History and contributions of the IBM Scientific **Centers**

by H. G. Kolsky R. A. MacKinnon

The IBM Scientific Centers are celebrating their twentyfifth anniversary. These worldwide Centers are autonomous organizations that provide IBM with the ability to respond rapidly to the evolution of computer technology for IBM and for its scientific customers. During the past quarter century these Centers have provided technical leadership in almost every branch of computer science. Today, the 17 individual Centers continue to explore new technical areas and provide significant contributions. This paper has three parts: an introduction to the mission, scope, and history of the Centers; a description of each Center's charter, history, and accomplishments; and an extended list of selected publications for each Center.

he IBM Scientific Centers were chartered, and the first four established, in 1964 to provide IBM with the ability to respond rapidly to the scientific marketplace and to changes in technology. From the beginning the primary mode of operation has been establishing long-range contacts with leading scientific customers, understanding their problems, defining solutions, developing prototypes, and ensuring IBM's responsiveness to their needs.

The idea of having a small, entrepreneurial organization within a much larger company has appeared again and again in American industry. "Skunk works," "ad tech groups," and "back room projects" are a part of American corporate folklore. The IBM Scientific Centers were created to fill just such a role for IBM. The emphasis was and is on having an autonomous organization of highly-skilled professionals who can develop scientific solutions and applications at the leading edge of technological change. During the past quarter century there have been many individual accomplishments within the Centers that have had a large impact on IBM, not only in terms of the product line, but also in terms of upgraded scientific and technical quality for other projects within IBM, basic research, market support, and a generally enhanced relationship with scientific customers. Thus, technology transfer remains the Centers' key contribution for IBM.

The approach and initial Centers were so successful that the concept of the centers was adopted on a worldwide basis. There are now 17 operational IBM Scientific Centers. The Centers have contributed in many branches of computer science and especially in computer architecture, personal computing, numerical analysis, algorithms, data structures, operating systems, relational databases, languages, compilers, microcode, networks, artificial intelligence, and knowledge-based systems.

Contributions in science and computer applications developed by the Centers include basic physics, chemistry, mathematics, agriculture, oceanography, surface hydrology, management science, econometrics, operations research, and commercial packages. The Centers have been heavily involved in human issues, such as the medical applications of computers, speech analysis and synthesis, computer vision, and natural-language projects in Spanish, Cat-

© Copyright 1989 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

alan, Arabic, Italian, French, German, Chinese, and Japanese. On a worldwide basis there has been recurring involvement in addressing problems of national importance to dozens of countries, such as regional planning, food and oil production, pollution studies, mapping the Nile, and protecting Venice from the sea. It is also common for the Centers to have joint studies in progress with many universities and on all aspects of their work. Figure 1 illustrates some of these activities.

The original objective of the Centers was to have each one involved in the professional and academic environment of a nearby university—working with professors, involving students in projects, and con-

> It was also an objective that the Centers influence IBM's technology direction and product offerings.

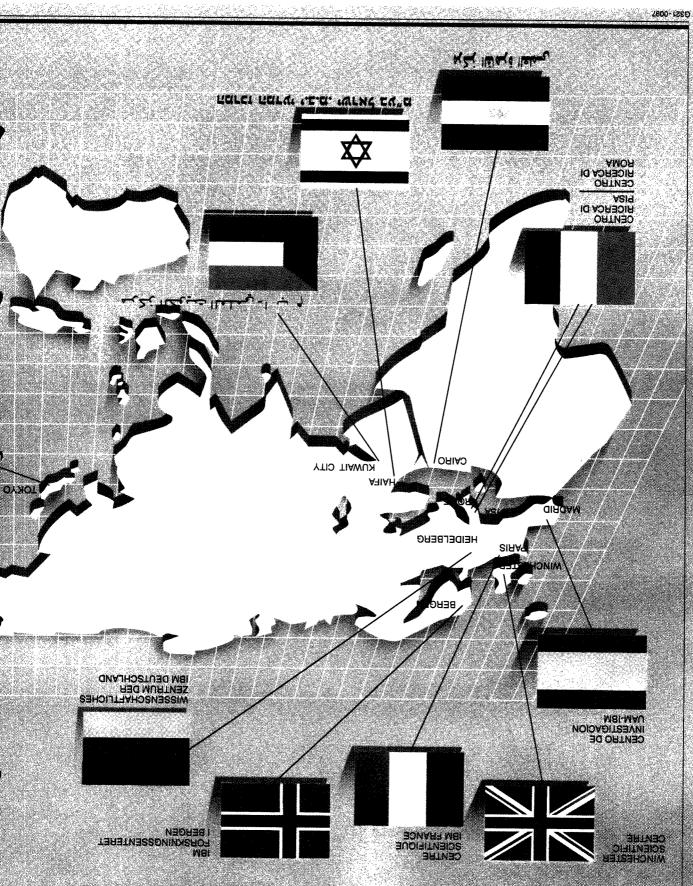
tributing to the scientific milieu of the university. In practice each Center has also operated on a national and international basis, participating in projects with governments and remote partners. It was also an objective that the Centers influence IBM's technology direction and product offerings. Both objectives have been consistently achieved over the history of the Centers.

