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Described is a new approach to parallel formulation of 
scientific problems on shared-memory multiprocessors 
such as the IBM ES/3090 system.  The class of prob- 
lems considered is characterized by repetitive opera- 
tions applied over the computational domain D. In 
each such operation, some  fields  of interest are extrap- 
olated or advanced  by an amount  of AT. The integra- 
tion variable T may be time, distance, or iteration se- 
quence  number,  depending on the problem under con- 
sideration. An extensively studied approach to parallel 
formulation of such computational problems is based 
on domain decomposition, which attempts to partition 
the domain of integration into many  pieces, then con- 
struct the global solution from these local solutions. 
Thus, domain decomposition methods are confined to 
D alone at a single T level.  An inquiry into the possibili- 
ties of formulating parallel tasks in T, or more signifi- 
cantly in  the D x T domain,  opens up new horizons 
and untapped opportunities. The aim of this paper is to 
detail an approach to exploit this T domain parallelism 
that will be referred to as sequential staging of tasks 
(SST). Concurrency is realized by  means  of ordering 
the tasks sequentially and executing them in a partially 
overlapped  or pipelined manner.  The SST approach 
can yield  remarkable  speedup for jobs requiring inten- 
sive paging 110, even  when a single processor is avail- 
able for executing multiple tasks. Noteworthy features 
of the SST method are demonstrated and highlighted 
by using results obtained from computer experiments 
performed with a numerical solution method of the 
Poisson equation and migration of seismic reflection 
data. 

0 ver the past four decades the  computer industry 
has experienced phenomenal growth. The per- 

formance of scientific computers has increased by at 
least five orders of magnitude. These improvements 
can be attributed to advancements in technology, 

improvements in machine organization, and  the de- 
velopments of reliable SIMD (single-instruction mul- 
tiple data) extensions, such as the pipelined vector 
processors. 

It is  generally  believed that single-processor perform- 
ance is  rapidly reaching its limits, and increase in 
performance by orders of magnitude can only come 
from further exploitation of the  inherent parallelism 
in applications.' Consequently, over the past decade 
there has been increasing interest in parallel com- 
puting. In the context of this paper, the  termsparallel 
computing or concurrent computing will  signify the 
use  of a number of processors working cooperatively 
on a single problem, e.g., a single FORTRAN job. 
Computing systems consisting of processors that  are 
capable of working together by executing separate 
sets of instructions asynchronously are known as 
MIMD (multiple-instruction multiple data) architec- 
tures. It is not necessary that these processors  be 
dedicated to  the same problem or  job, since one can 
show that load balancing on MIMD systems is simpli- 
fied enormously when multiple parallel jobs are ex- 
ecuted over multiple processors. MIMD architectures 
can be put  into zmany different classes depending on 
one's objective. The ideas discussed and  the work 
reported in this paper have  been inspired by and 
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implemented on the IBM ~~13090 system, a shared- 
memory  multiprocessor  with  vector  facilities (VF) on 
each of the processors. 

To obtain near-optimum performance from a com- 
puter, algorithms  may  be tailored to the architecture 
of the computer under consideration, which  is  also 
true for the traditional von Neumann central proc- 
essors. As a consequence of the complexity of algo- 
rithms, effective exploration of parallel  vector archi- 
tectures has  proven more difficult than that of serial 
architectures. The degree of effort required to imple- 
ment or enable a given program on any computer is 
a very important factor that can determine the ac- 
ceptance, and eventually the commercial  success, of 
the computer under consideration. For convenience, 
this will  be  referred to as implementation complex- 
ity. ' 
On current shared-memory MIMD systems,  develop- 
ment of parallel computing methods is motivated 
almost exclusively by the desire to improve turn- 
around time of a single job. It has  been  observed 
that the size and complexity of a problem is deter- 
mined by the turnaround the user is  willing to tol- 
erate. In turn, the user is only  willing to accept a 
limited amount of implementation complexity  in 
order to improve the turnaround time. Thus it ap- 
pears that the perceived  cost  associated  with the 
implementation complexity compared with the ben- 
efit of shorter turnaround time is a key factor in 
deciding  for or against  parallel implementation. The 
approach to concurrent computing discussed in this 
paper  has  been  motivated by the desire to achieve a 
high  degree  of  parallelism  with  relatively  low  imple- 
mentation complexity. The problems under consid- 
eration include time-dependent partial differential 
equations and iterative methods for  solving  large 
systems  of equations. 

The method presented  has an important character- 
istic of recognizing that in  solving time-dependent 
simulation problems, the processors  may  be  assigned 
tasks  representing  work at different time levels, and 
the work  need  not  be  divided  within a single time 
level. Similarly an iterative method may  assign  proc- 
essors  tasks  representing  work  for  different iteration 
sequence numbers and need not divide the work 
within a single iteration. By defining a task as one or 
more time steps or iterations over the computational 
domain, one can initiate a set  of  tasks  in a sequence 
displaced  from  each other. Each  task  represents  all 
computing to be done at a given  physical time or 
iteration sequence number. Since no more than one 
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task  is  assigned to a processor at any given time, one 
can  visualize the scheme  as a number of processors 
sweeping  over the computational domain, moving 
in unison, and processing  successive time levels in a 
sequentially-ordered but partially  overlapped or 
pipelined manner. This pipelined approach to con- 
current processing  of macro tasks will  be  referred to 
as sequential staging of tasks (SST). 

The organization of the paper is as follows. First, the 
relevant solution methods for partial differential 
equations are reviewed.  Next, the basic  principles of 
the SST method and programming considerations for 
its practical implementation are  discussed,  followed 
by numerical examples taken from electrostatics and 
exploration  geophysics. The advantages of the SST 
method are then explained in the light of the simu- 
lation results. The paper  concludes  with a reflection 
and speculation on future trends from the end user's 
point of  view. 

Domain  decomposition for exploiting  spatial 
parallelism 

An important class  of  numerical solution methods 
calls  for  repeated application of algorithms  over  large 
multidimensional data arrays. A sweep  over the data 
usually  corresponds to a numerical integration 
whereby some  physical  fields are extrapolated with 
respect to a variable 7, the physical  significance of 
which depends on the problem under consideration. 
Parallel formulation of such computational prob- 
lems  requires the creation of multiple tasks that can 
be  executed concurrently in  two distinct ways: (1) 
Partition the work at one 7 level,  i.e.,  within one 
sweep, into multiple tasks  associated  with  subsets of 
the computational domain. (2) Define any task  as 
the work to be done at one or more 7 levels, thereby 
partitioning the total work  with  respect to 7.  

