I Pxw,z)
B <4°-’> ax’ ’ (12)

which is the Fresnel diffraction term. Advancing to
greater depths is achieved by applying Equations 11
and 12 alternately in small Az steps. Equation 11
represents a simple phase shift, whereas Equation 12
is implemented by solving a complex tridiagonal
system of equations. To construct a depth section of
dimensions N, - N,, from a N, - N,, time section,
Equations 11 and 12 are solved N, - N_ times, where
N, and N, are the number of lines imaged in the
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migrated section and the number of frequencies used
in the computations, respectively.

Discussion of results

Over 60 numerical experiments were performed on
the two sets of problems described in the previous
section. The timing and speedup results are tabulated
in six tables, shown later. From the computational
and data-handling points of view, the jobs fall into
two classes:

1. Compute-intensive jobs, such as those in Tables
1, 3, and 5, where the processor storage is greater
than the data requirements of the job

2. 1/0-intensive jobs, such as those in Tables 2, 4,
and 6, where the available processor storage is
smaller than the data requirements of the job

Parallel runs can be characterized by the parameters
illustrated in Figure 3:

1. N, the number of tasks specified by the pro-
grammer
2. N, the number of FORTRAN processors

3. The number of real processors available for doing
the work

Parallel FORTRAN allows the programmer to initiate
more parallel tasks than there are FORTRAN proces-
sors. The extra tasks reside in a queue waiting to be
executed by one of the FORTRAN processors. The
programmer can also specify N, which may differ
from the number of real processors, which will exe-
cute the FORTRAN processors. Every experiment re-
ported in this paper was executed on a stand-alone
IBM ES/3090 Model 600S computer having six real
Processors.

Table 1 shows timing and speedup results corre-
sponding to 24 SLOR iterations as per Equations 8
and 9. The serial run refers to the execution of the
serial code without introducing multiple tasks for
concurrent execution. When there are only 4 tasks
defined, such as in the first case, the degree of par-
allelism can only be four at any time of the execu-
tion. Indeed, the maximum speedup is attained with
4 (or more) FORTRAN processors. When the job is
partitioned into 8 or 12 tasks, the speedup peaks at
N, = 6, which is the number of available real
processors. In all three cases, 6 FORTRAN processors
perform as well or better than 12. This is not sur-
prising since there are only 6 real processors available
and the computing load among tasks is well bal-
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anced. The extra FORTRAN processors represent, in
this case, additional overhead with no added benefit
to computational efficiency. All speedup figures are
given with reference to the serial run. The N, = 1
run is slightly slower than the serial run. This is due
to the overhead associated with the parallel con-
structs and running multiple tasks while only one
FORTRAN processor is being used. However, consid-
ering that the parallel code can be executed on any
number of processors between 1 and 6 without any
further alteration, this small performance reduction
is a modest price to pay.

The 22 jobs represented in Table 1 were repeated
with one and only one change: the available proces-
sor storage was set to 64 megabytes. The results are
tabulated in Table 2. The serial job became 1/0
intensive due to paging, as evidenced by the elapsed
time being 25 times that of the serial job in Table 1.
In general, jobs with intensive paging 170 do not
benefit markedly from parallel execution on multiple
processors. This is particularly true for domain de-
composition techniques, where the matching of do-
main boundaries can increase rather than decrease
computing, paging, and 1/0. However, the present
(ssT) approach to exploit temporal parallelism allows
for the reduction of paging 1/0 because more than
one task can be executed using the data residing in
processor storage.