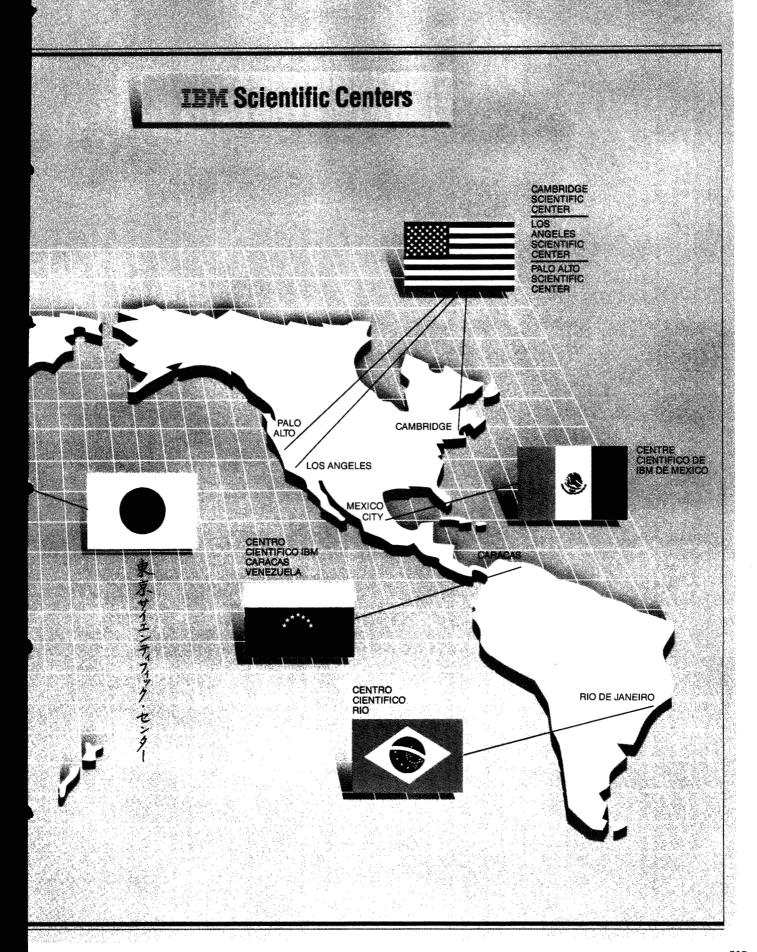
United States Centers

When the first IBM Scientific Centers were founded 25 years ago in the United States, they were built on already firmly established traditions. The IBM Research Division was well-established, as were several large product development laboratories. The Applied Science Department in New York City under Cuthbert Hurd had been very successful in working with scientific customers during IBM's early expansion into electronic computing in the mid1950s. The key models were the joint IBM and University of California at Los Angeles (UCLA) Western Data Processing Center (WDPC), located on the UCLA campus, and a similar Center near the Massachusetts Institute of Technology (MIT), both of which had been estab-

lished in 1957. Much of the philosophy and mode of operation for the new Centers came directly from these two prototypes.

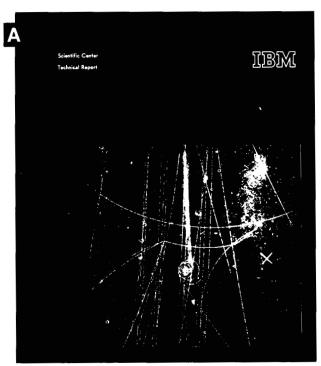
The founder of both the earlier centers and the IBM Scientific Centers was C. R. "Charlie" DeCarlo, who was on the staff of IBM senior executive Arthur K. Watson. DeCarlo, with Watson's full support, foresaw a continuing need for an IBM commitment to applied science. The result is the present international network of Centers.