The first approach is known  as domain decomposi- 
tion and is  described below. The second corresponds 
to the SST method described  in the latter part of this 
paper. 

The  most popular method of parallel programming 
is known  as domain decompo~it ion.~~~ The compu- 
tational domain D is partitioned into some n sub- 
domains D,, j = 1, ..., n. A computational task T 
defined  over D is  also partitioned into n subtasks T,, 
j = 1 ,  ..., n,  corresponding to the n subdomains. 
Parallel (concurrent) processing  is  accomplished  by 
assigning N ,  subtasks to N,  available  processors. The 
concept is illustrated on one of the simplest, but 
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Figure 1 Illustration of an  ordered  sequence of tasks  pro- 
pagating from the  bottom to the top of the 
L-shaped domain. At the  instant of this  observa- 
tion, three  tasks  are being actually  processed. 

TASK I: CPU 2 

TASK 21 WAITING 

TASK 3: CPU 4 

TASK 4: WAITING 

TASK 5: CPU 1 

TASK 6: WAITING 

rn 

widely  used and frequently  referenced, equations of 
mathematical physics, the Poisson equation. Under 
the simplifying assumption that the physical domain 
of interest is homogeneous and isotropic, the two- 
dimensional Poisson equation may  be  written  as 

For simple boundary conditions, e.g., a rectangular 
domain, direct  solvers are available  (for  example, 
Hockney,  p. 534).' On the other hand, even  for 
slightly  irregular boundaries such  as the Gshaped 
domain DL shown in Figure 1, no simple direct 
solvers  are  available. To take advantage of simple 
and well-tested  programs, one is tempted to decom- 
pose the domain into two or more rectangular  do- 
mains to which direct solvers can be  applied  readily. 
Since DL is the union of three rectangular  regions, 
A,  B, C, one plausible approach is to work  with  two 
domains A and B U C, or alternatively,  with domains 
A U B and C. The procedure  steps follow: 

1. Obtain an approximate solution for Equation 1 
on A.  
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2. Obtain an approximate solution for Equation 1 
on B U C. 

3. Compare the results on the boundary between A 
and B. 

4.  Make corrections in boundary conditions aimed 
at obtaining matching @ values  along this bound- 
ary. 

Steps 1 to 4 are  repeated until the solutions along 
the interfaces are in agreement  within  some  pre- 
scribed tolerance. Two tasks, e.g., TA and TBuc, of 
finding an approximation to Equation 1 can be 
performed independently, and therefore  may be  as- 
signed to two  different  processing units, PI  and P2. 
There are, however,  serious  problems  with  such a 
domain decomposition approach, some of which are 
listed  below. 

Load  balancing: TA and TBuc may require differ- 
ent amounts of computing, causing PI and P2 to 
wait  for  each other. 
Matching @ along the interface  between  subre- 
gions  is additional overhead of programming and 
computing. 
The accommodation of a different number of 
processors  would require recoding. 

The concerns about load  balancing,  i.e.,  overall sys- 
tem  utilization and implementation complexity, can 
increase dramatically when one graduates from  text- 
book  problems to those  with  realistic size and diffi- 
culty. The reluctance of the scientific programmer 
to accept the implementation complexity  associated 
with  this kind of approach to parallel computing is 
one important reason why some observers tl$nk  that 
parallel computing is not driven by the user. Neither 
the computer architect who  designs  complex  parallel 
systems, nor the theoretical numerical analyst whose 
job ends with a proof that the solution exists,  has 
demonstrated much appreciation for the implemen- 
tation complexity that programmers must address to 
improve turnaround time. 

Iterative methods. Fortunately, a significant portion 
of engineering and scientific  problems  is  governed 
by linear partial differential equations (PDE), such  as 
Equation 1, and may  be  solved  numerically by one 
of the several  well-tested iterative procedures. A brief 
overview  of these  procedures will  be  given with 
reference to Equation 1, a numerical approximation 
of which on a rectangular  mesh  can  be  expressed as 
a difference equation: 

4kJ-I + 4k,/+l  + 4k-I , I  + $k+l,/ - 4 4 k J  = Pk,/ * (2) 
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Iterativ: procedures are defined by starting with a 
guess $J~,/ at all  mesh points. Improved values are 
calculated by using Equation 2. The  superscnpt n 
signifies the results from the nth $eration.  The proc- 
ess  is repeated N times until 4k,, converges to  the 
solution of Equation 2 at all  mesh points. 

In the Jacobi method, new values 4;;' are computed 
from old  values I$:,/ of the last iteration. This can be 
stated more formally  as: 

This equation can be evaluated for all mesh points 
independently from the others, which makes it 
ideally suited to implementation on parallel com- 
puters. Unfortunately, it has a slow convergence rate, 
and therefore it is  useless for practical computations. 

A more successful iterative method is the SOR method 
(successive over-relaxation). It is  based on the follow- 
ing replacement algorithm: 

n+ I 

4:;' = w 
4kJ-I  + @:,/+I + c ; , /  + #:+I,/ - Pk, /  

4 

+ (1 - 44:,/, (4) 

where w is a constant relaxation factor assuming 
values within the range of { 1 I w I 2). The conver- 
gence rate, which is a function of w, is  significantly 
better than  that of Equation 3. This improvement is 
due  to  the fact that new values replace old ones as 
soon as they become available. For that very same 
reason, the algorithm has recurrences with  respect to 
both indices k and 1, and considering a single itera- 
tion, i.e., one sweep over the  data arrays under 
consideration, the SOR method appears sequential 
and unsuitable for implementation on vector or 
parallel computers. 

