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The  design  and  specification of efticient  and  powetful 
Ultra  Large  Scale  Integrationlvery  Large  Scale  lntegra- 
tion  (ULSllVLSl)  computer-aided  design  (CAD)  systems 
to deal  with the current  integrated  circuit  manufactur- 
ing  technology is beyond the  capabilities of the usual 
software  development  methodologies.  This  paper  pre- 
sents  GARDEN,  an  integrated  ULSIlVLSl  design  envi- 
ronment  conceived to cope  with  problems  in the evolu- 
tion of the  computing  environment.  It  also  highlights 
the  utilization of the Vienna  Development  Methodology 
(VDM) for the  specification,  design,  implementation, 
and  maintenance-in  short, all of the software  life 
cycle-of  this  CAD  system,  under  development  at the 
IBM  Brazil  Rio  Scientific Center. 

T he  design  of integrated  circuits and systems  is  a 
category  of  complex  engineering  tasks that can- 

not be  performed  without the aid of sophisticated 
and reliable  computer-aided  design (CAD) systems. 
The  complexity of  Very  Large  Scale Integration 
(VLSI) circuits demands software  tools to both  help 
engineers  in the design  steps and ensure  proper  op- 
eration of circuits  once  they  are  manufactured.  Since 
circuit  design  complexity  doubles  every  two  years, 
bearing  what  can  be  called Ultra Large  Scale  Integra- 
tion (ULSI), there is an increasing  need  for  more 
powerful and efficient  design  systems. 

Over the past few  years, CAD systems  for  integrated 
circuits  evolved  tremendously to cope  with the in- 
creasing  circuit  complexity.  These CAD systems  were 
usually  oriented  toward the designer,  addressing 
mostly  circuit and manufacturing  process  problems. 
As expected, and as far as the designers are con- 
cerned,  these  systems turned out to be, in many 
cases,  extremely  efficient and user  friendly. 

Despite the importance of this aspect,  from the de- 
velopment point of  view most of these CAD systems 
present  a  somewhat  cumbersome  architecture.  Nor- 
mally,  they  have  coded  dependencies on the under- 
lying  hardware and operating  system. Also,  they 
sometimes  rely on specialized  software  such as a 
particular  database  management  system (DBMS) or 
programming  language.  Maintaining and improving 
such  systems  presents  a permanent challenge to de- 
velopers.  As an example, “porting” existing  applica- 
tions to new  hardware or a new operating  system 
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usually  requires  a  considerable amount of effort. In 
the same way, changing the database  system to a 
more  efficient or specialized  one  is,  in  most  cases, 
virtually  impossible,  since it may  require  a  complete 
revision of the existing  code. 

Being independent of factors  such as hardware,  op- 
erating  system,  DBMS,  programming  language,  etc.  is 
one of the  most  desired  features  for  a  large  group of 
computer applications  in  which vu1 CAD systems 
are  included.’  Providing  such  a  degree of indepen- 
dence  tends to increase the life  span of computer 
applications, and it turned out to be a very  challeng- 
ing  research  activity  during the past  several  years. 
Although  a  longer  life  cycle  for  applications  reduces 
the stress on users,  it  can  be  extremely  painful to 
developers to cope  with  new and enhanced  tech- 
niques that can be  used to provide  more  efficient 
and reliable  services. 

Solving  this  problem  can  be rather complex. To be 
efficient, an implementation of a computer applica- 
tion  often  needs to exploit  some internals of the 
target computing environment. Such an application 
is  inclined not to survive  for  a  long time without  a 
periodic  code  revision.  A  possible  approach  is to 
insulate  application-specific  operations  from the 
computing environment, a  task that can be  ex- 
tremely  complex,  even  for  very  specific  applications. 

To carry out such an approach,  a very  precise  defi- 
nition of the problem  being  addressed by the appli- 
cation  is  mandatory. This definition  can  be  achieved 
with  a  formal  software  development  methodology. 
This  knowledge  is  then  mapped into requirements 
that are  used to define  a  strategy to insulate the 
application  from  the  computing environment. 

GARDEN’ was conceived to be an integrated  environ- 
ment for U L S I ~ L S I  CAD applications and to cope  with 
the problem of the  evolving  computing  environ- 
ment. The main  strategy of GARDEN is the existence 
of very  specialized interfaces that provide  a  layer of 
insulation  between the CAD tools  (applications) and 
the computing  environment.  Those  interfaces will 
allow the latter to evolve  without  requiring  changes 
to existing  tools.  It  is  also part of GARDEN’S strategy 
to provide the user  with  a  uniform and consistent 
view  of the  system and tools,  aiming  for  user  friend- 
liness and dropping the constant and expensive  need 
for  training. 

Usually, the design  of  large CAD systems  is  a  fairly 
intricate  problem.  Because the design  of UUI/VLSI 
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circuits and systems  exhibits  a very  complex nature, 
CAD systems that aid the execution of such tasks 
represent  one of  the most  complex  problems  for 
software  engineers. 

The traditional  process  for  developing  software 
proved to be  inefficient  for  more  complex  syttems 
since the famous software crisis of the 1970s. One 
of the main  features of formal  software  development 
methodologies and their derived environments is the 
description,  in  a  precise and clear  way,  of the entities 
involved  in  the  software  creation  There- 
fore,  these  methodologies  present an appropriate 
environment where the development of complex 
CAD systems  can  be  performed in a  reliable,  disci- 
plined, and safe  way. 

These  formal  methods  can be  classified into two 
large  groups:  property-oriented and model-oriented. 
The  first  group  uses  mathematical  formalism to de- 
scribe the properties that the system under design 
must  obey. In contrast, model-oriented  methodol- 
ogies  use  well-known  objects to model the system. 
An example  of the latter group is the Z Methodology, 
from the Programming  Research Group of the Uni- 
versity  of  Oxford, that is  being  used at the IBM 
Laboratory  in  Hursley  Park in the United  Kingdom 
for  redefining6 the Customer Information Control 
System (CICS). Another  example is the Vienna  De- 
velopment  Methodology (vDM),”~ used  for the spec- 
ification and development of compilers  for  languages 
such  as  Ada@ and CHILL, for  a  forr;nal  model  of 
System R, and for other applications. VDM was the 
formal  methodology  selected to support the devel- 
opment of the GARDEN project. The choice was  based 
on  the  existence of some  knowledge about VDM in 
the  project  team and on the availability of a  reason- 
able number of  references  pertaining to it. 

The  evolving  GARDEN ULSI/VLSI CAD 
environment 

A  general  picture of the GARDEN CAD environment, 
including the interfaces,  is  presented in Figure 1. It 
is  said to be  evolving  since  the  interfaces will enable 
new computing environments to be supported by 
the system,  without the necessity  of  changing  existing 
application  programs  (tools). The primary function 
of  these  interfaces  is to provide  a  layer  of  insulation 
between the computing-environment-dependent fea- 
tures and the application  programs. 