The essence of Table 2 is that with an increasing
number of FORTRAN processors, the observed
speedup approaches (asymptotically) the value of
N, Which can be understood as follows: If all tasks
are computing on data that are relatively near to
each other, the amount of data they span can be only
a small fraction of the entire data set under consid-
eration. Under these conditions the following sce-
nario is possible. Some data, e.g., D, are paged in
for processing under task 7. Since 7, follows T,
closely in space (see Figure 1) and time, it is quite
probable that D, will be processed by 7, before it is
paged out. Under favorable conditions all ¥, tasks
will have swept over D, before it is paged out. In
this case D, undergoes NV, times as much processing
as in the serial case. Consequently, the total amount
of paging is reduced by the corresponding amount.
The most notable result of Table 2 is the speedup
achieved in the N, = 1 case. This is an excellent
example to show the importance of being able to
define parallel tasks that can be dynamically allo-
cated to available processors and to specify synchro-
nization between the tasks. In the N = 1 case,

after computing a complete plane within 7, the
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Table 2 Performance of the SLOR method on the IBM 3090
600S computer with 64 megabytes of available
processor storage (problem size = 80M bytes;

N, =400, N, = 400, N, = 125)

FORTRAN CPU Time  Elapsed Speedup
Processors (s) Time Ratio
(s}

Case 1. Parallel tasks initiated: N, =4

Serial run 250 7416 1.00
Ny =1 247 2334 3.18
Ny ™2 248 1997 N
N,e=3 248 1995 372
Ny =4 248 1928 385
Nye=5 248 1930 3.84
N,=6 247 1915 3.87
N =12 247 1896 391
Case 2. Parallel tasks initiated: N, =8
Serial run 250 7416 1.00
Ny =1 245 1455 5.10
Ny =2 246 1092 6.79
N =3 246 1029 7.21
Ny =4 246 1003 7.39
Ny =5 246 989 7.50
Ny =6 247 980 7.57
Ny =12 247 961 7.72
Case 3. Parallel tasks initiated: N, = 12

Serial run 250 7416 1.00
Ny =1 248 1158 6.40
N=2 248 785 9.45
Npoe =3 249 726 10.2

N, =4 249 702 10.6

Ny =5 249 711 10.4

N,,.=6 249 691 10.7

N =12 249 664 11.2

FORTRAN processor switches to 7, , in the queue. In
a stand-alone environment this amounts to the proc-
essor visiting each task in a round-robin fashion. As
the processor moves from one task to another, D, is
being subjected to several iterations between paging
in and paging out. Parallel FORTRAN provides a
means of easily representing the parallel nature of
this algorithm and the synchronization required.
While it is true the approach of reusing data in
storage could be coded'! in serial FORTRAN, the code
would not be as easy to understand, implement, and
debug.

Tables 1 and 2 refer to computer experiments carried
out on three-dimensional array of 80 megabytes. To
ascertain that the method used in formulating par-
allel runs scale well, two sets of experiments with
N, = 12 were repeated on data 2.5 times that size.

t
The corresponding results are summarized in Tables
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Table 3 Performance of the SLOR method on the IBM 3090
600S computer with 256 megabytes of available
processor storage (problem size = 200M bytes;
N, = 500, N, = 500, N, = 200)

FORTRAN CPU Time Elapsed Speedup
Processors (s) Time Ratio
(s)
Parallel tasks initiated: N, = 12
Serial run 590 600 1.00
N =1 596 607 0.988
Nopoe =2 596 306 1.96
N,.=3 597 206 291
Nope=4 597 157 3.82
N,=5 597 127 472
N,,.=6 598 108 5.56
N, =12 598 115 5.22

Table 4 Performance of the SLOR method on the IBM 3090
600S computer with 64 megabytes of available
processor storage (problem size = 200M bytes;
N, =500, N, = 500, N, = 200)

FORTRAN CPU Time Elapsed Speedup
Processors (s) Time Ratio
(s)
Parallel tasks initiated: N, = 12
Serial run 612 19,517 1.00
Nope =1 598 2,960 6.59
N, =2 598 2,033 9.60
Ny =3 599 1,912 10.2
N, =4 599 1,820 10.7
Now=5 599 1,771 11.0
N, =6 599 1,746 11.2
N, =12 610 1,699 11.5

3 and 4. For this larger problem size, all parallel runs
resulted in greater speedup values than those meas-
ured for smaller data sets. This is an expected result,
since the overhead associated with the parallel prob-
lem formulation is distributed over larger tasks.

