GARDEN—An integrated
and evolving environment
for ULSI/VLSI CAD
applications

The design and specification of efficient and powerful
Ultra Large Scale Integration/Very Large Scale Integra-
tion (ULSI/VLSI) computer-aided design (CAD) systems
to deal with the current integrated circuit manufactur-
ing technology is beyond the capabilities of the usual
software development methodologies. This paper pre-
sents GARDEN, an integrated ULSI/VLSI design envi-
ronment conceived to cope with problems in the evolu-
tion of the computing environment. It also highlights
the utilization of the Vienna Development Methodology
(VDM) for the specification, design, implementation,
and maintenance—in short, all of the software life
cycle—of this CAD system, under development at the
IBM Brazil Rio Scientific Center.

he design of integrated circuits and systems is a

category of complex engineering tasks that can-
not be performed without the aid of sophisticated
and reliable computer-aided design (CAD) systems.
The complexity of Very Large Scale Integration
(vLsI) circuits demands software tools to both help
engineers in the design steps and ensure proper op-
eration of circuits once they are manufactured. Since
circuit design complexity doubles every two years,
bearing what can be called Ultra Large Scale Integra-
tion (ULsI), there is an increasing need for more
powerful and efficient design systems.
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Over the past few years, CAD systems for integrated
circuits evolved tremendously to cope with the in-
creasing circuit complexity. These CAD systems were
usually oriented toward the designer, addressing
mostly circuit and manufacturing process problems.
As expected, and as far as the designers are con-
cerned, these systems turned out to be, in many
cases, extremely efficient and user friendly.

Despite the importance of this aspect, from the de-
velopment point of view most of these CAD systems
present a somewhat cumbersome architecture. Nor-
mally, they have coded dependencies on the under-
lying hardware and operating system. Also, they
sometimes rely on specialized software such as a
particular database management system (DBMS) or
programming language. Maintaining and improving
such systems presents a permanent challenge to de-
velopers. As an example, “porting” existing applica-
tions to new hardware or a new operating system
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usually requires a considerable amount of effort. In
the same way, changing the database system to a
more efficient or specialized one is, in most cases,
virtually impossible, since it may require a complete
revision of the existing code.

Being independent of factors such as hardware, op-
erating system, DBMS, programming language, etc. is
one of the most desired features for a large group of
computer applications in which VLSI CAD systems
are included.! Providing such a degree of indepen-
dence tends to increase the life span of computer
applications, and it turned out to be a very challeng-
ing research activity during the past several years.
Although a longer life cycle for applications reduces
the stress on users, it can be extremely painful to
developers to cope with new and enhanced tech-
niques that can be used to provide more efficient
and reliable services.

Solving this problem can be rather complex. To be
efficient, an implementation of a computer applica-
tion often needs to exploit some internals of the
target computing environment. Such an application
is inclined not to survive for a long time without a
periodic code revision. A possible approach is to
insulate application-specific operations from the
computing environment, a task that can be ex-
tremely complex, even for very specific applications.

To carry out such an approach, a very precise defi-
nition of the problem being addressed by the appli-
cation is mandatory. This definition can be achieved
with a formal software development methodology.
This knowledge is then mapped into requirements
that are used to define a strategy to insulate the
application from the computing environment.

GARDEN’ was conceived to be an integrated environ-
ment for ULSI/VLSI CAD applications and to cope with
the problem of the evolving computing environ-
ment. The main strategy of GARDEN is the existence
of very specialized interfaces that provide a layer of
insulation between the CAD tools (applications) and
the computing environment. Those interfaces will
allow the latter to evolve without requiring changes
to existing tools. It is also part of GARDEN’s strategy
to provide the user with a uniform and consistent
view of the system and tools, aiming for user friend-
liness and dropping the constant and expensive need
for training.

Usually, the design of large CAD systems is a fairly
intricate problem. Because the design of ULSI/VLSI
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circuits and systems exhibits a very complex nature,
CAD systems that aid the execution of such tasks
represent one of the most complex problems for
software engineers.

The traditional process for developing software
proved to be inefficient for more complex systems
since the famous software crisis of the 1970s.” One
of the main features of formal software development
methodologies and their derived environments is the,
description, in a precise and clear way, of the entities
involved in the software creation process."'5 There-
fore, these methodologies present an appropriate
environment where the development of complex
CAD systems can be performed in a reliable, disci-
plined, and safe way.

These formal methods can be classified into two
large groups: property-oriented and model-oriented.
The first group uses mathematical formalism to de-
scribe the properties that the system under design
must obey. In contrast, model-oriented methodol-
ogies use well-known objects to model the system.
An example of the latter group is the Z Methodology,
from the Programming Research Group of the Uni-
versity of Oxford, that is being used at the BM
Laboratory in Hursley Park in the United Kingdom
for redefining the Customer Information Control
System (Clcs).6 Another example is the Vienna De-
velopment Methodology (vpbM),” used for the spec-
ification and development of compilers for languages
such as Ada® and cHILL, for a formal model of
System R, and for other applications.5 VDM was the
formal methodology selected to support the devel-
opment of the GARDEN project. The choice was based
on the existence of some knowledge about vDM in
the project team and on the availability of a reason-
able number of references pertaining to it.

The evolving GARDEN ULSI/VLSI CAD
environment

A general picture of the GARDEN CAD environment,
including the interfaces, is presented in Figure 1. It
is said to be evolving since the interfaces will enable
new computing environments to be supported by
the system, without the necessity of changing existing
application programs (tools). The primary function
of these interfaces is to provide a layer of insulation
between the computing-environment-dependent fea-
tures and the application programs.

Changes and enhancements applied to the interfaces
are automatically extended to existing application
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Figure1 An overview of the GARDEN environment
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programs, if the bindings for the interfaces do not
change. Modifying these bindings is a more complex
problem since it may require dropping the support
for a particular binding to the detriment of a more
efficient one. Such operations must be carefully car-
ried out so that existing applications are not dis-
turbed. A certain time must be allowed for applica-
tions to migrate to the new bindings before support
for them is dropped.