Changes and enhancements applied to the interfaces 
are  automatically  extended to existing  application 
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Figure 1 An overview of the GARDEN environment 

programs, if the bindings  for the interfaces do not 
change.  Modifying  these  bindings  is  a more complex 
problem  since it may  require  dropping the support 
for  a  particular  binding to the detriment of a  more 
efficient  one.  Such  operations  must be carefully  car- 
ried out so that existing  applications are not dis- 
turbed. A certain time must be  allowed for  applica- 
tions to migrate to the new bindings  before support 
for  them  is  dropped. 

GARDEN'S interfaces,  namely User and Graphics, De- 
sign Data, and System and Services, are oriented 
toward the necessities of integrated  circuit  design 
tools. As with  general-purpose  application  program 
interfaces (APIS), the definition of GARDEN'S interfaces 
are  allowed to evolve,  enabling the GARDEN environ- 
ment to take  advantage of enhancements  provided 
by  new or modified  computing  environments. 

The  software  development  methodology  used  in the 
GARDEN project (VDM) provides a control mecha- 
nism to avoid  the  careless adoption of features that 
are  present  in  only  a  particular computing environ- 

ment. The formal  definition of the interfaces is being 
carried out independently of the target computing 
environment, and the same  approach will be used 
for the implementation of changes and enhance- 
ments to the interfaces. 

The general  idea  is to treat the  interfaces and the 
application  programs  as  independent  program  units. 
Changes  applied to each  individual  part  should not 
disturb the other, unless  carefully  documented. The 
only  required  task to be performed  whenever  there 
is  a  program unit change is to link-edit the entire 
system, and it  can be done dynamically on comput- 
ing environments that provide the appropriate sup- 
port. 

These  interfaces  orient GARDEN toward the designer 
and the computing environment and also  toward the 
application  development  engineer. This characteris- 
tic of the system  is  very important as it frees  tools 
developers  from  coding  system and hardware-de- 
pendent  routines,  allowing  them to concentrate on 
new tools and better  algorithms.  Another  advantage, 
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embedded in this approach, is that complex  tasks, National language support enables the environ- 
such as coding  operating-system-level routines, ment to be adapted to languages other than Eng- 

lish. 
optimized just once. Support is  given to other levels  of circuit design. 

The Design Data interface of GARDEN is being 
GARDEN encapsulates tools and its interfaces into a defined in a flexible  way so as to support other 
single environment capable of supporting multiple levels  of circuit design such as packaging, boards, 

1 graphics  drivers, DBMS calls,  etc., are coded and 

system,  etc. 

Even  with the use  of software  engineering, a system 
like GARDEN is not capable of supporting all of the 
available computing environments, mainly because 

1 The GARDEN CAD environment of limitations imposed by the environments them- 
provides  more  than  just  tool 

encapsulation, 
selves. GARDEN development strategy is to provide 
support gradually to several computing environ- 
ments, and initially it will complv  with the following . _  - 
platforms: 

concurrent users and multiple active applications, 
with multitasking capability  whenever the operating 
system  provides support for it. 

However, the GARDEN CAD environment provides 
more than  just tool encapsulation. The success  of 
such a design environment depends also on the 
existence  of  features that  are related to ULSIIVLSI 
circuits and systems  design. To meet  these  require- 
ments, GARDEN is  being  developed  with the following 
characteristics  as its focus: 

Built-in design management will provide  such 
functions as  design  version control and data integ- 
rity control. 
No specific design methodology is  enforced by the 
system,  implying that the system  does not define 
the design  steps that must be  performed. The 
design  methodology will  be enforced either by 
application programs or by the design team man- 
agement. GARDEN provides the means for appli- 
cations to define  precise  design  methodologies and 
to control them. 
Full design traceability permits design and analysis 
data to be  traced  backwards in time to search  for 
possible  design  errors. 
Mixed  modelo and hierarchical design data repre- 
sentation allow  tools to exploit, concurrently, the 
description and composition hierarchical natures 
of ULSIIVLSI designs. 
Design documentation facilities are being  imple- 
mented into the Design Data interface,  allowing a 
wide  range  of documentation strategies. 

P 

1 

1 
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CPU types and operating systems: Included are the 
System/370 in which there is support for the Vir- 
tual Machine/Conversational Monitor System 
(VMICMS) and Advanced Interactive Executive'" 
(AIX", IBM'S uNIx@-like operating system), the IBM 
6150 (RT PC?) with support for AIX, and the P S / ~ @  
Models  70 and 80 with support for AIX. 
Graphics devices:  All points addressable (APA) de- 
vices supported by the IBM implementation of the 
PHIGS (Programmer's Hierarchical Interactive 
Graphics System) API ( ~ ~ P H I G S ~ ) .  
Programming languages:  Pascal (IBM vs Pascal), C 
(IBM c p 7 0  and CIAIX), REXX (Restructured Ex- 
tended Executor), and assembler  when  required. 
These programming languages are being  used to 
code the interfaces and ;tpplications. Other lan- 
guages  may  be added to the list if  they  comply 
with the linkage convention established, and if 
they do not disturb the overall run-time environ- 
ment. 

These platforms (both the hardware and the soft- 
ware)  were  selected on the basis of computing facil- 
ities that are  available (or planned) at the IBM Brazil 
Rio  Scientific Center. It must be noted that this list 
is not exhaustive and can be extended in the future 
to accommodate other computing environments. 

The effort of GARDEN to support different computing 
environments parallels IBM'S Systems  Application 
Architecture'" ( s A A ~ ~ ) .  Since SAA addresses a different 
set of computing environments and is oriented to- 
ward computing applications that share a distinct set 
of requirements, GARDEN will incorporate its own 
support for  different computing environments. 
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The interfaces of GARDEN. The core of the GARDEN 
environment is its interfaces,  which together with 
the application programs (tools) define a sophisti- 
cated ULSI/VLSI CAD system. As mentioned before, 
the purpose of the interfaces  is to insulate the tools 
from the computing environment and to provide a 
consistent  set of functions to help CAD application 
development engineers in coding  efficient and reli- 
able  tools. GARDEN encapsulates tools and interfaces 
into a single environment capable of supporting 
multiple concurrent users and multiple active appli- 
cations, with multitasking capability  whenever the 
operating system  provides support for it. 

The interfaces  consist of  large  sets  of functions that 
perform actions under the control of tools and pro- 
vide a uniform work environment to users.  They are 
being  organized into application development tool- 
kits, and, for optimization reasons,  different  func- 
tions will perform the same basic  task. This repeti- 
tion is  necessary  because the requirements for differ- 
ent tools may  differ, and whenever  possible, GARDEN 
will provide an optimal function to satisfy such 
requirements. 

The decision to divide the environment into three 
different  interfaces  (User and Graphics, Design Data, 
and System and Services)  was  based on the nature 
of CAD systems and the characteristics of the com- 
puting environments. Graphics devices, a mandatory 
item for CAD systems, are somewhat independent of 
the operating  system and the data organization, but 
they are very  closely related to the users. In the same 
way, data organization can be treated independently 
of operating system  tasks. 

Each of the interfaces  is  described  below,  with the 
Design Data interface having a more detailed  de- 
scription  because it is currently in a more advanced 
stage  of development. 