The seismic migration method under consideration
lends itself superbly to parallelization by domain
decomposition. This is seen immediately by consid-
ering that the migration algorithm is formulated in
the temporal frequency domain w and the operations
governed by Equations 11 and 12 are linear. There-
fore, in principle, data associated with different fre-
quencies can be processed independently of each
other. Thus, the method based on the sequential
staging of tasks does not open up new vistas for
parallel execution but provides only an alternate
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approach to parallel computing. Nevertheless, in this
textbook example of domain decomposition, one
can find subtle differences in favor of the sST method.

e The sequence of operations for computing the
migrated data in the SST method remains the same
as that in the serial case. Therefore, the resulis
should agree for any N, N, ., and real CPUs
available.

* The debugging of the parallel code is facilitated to
a great extent.

¢ In conventional domain decomposition applied to
seismic migration, all processors compute the
same part (depth level) of the output (migrated)
data from different parts (frequencies) of the input
data.

¢ In the present method based on the sequential
staging of tasks applied to seismic migration, dif-
ferent processors compute different parts (depth
level) of the output (migrated) data from different
parts (frequencies) of the input data.

The speedup figures for the compute-intensive ex-
ample represented by Table 5 are excellent consid-
ering that they correspond to over 98 percent parallel
execution of the code. In the I/0-intensive example
shown in Table 6 the speedup figures are even better,
but the additional speedups are due to reduced pag-
ing resulting from improved data management just
as in the SLOR method discussed in detail earlier.

Reflections on parallel computing trends

The class of problems considered in this paper is
characterized by repetitive operations applied to
multidimensional data arrays representing the com-
putational domain D. A sweep over the data corre-
sponds to numerical integration whereby physical
fields of interest are extrapolated or advanced by a
A7 amount. The integration variable  depends on
the problem under consideration. In time-dependent
partial differential equations, = is time. In iterative
solution of elliptic problems, 7 represents the itera-
tion sequence number. In inverse problems, such as
the migration of seismic reflection data discussed
earlier, 7 becomes the depth variable.

A very carefully researched approach to parallel for-
mulation of such computational problems is based
on domain decomposition which attempts, accord-
ing to Gonzalez and Wheeler,* “to break up the
domain of integration into many pieces, then some-
how construct the global solution from these local
solutions.” To arrive from an indefinite approach to
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a well-defined approach is not an easy matter. One
source of the difficulty is that students of domain
decomposition techniques usually confine them-
selves to working at a single 7 level. An inquiry into
the possibilities of formulating parallel tasks in 7, or
more importantly in the D X 7 domain, can open
up new horizons and untapped opportunities. This
paper details an approach to exploit this + domain
paralielism by pipelining or sequential staging of
tasks. The numerical experiments reported herein
support the ideas set forth in the earlier part of the
paper and substantiate the feasibility of the method.
The computer experiments also yielded some new
results: a verification of the authors’ hypothesis that
Parallel FORTRAN can be used to reduce elapsed time
of certain 1/0-intensive applications even on a single-
processor system.

Taking advantage of 7 domain parallelism via the
ssT method does not preclude or negate the benefits

" of domain decomposition methods. The two ideas
can coexist. For example, in both applications
treated earlier, the tasks as defined herein could be
split into many smaller subtasks following the ideas
of domain decomposition. One must, however, pon-
der how much parallelism is really needed in most
realistic large-scale computing environments. The
seismic migration problem considered can be parti-
tioned into N, equal tasks, where 100 < N < 1000,
and in case of a three-dimensional migration, each
w plane can be (domain) decomposed into some 100
complex rows and/or columns. This 10 000-fold par-
allelism creates excitement only among researchers
of parallel hardware and software. The geophysicists
remain unimpressed, and there is no evidence of
production codes running in parallel. One reason is
clear and simple. In realistic computing environ-
ments many users compete for few processors, and
one user seldom can justify using four or six proces-
sors in a dedicated mode. Other reasons have to do
with implementation complexity.