GARDEN?s interfaces, namely User and Graphics, De-
sign Data, and System and Services, are oriented
toward the necessities of integrated circuit design
tools. As with general-purpose application program
interfaces (APIs), the definition of GARDEN’s interfaces
are allowed to evolve, enabling the GARDEN environ-
ment to take advantage of enhancements provided
by new or modified computing environments.

The software development methodology used in the
GARDEN project (vDM) provides a control mecha-
nism to avoid the careless adoption of features that
are present in only a particular computing environ-
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ment. The formal definition of the interfaces is being
carried out independently of the target computing
environment, and the same approach will be used
for the implementation of changes and enhance-
ments to the interfaces.

The general idea is to treat the interfaces and the
application programs as independent program units.
Changes applied to each individual part should not
disturb the other, unless carefully documented. The
only required task to be performed whenever there
is a program unit change is to link-edit the entire
system, and it can be done dynamically on comput-
ing environments that provide the appropriate sup-
port.

These interfaces orient GARDEN toward the designer
and the computing environment and also toward the
application development engineer. This characteris-
tic of the system is very important as it frees tools
developers from coding system and hardware-de-
pendent routines, allowing them to concentrate on
new tools and better algorithms. Another advantage,
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embedded in this approach, is that complex tasks,
such as coding operating-system-level routines,
graphics drivers, DBMS calls, etc., are coded and
optimized just once.

GARDEN encapsulates tools and its interfaces into a
single environment capable of supporting multiple

The GARDEN CAD environment
provides more than just tool
encapsulation.

concurrent users and multiple active applications,
with multitasking capability whenever the operating
system provides support for it.

However, the GARDEN CAD environment provides
more than just tool encapsulation. The success of
such a design environment depends also on the
existence of features that are related to ULSI/VLSI
circuits and systems design. To meet these require-
ments, GARDEN is being developed with the following
characteristics as its focus:

% Built-in design management will provide such
functions as design version control and data integ-
rity control.

% No specific design methodology is enforced by the
system, implying that the system does not define
the design steps that must be performed. The
design methodology will be enforced either by
application programs or by the design team man-
agement. GARDEN provides the means for appli-
cations to define precise design methodologies and
to control them.

o Full design traceability permits design and analysis
data to be traced backwards in time to search for
possible design errors.

% Mixed mode'® and hierarchical design data repre-
sentation allow tools to exploit, concurrently, the
description and composition hierarchical natures
of uLsI/vLsI designs.

% Design documentation facilities are being imple-
mented into the Design Data interface, allowing a
wide range of documentation strategies.
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% National language support enables the environ-
ment to be adapted to languages other than Eng-
lish.

% Support is given to other levels of circuit design.
The Design Data interface of GARDEN is being
defined in a flexible way so as to support other
levels of circuit design such as packaging, boards,
system, etc.

Even with the use of software engineering, a system
like GARDEN is not capable of supporting all of the
available computing environments, mainly because
of limitations imposed by the environments them-
selves. GARDEN development strategy is to provide
support gradually to several computing environ-
ments, and initially it will comply with the following
platforms:

% CPU types and operating systems: Included are the
System/370 in which there is support for the Vir-
tual Machine/Conversational Monitor System
(vM/cms) and Advanced Interactive Executive™
(AIX™, 1BM’s UNIX®-like operating system), the IBM
6150 (rRT PCc®) with support for AIX, and the ps/2®
Models 70 and 80 with support for AIX.

%~ Graphics devices: All points addressable (APA) de-
vices supported by the 1BM implementation of the
pHIGS (Programmer’s Hierarchical Interactive
Graphics System) API (graPHIGS®).

% Programming languages: Pascal (1BM vs Pascal), C
(1BM ¢/370 and C/A1X), REXX (Restructured Ex-
tended Executor), and assembler when required.
These programming languages are being used to
code the interfaces and zpplications. Other lan-
guages may be added to the list if they comply
with the linkage convention established, and if
they do not disturb the overall run-time environ-
ment.

These platforms (both the hardware and the soft-
ware) were selected on the basis of computing facil-
ities that are available (or planned) at the 1BM Brazil
Rio Scientific Center. It must be noted that this list
is not exhaustive and can be extended in the future
to accommodate other computing environments.

The effort of GARDEN to support different computing
environments parallels 1BM's Systems Application
Architecture™ (SAA™). Since SAA addresses a different
set of computing environments and is oriented to-
ward computing applications that share a distinct set
of requirements, GARDEN will incorporate its own
support for different computing environments.
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The interfaces of GARDEN. The core of the GARDEN
environment is its interfaces, which together with
the application programs (tools) define a sophisti-
cated ULSI/VLSI CAD system. As mentioned before,
the purpose of the interfaces is to insulate the tools
from the computing environment and to provide a
consistent set of functions to help caD application
development engineers in coding efficient and reli-
able tools. GARDEN encapsulates tools and interfaces
into a single environment capable of supporting
multiple concurrent users and multiple active appli-
cations, with multitasking capability whenever the
operating system provides support for it.

The interfaces consist of large sets of functions that
perform actions under the control of tools and pro-
vide a uniform work environment to users. They are
being organized into application development tool-
kits, and, for optimization reasons, different func-
tions will perform the same basic task. This repeti-
tion is necessary because the requirements for differ-
ent tools may differ, and whenever possible, GARDEN
will provide an optimal function to satisfy such
requirements.

The decision to divide the environment into three
different interfaces (User and Graphics, Design Data,
and System and Services) was based on the nature
of cAD systems and the characteristics of the com-
puting environments. Graphics devices, a mandatory
item for CAD systems, are somewhat independent of
the operating system and the data organization, but
they are very closely related to the users. In the same
way, data organization can be treated independently
of operating system tasks.