If the evaluation of Equation 4 is ordered according 
to the classical  Red/Black ordering of the mesh 
points, then  an SOR sweep can be substituted by two 
Jacobi-like sweeps  of the mesh. The two sweeps 
correspond to computing the new values  of 4;;' at 
red and black  mesh points. This procedure is also 
known as Odd/Even partitioning, since the mesh  is 
partitioned into two groups, red or black, according 
to whether k + 1 is odd or even, respectively. The 
SOR method based on Odd/Even ordering can be 
effectively implemented on vector or parallel com- 
puters. This strategy is limited to finite difference 
discretizations involving five points (in two dimen- 
sions). For higher-order finite difference discretiza- 

tions or for equations involving mixed partial deriv- 
atives, one needs more than two colors to implement 
the SOR method on vector or parallel computers.6 

Consider a method similar to Equation 4 but with 
the following  changes. The sweeps are  done  in row 

Creative  reordering of the  sequence 
of computations  can  result  in 
efficient  parallel  algorithms. 

order and intermediate 6 values are  computed si- 
multaneously for  all mesh points of the  kth row 
from using the new values of the  (k - 1)th row and 
the old value of the  (k + l)th row. This can be 
expressed for an interior mesh point as: 

When applied to all  mesh points along a row, Equa- 
tion 5 forms a tridiagonal system of equations, the 
solution of which  yields G .  The new 4n+' values are 
computed from the old 4fl values and those obtained 
from Equation 5 by implementing 

Solving for new values at successive  rows  defines an 
iteration step of the SLOR method (successive line 
over-relaxation). The SLOR method, which reduces 
to repeated application of a tridiagonal solver (the 
possibility of parallel execution of which  is not ex- 
pected to be  of great benefit and therefore is ignored), 
is  essentially a sequential algorithm. Red/Black par- 
titioning of lines can help to remove recurrence 
relations and render the modified SLOR method suit- 
able for  parallel computers. 

In summary,  the most effective iterative algorithms 
do  not always lend themselves conveniently to par- 
allel architectures. Creative reordering of the se- 
quence of computations can result in efficient par- 
allel algorithms, although at some added implemen- 
tation complexity. There is,  of course, always a 
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chance for surprises, such as an I/o-bound (e.g., 
paging in a virtual-system environment) job becom- 
ing even more I/O bound if the  standard SOR method 
is traded for the Odd/Even SOR. The  turn- 
around time would  roughly double regardless of how 
many processors are being  used,  since the two sweeps 
over 4 on each iteration double the  number of  pages 
transferred. The next section discusses a strategy for 
adapting iterative schemes to shared-memory paral- 
lel computers based on  the sequential staging  of 
tasks. The SST method has a low implementation 
complexity, does not depend strongly on  the equa- 
tion or discretization being considered, allows  speed- 
ups to be  achieved on multiprocessor systems, and 
can even  allow speedups of I/o-bound jobs in single- 
processor environments. 

Sequential  staging of tasks 

A significant portion of the numerically intensive 
engineering and scientific computations deals with 
time-dependent partial differential equations and it- 
erative methods applied to large systems of equa- 
tions. Implementations of such problems have an 
important  common characteristic. The same (or sim- 
ilar) set of algorithms is executed repeatedly by 
sweeping the  data arrays in some organized fashion. 
In each such  sweeping operation, some fields  of 
interest are extrapolated or advanced by a A7 
amount.  The integration variable 7 may be time, 
distance, or iteration sequence number, depending 
on  the problem under consideration. As it was seen 
in the previous section, domain decomposition 
methods are confined to  the  computational  domain 
D alone at a single 7 level. It is, therefore, natural  to 
inquire into  the possibility  of defining tasks to be 
processed concurrently with  respect to 7 ,  or more 
precisely in  the D X 7 domain.  The extra dimension, 
7 ,  provides much greater freedom for organizing 
tasks conveniently. In the SST method a task corre- 
sponds to one or more iterations (sweeps) over D. 
Tasks are dispatched in a sequence and their execu- 
tion is controlled to assure that each computes on a 
unique subdomain of D as well as at unique 7 level. 

Definition of tasks. A task is  defined as a disjoint set 
of subroutines or the computing associated  with the 
execution of these subroutines. Each task can be 
called independently of all other tasks, and by shar- 
ing data, different tasks can interact and work  co- 
operatively. For the sake of precision, consider Equa- 
tion 4 being applied iteratively to all interior points 
of the  domain shown in Figure 1. Assume that 
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computing is advanced from the left to  the right 
boundary of each row. Such a horizontal sweep is 
represented by the following subroutine, HSWEEP. 

SUBROUTINE  HSWEEP(PHI,RHO,KMAX,L) 

DO 100 K = 2,KMAX(L) 
P H I ( K , L )  = 0.25 * OMEGA * ( P H I ( K , L - 1 )  

... ... 

$ + P H I ( K , L + l )  + P H I ( K - 1 , L )  
$ t P H I ( K t 1 , L )  - RHO(K,L)) 
$ t (1.0 - OMEGA) * P t i I ( K , L )  

100 CONTINUE 
... ... 

In this particular example, a task can be defined as 
the  computations associated  with one or more com- 
plete iterations over the  domain D. One such itera- 
tion requires N,, HSWEEP calls, where N,, is the 
number of rows to be processed.  While the tasks are 
executed asynchronously, it is important  that they 
maintain their relative positions in  the sequence in 
which they were initiated. Moreover, each task must 
maintain some minimum distance from its preced- 
ing neighbor in order to prevent interference be- 
tween them. This requires inter-task communication 
through data shared between  tasks. This can be done 
by POST and WAIT events which are capabilities pro- 
vided  by  Parallel FORTRAN. 

The staging process. After the first task is initiated, 
execution proceeds at a rate determined by the task 
being scheduled for processing to  one of the available 
central processing units (CPUS). The second task may 
be started immediately after the first one  but will 
have to wait until  the first task will have completed 
at least  two HSWEEP calls. To avoid interference 
among tasks, at any stage  of  processing the ith task 
must have completed two more horizontal sweeps 
than task i + 1. The hypothetical snapshot of rows 
being  associated  with the dispatched tasks is shown 
in Figure 1. Some of the tasks are assigned to proc- 
essing units as shown, while others are waiting for 
their turn. While the tasks are staged sequentially 
and displaced  with  respect to each other, there is 
considerable overlap among  them as illustrated in 
Figure 2, which  resembles a timing diagram of pipe- 
lined vector processors. There are, however, a few 
subtle differences: 

A vector unit exploits spatial parallelism; the SST 
method exploits temporal parallelism. 
In a vector unit identical (SIMD) subtasks are exe- 
cuted synchronously; in  the SST method different 
(MIMD) subtasks are executed asynchronously. 
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In  vector  processing, the operations are shifted in 
time to coordinate the arrival of subtasks at func- 
tionally different pipeline stages; in  the SST 
method, the operations are displaced in space to 
prevent interference among functionally identical 
processing units. 

The above indicates that symmetry exists  between 
the vector concept and  the SST approach. 