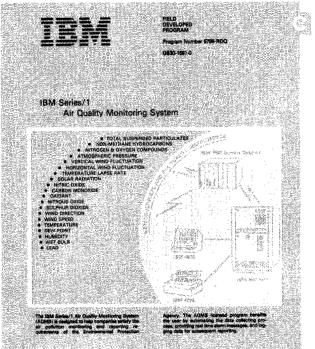

Four Centers were established in the United States in January 1964, with two more planned. The Los Angeles (California), New York City (New York), and Cambridge (Massachusetts) Centers, under the leadership of Homer H. Givin, Theodore I. Peterson, and Norman L. Rasmussen, respectively, were drawn from existing or associated groups. An entirely new Center, headed by John W. Luke, was established at the Los Gatos Laboratory in California and soon moved to Palo Alto, adjacent to Stanford University, in 1965.


After DeCarlo, Herman H. Goldstine was the first director of the new organization. The Centers have had many leaders, but it is Louis Robinson who must be given much of the credit for guiding them during the critical years from 1975 to 1982. Throughout this period he articulately and steadfastly promoted the importance of science and the Centers for IBM and its customers.

World Trade Centers

The IBM World Trade Scientific Centers had their roots in earlier organizations, as did the Centers in the United States. In 1960 a small group of scientists in Paris, headed by Rene Moreau, began projects in scientific development for IBM France. In 1965 a small group of scientists from IBM Italy started working at the University of Pisa. However, it was not until 1967, when the IBM Grenoble Scientific Center opened, that Centers based on the model used in the United States made their appearance.


From 1967 to 1972, twelve new Centers were opened around the world. Around 1980, six more were established, and several earlier ones merged with others and were closed. A number of organizations were also derived from the Centers, such as an IBM-sponsored center at the Asian Institute of Technology in Thailand; the European Center for Scientific and Engineering Computing at the IBM Rome Sci-



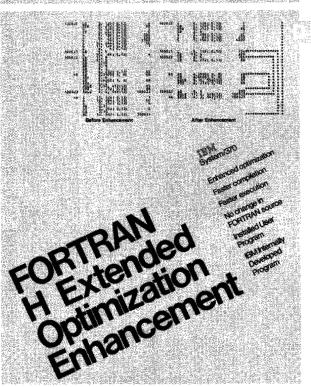

KOLSKY AND MACKINNON 505

Figure 1 (A) An original report cover featuring a bubble chamber photograph, emphasizing physics; (B) a report cover from today; (C) announcements of a field-developed program, and (D) an installed user program. The Scientific Centers have generated many such programs.

entific Center in Italy; the Numerically Intensive Computation centers in the United States, Europe, and Japan; and the European Networking Center in West Germany. While they are different organizations, they carry on the same traditions of scientific exploration and service to IBM and its customers.

Contributions

Some further major contributions of the Centers include the virtual machine operating system concept which became Virtual Machine/370 (VM/370), VNET and BITNET, the vector and parallel FORTRAN compilers for the IBM 3090, A Programming Language (APL) and related products, the first IBM Personal Computer (PC) prototype (SCAMP), the Expert Systems Environment (ESE), and the Advanced Interactive Executive/370 (AIX/370) distributed operating system. Two other significant projects are the numerical enhancement of satellite photographs (Figures 2 and 3) and the restoration of famous

Figure 2 LANDSAT image of San Francisco Bay area

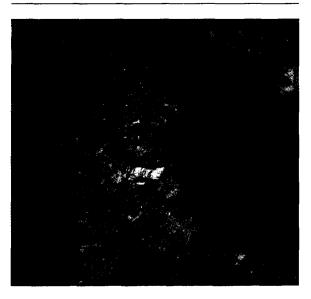


Figure 3 Image of volcano dust cloud, Mt.St.Helens eruption, May 18, 1980. Produced from satellite data at the Palo Alto Scientific Center.

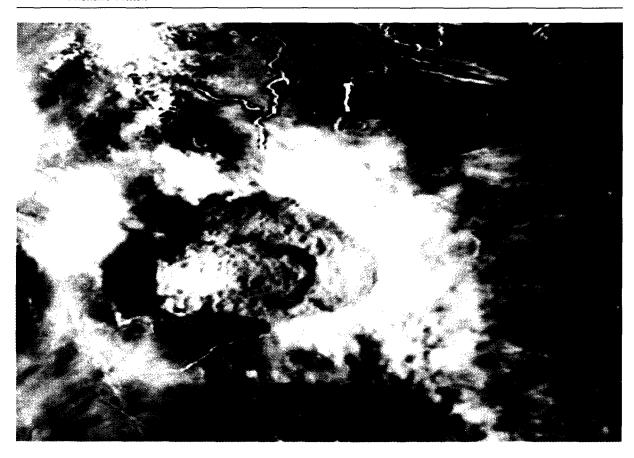
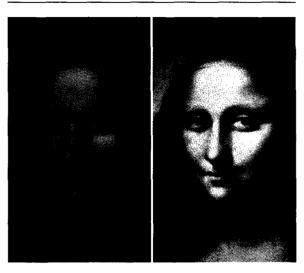
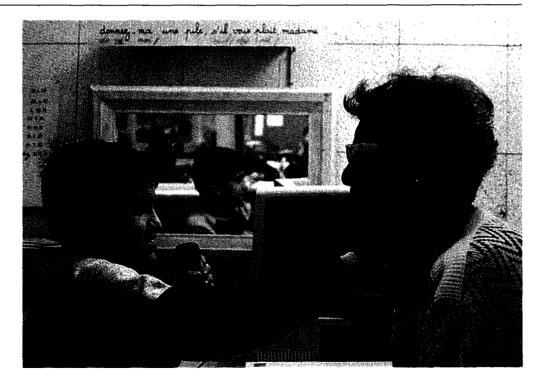