Each of the interfaces is described below, with the
Design Data interface having a more detailed de-
scription because it is currently in a more advanced
stage of development.

User and Graphics interface. The purpose of the User
and Graphics interface is to provide a set of functions
for efficient and friendly communication with the
users. The underlying idea is that application pro-
grams should not be aware, for example, of how to
communicate with the workstation hardware, nor be
concerned whether a given input device, such as a
mouse or tablet, is available. Also, if the user has
selected a command from a pop-up menu or typed
it in a command line, it must be totally transparent
to the application program.

To perform these operations, the User and Graphics
interface contains input and output functions for
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both text and graphics, and specialized functions to
handle interactive input such as selecting commands,
with or without parameters, design objects, and areas
on the display screen.

Under control of the interface, real interactions with
the display hardware (terminals or workstations) will
be performed using the PHIGS API that provides a
vast, comprehensive, and powerful set of graphics
functions and works with many display devices.
Despite its power, this API was defined for general-
purpose graphics applications and does not exhibit
any knowledge about the objects being modeled.
GARDEN’s graphics functions are being defined at the
circuit design level, together with the necessary high-
level support for functions such as windowing, pop-
up menus, command selection, etc.

Since the application programs will not interact di-
rectly with the users, the interface provides a com-
mon environment for all applications running under
its control. This powerful feature will also simplify
the time-consuming training steps required when-
ever a new application is added to the environment,
since all applications will share a common set of
operating procedures and commands. Also, from the
tool development point of view, coding of new ap-
plications can be simplified with the experience and
code taken from existing ones.

Another feature of this interface enables users to
customize their own working environment. This
point is very important where human factors are
concerned. Studies note that it is extremely hard for
the designers of CAD systems to define the best way
to present information to users.'""? Thus, allowing
the users to customize their own working environ-
ment provides greater satisfaction with the system,
and the most evident result is the increase in pro-
ductivity that can be obtained. Users will be able to
define their preferences, and the definition will be
matched by the User and Graphics interface at exe-
cution time. Also, users will be able to dynamically
modify their working environment.

Customizing the environment includes graphics and
command selection aspects and allows the user to
select the national language that the entire environ-
ment will use (if all of the required tools provide
support for it). National language support is another
very important human factor that needs to be con-
sidered, and it goes beyond having a language to
communicate with the users. GARDEN is being de-
signed to provide national language support func-
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tions for tools and environment commands (at the
user level), for displaying proper national-language-

The User and Graphics interface
incorporates the window and task
management functions of GARDEN.

dependent characters on the workstation screen, and
for all types of messages generated by either the
system or application programs.

The User and Graphics interface also incorporates
the window and task management functions of
GARDEN. It provides support for multiple simulta-
neously active tools, each one being assigned to one
or more application windows. The design of GARDEN
also allows multiple instances of the same applica-
tion to share execution code, if the tool developer
has complied with the basic structure for an appli-
cation to run under the GARDEN environment. Mul-
titasking is also possible under operating systems
that incorporate such a facility. Some form of “sim-
ulated” multitasking capability is being provided for
operating systems, such as vM/cMs, that do not sup-
port it, with the applicable restrictions.

System and Services interface. As far as operating
system independence is concerned, the System and
Services interface is the key one in the GARDEN
environment. The main goal of this interface is to
provide an efficient insulation layer around the op-
erating system functions and services and yet achieve
a great level of portability across a given set of
operating systems. Another important aspect of this
interface is that it is responsible for supporting ap-
plication programs (tools) and the two other inter-
faces.

The difficulty regarding the specification of this type
of interface is related to the fact that it is an extremely
complex task to define what functions and services
the tools and the other interfaces will require. Also,
once such a set of requirements is known, care must
be taken to ensure that it can be efficiently imple-
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mented on all of the target operating systems, either
directly or indirectly. In the same way, consideration
must be given for some operating systems that may
have unique requirements. The design of the inter-
face must clearly identify such situations and provide
an implementation that does not interfere with the
behavior of the environment under different oper-
ating systems.

An efficient method with which to attack the above-
mentioned problems is to organize the requirements
into groups of functions, according to some well-
defined criteria, addressing both the similarity of the
functions and the implementation steps. Under this
approach, the interface presents a group of common
operating-system functions such as date, time,
elapsed or virtual time, user clocks, etc. Aithough
most implementations of high-level programming
languages provide these functions, a common bind-
ing across systems and languages is necessary to
ensure portability.

The interface also includes an efficient set of disk 1/0
routines. These functions do exist in high-level pro-
gramming languages, but they may not have the
same behavior under different operating systems.
The first and most obvious reason is the different
file-naming conventions adopted by various operat-
ing systems. Also, some file systems may not imple-
ment all of the file formats that are present in other
systems. The main goal of such routines is to provide
a single way to perform disk 1/0 functions, insulating
tools from system-dependent mechanisms and con-
ventions,

Another important reason for having disk 1/0 func-
tions is performance. Some compilers, to be com-
patible across operating systems, use /O simulation
routines that are available on some operating sys-
tems. Although they can provide source code com-
patibility, the simulated 1/0 routines are not as effi-
cient as using native services. The disk 1/0 functions
of GARDEN are coded with the use of native services
from the operating system, requiring, in some cases,
the use of assembler code. It should be noted that
the kind of disk 1/0 routines that will be supported
by the GARDEN environment is very simple (sequen-
tial access on a logical record basis), as most of the
storage and retrieval of information will be directly
provided by the Design Data interface.

Changes and enhancements applied to the environ-
ment must not disturb application programs. To
handle this situation, the GARDEN environment will
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be insulated from tools. Such changes will require
only the affected interface modules to be recompiled
and the new environment to be link-edited with the
application programs at run time. Dynamic loading
of executable modules, provided by some operating
systems, can further improve this mechanism. If
available, the functions for dynamic loading and
unloading of tools are provided by the System and
Services interface.