User and Graphics interface. The purpose of the User 
and Graphics interface is to provide a set of functions 
for  efficient and friendly communication with the 
users. The underlying idea is that application pro- 
grams  should not be  aware,  for  example, of  how to 
communicate with the workstation hardware, nor be 
concerned whether a given input device, such as a 
mouse or tablet, is available.  Also, if the user  has 
selected a command from a pop-up menu or typed 
it in a command line, it must be totally transparent 
to the application program. 

To perform  these operations, the User and Graphics 
interface contains input  and  output functions for 
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both text and graphics, and specialized functions to 
handle interactive input such  as  selecting commands, 
with or without parameters, design  objects, and areas 
on the display  screen. 

Under control of the interface,  real interactions with 
the display  hardware (terminals or workstations) will 
be  performed  using the PHIGS API that provides a 
vast,  comprehensive, and powerful  set  of  graphics 
functions and works  with many display  devices. 
Despite its power, this API was defined  for  general- 
purpose  graphics applications and does not exhibit 
any knowledge about the objects  being  modeled. 
GARDEN’S graphics functions are being  defined at the 
circuit  design  level, together with the necessary  high- 
level support for functions such as windowing,  pop- 
up menus, command selection,  etc. 

Since the application programs will not interact di- 
rectly  with the users, the interface provides a com- 
mon environment for all applications running under 
its control. This powerful feature will also  simplify 
the time-consuming training steps required when- 
ever a new application is added to the environment, 
since  all applications will share a common set of 
operating procedures and commands. Also, from the 
tool development point of  view, coding of  new ap- 
plications can be  simplified  with the experience and 
code taken from existing  ones. 

Another feature of this interface enables  users to 
customize their own working environment. This 
point is very important where human factors are 
concerned. Studies note that  it is  extremely hard for 
the designers  of CAD systems to +$K the best  way 
to present information to users. Thus, allowing 
the users to customize their own  working environ- 
ment provides  greater  satisfaction  with the system, 
and the most  evident  result is the increase in pro- 
ductivity that can be obtained. Users will  be able to 
define their preferences, and the definition will be 
matched by the User and Graphics interface at exe- 
cution time. Also,  users will be able to dynamically 
modify their working environment. 

Customizing the environment includes graphics and 
command selection  aspects and allows the user to 
select the national language that the entire environ- 
ment will  use (if  all of the required tools provide 
support for  it). National language support is another 
very important human factor that needs to be con- 
sidered, and it goes beyond  having a language to 
communicate with the users. GARDEN is  being  de- 
signed to provide national language support func- 
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tions for  tools and environment commands (at the 
user  level),  for  displaying  proper  national-language- 

The  User  and  Graphics  interface 
incorporates the window  and  task 

management  functions  of GARDEN. 

dependent characters on the workstation  screen, and 
for  all  types  of  messages  generated  by either the 
system or application  programs. 

The User and Graphics interface  also incorporates 
the window and task  management functions of 
GARDEN. It provides support for multiple simulta- 
neously  active  tools,  each one being  assigned to one 
or more  application  windows. The design  of GARDEN 
also  allows  multiple  instances  of the same  applica- 
tion to share  execution  code, if the tool  developer 
has  complied  with the basic structure for an appli- 
cation to run under the GARDEN environment. Mul- 
titasking  is  also  possible under operating  systems 
that incorporate such  a  facility.  Some  form  of  “sim- 
ulated”  multitasking  capability  is  being  provided  for 
operating  systems,  such as VMICMS, that do not sup- 
port it, with the applicable  restrictions. 

System  and Services interface. As far  as  operating 
system  independence  is  concerned, the System and 
Services  interface  is the key one in the GARDEN 
environment. The main  goal of this interface  is to 
provide an efficient insulation layer around the op- 
erating  system functions and services and yet achieve 
a  great  level  of  portability  across  a  given  set  of 
operating  systems.  Another important aspect of this 
interface  is that it is  responsible  for supporting ap- 
plication  programs  (tools) and the two other inter- 
faces. 

The difficulty  regarding the specification of this type 
of interface  is  related to the fact that it is an extremely 
complex  task to define  what functions and services 
the tools and the other interfaces will require.  Also, 
once  such  a  set  of requirements is  known,  care must 
be taken to ensure that it can be efficiently  imple- 
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mented on all of the target  operating  systems, either 
directly or indirectly. In the same  way,  consideration 
must  be  given for some  operating  systems that may 
have unique requirements. The design  of the inter- 
face  must  clearly  identify  such situations and provide 
an implementation that does not interfere  with the 
behavior of the environment under different  oper- 
ating  systems. 

An efficient method with  which to attack the above- 
mentioned  problems  is to organize the requirements 
into groups of functions, according to some well- 
defined  criteria,  addressing both the similarity of the 
functions and the implementation steps. Under this 
approach, the interface  presents  a group of common 
operating-system functions such  as date, time, 
elapsed or virtual time, user  clocks,  etc.  Although 
most implementations of  high-level  programming 
languages  provide  these functions, a common bind- 
ing  across  systems and languages  is  necessary to 
ensure  portability. 

The interface  also  includes an efficient  set  of  disk 110 
routines.  These functions do exist in high-level  pro- 
gramming  languages,  but  they  may not have the 
same  behavior under different  operating  systems. 
The first and most  obvious  reason  is the different 
file-naming conventions adopted by various operat- 
ing  systems.  Also,  some  file  systems  may not imple- 
ment all of the file formats that are present in other 
systems. The main goal  of  such routines is to provide 
a  single  way to perform  disk 110 functions,  insulating 
tools  from  system-dependent  mechanisms and con- 
ventions. 

Another important reason  for  having  disk 110 func- 
tions is  performance.  Some  compilers, to be com- 
patible  across  operating  systems,  use I/O simulation 
routines that are  available  on  some  operating sys- 
tems.  Although  they can provide  source  code com- 
patibility, the simulated 110 routines are not as effi- 
cient  as  using  native  services. The disk I/O functions 
of GARDEN are coded  with the use  of native  services 
from the operating  system,  requiring, in some  cases, 
the use  of assembler  code. It should  be  noted that 
the kind  of  disk 110 routines that will  be supported 
by the GARDEN environment is  very  simple  (sequen- 
tial  access on a  logical  record  basis),  as  most of the 
storage and retrieval of information will be directly 
provided by the Design Data interface. 

Changes and enhancements applied to the environ- 
ment must not disturb application programs. To 
handle this situation, the GARDEN environment will 
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be insulated from tools.  Such  changes  will require 
only the affected interface modules to be  recompiled 
and the new environment to be  link-edited  with the 
application programs at  run time. Dynamic loading 
of executable  modules,  provided by some operating 
systems, can further improve this mechanism. If 
available, the functions for dynamic loading and 
unloading of tools are provided by the System and 
Services  interface. 

Also, this insulation, combined with the dynamic 
loading, permits the environment code to be shared 
among several  users by having  a  single  image of the 
code in memory. Such an approach may  also be 
extended to frequently  used  tools, improving the 
overall performance of the system. 