The situation is expected to change in the near future
when, for example, 10 or 20 users will access a
shared-memory MIMD system with 128 processors.
This does not really need to be a true shared-memory
system as long as the user perceives it as one. Con-
sider again the above-mentioned 10 000-fold parallel
seismic migration problem. By the time one creates
that many tasks with corresponding I/0, one can still
expect 95 percent parallelism, but not more. A prob-
lem like this on a dedicated 128 processor system
would result in no more than 14 percent total cpu
utilization. If, however, 10 such identical problems
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Table 5 Performance of a seismic migration on the IBM 3090
600S computer with 256 megabytes of available
processor storage (problem size = 192M bytes;

N, = 4096, N, = 4096, N, = 48, N_ = 2048)

FORTRAN  CPUTime  Elapsed  Speedup
Processors (s) Tin;e Ratio
(s
Parallel tasks initiated: N, = 12
Serial run 3,023 3,73 1.00
N,.=1 3,220 3,271 1.00
Noo=2 3224 1,659 1.97
No=3 3221 1,122 2.92
Nyo=4 3222 856 3.82
Noo=5 3,224 698 4.69
No=6 3,226 593 5.52

Table 6 Performance of a seismic migration on the IBM 3090
600S computer with 128 megabytes of available
processor storage (problem size = 192M bytes;

N, = 4096, N, = 4096, N, = 48, N, = 2048)

FORTRAN CPU Time Elapsed Speedup
Processors (s) Time Ratio
(s)
Parallel tasks initiated: N, = 12
Serial run 3,214 17,410 1.00
Nopoe =1 3,220 6,128 2.84
Nope =2 3,222 3,616 4.81
N =3 3,223 2,722 6.40
Ny =4 3,225 2,432 7.16
N,.=5 3,225 2,399 7.26
Nopo=6 3225 2,361 7.37

were executed simultaneously on the above system,
disregarding all overhead related to support Parallel
FORTRAN and multitasking to simplify matters, sys-
tem utilization might be around 99.9 percent. As a
result, each job could achieve a speedup of 12.
Systematic extensions made to current architectures
and other means of taking advantage of normal
technological advances of the future will result in the
achievement of improved performance without re-
quiring exotic architectures, revolutionary parallel
numerical methods, and special software to detect
parallelism automatically.

Conclusion

An approach to parallel formulation of scientific
problems on shared-memory multiprocessors has
been described. In the class of problems considered,
repetitive operations are applied over the computa-
tional domain D, whereby some fields of interest are
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integrated with respect to an independent variable 7,
which may be time, distance, or iteration sequence
number, depending on the physical nature of the
problem. The technique known as sequential staging
of tasks (sst) is based on defining concurrently exe-
cutable tasks with respect to r rather than with
respect to D alone at a single 7 level. Partitioning the
computational workload with respect to 7, or more
precisely with respect to the D X 7 domain, has
significant advantages. This study substantiates that
parallel formulation of tasks with respect to the
variable and their sequential staging is characterized
by simplicity that has noteworthy practical conse-
quences, such as minimized paging 1/0. Since each
task is defined by a serial program which requires no
further debugging, and the tasks are executed in a
well-defined sequence, the necessity of extensive
analysis for data dependencies is avoided. Concur-
rency is achieved by means of a sequential arrange-
ment of tasks that has a profound effect on minimiz-
ing implementation complexity, which is probably
the single most important factor determining user
acceptance of parallel computing.
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Appendix A: SST code for concurrent SLOR
iterations

.
.

. SLOR iterations in parallel for a 3D

. Poisson equation computed by sequential
. staging of tasks managed by parallel

. events

-
.