Also, this insulation, combined with the dynamic
loading, permits the environment code to be shared
among several users by having a single image of the
code in memory. Such an approach may also be
extended to frequently used tools, improving the
overall performance of the system.

An important characteristic of interactive environ-
ments is the existence of a high-level interpreted
language. The GARDEN environment incorporates an
interface to a high-level language—~RExx—allowing
users to define their own set of macros and com-
mands. Also, all of the steps for customizing the
environment are performed using prologue and epi-
logue macros. Through this high-level language,
users are able to issue commands to the interface
and tools, allowing fast development of extensions
to existing applications, thus making the system
more usable and user friendly.

To enable all tools and the environment to com-
municate through a common set of commands, it is
necessary to have an efficient command-parsing rou-
tine and a well-defined method for passing com-
mands to the tools. It is accomplished by a combi-
nation of the User and Graphics and the System and
Services interfaces. The user will select a command,
using any of the available input methods, and the
User and Graphics interface passes it to the System
and Services interface.

The command is then parsed and dispatched for
execution. A command may be directed to any of
the interfaces or tools, and a given command can be
executed by more than one application or interface.
The command parser and dispatcher are defined to
enable each tool to identify its commands and how
they are executed.

The System and Services interface also includes func-
tions such as hard-copy support for both printers
and plotters, operating system message-handling, the
triggering of specific actions based on another action,
etc. The list of possible functions presented here is
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not exhaustive, and it will grow to accommodate
requirements from tools and operating systems, in-
cluding a well-defined and organized set of efficient
functions.

Design Data interface. The last and, from the
ULSI/VLSI point of view, most important interface, is
the one that handles circuit design data. It is com-
mon to incorporate a DBMS into VLSI CAD systems,
but it presents problems that were already men-

A design can be viewed at different
levels of a definition hierarchy.

tioned. The Design Data interface of GARDEN is
being developed for portability and provides func-
tions that operate with integrated circuit design en-
tities. The main strategy of this interface is to create
a well-defined method for multiwrite access to design
data information, addressing points such as design
management, design methodology, and design con-
sistency.

Nowadays, the organizational aspects of integrated
circuit design data have become very complex and
have recently been the object of several research
works.”™"® The control of design objects must take
into consideration both their dynamic and structural
natures.””°

A design can be viewed at different levels of a defi-
nition hierarchy such as register transfer, logic, tran-
sistor, layout, etc. Also, it is necessary to correlate
the different descriptions of the design for manage-
ment purposes and to ensure that what is sent to
manufacturing satisfies the functional specifications.

Another important point is that integrated circuit
designs are usually described using a composition
hierarchy. A hierarchical description is generally
used to reduce the overall complexity of circuit
design and provides several useful features to design-
ers and tools. However, it increases the complexity
of the design description by introducing extra struc-
tures in the data model.
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The definition and composition hierarchies can be
combined in a mixed-mode hierarchical model.
Thus, a design can be described as a composition of
other designs, each of which is not necessarily de-
scribed at the same definition level. For example, a
microprocessor may have its data path defined at the
register transfer level, whereas its arithmetic logic
unit (ALU) is defined at the transistor level and the
control logic at gate level. This form of representa-
tion is becoming widely used, especially for simula-
tion purposes.?!-2

The last point that needs to be considered in mod-
eling integrated circuit design data is the temporal
dynamicity of the objects. The entire description of
a mixed-mode hierarchical design must be main-
tained across time. This approach provides design
version control, allows different design alternatives,
and ensures the traceability of design errors.

It is necessary to introduce some control mechanism
on top of the design model to allow the prescription
of the design steps that lead to a complete and correct
design. These design methodologies are usually de-
scribed as the sequence of synthesis and analysis
tools that must be used to ensure that the circuit will
operate properly after being manufactured.

The GARDEN Design Data interface is being devel-
oped to address all of the previously mentioned
problems. It includes a sophisticated mixed-mode
hierarchical data model that captures the temporal
evolution of its objects. Instead of enforcing a partic-
ular design methodology, the interface includes
mechanisms for applications or users to specify the
steps to be followed, along with how to control the
consistency of a design among its several represen-
tations at different definition levels.

The interface also includes other important features
such as support for design documentation and the
insulation of design data aspects that are particular
to a set of tools. For design documentation, the idea
is to support different strategies. The data model
treats documentation as an object that can optionally
be attached to other objects, but the definition of
how the design will be documented is under the
control of the design methodology.

Design Data organization—The GARDEN Design Data
interface provides a data organization structure that
is geared toward the control of the elements involved
in the design of integrated circuits. This organization
allows the representation of various definition levels
and the development of design alternatives.
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The universe of design data in GARDEN is named a
repository, and it is organized into a set of design
libraries and a set of processes. Each library consists
of a set of designs and has a process associated with
it (information related to design, verification, and
manufacturing). Also, a library may include other
libraries, from which designs can be referenced.

This arrangement allows designs to be hierarchically
composed using pieces (other designs) from different
libraries. Such flexibility imposes the need for control
functions to provide the minimum degree of integ-
rity that is mandatory in a complex design system.
A library may include other libraries only if the
process associated with each of the libraries allows
it. Besides, a complex hierarchical library structure
requires a sophisticated integrity mechanism to en-
sure that an invalid design will never be created,
either directly or indirectly. Cross-library references
are kept with a back reference that permits the
creation of an efficient integrity control, as presented
in Figure 2.

A design is a very complex object composed of
several other smaller, but not yet simple, objects.
Conceptually, a design is an entity that can perform
a given electrical function and presents an invariant
interface to the external world (external view). This
interface is based on the type and number of external
ports that are available in the design.