Parallel formulation of tasks with  respect to  the 7 
variable and their sequential staging  is characterized 
by simplicity that has noteworthy practical conse- 
quences. Since each task is defined by a serial pro- 
gram that requires no further debugging and  the 
tasks are executed in a well-defined sequence, the 
necessity for extensive analysis for data dependencies 
is avoided. Concurrency is  achieved by means of the 
sequential arrangement of tasks that. minimize im- 
plementation complexity. In many applications, 
tasks corresponding to unique 7 levels could be 
partitioned into many smaller subtasks based on  the 
ideas of domain decomposition. Such attempts  to 
achieve a higher  degree of parallelization would in- 
crease implementation complexity and, in view of 
the very  few  processors  of  present-day shared-mem- 
ory multiprocessors, would not be of much practical 
value in  the near future. 

Parallel FORTRAN overview 

Implementation  and execution of parallel programs 
requires a means of identifying parallel pieces  of 
work and assigning them  to available processors. IBM 
Parallel FORT RAN^ (PF) is a facility to specify the 
parallelism in  an application, and only its execution 
environment and design philosophy will  be  high- 
lighted.  Parallel FORTRAN provides the following 
items: 

Extensions to the compiler for automatically gen- 

Extensions to  the language for explicitly program- 

Extensions to  the library for synchronizing parallel 

erating parallel  code 

ming in parallel 

execution through locks and events 

From the FORTRAN programmer’s point of  view, the 
Parallel FORTRAN environment, as shown in Figure 
3, consists of multiple tasks ready for execution, 
multiple FORTRAN processors associated with the 
program, and multiple real processors available for 
doing the work. 
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Figure 2 Timing  diagram of sequentially  staged  tasks.  Their 
processing is asynchronous.  Their  order  in  the 

consecutive  tasks, is maintained  by  the  language 
sequence,  with  specified  buffer  space between 

extension of the IBM Parallel FORTRAN. 

TASK 1 

TASK 3 

TASK 3 

TASK 4 

0 . 
TASK m-1 

TASK rn 

TOTAL ELAPSED TIME ____( 

The programmer controls only the first two of these 
items, whereas the number of real  processors  avail- 
able depends on  the machine configuration and 
other jobs being executed on  the system. The Parallel 
FORTRAN language and  the compiler are used to 
identify parallel tasks, and a run-time option is  used 
to specify the  number of FORTRAN processors. The 
computing in this execution environment (Figure 3) 
is managed as follows. 

Tasks to be  executed in parallel are identified 
within the FORTRAN application program either 
automatically by the compiler or manually by the 
programmer. 
FORTRAN library programs assign  these  tasks to 
the FORTRAN processors. 
The operating system schedules the FORTRAN proc- 
essors for execution on available real processors. 

Each  task is placed in a queue as it  is encountered 
during execution. As a FORTRAN processor completes 
execution of a task, the FORTRAN library selects the 
next available task from this queue  to be executed 
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Figure 3 Parallel FORTRAN execution environment 

REAL 
PROCESSORS 

I 
OPERATING SYSTEM 

FORTRAN 
PROCESSORS 

0.. 

I I I I 

I I I I 
TASKS ASSIGNED TO FORTRAN  PROCESSORS 

TASKS IN QUEUE WAITING FOR EXECUTION 
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on the processor.  Such  a transition from one task to 
another one is  accomplished  with  relatively little 
effort, since the operating  system job scheduler  is not 
invoked. B 

There  is no one-to-one or many-to-one  correspon- 
dence  between FORTRAN processors and real  proces- 
sors. This was an extremely important design  deci- 
sion,  some  advantages of  which  have  already  been 
described in The user’s  ability to specify the 
number of tasks, Nfmk, and the number of FORTRAN 
processors, N,,m, enable the user to exploit the po- 
tential of an MIMD system. The user’s control of Nfask 
and Np,m are important to a  practical and commer- 
cially sound parallel computing environment. 

B 

Numerical  experiments 

Numerical  experiments were conducted on problems 
taken  from  two  different  disciplines to verify the 
concept of the SST method and to evaluate the prac- 
tical  feasibility of exploiting temporal parallelism. 
The first  example  deals  with the Poisson equation 
and its solution by the SLOR method. The second 
example  is taken from  exploration  geophysics. It 
addresses the problem of seismic  migration, an in- 
verse  problem  aimed at imaging the cross  section of 
reflectivity  of the subterrain from  measurements 
made at the surface  of the earth. 

D 

Poisson  equation. The numerical solution of the 
three-dimensional  Poisson equation 

1 
by an SLOR method  is  similar to  that of the two- 
dimensional  one. In this case, Equations 5 and 6 
become 

and 

b The computational domain is  a  regular  parallele- 
piped  of dimensions N,; N,,, N,. Computations begin 
with the first interior row  (along x) within the first 
interior (x,y) plane at z = Az and proceed  plane-by- 
plane to the last interior plane at z = (N, - 1)Az. 
The relaxation of  each  row  involves the solution of 
a  tridiagonal  system of order N, - 2. Each  experi- 
ment consists  of 24 complete iterations over the 

volume under consideration.  Since the computations 
are the same no matter how many tasks are used, 
the error after  these 24 iterations is the same  for  all 
cases. In the SST formulation, the 24 iterations are 
partitioned into Nfask tasks.  Successive iterations are 
assigned to successive  tasks. Thus for  example, in 
the case Nfask = 8, the third task T3, performs the 
3rd, 1 lth,  and 19th  iterations. The Parallel FORTRAN 
library and language  extensions  used in implement- 
ing the SLOR method for Equation 7 are shown in 
Appendix A. Results will  be  discussed in the next 
section. 

Migration of seismic  data.  Migration  calls  for the 
numerical  solution of partial  differential equations, 
which  govern the propagation  of the recorded  signals 
from the surface to the reflector  locations, in reverse 
time.  These  methods,  generally  referred to as wave- 
equations migration,  consist of two  steps:  (1) wave 
extrapolation and (2) imaging. Downward  extrapo- 
lation results in a wave  field that is an approximation 
to the one that would  have  been  recorded  if both 
sources and recorders  had  been  located at depth z. 
Thus, events  appearing at t = 0 are at their correct 
lateral  position, and the extrapolated  zero-offset data 
at t = 0 are taken  as  being the correctly  migrated 
data at the current depth. These data are then 
mapped onto the depth section at z, the depth of 
extrapolation. This mapping  process  is  also  referred 
to as  imaging. 