. set up problem stze and parameters

grid size: (NX,NY,N2)

NITER = total numher of {iterations
to be computed

NTASK = number of tasks

.

G OOOO000 N 0O
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... Note that in the following code, the
. Parallel FORTRAN constructs are boxed in.

OO0

DIMENSION PHI(NX,NY,NZ)
DIMENSION IEVENT(NTASK,NZ-1)

... originate tasks, events, and lock

[ W o)

D0 10 I = 1, NTASK
ORIGINATE ANY TASK IT
16 CONTINUE
Do 20 J = 1, NZ-1
D0 20 I =1, NTASK
CALL PEORIG (IEVENT(I,J))
20 CONTINUE
CALL PLORIG (LOCK)

... set initial and boundary values
... set the global iteration count: ITER to
. 0 and schedule all the tasks

SO0 00

ITER = 0

D0 30 I = 1, NTASK
SCHEDULE ANY TASK IT,
$ CALLING SLOR (PHI,NX,NY,NZ,NITER,
$ ITER,IEVENT,LOCK)
30 CONTINUE

WAIT FOR ALL TASKS

C...
STOP
END

c

c

SUBROUTINE SLOR (PHI,NX,NY,NZ,NITER,
$ ITER,IEVENT,LOCK)
DIMENSION PHI(NX,MY,NZ)
DIMENSION IEVENT(NTASK,NZ-1)
c
C ... critical sectton, obtain a unique
C ... tteration 'MINE' for each task
c

160 CALL PLLOCK (LOCK)
ITER = ITER + 1
MIME = ITER
CALL PLFREE (LOCK)
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[

... end critical section

Ia)

IF (MINE .GT. NITER) GO TO 300

... IWAIT identifies the task to issue the
.. walt. [IPOST identifies which task to
.. post. The following shows first few
... values for the variables if NTASK=4

ITER : 1 2 3 4 5 6
IWAIT: 1 2 3 4 1 2
IPOST: 2 3 4 1 2 3

. thus lteration 5 will be picked up by
... the first task and iteration 6 by the
... second task, etc.

OO0 0006000G00

IWAIT
IPOST

MOD(MINE-1, NTASK) + 1
MOD(MINE , NTASK) + 1

"

. start the iteration (NOTE: first
. iteration can start immediately)

(eI N>

IF (MINE .NE. 1 ) CALL PEWAIT
$  (IEVENT(IWAIT,1))

o0

. solve planes 2 thru NZ-1

D0 400 K = 2, NZ-1

IF (MINE .NE. 1 ) CALL PEWAILT
$ (IEVENT(IWAIT,K))

pﬁ

. compute new values for plane K

(e}

DO 500 J = 2, NY-1

.. compute new values for line J by solving
... a tridiagonal system and perform SOR

... extrapolation according to Eqns (8)

. and (9)

500 CONTINUE

IF (MINE .NE. NITER) THEN

OO0 600

CALL PEPOST (IEVENT(IPOST,K-1))

c
C ... Note that the following call to the
C ... library routine 'PXDISP' is optional.
C ... The effect of the routine {s to

C ... temporartly halt the execution of the
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. current task by putting the current task
. at the bottom of the 'queue'. The next
... waiting task at the top of the queue will
then be picked up for execution. In this

. way, the locality of the working set is

. maintained. It enables this code to

. execute much faster (less paging I1/0)

. than the serial code when the problem

. size exceeds the primary memory. This
.. effect is most noticeable when the number
.. 0f FORTRAN processors is 1. See Tables

. 2, 4, and 6 (n the text.

.
.
.

OO0 0000 00NN

CALL PXDISP

ENDIF
400 CONTINUE
IF (MINE .NE. NITER) THEN

CALL PEPOST (IEVENT(IPOST,NZ-1))

... same comment as above

S a0

CALL PXDISP

ENDIF
GOTO 100

300 RETURN
END
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