The internal representation of a design may change,
giving rise to the definition of design variations: a
design may have several different implementations.
Each variation is associated with characteristics such
as power, speed, area, etc. For example, the design
of a 32-bit ALU can exhibit a low-power variation
and a high-speed variation. Although they are totally
different electrical circuits, these variations perform
the same function and share the same external ap-
pearance (interface).

Furthermore, a variation presents different views,
resulting from several definition levels that can be
used to describe an integrated circuit. The views of
a variation are arranged into three groups: the Lay-
out group, the Hardware Description Language
group, and the Mixed-Mode Hierarchical Descrip-
tion (MMHD) group (Figure 3).

The Layout View group consists of the different
layouts of a variation, such as stick diagrams or
mask-level information. For design integrity reasons,
a variation can have only a single mask-level view.
Layout views can be hierarchically formed by the
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Figure 2 The cross-library reference mechanism
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combination of primitive geometrical information
with other information obtained by referencing lay-
out views from a variation of other designs. Also,
the electrical descriptions generated by circuit ex-
traction tools are kept in this group, as extracted
views, with a pointer to the source layout view.

Different Hardware Description Languages (HDL)
can be used to define a view on a source code file
basis, without any consideration of their syntax.
Such an approach frees the Design Data interface
from having detailed knowledge of existing hardware
description languages such as EDIF, VHDL, etc. When-
ever necessary, application programs can be written
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to compile these descriptions, named HDL source
views, and the resulting object code file can be stored
as an HDL object view.

HDL views and extracted views can be used for the
definition of more complex designs: the Mixed-
Mode Hierarchical Description. These views are hi-
erarchically defined using references to views belong-
ing to variations of other designs. The instances of
these referenced views present instances of their ex-
ternal ports, which are defined at the design level of
the referenced view. Port instances are connected
through nets to other port instances or to the ports
of the view being designed.
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Temporal organization—The data organization aspects
described previously do not provide any knowledge
of the temporal dynamicity of the designs. Such
behavior is captured by the interface at the view level
and is expressed by the introduction of two time-
dependent concepts: the modification and the jtera-
tion. These concepts can be depicted as a tree-like
structure, as presented in Figure 4, where each node
represents a state (version) of the view and, com-
bined with all other organizational aspects, defines
the design management mechanism that is built into
GARDEN.

Iterations can be defined, using database terminol-
ogy, as successive “commits” of a view. Modifica-
tions are created by the designer whenever a different

design strategy is necessary. Thus, a new branch is
created for every modification, and each node rep-
resents an iteration.

The concepts of modification and iteration (MI),
shown in Figure 4, are applied to the objects that
exist under a view. To operate in either read or write
mode, the view has to be opened at a particular Mi
(state). In write mode, when a view is closed, either
a new iteration or modification is created. A modi-
fication is created if the next iteration of that partic-
ular modification already exists, or by explicit re-
quest of the application program.

The implementation details of how the interface and
the underlying DBMS store the Mi-controlled objects

Figure 3 The different view types of a design’s variation
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Figure 4 The tree-like structure of an Mi-controlled view

are totally hidden from the tools. Once a view is
opened at a given state, its components (which de-
pend on the view type) can be retrieved indepen-
dently of the temporal organization. Depending on
the complexity of the objects, they will be stored
using negative delta files (the latest version always
exists) or by storing the creation M1 and the deletion
MI together with the object. (Note that it is possible
to have more than one deletion Mm1.)

The Mi-based control cannot be used for objects that
are not placed under a view (for example, the ports
of a design). To allow these objects to evolve and yet
account for their temporal dynamicity, the interface
associates different versions of these objects with a
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time stamp (Ts). Thus, each of these objects is then
viewed as a more complex object that consists of a
sequence of time-stamped objects.

The interface retrieves these objects at their latest
version, but application programs can also retrieve a
particular version of a time-stamp-controlled object.
Retrieval is accomplished by providing the interface
with a time instant, and the version that was current
at the specified time is then retrieved. The time for
the retrieval operation can also be changed by open-
ing a view at a particular M1. Whenever this occurs,
all of the time-stamped objects are, by default, re-
trieved using the time information that is associated
with the specified mi.

This form of organization also provides the necessary
structure for allowing multiwrite access to the design
data. Whenever an application program opens an
object in write mode, all of the objects that are
defined below it are also automatically locked. Such
a locking mechanism is valid from the iteration level
up to the design level. Libraries and processes are
treated independently of the designs since their in-
formation does not directly affect the description of
the designs.

Design Data consistency—The Design Data interface
does not possess detailed understanding of the se-
mantical contents of each view. Hence, the interface
does not include the consistency mechanisms that
require such knowledge. This is not a limitation of
the interface, but, rather, it is a feature that enables
the GARDEN environment not to enforce a particular
design methodology or the use of a specific hardware
description language.

Instead of having built-in mechanisms to control the
consistency of the designs, the interface provides the
means for the development of application programs
to perform such tasks, based on a particular design
methodology and on the use of certain hardware
description languages. This approach allows the def-
inition of different design environments and is ca-
pable of dealing with different or new hardware
definition languages and design methodologies.

The definition of built-in consistency checks may
also be complicated if a design contains several var-
iations that are further organized into views which
are, in turn, controlled using modifications and it-
erations. A consistency mechanism to comply with
all of these possibilities will certainly impose many
restrictions.
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The idea is to provide a very flexible model for the
design data, without disregarding the consistency
aspects. Therefore, the interface allows a view, at a
given MI, to be correlated with other views (the M1 of
each view being correlated does not necessarily need
to be the same). This mechanism can be used by
application programs to group together view states
that are consistent among them. This information
can then be used by other application programs to
ensure that the design satisfies the requirements of a
particular design methodology.

This grouping operation can be performed at the
view level, at the variation level, or at the design
level. Such mechanisms, combined with the appro-
priate application programs and the ability of the
GARDEN environment to trigger specific actions, per-
mit a precise definition of design methodologies that
include, as a consequence, the necessary consistency
checks.