An important characteristic of interactive environ- 
ments is the existence of a  high-level interpreted 
language. The GARDEN environment incorporates an 
interface to a  high-level  language-RExx-allowing 
users to define their own set of macros and com- 
mands. Also,  all  of the steps  for  customizing the 
environment are performed using  prologue and epi- 
logue  macros. Through this high-level  language, 
users  are  able to issue commands to the interface 
and tools,  allowing  fast development of extensions 
to existing applications, thus making the system 
more usable and user  friendly. 

To enable all tools and the environment to com- 
municate through a common set of commands, it is 
necessary to have an efficient command-parsing rou- 
tine and a  well-defined method for  passing com- 
mands to the tools.  It is accomplished by a combi- 
nation of the User and Graphics and the System and 
Services  interfaces. The user will  select  a command, 
using any of the available input methods, and the 
User and Graphics interface passes it to the System 
and Services  interface. 

The command is then parsed and dispatched for 
execution.  A command may be directed to any of 
the interfaces or tools, and a  given command can be 
executed by more than one application or interface. 
The command parser and dispatcher are defined to 
enable each tool to identify its commands and how 
they are executed. 

The System and Services interface also includes func- 
tions such  as  hard-copy support for both printers 
and plotters, operating system  message-handling, the 
triggering of specific actions based on another action, 
etc. The list  of  possible functions presented  here  is 

not exhaustive, and it will  grow to accommodate 
requirements from tools and operating systems, in- 
cluding  a  well-defined and organized  set of  efficient 
functions. 

Design Data interface. The last and, from the 
ULSI/VLSI point of  view, most important interface, is 
the one that handles circuit design data. It is com- 
mon to incorporate a DBMS into VLSI CAD systems, 
but it presents  problems that were  already  men- 

A design  can be viewed  at  different 
levels of a definition  hierarchy. 

tioned. The Design Data interface of GARDEN is 
being  developed  for portability and provides  func- 
tions that operate with  integrated circuit design en- 
tities. The main strategy of this interface is to create 
a  well-defined method for multiwrite access to design 
data information, addressing points such as  design 
management, design  methodology, and design con- 
sistency. 

Nowadays, the organizational aspects of integrated 
circuit  design data have  become very complex and 
have  recently  been the object of several  research 
 work^.'^"^ The control of design objects must take 
into consideration both their dynamic and structural 
 nature^.'^'*^ 
A design can be  viewed at different  levels of a  defi- 
nition hierarchy  such as register transfer, logic, tran- 
sistor, layout, etc. Also, it is  necessary to correlate 
the different descriptions of the design  for  manage- 
ment purposes and to ensure that what  is sent to 
manufacturing satisfies the functional specifications. 

Another important point is that integrated circuit 
designs are usually  described  using  a composition 
hierarchy. A hierarchical description is  generally 
used to reduce the overall  complexity of circuit 
design and provides  several  useful features to design- 
ers and tools.  However, it increases the complexity 
of the design description by introducing extra struc- 
tures in the data model. 
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The definition and composition  hierarchies  can be 
combined in a mixed-mode hierarchical  model. 
Thus, a  design  can  be  described as a  composition of 
other designs,  each  of  which  is not necessarily  de- 
scribed at the same  definition  level. For example,  a 
microprocessor  may  have its data path defined at the 
register  transfer  level,  whereas its arithmetic logic 
unit (ALU) is  defined at the transistor level and the 
control logic at gate  level. This form  of  representa- 
tion is  becoming  widely  used,  especially  for  simula- 
tion  purpose^.^^-^^ 

The last point that needs to be considered in mod- 
eling  integrated  circuit  design data is the temporal 
dynamicity of the objects. The entire description of 
a  mixed-mode  hierarchical  design  must  be main- 
tained across  time. This approach provides  design 
version control, allows  different  design  alternatives, 
and ensures the traceability  of  design  errors. 

It  is  necessary to introduce some control mechanism 
on top of the design  model to allow the prescription 
of the design  steps that lead to a  complete and correct 
design.  These  design  methodologies are usually  de- 
scribed  as the sequence of synthesis and analysis 
tools that must  be  used to ensure that the circuit will 
operate  properly after being manufactured. 

The GARDEN Design Data interface  is  being  devel- 
oped to address  all of the previously mentioned 
problems. It includes  a  sophisticated  mixed-mode 
hierarchical data model that captures the temporal 
evolution of its  objects.  Instead of enforcing  a  partic- 
ular  design  methodology, the interface  includes 
mechanisms  for  applications or users to specify the 
steps to be  followed,  along  with  how to control the 
consistency  of  a  design among its several  represen- 
tations at different  definition  levels. 

The interface  also  includes other important features 
such as support for  design documentation and the 
insulation of  design data aspects that are particular 
to a  set of tools. For design documentation, the idea 
is to support different  strategies. The data model 
treats documentation as an object that can  optionally 
be attached to other objects, but the definition  of 
how the design  will  be documented is under the 
control of the design  methodology. 

Design Data organization-The GARDEN Design Data 
interface  provides  a data organization structure that 
is  geared  toward the control of the elements involved 
in the design  of  integrated  circuits. This organization 
allows the representation of various  definition  levels 
and the development of  design alternatives. 
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The universe  of  design data in GARDEN is named a 
repository, and it is  organized into a  set  of  design 
libraries and a  set  of  processes.  Each  library  consists 
of a  set  of  designs and has  a  process  associated  with 
it (information related to design,  verification, and 
manufacturing).  Also,  a  library  may  include other 
libraries,  from  which  designs  can  be  referenced. 

This arrangement allows  designs to be hierarchically 
composed  using  pieces (other designs)  from  different 
libraries.  Such  flexibility  imposes the need  for control 
functions to provide the minimum degree  of  integ- 
rity that is mandatory in a  complex  design  system. 
A  library  may include other libraries  only  if the 
process  associated  with  each  of the libraries  allows 
it.  Besides,  a  complex  hierarchical  library structure 
requires  a  sophisticated  integrity  mechanism to en- 
sure that  an invalid  design will never  be  created, 
either directly or indirectly.  Cross-library  references 
are  kept  with  a  back  reference that permits the 
creation of an efficient  integrity control, as presented 
in  Figure 2. 

A design  is  a  very  complex  object  composed  of 
several other smaller, but not yet  simple,  objects. 
Conceptually,  a  design  is an entity that can perform 
a  given  electrical function and presents an invariant 
interface to the external  world (external view). This 
interface  is  based on  the type and number of external 
ports that are available in the design. 

The internal representation of a  design  may  change, 
giving  rise to the definition of  design variations:  a 
design  may  have  several  different implementations. 
Each  variation  is  associated  with  characteristics  such 
as  power,  speed, area, etc.  For  example, the design 
of a  32-bit ALU can exhibit  a  low-power  variation 
and a  high-speed  variation.  Although  they are totally 
different  electrical  circuits,  these  variations  perform 
the same function and share the same external ap- 
pearance  (interface). 