Figure 4 Mona Lisa studied by modern image processing techniques at the Palo Alto Scientific Center.


paintings (Figure 4). The Centers have also contributed to solutions for environmental and social problems of their host countries. One example is a computer aid that helps deaf children to speak (Figure 5).

We call special attention to the Hacienda project as an excellent example of cross-center activity and support involving many Centers. The project basis was development, starting in 1978, of an experimental interactive, high-resolution color display and associated software. It led the way for IBM in image processing and resulted in the IBM 7350 Image Processing System, which is still widely used around the world.

Scientific and technical work on the leading edge of change has always been problematical and high risk. The original and continuing mission of the Centers addresses this situation squarely, not only in the choice of problems to be addressed but in an understanding of the special environment within which these problems are best solved. The Centers have been successful in undertaking this work and in transferring technology throughout IBM—frequently into IBM products.

During this first quarter century, there have been over 600 individuals at 26 IBM Scientific Centers worldwide who have been members of the scientific and support staffs. At the same time a greater number of students, temporary assignees, visiting scien-

Figure 5 Deaf child working with a therapist and an IBM Personal Computer. Speech training system developed at the Paris Scientific Center. (From the IBM 1985 Annual Report.)

tists, and joint study partners have also participated. It is clearly impossible for us to properly recognize the work of all these dedicated individuals in this paper. The following section gives a brief statement of the major accomplishments and areas of research and development addressed by the dedicated and diverse groups at each Center. Finally, we include a list of selected publications from each of the Centers. The authors acknowledge their considerable debt to all who contributed to these descriptions and particularly to the Center managers who so willingly contributed materials at our request.

The IBM Scientific Centers can be justifiably proud of their record of a quarter century of service to IBM's customers on a wide range of scientific and technical projects. Perhaps more important than the story of the individual Centers has been their common mission, which allowed them relative freedom within IBM to explore new technical areas, take a broad view of research and applications in science and technology, and make significant contributions in areas of growing importance today.

Major accomplishments and projects

Current IBM Scientific Centers

Bergen, Norway (Established 1986)

In 1986 the newest Center was formed, the IBM Bergen Scientific Center. Its focus has been on project areas of importance to Norway, such as information technology, offshore technology, biotechnology, and fish farming. The resulting technical areas under study are vector multiprocessing, parallel processing for the IBM Advanced Interactive Executive™ (AIX™), workstations, mapping, technical documentation, visualization, and animation. In July 1989 the Center obtained the international mission for environmental sciences within IBM. The Center will be the focal point in IBM for environmental modeling.

Cairo, Egypt (Established 1983)

The IBM Cairo Scientific Center was formed through an agreement with the Egyptian Academy of Scientific Research and Technology and began its work in 1983. The initial projects were directed toward environmental studies with various governmental institutions. These projects included modeling the development of Egypt's "new lands," liquid natural gas spills in the Suez Canal, and employment in Egypt. Two new areas emerged over time: Arabic related research such as natural-language processing and signal processing and pattern recognition, as well as aid for the rehabilitation of people with visual and auditory disabilities. Part of the work on natural-language processing is the subject of a paper in this

25 YEARS Cambridge, Massachusetts (Established 1964)

The IBM Cambridge Scientific Center (CSC) was founded in 1964 as one of the first four Centers. It evolved from a joint project with the Massachusetts Institute of Technology (MIT), which had produced the Compatible Timesharing System (CTSS) for the IBM 7094. From its start and continuing through today, the CSC has focused on machine architecture, interactive computing, programming languages, networking, and system performance. The major contributions of the Center are summarized below.