Design traceability—Another feature of the Design
Data interface of GARDEN is the provision for hand-
ling the input and output files of design verification
and analysis operations. These files are stored in
association with the view state to which they corre-
spond, allowing the entire design process to be traced
backwards in time. A design verification or analysis
operation corresponds to an object that contains
references to the input files, the view state that was
used, the output files, and the identification of the
tool. To provide flexibility and control, each view
has its own set of verification and analysis operations.

A single input file can be used by more than one
operation, but the output ones are specific to a
particular operation. Output files are grouped into
output data sets that are also placed under view.
Since an input file can be used in more than one
operation, input data sets are also available under
design and variation. Another characteristic of the
input files is their temporal dynamicity. As with
other design objects, they are maintained using time
stamps but without being associated with a particular
view state.

Some tools use the output of other tools as one of
their inputs. To accommodate this situation, an
input file can be initially defined as a reference to an
output file. Also, existing input files can be used as
the base for new ones. This use allows the definition
of general-purpose input files at the design or varia-
tion levels, and these files can be further modified
for use at the view level.
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Design documentation—The capapbility of tracing de-
sign and operations data backward in time is not the
only aspect in GARDEN related to the documentation
of the design process. It is often desirable to store
textual documents together with the design objects.
Textual design documentation can be any form of
human-readable information, such as a brief descrip-
tion, memos, or even complex documents that are
the input for text-processing programs.

The problem associated with having textual docu-
ments in the data model is where to place them. A
particular design methodology may specify that all
documentation must be placed at the design level,
at the same time that another methodology states
that it is to be kept at the view level. The solution
adopted in GARDEN is to place a documentation
object, named written information, at all places
where it may be necessary. Thus, objects such as
libraries, processes, designs, variations, views, oper-
ation data, etc. can all have documentation associ-
ated with them, allowing the design methodology to
define whatever documentation strategy may be re-
quired.

The interface does not account for modifications
applied to simple textual documentation such as
descriptions or memos. Whenever they are modified,
the new value will replace the existing one. Con-
versely, the interface treats more complex textual
documentation objects by using the time-stamp
mechanism, and the retrieval procedure is the same
as for other objects (except input files).

Private and public repositories. The use of the Design
Data interface of GARDEN, with all of the features
described in this paper, can result in complex and
enormous data repositories. To minimize this prob-
lem, the interface is being developed to support two
types of repositories: the public repository and the
private logical repository. The public repository is
unique, but each user can have a private logical
repository. The private repository includes logical in
its name because it does not contain private copies
of the objects. Instead, only the updates are stored
in the private repository. The resulting object is the
combination of the data from the public repository
with what exists in the private one.

Whenever a design object is opened in write mode,
it is logically transferred to the user’s private reposi-
tory. The object can then be closed and opened again
as many times as necessary before the real close
transfers it back to the public repository. The public
repository treats the object as being locked until it is
transferred back from the private logical one.
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This locking scheme does not present the usual
burden of the checkout process that exists on con-
ventional database systems, where a lock can stay
forever. Although this situation holds true for some
objects in GARDEN, most of the time the object being

The locking scheme does not
present the usual burden of the
checkout process that exists on
conventional database systems.

locked will be a state of a view, More than one user
is capable of opening a view state in write mode if
the migrations from the private logical repositories
are performed sequentially. The first user will, when-
ever possible, create a new iteration of the same
modification, The next transfer operation will nec-
essarily create new modifications.

While a view state is in the private logical repository,
its iterations and modifications are visible only to
the owner of the private repository. The user (or the
application program) may decide to treat all itera-
tions as being just one. Hence, only the last iteration
is transferred back to the public repository. This
operation is carried out to provide the same result
as a simple open—close that does not use a private
repository.

For other data objects, only one user can have write
access to them, since modifications applied to these
objects can affect other objects in the repository.
This s true for objects such as designs and variations
that are composed by other complex objects. In these
situations, an object may stay locked forever, as in
some conventional database systems. The interface
provides functions to determine the ownership of an
object lock and privileged commands to cancel it.
For these objects, the interface also allows the elim-
ination of intermediate changes, just as for the view
states.

Such compression mechanisms reduce the amount
of data that are kept in the real repository, since
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some intermediate alterations can be automatically
disregarded. Because this process may be used for
any design object in GARDEN, the overall result is a
reduction in the size and complexity of the real
repository. It is also important to mention that the
Design Data interface incorporates privileged func-
tions for repository maintenance, such as placing
part of the data off line (on tape for example), as an
alternative to reducing the storage requirements.

Applications. As mentioned previously, several fea-
tures of the GARDEN environment rely on the devel-
opment of application programs or tools. GARDEN
applications are much more than just tools such as
graphical editors, simulators, checkers, etc. An ap-
plication can be virtually any computer program
that interacts with the user to perform some action
on the design data.

The interfaces provide only the framework for the
development of a ULSI/VLSI design system that can
be adapted to a particular design environment using
specific application programs. Among all of the ap-
plications that can be developed for this purpose, it
is important to mention those that are necessary to
enforce a particular design methodology or to ensure
consistency of the design according to given criteria.

However, GARDEN is not just its interfaces and some
application programs for customizing the environ-
ment. Design tools are, by far, the most important
application programs that can be developed. One of
the main ideas behind GARDEN is to support the
development of efficient and reliable design tools,
leaving considerations about the computing environ-
ment for the interfaces.