Furthermore, a  variation  presents  different views, 
resulting  from  several  definition  levels that can  be 
used to describe an integrated  circuit. The views of 
a  variation  are  arranged into three groups: the Lay- 
out group, the Hardware  Description  Language 
group, and the Mixed-Mode  Hierarchical Descrip 
tion (MMHD) group  (Figure 3). 

The Layout View group consists  of the different 
layouts of a variation, such  as  stick  diagrams or 
mask-level information. For design  integrity  reasons, 
a  variation  can  have  only  a  single  mask-level view. 
Layout views can  be  hierarchically  formed by the 

DE LIMA ET AL. 587 



Figure 2 The cross-library reference  mechanism 
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combination of primitive  geometrical information 
with  other  information  obtained by referencing  lay- 
out views from  a  variation of other designs.  Also, 
the electrical  descriptions  generated  by  circuit ex- 
traction tools  are  kept in this group, as extracted 
views,  with a  pointer to the source  layout  view. 

Different  Hardware  Description  Languages (HDL) 
can be  used to define  a view on a  source  code  file 
basis,  without  any  consideration of their syntax. 
Such an approach  frees the Design Data interface 
from  having  detailed  knowledge of existing  hardware 
description  languages  such as EDIF, VHDL, etc.  When- 
ever  necessary,  application  programs can be  written 

to compile  these  descriptions,  named HDL source 
views, and the resulting  object  code  file  can  be  stored 
as an HDL object view. 

HDL views and extracted views can be  used  for the 
definition of more  complex  designs: the Mixed- 
Mode  Hierarchical  Description.  These views are  hi- 
erarchically  defined  using  references to views  belong- 
ing to variations of other designs. The instances of 
these  referenced views present  instances of their ex- 
ternal ports,  which  are  defined at the design  level  of 
the referenced  view. Port instances  are  connected 
through  nets to other  port  instances or to the ports 
of the view  being  designed. 
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Temporal organization-The data organization  aspects 
described  previously do not  provide any knowledge 
of the temporal  dynamicity of the designs.  Such 
behavior  is  captured by the interface at the view  level 
and is  expressed  by the introduction of two time- 
dependent  concepts: the modification and the itera- 
tion. These  concepts  can  be  depicted as a  tree-like 
structure,  as  presented in Figure 4, where  each  node 
represents  a state (version) of the view and, com- 
bined  with  all  other  organizational  aspects,  defines 
the design  management  mechanism that is  built into 
GARDEN. 

Iterations  can be  defined,  using  database  terminol- 
ogy,  as  successive “commits” of a view.  Modifica- 
tions are  created by the designer  whenever  a  different 

design  strategy  is  necessary.  Thus,  a  new  branch  is 
created  for  every  modification, and each  node rep  
resents an iteration. 

The concepts of modification and iteration (MI), 
shown in Figure 4, are  applied to the objects that 
exist  under  a view. To operate in either read or write 
mode, the view has to be opened at a  particular MI 
(state). In write  mode,  when  a view is  closed,  either 
a new iteration or modification  is  created. A modi- 
fication is created if the next iteration of that partic- 
ular  modification  already  exists, or by explicit  re- 
quest  of the application  program. 

The implementation details of  how the interface and 
the  underlying DBMS store the MI-controlled objects 

Figure 3 The  different  view  types of a  design’s  variation 
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are  totally  hidden  from the tools.  Once  a view is 
opened at a  given  state, its components (which  de- 
pend on the view type)  can  be  retrieved  indepen- 
dently of the  temporal  organization.  Depending on 
the complexity of the objects,  they  will be stored 
using  negative  delta  files (the latest  version  always 
exists) or by storing  the  creation MI and the deletion 
MI together  with the object. (Note that it is  possible 
to have  more than one  deletion MI.) 

The MI-based control cannot be used  for  objects that 
are  not  placed  under  a view (for  example, the ports 
of a  design). To allow  these  objects to evolve and yet 
account  for their temporal dynamicity, the interface 
associates  different  versions of these  objects  with  a 
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time stamp (TS). Thus,  each of these  objects  is then 
viewed as  a  more  complex  object that consists  of  a 
sequence of time-stamped  objects. 

The  interface  retrieves  these  objects at their  latest 
version, but application  programs can also retrieve  a 
particular  version of a  time-stamp-controlled  object. 
Retrieval  is  accomplished by providing the interface 
with  a  time instant, and the version that was current 
at the specified  time  is then retrieved. The time for 
the retrieval  operation cafi also  be  changed  by open- 
ing  a view at a  particular MI. Whenever this occurs, 
all  of the time-stamped  objects  are, by default,  re- 
trieved  using the time  information that is  associated 
with the specified MI. 

This  form of organization  also  provides the necessary 
structure  for  allowing  multiwrite  access to the design 
data.  Whenever an application  program  opens an 
object  in  write  mode,  all of the objects that are 
defined  below it are  also  automatically  locked.  Such 
a  locking  mechanism is valid  from the iteration level 
up to the  design  level.  Libraries and processes  are 
treated  independently  of the designs  since their in- 
formation  does not directly  affect the description of 
the designs. 

Design Data consistency-The  Design Data interface 
does  not possess detailed  understanding of the se- 
mantical contents of each view. Hence, the interface 
does  not  include  the  consistency  mechanisms that 
require  such  knowledge.  This  is  not  a limitation of 
the interface, but, rather, it is  a  feature that enables 
the GARDEN environment not to enforce  a  particular 
design  methodology or the use  of a  specific  hardware 
description  language. 

Instead  of  having  built-in  mechanisms to control the 
consistency of the designs, the interface  provides the 
means  for the development of application  programs 
to perform  such  tasks,  based on a  particular  design 
methodology and on the use  of certain  hardware 
description  languages. This approach  allows  the  def- 
inition of different  design environments and is  ca- 
pable of dealing  with  different or new  hardware 
definition  languages and design  methodologies. 

The definition of built-in  consistency  checks  may 
also  be  complicated  if  a  design contains several  var- 
iations that are further organized into views  which 
are,  in turn, controlled  using  modifications and it- 
erations. A consistency  mechanism to comply  with 
all of these  possibilities  will  certainly  impose  many 
restrictions. 
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The idea  is to provide  a  very  flexible  model  for the 
design data, without  disregarding the consistency 
aspects. Therefore, the interface  allows  a view, at a 
given MI, to be correlated  with other views (the MI of 
each  view  being  correlated  does not necessarily  need 
to be the same).  This  mechanism can be  used  by 
application  programs to group together view states 
that are  consistent  among  them. This information 
can  then  be  used by other application  programs to 
ensure that the design  satisfies the requirements of a 
particular  design  methodology. 

This grouping  operation can be  performed at the 
view  level, at the variation  level, or at the design 
level.  Such  mechanisms,  combined  with the appro- 
priate  application  programs and the  ability of the 
GARDEN environment to trigger  specific  actions,  per- 
mit a  precise  definition of  design  methodologies that 
include, as a  consequence, the necessary  consistency 
checks. 