Virtual Machine/370 (VM/370): The most widely used System/370 operating system, which grew out of the 1968 development of the Control Program 67/Cambridge Monitor System (CP-67/CMS). VM/370 became a product in 1972. After that announcement, further advanced technological contributions were made in the following areas. Multiprocessor support was added, and major performance and scheduling functions were supplied via the Fair-Share Scheduler, both in 1976. That scheduler quickly became the standard vm scheduler. In 1983 the vm Performance Planning Facility (VMPPF) was added for predicting workload under various system configurations. Between 1979 and 1981, VM was enhanced to allow the Multiple Virtual Storage (MVS) operating system to run under VM as a "preferred guest." This work has been carried on in the Processor Resource/Systems ManagerTM (PR/SMTM) on the IBM 3090.

Remote Spooling Communications Subsystem (RSCS): A peer-to-peer, store-and-forward network protocol, built using virtual machine principles. It is the major network facility used by IBM for internal communications, connecting over 3400 network computers, and is known informally as VNET.

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989 KOLSKY AND MACKINNON 509

BITNET: A major university computer network, built using RSCS protocols. It has 441 institutions and 1622 nodes in the United States. Its analogues in other countries (EARN, NETNorth, and other academic networks in the Far East and South America) add an estimated 686 institutions and 1036 nodes.

Yale ASCII terminal system: A collaboration with Yale University to permit full duplex ASCII capability for the System/370 through a Series/1 front end, without changes to host programming. The IBM 7171 and then the IBM 4994 replaced the Series/1 and extended this protocol conversion function.

IBM Personal Computer (PC): A series of projects that resulted in Asynchronous Communication Support, IBM 3101 Emulation Support, PC/370 introduced on the PC/XT, PC/IX, and keyboard standards.

Unattended computer operations: An effort to provide remote and unattended distributed operation for midsize computers. The technologies developed appeared in the IBM 4300, 9370, and Application System/400[™] (AS/400[™]).

Operating systems: Early work on UNIX® implementations for IBM systems including the first VM product, Virtual Machine/Interactive eXecutive (VM/IX).

X-Windows: Two projects to make the X-Window System from the Massachusetts Institute of Technology (MIT) available on VM and MVS.

Text processing: A long-standing involvement in text handling has resulted in products such as SCRIPT, which was the precursor for the later Document Composition Facility (DCF), IBM Usability Aid (QPRINT) for the IBM 6670, and Math Formulator for the IBM PC.

Cambridge Control Unit (CCU) and Continuously Executing Channel Interface (CETI): Two efforts that enhanced the ability to connect IBM System/370 computers directly onto high-speed local area networks.

POLITE: An early effort on WYSIWYG ("What you see is what you get") text systems for the System/370 and IBM PC, which influenced the IBM Display-Write/370. This text product pioneered the concept of "UNDO" and "REDO" for backtracking.

Caracas, Venezuela (Established 1983)

In 1983 the IBM Caracas Scientific Center opened its doors, with a focus on remote sensing and image processing. Now the emphasis is on three areas of scientific study: astrophysics and computational chemistry, algorithms and data structures, and software engineering. The first has resulted in new information about electron impact excitation and radiative atomic data. The second has seen improved time and space efficiency for generalized binary search trees, the transforming of multiway trees into practical external data structures, and new methods for collision resolution in hashing algorithms. The third has added a new in situ distributive sorting algorithm—EXTQUICK—to the tools available to the software engineer, and currently focuses on programming environments.

Haifa, Israel (Established 1972)

Projects of special interest to the planning, medical, and agricultural concerns of Israel have been the major theme in the work of the IBM Haifa Scientific Center, established in 1972. The positive effect of this work is reflected in the progress cited below. Present advanced technology work is focused on image processing for archival applications, scheduling and routing problems, and natural-language processing in Hebrew.

Regional planning: Efforts have contributed to regional rural development through a computer-aided modeling and planning system based on mathematical models and linear optimization. This work has been used by Rehovot, Israel (for whom it was originally developed), Spain, and Costa Rica.

Medical applications: Projects have made noticeable progress on improved diagnostic capabilities for ultrasound testing using signal and image processing techniques, estimating cardiac output and gas content of blood, specialized interactive systems for diagnosis of endocrine disorders, and the further use of signal processing to appreciably decrease background noise (the "cocktail party" noise problem) in assisting the hearing impaired.

Agriculture: Contributions are most notable in the development of an interactive system for constructing irrigation time tables. This system is now used throughout the country and has an important role in the efficiency of agricultural production in their arid lands.

Mathematics: Theoretical and practical applications of numerical analysis to problems arising in mathematical physics and engineering, such as stiff differential equations and partial differential equations with complex boundary conditions.