Therefore, the GARDEN project will include the de-
velopment of design tools such as graphical editors,
simulators, timing analyzers, etc. Also, the Design
Data interface is being defined to provide support
for other levels of electrical circuit design such as
integrated-circuit packaging, boards, etc. These fea-
tures, and the mixed-mode hierarchical representa-
tion will allow tools to combine, in the same design,
circuits defined at different design levels. Another
important concern of the GARDEN project is to use a
formal methodology for the specification and devel-
opment of both the interfaces and application pro-
grams,

The GARDEN software development process

Providing all of the previously described functions
in a single integrated and evolving environment is
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not a simple task. To achieve its goals the GARDEN
CAD environment is being developed by using sofi-
ware engineering techniques. This approach is nec-
essary to help ensure the operation of the system and
to ease coding steps, because conceptual errors are
being identified and corrected during specification
steps. GARDEN is intended to be a long-term project
as far as development and support are concerned,
and it is being performed according to the Vienna
Development Methodology (vDM).

As with any specification technique based on models,
formal or not, vDM relies on the definition of explicit
models of the system under specification, using either
abstract or concrete concepts. Figure 5 presents the
overall development process of vbDM. The complex
mathematical foundations of vbDM are beyond the
scope of this work.”?’ However, this methodology
can be briefly summarized by the following list of
actions:

s Definition of states and semantic domains

s Construction of invariants for the semantic do-
mains

s Definition of abstract syntax and syntactic do-
mains

s Construction of well-formedness constraints for
the syntactic objects

s Specification of operations and functions for the
system under definition

The first two items of the list define the model of the
system. The remaining ones characterize the inter-
actions that can occur with the model. The last point
of the methodology is that operations and functions
can be described either in an applicative style (func-
tional languages) or in an imperative style (proce-
dural languages). The implementation steps are per-
formed using successive refinements of the definition
of functions and operations.

In order to describe vDM concepts, some objects of
the GARDEN CAD environment will be used. Note
that the description given in this work is not the
entire specification of the GARDEN CAD system, but
Just a small subset to enable a concise description of
the approach used.

States and semantic domains. States and semantic
domains are defined from well-known mathematical
objects.26 The semantical understanding of the
model being constructed is derived from the seman-
tics of the mathematical expressions that are used.
To build such a model, one may use mathematical
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Figure 5 The VDM process
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objects such as sets, sequences, Cartesian products,
mappings, and predefined objects.

Predefined objects are usually Boolean values, inte-
ger numbers, natural numbers, rational numbers,
denoted by B, Z, N, and Q, and sets obtained by
enumeration of atomic symbols. All the usual oper-
ations that can be applied to the above-mentioned
constructs can be freely used in the specification to
define new and more complex objects. It is common
to use operations such as union, intersection, dis-
criminated union of sets, the head or the tail of a
sequence, the range or the domain of a mapping, the
Cartesian product of domains, etc.

As an example of these constructs and operations, a
Repository, the name for the universe of all design
Libraries and Processes in GARDEN, can be repre-
sented as a Cartesian product of three mappings, one
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of Libraries, one of Processes, and another one of
Documents as shown below.

Repository :: Lib X Process X Document

To name a particular element that belongs to one of
these sets, the following expression can be used:

is-Lib(7))
is-Process(p,)

wherel=si<nAneN

GARDEN captures the temporal description of its
objects. For example, design documentation may
evolve, and it is necessary to create a structure that
captures such a mechanism. Documents in GARDEN
are expressed as sequences of time-stamped names,
time-stamped delta files, and other constructs. Using
VDM notation, this is written as:

Document :: seq of TSName X seq of TSDelta x ...

To define some structures that are more complex, it
is necessary to use more elaborate mathematical
constructs than just sets and sequences. For example,
a Library can be expressed as a mapping between
identifiers and fields. It is further defined as the
Cartesian product between a Name, a set of other
Libraries (that might be included by this one), a
Document, the Process related with this library and
a set of Designs. A bonus from using this type of
formalism is the possibility of ensuring the Identifiers
are unique.

Lib = Id — Fields1
Fields1 :: Name X Lib x Document x Process
X Design

Also Process can be defined using this technique.

Process = Id — Fields2
Fields2 :: Name x Processinfo x Document
X Process

Invariants. It is necessary to add some restrictions,
called invariant rules, to the previous definitions of
the semantic domains. These restrictions are written
using a predicate logic language, enriched with some
symbols to simplify its understanding. Typical sym-
bols that can be used are the — (negation), A (con-
junction), = (implication), and < (logical equiva-
lence).
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To the usual set of logical symbols, the let and in
tokens are added to improve the overall readability
of expressions such as:

let ;€ Lib, in ...

Thus, invariants are restrictions to the values that
objects under definition can assume, and a single
object can present more than one invariant. Also,
invariants can evolve during the specification steps
of a project. As an example of an invariant, a prop-
erty of the GARDEN Libraries can be written as:

inv-Lib £ let make-Fields1(n,, [, doc;, p;, d)
= Lib(id,) A
let make-Fields1(n, [, doc,, p;, d)
= Lib(id))
in
(id;#id, = n,#n) A
-, =) A ---

It denotes that the names within a Lib are unique
and there must exist a Process associated with a
library. The creation of invariants relies on a detailed
knowledge of the objects that are being modeled.
The specifications of these rules create a part of the
so-called proof obllgations.25

Abstract syntax and syntactic domains. A model
must be dynamic to describe the real world, and this
aspect can be carried out with a set of operations
that modifies the states. An abstract syntax allows
an understanding of the syntactic domains involved
in the operations, without considering the imple-
mentation details. Because of these facts, another
important step of vbMm that can be performed in
parallel to the definition of the states is how to
operate and modify states.

On the basis of previous examples, it is clear that it
will be necessary to provide functions to list names
of Libraries and names of Processes. Using an ab-
stract syntax, this can be denoted by:

List = List-Libraries | List-Processes | ...
List-Libraries = Name*
List-Processes = Name*

As with semantic domains, the syntactic domains
are described in a very flexible form. Hence, rules
for well-formed constraints must also be added to
the specification. These constraints express the syn-
tax properties that the operations must obey.
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As an example, the well-formed constraint for the
List-Libraries is expressed as follows:

well-form-List-Libraries(/) 2 [ =@ V V x,
(x€le xeLib)

Operations and functions. Once the syntactic and
semantic domains are defined, it is necessary to
establish what the functions and operations will per-
form. This step is normally accomplished using well-
specified high-level definition languages. In these
languages, functions and operations are expressed in
either an applicative (functional) or imperative (pro-
cedural) style. There is no preference for either style
since they both can precisely express the syntax and
semantics of the function being specified.