Design traceability-Another feature of the Design 
Data  interface of GARDEN is the provision  for  hand- 
ling the input and output files  of  design  verification 
and analysis  operations.  These fdes are  stored  in 
association  with the view state to which  they  corre- 
spond,  allowing  the entire design  process to be  traced 
backwards in time. A design  verification or analysis 
operation  corresponds to an object that contains 
references to the input files, the view state that was 
used,  the output files, and the  identification of the 
tool. To provide  flexibility and control,  each view 
has  its  own  set of verification and analysis  operations. 

A single input file can  be  used by more than one 
operation, but the output ones  are  specific to a 
particular  operation. Output files are  grouped into 
output data sets that are also placed  under view. 
Since  an input file can be  used  in more than one 
operation, input data sets are also  available  under 
design and variation.  Another  characteristic of the 
input files  is their  temporal  dynamicity. As with 
other  design  objects,  they  are  maintained  using time 
stamps but without  being  associated  with  a  particular 
view state. 

Some  tools  use  the output of other  tools as one of 
their  inputs. To accommodate this situation, an 
input file can be initially  defined as a  reference to  an 
output file. Also, existing input files  can be used as 
the base  for  new  ones. This use  allows the definition 
of general-purpose input files at the design or varia- 
tion  levels, and these  files can be further  modified 
for use at the view  level. 
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Design documentation-The capability of tracing  de- 
sign and operations data backward  in time is not the 
only  aspect  in GARDEN related to the documentation 
of the  design  process. It is  often  desirable to store 
textual documents together  with the design  objects. 
Textual  design documentation can be any  form of 
human-readable information, such as a  brief  descrip- 
tion, memos, or even  complex documents that are 
the input for  text-processing  programs. 

The problem  associated  with  having  textual  docu- 
ments  in  the data model is where to place  them. A 
particular  design  methodology  may  specify that all 
documentation must be placed at the design  level, 
at the same  time that another methodology  states 
that it is to be kept at the view  level. The  solution 
adopted  in GARDEN is to place  a documentation 
object,  named written information, at all  places 
where it may  be  necessary.  Thus,  objects  such as 
libraries,  processes,  designs,  variations,  views,  oper- 
ation data, etc.  can  all  have documentation associ- 
ated with them, allowing the design  methodology to 
define  whatever documentation strategy  may  be  re- 
quired. 

The interface  does  not account for  modifications 
applied to simple  textual documentation such as 
descriptions or memos.  Whenever  they  are  modified, 
the new value will replace  the  existing  one.  Con- 
versely,  the  interface  treats  more  complex  textual 
documentation objects by  using the timestamp 
mechanism, and the retrieval  procedure  is the same 
as  for other objects  (except input files). 

Private andpublic repositories. The use  of the  Design 
Data interface of GARDEN, with  all  of the features 
described  in  this  paper,  can  result  in  complex and 
enormous data repositories. To minimize this prob- 
lem, the interface  is  being  developed to support  two 
types  of  repositories: the public  repository and the 
private  logical  repository.  The  public  repository  is 
unique, but each  user  can  have  a  private  logical 
repository. The private  repository  includes  logical  in 
its name because  it  does  not contain private  copies 
of the objects.  Instead,  only the updates are stored 
in the private  repository.  The  resulting  object  is  the 
combination of the data from the pubIic  repository 
with  what  exists-  in  the  private  one. 

Whenever  a  design  object  is  opened  in  write  mode, 
it is logically transferred to the user’s  private  reposi- 
tory. The object can then be  closed and opened  again 
as  many  times as necessary  before the real close 
transfers it back to the public  repository. The public 
repository treats the object as being  locked until it is 
transferred  back  from the private  logical  one. 



This locking  scheme  does not present the usual 
burden of the checkout  process that exists on con- 
ventional  database  systems,  where  a  lock  can  stay 
forever.  Although this situation holds true for  some 
objects in GARDEN, most of the time the object  being 

The  locking  scheme  does  not 
present  the  usual  burden of the 
checkout  process  that  exists  on 
conventional  database  systems. 

locked will  be a state of a view. More than one user 
is  capable  of  opening  a  view  state in write  mode  if 
the migrations  from the private  logical  repositories 
are performed  sequentially. The first  user  will,  when- 
ever  possible,  create  a  new iteration of the same 
modification. The next  transfer operation will nec- 
essarily  create  new  modifications. 

While  a view state is in the private  logical  repository, 
its iterations and modifications are visible  only to 
the owner  of the private  repository. The user (or the 
application  program)  may  decide to treat all  itera- 
tions as  being just one.  Hence,  only the last iteration 
is  transferred  back to the public  repository. This 
operation is  carried out to provide the same  result 
as  a  simple  open-close that does not use a  private 
repository. 

For other data objects,  only one user  can  have  write 
access to them, since  modifications  applied to these 
objects  can  affect other objects in the repository. 
This is true for  objects  such as designs and variations 
that are composed by other  complex  objects. In these 
situations, an object  may  stay  locked  forever, as in 
some conventional database  systems. The interface 
provides functions to determine the ownership of an 
object  lock and privileged commands to cancel  it. 
For these  objects, the interface  also  allows the elim- 
ination of intermediate changes, just as for the view 
states. 

Such  compression  mechanisms  reduce the amount 
of data that are kept in the real  repository,  since 
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some intermediate alterations can be automatically 
disregarded.  Because this process  may  be  used  for 
any  design  object in GARDEN, the overall  result is a 
reduction in the size and complexity of the real 
repository. It is  also important to mention that the 
Design Data interface incorporates privileged  func- 
tions for  repository maintenance, such  as  placing 
part of the data off line (on tape for  example), as an 
alternative to reducing the storage requirements. 

Applications. As mentioned  previously,  several  fea- 
tures of the GARDEN environment rely on the devel- 
opment of application  programs or tools. GARDEN 
applications are much  more than just tools  such  as 
graphical  editors, simulators, checkers,  etc. An ap- 
plication can be virtually  any computer program 
that interacts with the user to perform  some action 
on the design data. 

The interfaces  provide  only the framework  for the 
development of a ULSI/VLSI design  system that can 
be  adapted to a particular design environment using 
specific  application  programs.  Among  all  of the ap- 
plications that can  be  developed  for  this  purpose,  it 
is important to mention those that are necessary to 
enforce  a particular design  methodology or to ensure 
consistency of the design  according to given  criteria. 

However, GARDEN is not just its  interfaces and some 
application  programs  for  customizing the environ- 
ment. Design  tools are, by far, the most important 
application  programs that can be  developed. One of 
the main ideas  behind GARDEN is to support the 
development of  efficient and reliable  design  tools, 
leaving  considerations about the computing environ- 
ment for the interfaces. 

Therefore, the GARDEN project will include the de- 
velopment of  design tools  such as graphical  editors, 
simulators, timing analyzers,  etc.  Also, the Design 
Data interface  is  being  defined to provide support 
for other levels  of electrical  circuit  design  such  as 
integrated-circuit  packaging,  boards,  etc.  These  fea- 
tures, and the mixed-mode  hierarchical  representa- 
tion will  allow tools to combine, in the same design, 
circuits  defined at different  design  levels. Another 
important concern of the GARDEN project  is to use  a 
formal  methodology  for the specification and devel- 
opment of both the interfaces and application pro- 
grams. 