Let p = p(x, z, t )  be the zero-offset  seismic data, 
where x is the horizontal distance,  z  is depth, and t 
is the two-way  travel time. The downward  extrapo- 
lation of  zero-c$€set data is  governed  by the one-way 
wave equation 

where P is the Fourier Transform of p,  v is the 
velocity, k, is the wave number with  respect to x, 
and w is the temporal frequency. Equation 10  is 
expressed in the wave-number-frequency domain 
(k,, w )  and does not have an explicit  representation 
in the midpoint-time domain (x, t). 

For  practical  reasons, the discussion  of  which  is 
beyond the scope of this  paper, the square root 
expression  is  often substituted by its approximate 
equivalent. For example,  a rational approximation 
of Equation 10 is  calculated by truncated continued 
fractio?; and splitting,  which  results in two  extrap- 
olators 

IBM SYSTEMS X)URNAL. VOL 28. NO 4, 1989 GAZDAG AND WANG 653 



Table  1  Performance of the SLOR method  on  the IBM 3090 
600s computer  with  256  megabytes of available 
processor  storage  (problem  size = 80Mbytes; 
N, = 400, N, = 400, N, = 125) 

FORTRAN CPU Time Elapsed  Speedup 
Processors (9) Time Ratio 

(9) 

Case 1. Parallel  tasks  initiated: Nfmk = 4 

Serial run 243 248 I .oo 
= 1 245 254 0.976 

Nor<M = 2 246  129  1.92 

Npr'w = 4 246 68 3.65 
Nnrrn = 5 246 68 3.65 

Npnn = 3 246 88 2.82 

NFn = 6 246 68 3.65 
N,,,. = 12 246 68 3.65 

Case 2. Parallel  tasks  initiated Nfmk = 8 

Serial run 243 248 1 .oo 
Nor,x = 1 244 252 0.984 
NomX = 2 245 129 I .92 
Nor,x = 3 245 88 2.82 
N o x  = 4 245 68 3.65 
N p m  = 5 245 56 4.43 

6 245 48 5.17 
Np,  = 12 245 50 4.96 

case 3. Parallel  tasks  initiated: Nfd = 12 
~~ 

Serial run 243 248 1 .oo 
Nor<% = 1 247 255 0.973 
Npm = 2 247 131  1.89 
Norcn = 3  248 89 2.89 
Npr<n = 4 248 69 3.59 
NorcK = 5 248 56 4.43 

= 6 248 48 5.17 
Nom% = 12 248 49 5.06 

which  is known as the  thin lens term,  and 
2 

which  is the Fresnel diffraction term. Advancing to 
greater depths is  achieved by applying Equations 1 1 
and 12 alternately in small Az steps. Equation 1 1 
represents a simple phase shift, whereas Equation 12 
is implemented by solving a complex tridiagonal 
system of equations. To construct a depth section of 
dimensions N, . N,, from a N, a N,, time section, 
Equations 1 1 and 12 are solved N, . Nu times, where 
N, and Nu are the  number of lines imaged in  the 
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migrated section and  the  number of frequencies used 
in the computations, respectively. 

Discussion of results 

Over 60 numerical experiments were performed on 
the two sets  of problems described in the previous 
section. The timing and speedup results are tabulated 
in  six  tables,  shown later. From the  computational 
and data-handling points of  view, the  jobs fall into 
two  classes: 

I .  Compute-intensive jobs, such as those in Tables 
1 , 3, and 5, where the processor storage is greater 
than  the  data requirements of the  job 

2.  110-intensive jobs, such as those in Tables 2, 4, 
and 6, where the available processor storage is 
smaller than the data requirements of the job 

Parallel runs  can be characterized by the parameters 
illustrated in Figure 3: 

I .  Nlask, the  number of tasks specified  by the pro- 

2. N,,,,, the number of FORTRAN processors 
3. The  number of real  processors available for doing 

grammer 

the work 

Parallel FORTRAN allows the programmer to initiate 
more parallel tasks than there are FORTRAN proces- 
sors. The extra tasks reside in a queue waiting to be 
executed by one of the FORTRAN processors. The 
programmer can also specify Np,, which  may  differ 
from the  number of real  processors,  which will exe- 
cute the FORTRAN processors.  Every experiment re- 
ported in this paper was executed on a stand-alone 
IBM ~ ~ 1 3 0 9 0  Model 600s computer having six  real 
processors. 

Table 1 shows timing and speedup results corre- 
sponding to 24 SLOR iterations as per Equations 8 
and 9. The serial run refers to the execution of the 
serial code without introducing multiple tasks for 
concurrent execution. When there are only 4 tasks 
defined, such as in the first  case, the degree of par- 
allelism can only be four at any time of the execu- 
tion. Indeed, the maximum speedup is attained with 
4 (or more) FORTRAN processors. When the job is 
partitioned into 8 or 12 tasks, the speedup peaks at 
N,,, = 6, which is the  number of available real 
processors.  In  all three cases, 6 FORTRAN processors 
perform as well or better than 12. This is not sur- 
prising since there are only 6 real processors available 
and the computing load among tasks is well bal- 
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anted. The extra FORTRAN processors represent, in 
this case, additional overhead with no added benefit 
to computational efficiency. All speedup figures are 
given  with  reference to  the serial run.  The N,,, = 1 
run is  slightly  slower than  the serial run. This is due 
to the overhead associated  with the parallel con- 
structs and  running multiple tasks  while  only one 
FORTRAN processor is being  used. However, consid- 
ering that  the parallel code can be executed on any 
number of processors  between 1 and 6 without any 
further alteration, this small performance reduction 
is a modest price to pay. 

The 22 jobs represented in Table 1 were repeated 
with one  and only one change: the available proces- 
sor storage was set to 64 megabytes. The results are 
tabulated in Table 2. The serial job became I/O 
intensive due  to paging, as evidenced by the elapsed 
time being 25 times that of the serial job  in Table 1. 
In general, jobs with intensive paging I/O do not 
benefit markedly from parallel execution on multiple 
processors. This is particularly true for domain de- 
composition techniques, where the matching of do- 
main boundaries can increase rather than decrease 
computing, paging, and I/O. However, the present 
(SST) approach to exploit temporal parallelism allows 
for the reduction of paging I/O because more than 
one task can be executed  using the  data residing in 
processor storage. 