Heidelberg, Federal Republic of Germany (Established 1968)

When the IBM Heidelberg Scientific Center (HDSC) first opened in 1968, its projects concerned the physics of bubble chambers and scintigraphic photo analysis. Now the areas of interest are more closely aligned with data processing: natural-language capabilities, knowledge-based querying, relational data models, visual languages for end users, additions to A Programming Language (APL) products, numerically intensive computing (NIC), and immunological information processing for transplant surgery. Each of these subjects is detailed below. HDSC is also part of the European Research Initiative EUREKA.

Natural languages: An early project to permit limited natural-language interaction for database queries, with support for many western languages.

LEX: A project within the Institute for Knowledge Based Systems, that is part of HDSC. It is a German language query system for information on the law.

Advanced Information Management Prototype (AIM-P): A project to add an extended Non First Normal Form (NF²) to the relational data model in IBM's Structured Query Language (SQL).

Extensions to Query-By-Example (QBE): A long-standing developmental effort to add visual programming for end users to relational database systems. More recently, human factors investigations have led to development of a methodology for solving application problems through graphical manipulation.

APL extensions: As a result of first-hand, concentrated use of APL at the HDSC, additional capabilities were developed for APL and APL2 in support of complementary functions, interlanguage communication, and graphic presentation.

NIC applications: Projects with universities and commercial customers to use NIC for reactive flow; chemical, mechanical, and financial modeling; and simulation, in concert with the European Supercomputing Initiative.

Immunology: An effort to support immunological research in transplant surgery across 300 transplant centers worldwide, using an interactive and distributed information system.

Kuwait City, Kuwait (Established 1980)

The IBM Kuwait Scientific Center operates in cooperation with the Kuwait Institute for Scientific Research (KISR) and has been located on its grounds since opening in 1980. Areas of study at the Center are the environment, Arabic languages, and image processing, as presented below.

Environmental studies: Work has been completed on passive cooling and air pollution, and the focus is now on oil pollution and source identification. Another effort is focused on desalinization by reverse osmosis.

Arabic language processing: Projects are under way in IBM Personal Computer-based speech synthesis, speech and printed character recognition, a recent comprehensive Arabic morphological analyzer and generator, course authoring, and desktop publishing with advanced Arabic printing.

Image processing: Ongoing efforts to map Kuwait using LANDSAT 5 satellite data, to study oil distillation columns using thermal infrared imaging, to model pores in catalysts, and in numerical geophysics

25 YEARS Los Angeles, California (Established 1964)

The IBM Los Angeles Scientific Center (LASC) is one of the first four Centers founded in 1964. It had its beginning in the joint IBM and University of California at Los Angeles (UCLA) Western Data Processing Center (WDPC), a primary education facility for academic computing as well as for IBM. In the early years, projects emphasized management science, education, engineering, and science. In recent years, some of the projects still center on those areas, and new areas have been added, as described below.

Direct numerical control: Projects on remote computer control of machine tools, with software to cut metal according to customer designs.

Computer-aided instruction (CAI): A number of projects in the development and use of CAI were

sponsored, including the development of an interactive supervisor for the System/360.

Oceanography: A joint project with the Scripps Institution to resolve problems in the processing of oceanographic data.

Geophysics: Theoretical studies of earthquake structure using computer simulation and complex models of the earth.

Natural-language processing: Initially a study of applications in medical records, using new syntactic and semantic methods for natural-language information storage and retrieval. Currently, text selection and understanding are being investigated, along with machine translation among many natural languages.

Systems and end users: Projects in operations research (such as a distribution system simulator product), computer-aided design and computer-aided manufacturing (CAD/CAM), application development environments, database security, and distributed computing.

Multidimensional graphics: Joint studies with several universities on the perception of geometric objects in higher dimensions led to advances in computational geometry, displays for exploratory statistical analysis, and algorithms for air traffic and robotics control.

Engineering and scientific systems: Exploration of workstations for use by meteorologists, chemical engineers, and biologists, and for general engineering. Studies in large-scale scientific computing architecture and applications, and in a prototype parallel data store.

Robotics: Projects in vision systems for electronic parts identification and location. Studies are being conducted on artificial intelligence techniques for computer-integrated manufacturing (CIM).

Enterprise and strategic information management: Efforts in improving the effectiveness of business systems planning and integrating it more fully into corporate planning, budgeting, and decision making. A worldwide network of universities and corporations now uses some of the results.

A prototype expert system, called Business Strategy Advisor (BSA), was used by an IBM laboratory to assess competitive software products. Business modeling and a prototype expert system to help identify opportunities for information technologies in enterprises comprise the rest of the work in this area.

Visual programming: Projects to represent programs as forms, with filling-in forms as the way in which a user would see programming. This work is the subject of a paper in this issue.