The GARDEN software  development  process 

Providing  all of the previously  described functions 
in a  single  integrated and evolving environment is 
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not a simple  task. To achieve its goals the GARDEN 
CAD environment is  being  developed by using SOB- 
ware  engineering techniques. This approach is  nec- 
essary to help  ensure the operation of the system and 
to ease  coding  steps,  because conceptual errors are 
being  identified and corrected during specification 
steps. GARDEN is intended to be a long-term  project 
as  far  as  development and support are concerned, 
and it  is  being  performed  according to the Vienna 
Development  Methodology (VDM). 

As with  any  specification technique based on models, 
formal or not, VDM relies on the definition of  explicit 
models of the system under specification,  using  either 
abstract or concrete  concepts.  Figure 5 presents the 
overall  development  process of VDM. The complex 
mathematical foundaiions of VDM are beyond the 
scope of this  work.  However,  this  methodology 
can  be  briefly  summarized by the following  list  of 
actions: 

Definition of states and semantic domains 
Construction of invariants for the semantic do- 

Definition of abstract  syntax and syntactic do- 

Construction of  well-formedness constraints for 

Specification of operations and functions for the 

mains 

mains 

the syntactic  objects 

system under definition 

The first  two items of the list  define the model of the 
system. The remaining  ones  characterize the inter- 
actions that can  occur  with the model. The last point 
of the methodology  is that operations and functions 
can  be  described  either in an applicative  style  (func- 
tional languages)  or in an imperative  style  (proce- 
dural languages). The implementation steps  are  per- 
formed  using  successive  refinements  of the definition 
of functions and operations. 

In order to describe VDM concepts,  some  objects of 
the GARDEN CAD environment will be  used.  Note 
that the description  given in this  work  is not the 
entire specification  of the GARDEN CAD system,  but 
just a small  subset to enable a concise  description of 
the approach  used. 

States and semantic  domains. States and semantic 
domains are defined  from  well-known  mathematical 
objects.26 The semantical  understanding of the 
model  being  constructed  is  derived  from the seman- 
tics of the mathematical  expressions that are  used. 
To build  such a model, one may  use mathematical 
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Figure 5 The VDM process 
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objects  such  as  sets,  sequences,  Cartesian  products, 
mappings, and predefined  objects. 

Predefined  objects  are  usually  Boolean  values,  inte- 
ger numbers, natural numbers,  rational  numbers, 
denoted by B, Z, N, and 9, and  sets  obtained by 
enumeration of atomic symbols. All the usual  oper- 
ations that can  be  applied to the above-mentioned 
constructs  can be  freely  used  in the specification to 
define new and more  complex  objects. It is common 
to use operations  such  as union, intersection,  dis- 
criminated union of  sets, the head or the tail of a 
sequence, the range or the domain of a mapping, the 
Cartesian  product of domains, etc. 

As an example of these  constructs and operations, a 
Repository, the name for  the  universe  of  all  design 
Libraries and Processes in GARDEN, can  be  repre- 
sented  as a Cartesian  product of three  mappings,  one 
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of  Libraries, one of Processes, and another one of 
Documents as  shown  below. 

Repository :: Lib x Process x Document 

To name a particular element that belongs to one of 
these  sets, the following  expression can be  used: 

is-Lib(lj) 
is-Process(pj) 

w h e r e l l i s n A n E N  

GARDEN captures the temporal description of its 
objects.  For  example,  design documentation may 
evolve, and it  is  necessary to create  a structure that 
captures  such  a  mechanism. Documents in GARDEN 
are expressed  as  sequences  of  time-stamped  names, 
time-stamped delta files, and other constructs. Using 
VDM notation, this  is  written  as: 

Document :: seq of TSName x seq of TSDelta x ... 

To define  some structures that are more complex, it 
is  necessary to use  more  elaborate mathematical 
constructs than  just sets and sequences.  For  example, 
a  Library  can  be  expressed as a  mapping  between 
identijiers and fields. It is further defined as the 
Cartesian product between  a Name, a  set  of other 
Libraries (that might  be  included  by this one), a 
Document, the Process related  with this library and 
a  set  of  Designs.  A bonus from  using  this  type  of 
formalism  is the possibility of ensuring the Identifiers 
are unique. 

Lib = Id w Fieldsl 
Fieldsl :: Name x Lib x Document x Process 

x Design 

Also Process can be defined  using  this  technique. 

Process = Id H Fields2 
Fields2 :: Name x Processlnfo x Document 

x Process 

Invariants. It is  necessary to add some  restrictions, 
called invariant rules, to the previous  definitions of 
the semantic domains. These  restrictions are written 
using  a  predicate  logic  language,  enriched  with  some 
symbols to simplify its understanding.  Typical  sym- 
bols that can be  used are the -I (negation), A (con- 
junction), =$ (implication), and * (logical  equiva- 
lence). 
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To the usual  set  of  logical  symbols, the let and in 
tokens are added to improve the overall  readability 
of  expressions  such  as: 

let li E Lib, in ... 

Thus, invariants are restrictions to the values that 
objects under definition  can  assume, and a  single 
object  can  present more than one invariant. Also, 
invariants can  evolve during the specification  steps 
of a  project. As an example of an invariant, a  prop- 
erty of the GARDEN Libraries  can  be  written  as: 

inv-Lib B let make-Fields1 (nj, l j ,  doc,, pi, dj) 
= Lib(id,) A 
let make-Fields1 (n,, 4 ,  doc,, pi, 4) 
= Lib(id,) 
in 
(id, # id. + nj  # n,) A 
i(pi = b) A . . . 

It denotes that the names  within  a Lib are unique 
and there must  exist  a Process associated  with  a 
library. The creation of invariants relies on a  detailed 
knowledge  of the objects that are being  modeled. 
The specifications  of  these21;ules create  a part of the 
so-called proof obligations. 

Abstract syntax and syntactic  domains. A  model 
must  be dynamic to describe the real  world, and this 
aspect  can  be camed out with  a  set  of operations 
that modifies the states.  An abstract syntax  allows 
an understanding of the syntactic domains involved 
in the operations, without considering the imple- 
mentation details.  Because of these  facts, another 
important step of VDM that can  be  performed in 
parallel to the definition of the states  is  how to 
operate and modify  states. 

On the basis  of  previous  examples,  it  is  clear that it 
will  be  necessary to provide functions to list  names 
of  Libraries and names of Processes. Using an ab- 
stract  syntax, this can  be denoted by: 

List = List-Libraries I List-Processes I ... 
List-Libraries = Name* 
List-Processes = Name* 

As  with semantic domains, the syntactic domains 
are described in a  very  flexible  form.  Hence,  rules 
for  well-formed constraints must also  be  added to 
the specification.  These constraints express the syn- 
tax properties that the operations must  obey. 
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As an example, the well-formed constraint for the 
List-Libraries  is  expressed as follows: 

well-forrn-List-Libraries(1) P 1 = 0 V V x, 
( x ~ I w x x L i b )  

Operations and functions. Once the syntactic and 
semantic domains are defined,  it  is  necessary to 
establish  what the functions and operations will per- 
form. This step is  normally  accomplished  using well- 
specified  high-level  definition  languages. In these 
languages, functions and operations are expressed in 
either an applicative (functional) or imperative  (pro- 
cedural)  style.  There  is no preference  for either style 
since  they both can  precisely  express the syntax and 
semantics of the function being  specified. 