The essence  of Table 2 is that with an increasing 
number of FORTRAN processors, the observed 
speedup approaches (asymptotically) the value of 
Nrask, which can be understood as follows:  If all  tasks 
are computing on  data  that  are relatively near to 
each other, the  amount of data they span can be only 
a small fraction of the entire data set under consid- 
eration. Under these conditions the following  sce- 
nario is  possible. Some data, e.g., D,, are paged in 
for processing under task T I .  Since T2 follows T,  
closely in space  (see  Figure 1) and time, it is quite 
probable that D, will  be  processed  by T2 before it is 
paged out. Under favorable conditions all Nlask tasks 
will have  swept over D, before it is  paged out. In 
this case DK undergoes Niask times as much processing 
as in the serial  case. Consequently, the total amount 
of paging  is reduced by the corresponding amount. 
The most notable result  of Table 2 is the speedup 
achieved in  the Np,, = 1 case. This is an excellent 
example to show the importance of being able to 
define parallel tasks that can be dynamically allo- 
cated to available processors and to specify synchro- 
nization between the tasks. In the Npcm = I case, 
after computing a complete plane within T, the 

Table 2 Performance of the SLOR method  on  the IBM 3090 
600s computer  with  64  megabytes of available 
processor  storage  (problem  size = 80M bytes; 
N, = 400, N, = 400, N, = 125) 

FORTRAN CPU Time  Elapsed  Speedup 
Processors (SI Time Ratio 

( 9  

Case 1. Parallel  tasks  initiated: Nlmh = 4 

Serial run 250 7416 1 .oo 
= 1 247 2334 3.18 

Npnx = 2 248  1997 3.7 1 
Nprw = 3 248 1995  3.72 
Nprw = 4 248 1928  3.85 
Nprm = 5 248 1930 3.84 
Nprx = 6 241 1915 3.81 
NPIN = 12  247  1896  3.9 1 

Case 2. Parallel  tasks  initiated: Nlah = 8 

Serial run 250 7416 1 .oo 
N,, = 1 245 1455 5.10 
N,, = 2 246  1092  6.79 
Nprm = 3 246  1029  7.2 1 

Nprm = 6 241 980 7.57 

N,, = 4  246  1003  7.39 
N,, = 5 246 989 7.50 

NprK = 12 241 96 1 7.72 

Case 3. Parallel tasks initiated N1,,,* = 12 

Serial run 250 
N,,m = 1 248 
N p m  = 2  248 
Nprw = 3  249 
N,m = 4  249 
Nprm = 5 249 
N,, = 6  249 
Nn,m = 12  249 

7416 
1158 
785 
726 
702 
711 
69 1 
664 

1 .oo 
6.40 
9.45 

10.2 
10.6 
10.4 
10.7 
11.2 

FORTRAN processor switches to T,,, in the queue. In 
a stand-alone environment this amounts  to  the proc- 
essor  visiting each task in a round-robin fashion. As 
the processor moves from one task to  another, D, is 
being subjected to several iterations between  pagmg 
in and paging out. Parallel FORTRAN provides a 
means of  easily representing the parallel nature of 
this algorithm and  the synchronization required. 
While it is true  the approach of reusing data  in 
storage could be coded" in serial FORTRAN,  the code 
would not be  as  easy to understand, implement,  and 
debug. 

Tables 1 and 2 refer to  computer experiments camed 
out  on three-dimensional array of 80 megabytes. To 
ascertain that  the method used in formulating par- 
allel runs scale well, two sets of experiments with 
Ntask = 12 were repeated on  data 2.5 times that size. 
The corresponding results are summarized in Tables 
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Table 3 Performance of the SLOR method  on  the IBM 3090 
600s computer  with 256 megabytes of available 
processor  storage  (problem  size = 200M bytes; 
N, = 500, N, = 500, N, = 200) 

FORTRAN CPU l ime Elapsed Speedup 
Processors (SI l ime Ratio 

(S) 

Parallel  tasks  initiated A’,& = 12 

Serial run 590  600 1 .oo 
Npm = 2 596  306 1.96 
Npm = 3 591 206 2.91 
Npm = 4 591 157 3.82 

Npm = 6 598  108  5.56 
Np,m = 12 598  115  5.22 

Npm= 1 596  607  0.988 

N p m  = 5 597 121 4.72 

Table 4 Performance of the SLOR method  on  the IBM 3090 
600s computer  with 64 megabytes of available 

N, = 500, N, = 500, N, = 200) 
processor  storage  (problem  size = 200M bytes; 

FORTRAN CPU Time Elapsed Speedup 
Processors 6 )  Time Ratio 

(SI 

Parallel tasks initiated A’,& = 12 

Serial run 612  19,517 1 .oo 
Np, = 1 598  2,960  6.59 
Nprw = 2 598  2,033  9.60 
Npm = 3 599  1,912  10.2 
Npm = 4 599  1,820  10.7 
NDm = 5 599  1,771  11.0 

NPrm = 12 610 1,699 11.5 
Nprw = 6 599  1,746  11.2 

3 and 4. For this larger  problem  size,  all  parallel runs 
resulted  in  greater  speedup  values than those  meas- 
ured  for  smaller data sets. This is an expected  result, 
since the overhead  associated  with the parallel  prob- 
lem formulation is  distributed  over  larger  tasks. 

The seismic  migration  method under consideration 
lends  itself  superbly to parallelization by domain 
decomposition. This is  seen  immediately by consid- 
ering that the migration  algorithm is formulated in 
the temporal  frequency domain w and the operations 
governed by Equations 1 1 and 12 are linear.  There- 
fore,  in  principle, data associated  with  different  fre- 
quencies  can  be  processed  independently of each 
other. Thus, the method  based on the sequential 
staging of tasks  does not open up new vistas  for 
parallel  execution  but  provides  only an alternate 
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approach to parallel  computing.  Nevertheless, in this 
textbook  example of domain decomposition, one 
can  find  subtle  differences in favor  of the SST method. 

The sequence  of operations for computing the 
migrated data in the SST method  remains the same 
as that in the serial  case.  Therefore, the results 
should  agree  for any Nlask, NpMC, and real CPUS 
available. 
The debugging of the parallel  code is facilitated to 
a great  extent. 
In  conventional domain decomposition  applied to 
seismic  migration,  all  processors compute the 
same part (depth  level)  of the output (migrated) 
data from  different  parts  (frequencies)  of the input 
data. 
In the present  method  based on the sequential 
staging  of  tasks  applied to seismic  migration,  dif- 
ferent  processors compute different  parts  (depth 
level) of the output (migrated) data from  different 
parts  (frequencies) of the input data. 

The speedup  figures  for the compute-intensive  ex- 
ample  represented by Table 5 are  excellent  consid- 
ering that they  correspond to over 98 percent  parallel 
execution of the code.  In the 110-intensive example 
shown in Table 6 the speedup  figures are even  better, 
but the additional speedups are due to reduced  pag- 
ing  resulting  from  improved data management just 
as  in the SLOR method  discussed in detail  earlier. 