Security: Studies of tools to enhance the security of IBM's internal computer network and of expert systems for computer security. A prototype system for security audits is now being tested.

Madrid, Spain (Established 1972)

The Autonomous University of Madrid is host to the IBM Madrid Scientific Center, which was chartered in 1972. Major projects at the Center are the automation of the Indies Archive, natural-language processing for Spanish and Catalan, image processing in biology, EXPO'92 visitors information system, 1992 Olympic Games commentators system, and A Programming Language (APL) interpreters.

Image and database processing: The automation of the Indies Archive project is the development and installation of an information system for the management of historical records, integrating a textual database and an archive of pictorial information. A project on image processing in biology, using an IBM PS/2® Model 80, has been carried out in cooperation with the Spanish Molecular Biology Center. Its aim has been to develop algorithms for the filtering, threedimensional reconstruction, and graphic representation of images of viral particles.

Language processing: The MENTOR (Multitarget ENglish TranslatOR) project is in support of translating IBM manuals from English to Spanish. The approach is valid for other languages, since it relies mainly on a declarative bilingual dictionary that stores most of the information relevant for translation. A lexicon for spelling verification of Spanish and a synonym dictionary have been implemented, together with a morphological analyzer and generator.

EXPO'92 and 1992 Olympic Games information systems: The development of a central information system to provide EXPO'92 visitors with relevant information regarding the fair, events, and activities that will take place in Seville, A 1992 Olympic Games commentators system will provide real time information related to the sports events and access to the Olympic Games Information Systems database to ratio and television sports commentators, using PS/2s.

APL interpreters: Extensive projects, in cooperation with IBM Japan, that have resulted in several releases of APL and APL2 interpreters for PC APL and APL2, and for IBM 5550 and JX Nihongo (Japanese) APL.

Hacienda (IBM 7350): One of the Center partners in the production of the High Level Image Processing System (HLIPS) for Hacienda.

Mexico City, Mexico (Established 1971)

In 1971 this Center was called the IBM Latin American Scientific Center; in 1973 the name was changed to the IBM Mexico Scientific Center, in keeping with its close ties to Mexican projects. Major project areas include artificial intelligence and expert systems, image processing and remote sensing, geographical information systems, statistics and applied mathematics, and database design. Of special interest is the work on geographical information systems that support decision making concerning natural resources by allowing the mixing of different kinds of mapped data, such as temperature, rainfall, and coastal dune vegetation. A number of programs have also been built for the IBM Personal Computer and Personal System/2® (PS/2) for time series analysis, satellite data processing, and database consistency checking.

25 YEARS **Palo Alto, California** (Established 1964)

Founded in 1964 as one of the first four Centers, the IBM Palo Alto Scientific Center (PASC) began its history with three major projects: laboratory automation, nuclear power research, and applied physics in materials science and atmospheric physics. Work has also focused on microcode, image processing, and FORTRAN. Other projects came from Washington in 1969 and Houston in 1974 when those Centers closed. The projects that have been significant through the years are listed below.

Large-scale computing: Areas of study have been high-energy, reactor, atmospheric, and plasma physics; geophysics; and aeronautical, chemical, and power engineering. Commercial data processing problems were also addressed. Notable contributions

were the Fast Fourier Transform algorithms for solving partial differential equations, and a number of innovative algorithms for vector and parallel machine architectures. Research has ranged from basic physical processes, through model formulation, simulation, numerical analysis, programming, and graphical display techniques to the verification of models by means of measured data.

FORTRAN: Since 1976, when a project to produce a new optimizer was initiated, FORTRAN projects have provided important contributions to performance, data striping, the influential vectorizing FORTRAN compiler for the IBM 3090 Vector Processor, and, most recently, a parallel FORTRAN compiler prototype for use with multiple IBM 3090s.

Microprogramming: Successful work on implementing large system functions using writable control store was first shown within IBM at PASC. Further projects led to the high-level language machine for A Programming Language (APL), microcode performance assists for Virtual Machine Facility/370 (VM/370) and its Conversational Monitor System (CMS), and APL microcode assists for specific models of the System/370, which became the design for the VSAPL product.

IBM Personal Computer (IBM PC) prototype: An outgrowth of work on microprogramming was SCAMP (Scientific Center APL Machine Prototype), the prototype for the IBM 5100 portable desktop computer and a model for later IBM PCs. SCAMP is now in the collection of the Smithsonian Institution.

Expert Systems Environment (ESE): A development effort that added ease-of-use and new implementation techniques to products based technically on Stanford University's EMYCIN.

Advanced Interactive Executive/370™ (AIX/370™): Efforts that built on earlier university work in distributed operating systems and resulted in the introduction of that technology to IBM.