In the applicative style, the entire specification will
resemble, as the implementation evolves, a program
written using a functional language. For example,
the List-Libraries function is defined by:

List-Libraries(/) & if/=0
then @
else let x = (Id, Fields1) € /in
{Name.Fields1} U
List-Libraries(/ — x)

type: List-Libraries : Lib — Name*

Conversely, the imperative style implies the use of
pre and post conditions to characterize the function
under definition. Usually, these conditions are ex-
pressed as:

J: Input m Output
let o= f(i)in ¥ i ((i € Input A pre-f(i))
— (f()) A post:f(i, o))

The same function, List-Libraries, expressed previ-
ously in the applicative style, can be rewritten using
the imperative style:

List-Libraries(/) =

x = range (/)
while x # & do
let f€ x in
output(Name.f)
xut=x~f
end

type: List-Libraries : Lib — Name*

To characterize this function the following condi-
tions must be added:
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pre-List-Libraries £ is-Lib(/)

post-List-Libraries 2 let r = List-Libraries(/) in
r = Name.range(/)

As presented previously, GARDEN incorporates some
form of cross-library integrity control, based on the
characteristics of the process associated with each
Library. Each Process has a list of every other
Process considered to be compatible with it: a
Library may include another Library omly if the
Process of the included Library is compatible with
the one to include it (note that compatibility is a
unidirectional property). A library is capable of ac-
cessing other libraries as an extension of itself. This
access operation is carried out recursively until a
Library with an incompatible Process is found or
all referenced Libraries are verified. Thus, the
AccessLib function, which determines what other
libraries a given Library can access, is defined by:

AccessLibAux £ {((x,p), AccessLibAux(x,p)) |
letx = (ld, make-Fields1(n,, /, doc,,
P, d)inVyVz(yeLA
z € AccesslibAux(x,p) if
z€LV
((z € AccessLibAux(y,p)) A
((p = Process.range(z)) V
(Process.range(z) €

Process.range(p))))}

type: AccessLib : Fields1 — Lib

AccessLibAux 2 {((x,p), AccessLibAux(x,p)) |
let x = (Id, make-Fields1(n, [, doc,,
p,d)invVy VzyelLA
z € AccessLibAux(x,p) if
z€LV
((z € AccessLibAux(y,p)) A
((p = Process.range(z)) V
(Process.range(z) €
Process.range(p) )))}

type: AccessLibAux : Lib x Process — Lib

The auxiliary function AccessLibAux is necessary to
prevent an endless recursion when a Process in the
chain is not compatible with the one of the starting
Library. Thus, the Process of the starting Library is
passed as a parameter to the auxiliary function
AccessLibAux.

Another feature, present in definition languages, are
mechanisms for successive refinements, from high-
level definitions up to implementation details. This
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Figure 6 GARDEN software development graph
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process of refinement, also called reification, will development graph.’ Basically, this scheme consists
create another part of the proof obligations. of three types of graphs:

A model for software development. Applying formal o Meta-graph, applied to the development of a given

techniques in software development does not pre- class of software (e.g., operating system, CAD)
clude the use of a development life-cycle model. In e Project graph, a meta-graph which includes details
fact, it is also possible to adapt a suitable life-cycle of a given instance (e.g., operating system X, CAD
model to a more formal scheme like the software for uLsI/vLSI)
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s Configuration graph, a graph for a specific config-
uration of a given project graph (e.g., operating
system x for target machine y, operating system x
for target machine z)

Figure 6 is a summarization of the development of
the GARDEN project. The objects definitions node
corresponds to the requirements phase of the tradi-
tional life-cycle model. The other three levels in the
diagram correspond to the design phase. The last
level, implementation, corresponds to the coding
phase. The other phases, testing, use, and mainte-
nance, are not presented in the diagram.

The contractual model of software development5 is
associated with every node in the development
graph, as shown in Figure 7. The developers (sup-
pliers) and the users (customers) must interact until
a complete agreement is reached, as far as the func-
tion of each node is concerned. In this model, the
users express their requirements in natural language,
whereas the developers use mathematical notation
for the semantics of the system under definition.
This agreement is formalized into a document which
is the actual contract of that node, and is performed
for every node in the graph. For the GARDEN project
some members of the development team, which
possess expertise in vLSI design, act as users, while
the role of the supplier is performed by the remaining
members.

Figure 7 Contractual model for software development
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MATHEMATICAL
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For the developer, the node takes the form of an
extension of the ETVX model,27 applying it to the
program architecture process and to the entire proj-
ect graph. This model, presented in Figure 8, requires
that for every node of the graph the following items
are to be defined: an entry criteria, an exit criteria,
tasks to be executed, and a validation criteria. The
formal structure of vDM eases the definition of these
items.

Figure 8 The ETVX paradigm
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Concluding remarks

Currently, GARDEN’s User and Graphics and Design
Data interfaces are under specification. Simultane-
ously, parts of the System and Services interface are
being implemented (for early support to tools and
the other interfaces), while its formal specification is
being performed. Also, the first prototype versions
of CAD tools such as a timing analyzer and a
simulator are being completed.

The use of formal software development methodol-
ogies in the GARDEN project is providing an impor-
tant mechanism for the elimination of complex con-
ceptual doubts and errors during the specification
phase. Besides, the clarity and precision of the spec-
ification language make it a simple and efficient
vehicle for the dissemination of project documenta-
tion. Also, all aspects of the system are captured by
the formalism of the specification methodology.
Project management is then simplified, especially in
dealing with members that join or leave the project
team.
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