Reflections  on parallel computing  trends 

The class  of problems  considered in this  paper  is 
characterized by repetitive operations applied to 
multidimensional data arrays  representing the com- 
putational domain D. A sweep  over the data corre- 
sponds to numerical  integration  whereby  physical 
fields  of interest are extrapolated or advanced by a 
AT amount. The integration  variable 7 depends on 
the problem under consideration. In time-dependent 
partial  differential equations, 7 is  time.  In  iterative 
solution of elliptic  problems, T represents the itera- 
tion sequence number. In inverse  problems,  such as 
the migration of  seismic  reflection data discussed 
earlier, 7 becomes the depth variable. 

A very  carefully  researched  approach to parallel  for- 
mulation of such computational problems  is  based 
on domain decomposition  which attempts, accord- 
ing to Gonzalez and Wheeler: “to break up the 
domain of integration into many  pieces, then some- 
how construct the global solution from  these  local 
solutions.” To arrive  from an indefinite  approach to 
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a  well-defined  approach  is not an easy matter. One 
source  of the difficulty is that students of domain 
decomposition  techniques  usually  confine them- 
selves to working  at  a  single T level.  An inquiry into 
the possibilities  of  formulating  parallel  tasks in T, or 
more importantly in the D X T domain, can  open 
up new horizons and untapped opportunities. This 
paper  details an approach to exploit  this T domain 
parallelism by pipelining or sequential  staging of 
tasks. The numerical  experiments  reported  herein 
support the ideas  set forth in the earlier  part of the 
paper and substantiate the feasibility  of the method. 
The computer experiments  also  yielded  some  new 
results:  a  verification  of the authors’  hypothesis that 
Parallel FORTRAN can  be  used to reduce  elapsed time 
of certain  I/o-intensive  applications  even on a  single- 
processor  system. 

Taking  advantage of T domain parallelism  via the 
SST method  does not preclude  or  negate the benefits 
of domain decomposition  methods. The two  ideas 
can  coexist. For example, in both applications 
treated  earlier, the tasks  as  defined  herein  could  be 
split into many  smaller  subtasks  following the ideas 
of domain decomposition. One must,  however,  pon- 
der how much  parallelism  is  really  needed in most 
realistic  large-scale computing environments. The 
seismic  migration  problem  considered  can  be  parti- 
tioned into Nu equal  tasks,  where  100 < Nu < 1000, 
and in  case  of a  three-dimensional  migration,  each 
w plane  can  be (domain) decomposed into some  100 
complex  rows and/or columns. This 10  000-fold  par- 
allelism  creates  excitement  only  among  researchers 
of  parallel  hardware and software. The geophysicists 
remain  unimpressed, and there  is  no  evidence of 
production codes running in parallel. One reason  is 
clear and simple.  In  realistic computing environ- 
ments many  users  compete  for few processors, and 
one user  seldom  can  justify  using four or six  proces- 
sors in a  dedicated  mode. Other reasons  have to  do 
with implementation complexity. 

The situation is  expected to change in the near future 
when,  for  example, 10 or 20  users  will  access a 
shared-memory MIMD system  with  128  processors. 
This does not really  need to be  a true shared-memory 
system as long as the user  perceives it as one. Con- 
sider  again the above-mentioned  10  000-fold  parallel 
seismic  migration  problem. By the time one creates 
that many  tasks  with  corresponding 110, one can  still 
expect  95  percent  parallelism,  but not more. A prob- 
lem  like  this on a dedicated 128  processor  system 
would  result in no  more than 14 percent total CPU 
utilization.  If,  however, 10 such  identical  problems 
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Table 5 Performance of a  seismic  migration  on  the IBM 3090 
600s computer  with 256 megabytes of available 
processor  storage  (problem  size = 192M bytes; 
Nx = 4096, N, = 4096, N, = 48, Ny = 2048) 

FORTRAN CPU  Time Elapsed 
Processors (SI Time 

(s) 

Parallel tasks initiated: Nd = 12 

Serial run 3,223 3,273 1 .oo 
Npm = 1 3,220 3,211 1 .oo 
Np, = 2 3,224 1,659  1.97 
N = 3  3,22 1 1,122 2.92 

N m = 5  3,224 698 4.69 
g m = 6  3,226 593  5.52 

- 

$:= 4 3,222  856  3.82 

Table 6 Performance of a  seismic  migration on the IBM 3090 
600s computer  with 128 megabytes of available 
processor  storage  (problem  size = 192M bytes; 
N, = 4096, N, = 4096, N, = 48, N, = 2048) 

FORTRAN CW Time  Elapsed  Speedup 
Processors ( 9  Time  Ratio 

(4 

Parallel tasks initiated: N,& = 12 

Serial run 3,214 17,410 1 .oo 
N,,= 1 3,220 6,128 2.84 
N P = 2  3,222 3,6  16 4.8 1 
Np,, = 3 3,223 2,722 6.40 
Nm=4 3,225 2,432  7.16 
N - 5  3,225 2,399  7.26 
c = 6  3,225 2,361 1.31 

were  executed  simultaneously on the above  system, 
disregarding  all  overhead  related  to support Parallel 
FORTRAN and multitasking to simplify  matters,  sys- 
tem  utilization  might  be around 99.9  percent. As a 
result,  each job could  achieve  a  speedup  of 12. 
Systematic  extensions made to current architectures 
and other means of taking  advantage of normal 
technological  advances  of the future will result in the 
achievement of improved  performance  without re- 
quiring exotic  architectures,  revolutionary  parallel 
numerical  methods, and special  software to detect 
parallelism  automatically. 

Conclusion 

An approach to parallel formulation of scientific 
problems  on  shared-memory  multiprocessors has 
been  described. In the class of problems  considered, 
repetitive operations are applied  over the computa- 
tional domain D, whereby  some  fields  of  interest are 
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integrated with  respect to  an independent variable 7, 
which  may  be time, distance, or iteration sequence 
number, depending on  the physical nature of the 
problem. The technique known as sequential staging 
of tasks (SST) is  based on defining concurrently exe- 
cutable tasks with  respect to 7 rather than with 
respect to D alone at a single 7 level. Partitioning the 
computational workload  with  respect to 7, or more 
precisely  with  respect to  the D X 7 domain, has 
significant advantages. This study substantiates that 
parallel formulation of tasks with  respect to  the 7 
variable and their sequential staging  is characterized 
by simplicity that has noteworthy practical conse- 
quences, such as minimized paging 110. Since each 
task is defined by a serial program which requires no 
further debugging, and  the tasks are executed in a 
well-defined sequence, the necessity  of extensive 
analysis for data dependencies is avoided. Concur- 
rency  is  achieved by means of a sequential arrange- 
ment of tasks that has a profound effect on minimiz- 
ing implementation complexity, which  is probably 
the single most important factor determining user 
acceptance of parallel computing. 