In the applicative  style, the entire specification  will 
resemble, as the implementation evolves,  a  program 
written  using  a functional language. For example, 
the List-Libraries function is  defined by: 

List-Libraries(1) A if 1 = 0 
then 0 
else let x = (Id, Fieldsl) E 1 in 

List-Libraries(1- x) 
(Name.Fields1 u 

type:  List-Libraries : Lib + Name* 

Conversely, the imperative  style  implies the use  of 
pre and post conditions to characterize the function 
under definition.  Usually,  these conditions are ex- 
pressed  as: 

f :  Input 3 Output 
let o =f(i) in V i ((i E Input A pre-f(i)) 

+ Mi) A post-f(i, 0))) 

The same function, List-Libraries,  expressed  previ- 
ously in the applicative  style, can be  rewritten  using 
the imperative  style: 

List-Libraries(1) = 
x :: = range ( l )  
while x # 0 do 

IetfE x in 
output(Namef) 
x : : = x - f  

end 

type:  List-Libraries : Lib + Name* 

To characterize  this function the following condi- 
tions must  be  added: 
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preList-Libraries P islib(/) 

post-List-Libraries P let I = List-Libraries([) in 
I = Name.range(1) 

AS presented  previously, GARDEN incorporates some 
form of  cross-library  integrity control, based on the 
characteristics of the process  associated  with  each 
Library.  Each Process has a  list  of  every other 
Process considered to be compatible  with  it:  a 
Library  may include another Library  only if the 
Process of the included  Library  is  compatible  with 
the one to include it (note that compatibility  is  a 
unidirectional  property). A library  is  capable  of  ac- 
cessing other libraries as an extension of  itself. This 
access operation is camed  out recursively until a 
Library  with an incompatible Process is found or 
all  referenced  Libraries are verified.  Thus, the 
AccessLib function, which determines what other 
libraries  a  given  Library  can  access,  is  defined by: 

AccessLibAux P (((x,~), AccessLibAux(x,p)) I 
let x = (Id, make-Fields1 (n, li, doci, 

pi, di)) in V y, V z ( y  E Zi A 
z E AccessLibAux(x,p) if 

ZE l iV  
((z E AccessLibAux(y,p)) A 
((p = Process.range(z)) V 
(Process.range(z) E 

Process.range(p))))) 
type: AccessLib : Fieldsl +. Lib 

AccessLibAux P {((x,~), AccessLibAux(x,p)) I 
let x = (Id,  make-Fields1 (ni, li, doci, 

pi, d,)) in V y,  V z ( y  E li A 
z E AccessLibAux(x,p) if 

Z € l i V  
((z E AccessLibAux(y,p)) A 
((p = Process.range(z)) V 
(Process.range(z) E 

Process.range(p))))) 

type: AccessLibAux : Lib x Process + Lib 

The auxiliary function AccessLibAux is  necessary to 
prevent an endless  recursion  when  a Process in the 
chain  is not compatible  with the one of the starting 
Library. Thus, the Process of the starting Library is 
passed  as  a parameter to the auxiliary function 
AccessLibAux. 

Another  feature,  present in definition  languages, are 
mechanisms  for  successive  refinements,  from  high- 
level  definitions up  to implementation details. This 

DE LIMA ET AL. 595 



Figure 6 GARDEN software  development  graph 

1 IMPLEMENTATION I 

process of refinement,  also  called  reification, will 
create another part of  the proof obligations. 

A model for software development. Applying  formal 
techniques  in  software  development  does not pre- 
clude the use of a  development  life-cycle  model. In 
fact, it is also possible to adapt a  suitable  life-cycle 
model to a  more  formal  scheme  like the software 

development graph.’ Basically, this scheme  consists 
of three  types of graphs: 

Meta-graph, applied to the development of a  given 
class of software  (e.g.,  operating  system, CAD) 
Project graph, a  meta-graph  which  includes  details 
of a  given  instance  (e.g.,  operating  system x, CAD 
for ULSI/VLSI) 



Configuration  graph, a  graph  for  a  specific  config- 
uration of a given project  graph (e.g., operating 
system x for  target  machine y, operating  system x 
for  target  machine z )  

Figure 6 is  a  summarization  of the development of 
the GARDEN project. The objects  definitions  node 
corresponds to the requirements phase of the tradi- 
tional life-cycle  model. The other three  levels  in the 
diagram  correspond to the design phase. The last 
level, implementation, corresponds to the coding 
phase. The other phases, testing,  use, and mainte- 
nance, are not presented in the diagram. 

The contractual model of software  development'  is 
associated  with  every  node in the development 
graph, as shown in Figure 7. The developers  (sup- 
pliers) and the users  (customers)  must interact until 
a  complete  agreement  is  reached, as far as the func- 
tion of each  node is concerned. In this model, the 
users  express their requirements in natural language, 
whereas the developers  use  mathematical notation 
for  the  semantics of the system  under  definition. 
This agreement  is  formalized into a document which 
is the actual  contract of that node, and is  performed 
for  every node in the  graph.  For the GARDEN project 
some  members of the development team, which 
possess  expertise  in VLSI design,  act as users,  while 
the role of the supplier is performed by the remaining 
members. 

Figure 7 Contractual  model for software  development 

0 I 

LANGUAGE 

For the developer, the node  tgkes the form  of an 
extension of the ETVX model,  applying it to the 
program  architecture  process and to the entire proj- 
ect  graph. This model,  presented in Figure 8, requires 
that for  every  node of the graph the following items 
are to be defined: an entry criteria, an exit  criteria, 
tasks to be executed, and a  validation  criteria. The 
formal structure of VDM eases the definition of these 
items. 

Figure 8 The ETVX paradigm 
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Concluding  remarks 

Currently, GARDEN’S User and Graphics and Design 
Data interfaces are under specification.  Simultane- 
ously,  parts  of the System and Services  interface are 
being implemented (for  early support to tools and 
the other interfaces),  while its formal  specification  is 
being  performed.  Also, the first prototype versions 
of CAD tools  such as a timing analyzer” and a 
simulator are being  completed. 

The use  of formal  software  development  methodol- 
ogies in the GARDEN project  is  providing an impor- 
tant mechanism  for the elimination of complex  con- 
ceptual doubts and errors during the specification 
phase.  Besides, the clarity and precision  of the spec- 
ification  language  make  it  a  simple and efficient 
vehicle  for the dissemination  of  project documenta- 
tion. Also,  all  aspects  of the system are captured by 
the formalism of the specification  methodology. 
Project  management  is then simplified,  especially in 
dealing  with  members that join or leave the project 
team. 
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