Acknowledgments 

The performance data  are from runs performed at 
the IBM Washington System Center. The  authors 
extend thanks to: the dedicated assistance of Alan 
Karp, whose patient cooperation in guiding the pro- 
grams to  and through a stand-alone Model 600 
system  for dedicated runs was invaluable; Randolph 
Scarborough for his expert advice on Parallel FOR- 
TRAN implementations; Baxter Armstrong for his 
patience in discussing and defining terminology for 
new concepts; Horace Flatt for his constant encour- 
agement and interest in this work; and  the reviewers 
who made many valuable and constructive sugges- 
tions. 

Appendix A: SST code for concurrent SLOR 
iterations 

C ... SLOR i t e r a t l o n s   f n   p a r a l l e l   f a r  a 30 
C ... Poisson  equatfon computed by sequentfal  
C . . . staging of tasks managed by para1  le1 
C ... events 
C 
C ... set up problem  sfze and parameters 
c ... g r i d   s i z e :  (NX,NY,NZ) 
c ... NITER = t o t a l  numher of f t e r a t l o n s  
c ... t o  be computed 
c ... NTASK = number of tasks 
C 
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C ... Note  that   in   the  fol lowing  code,   the 
C .. . Para1  le1 FORTRAN constructs  are boxed i n .  
C 
c ... 

DIMENSION  PHI(F1X 
DIMENSION  IEVENT 

c ... 
C ... ortgfnate   tasks 
C 

.,NY,NZ) 
(NTASK,NZ-1) 

', events, ond lock 

DO 10 I = 1, NTASK 
ORIGINATE ANY TASK IT 

10 CONTINUE 
DO 20 J = 1, N Z - 1  
DO 20 I = 1, NTASK 

CALL  PEORIG  ( IEVENT(  I , J ) )  
20 CONTINUE 

CALL  PLORIG  (LOCK) 

C 
C . .. s e t   i n i t i a l  and  boundary values 
c ... 
C ... set   the   g lobal   i terat ion  count :  I T E R  t o  
C . . . 0 and  schedule a1 1 the  tasks 
C 

I T E R  = 0 

DO 30 I = 1, NTASK 
SCHEDULE ANY TASK IT, 

$ CALLING SLOR (PHI,NX,NY,NZ,NITER, 
$ ITER,IEVENT,LOCK) 

30 CONTINUE 

WAIT FOR ALL  TASKS 

c ... 
STOP 
END 

C 

C 
SUBROUTINE SLOR (PHI,NX,NY,NZ,NITER, 

DIMENSION  PHI  (NX,NY ,NZ) 
'b ITER,IEVENT,LOCK) 

DIMENSION  IEVENT(NTASK,NZ-1) 
C 
C ... c r i t i c a l   s e c t f o n ,   o b t o f n  a unique 
C ... f t e r a t f o n  ' F I I N E '  f o r  each  task 
C 

100 CALL  PLLOCK  (LOCK) 
I T E R  = I T E R  t 1 
M I N E  = I T E R  
CALL  PLFREE  (LOCK) 

1 

L 
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, I F  (MINE .GT. N I T E R )  GO TO 300 
C 
C ... IUAIT  fdenti  fies  the  task  to  issue  the 
C ... wait. IPOST identifies  which  task  to 
C ... post.  The  following  shows  first  few 
C ... values  for  the  variables  if  NTASK-4 
c ... 
c ... ITER : 1 2 3 4 5 6 ... 
c ... IWAIT: 1 2 3 4 I 2 ... 
c ... I P O S T :  2 3 4 1 2 3 ... 
c ... 
C ... thus  iteration 5 will be  picked  up  by 
C ... the  first  task  and  iterotion 6 by  the 
C ... second  task,  etc. 
C 

B 

I W A I T  = MOD(F1IHE-1,  NTASK) t 1 
IPOST = MOD(M1NE , NTASK) + 1 

C 
C ... start  the  iteration  (NOTE:  first 
C ... iteration  can  start  imnediotely) 
C 

B IF (MINE .NE. 1 ) CALL  PEWAIT 
$ ( I E V E N T ( I W A I T , l ) )  

C 
C.. .. solve  planes 2 thru  NZ-I 
C 

DO 4 0 0  K 2, N Z - 1  

IF (MINE .NE. 1 ) CALL  PEWAIT 
$ ( I E V E N T ( I W A I T , K ) )  

B C 
C . . . .  compute  new  values for plone K 
C 

DO 500 J = 2, FIV-1 
C 
C ... compute  new  values for line J by  solving 
C ... a  tridiagonal  system  and  perform SOR 
C ... extrapolation  according  to  Eqns (8) 
C ... and (9) 
c ... 
500 CONTINUE 

D IF (MINE .NE. NITER)  THEN 

I CALL PEPOST ( I E V E N T ( I P O S T , K - 1 ) )  I 
C 
C ... Note  that the following  call  to the 
C ... library  routine ‘ P X D I S P ’  is optional. 
C ... The  effect of the  routine is to 
C ... temporarily  halt  the  executfon of the 
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C . . . waiting  task  ot  the  top  of  the  queue  wil 1 
C ... then  be  picked up for  execution. In this 
C ... way, the  locolity of the  working  set is 
C ... maintoined. It enables  this  code  to 
C ... execute  much  faster  (less  pagfng IIO) 
C . .. than the serial  code  when  the  problem 
C ... size  exceeds  the  primary  memory. This 
C ... effect is most  noticeable  when  the  number 
C ... of FORTRAN  processors  is 1 .  See  Tables 
C . . . 2 ,  4,  and 6 in  the  text. 
C 

I 

1 

I 

CALL  PXDISP 

END1 F 
1 

1 

I 

400 CONTIFIUE 
I F  (MINE .NE. NITER)  THEN 

CALL PEPOST ( I E V E N T ( I P D S T , N Z - 1 ) )  

C 
C ... same  comnent as obove 
C 

CALL  PXDISP 

END I F  
GOTO 100 

300 RETURN 
END 
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