Image processing: Since 1979 a series of image-based projects with the Hacienda (IBM 7350) and joint studies have resulted in applications such as the DIMAPS imaging system, processing of LANDSAT images, an imaging system for the IBM Personal Computer, computer analysis of the Mona Lisa, and medical imaging.

Laboratory automation: In conjunction with Stanford University and the Stanford Linear Accelerator

Center (SLAC), computers monitored high-energy physics experiments and provided immediate graphic output of the results.

Graphics Program Generator: A development effort that resulted in four products and defined new application areas in geographic information systems for public utilities, manufacturing, and process industries.

Networks and software: Programming projects involved the rework of the APL Departmental Reporting System and improvements in the note handling and cross-system communications of PROFS[™]. Early work in local area networking led to IBM's first Ethernet[™] local area network, contributed significantly to technology used in PCnet, and allowed widely dispersed people to communicate inexpensively with the PSInet computer conferencing system.

Paris, France (Established 1977)

The IBM Paris Scientific Center was chartered in 1977, but it built on a tradition of projects that began in 1960 with the IBM France Scientific Development Department. The main areas of exploration since the Center was founded have been mathematics, linguistics, image processing, and artificial intelligence, as described here.

Mathematics: Early work focused on qualitative statistics for analysis of qualitative variables. More recent projects are on precision in complex and lengthy computations, and in understanding chaos.

Linguistics: The deaf children project resulted in the IBM SpeechViewer™ product in 1988. The stenotypy project produced TASF (Traduction Automatique de Stenotypes en Francais), a product for creating natural text out of stenotypy, in French. The French thesaurus project developed lexicographic techniques for multiple native languages, that in turn became part of the IBM DW3700 advanced text processing products. The latest work is on automatic dictation capabilities.

Hacienda (IBM 7350): The first Center partner to receive the hardware prototype and the Basic User Software (HBUS), in 1981. The projects at Paris resulted in the High Level Image Processing System (HLIPS) and APL Image Processing Attachment Support (APLIAS), which both became products.

Artificial intelligence: Very early work resulted in the pioneering expert system Bateau sans medecin (ship without a medic). More recent work focuses on theoretical breakthroughs in nonclassical logic through development of a qualitative logic model allowing order-of-magnitude reasoning, and resulting systems for nonshallow reasoning.

Programming in Logic (PROLOG) for VM and MVS: Developed in Paris for using logic programming on IBM machines.

Pisa, Italy (Established 1971)

In 1965 the Centro Studi IBM was established in Pisa and became the basis for the IBM Pisa Scientific Center in 1971. This Center has had major project activity in surface hydrology, computer networks, image processing, and econometric software. A present major concern is with language technology. Projects in these and other areas are described below.

Surface hydrology: Project work was stimulated by serious flooding of the Arno River in 1966 and resulted in a model of the river basin that simulates rainfall and runoff. This work was also used for study of the Nile River and Lake Aswan, in Egypt.

RPCNET: An effort to develop a network for VMbased computing centers. This successful network is still running today.

Econometrics: The design and implementation of a complete set of programs to estimate, validate, analyze, and simulate both linear and nonlinear macroeconometric models.

Hacienda (IBM 7350): Design and implementation of the Host Basic User Subroutines (HBUS), which is the host-resident subroutine library for the IBM 7350 Image Processing System.

Medical imaging: Analysis of radiographs of the internal innervation and blood circulation of the cardiac muscle, with experimental work on two- and three-dimensional object detection and recognition.

Volcanic risk modeling: A project for automatic drawing of volcanic eruption risk maps, which were validated using historic eruptions of Mounts Vesuvius. Etna. and St. Helens.

Language technology: Sistema C product development that performs sophisticated interactive checking and correction of Italian texts. Sistema L prototype for printed document reading by scanner, helped by ad hoc lexical tools: it represents a reference point in the area of the OCR-based reading tools for performance in terms of correctness and usability. Further work, in its early stages, aims at humanaided machine translation of English into Italian.

Rio de Janeiro, Brazil (Established 1986)

The IBM Rio Scientific Center was established in 1986 when the Center in Brasilia moved to Rio de Janeiro and integrated all research and educational activities of the Latin American Systems Research Institute, the Software Technology Center, and the IBM Brazil Sumare Plant. Priorities are now more business oriented, and current research areas are databases, data communications, artificial intelligence, logic programming, microelectronics, software engineering, vector processing, and advanced signal processing.

Significant contributions have been made through development of an accurate model of the borer insect and sugarcane ecosystem for plague control, and through study by remote sensing of the environmental impact of the Tucurui hydroelectric facility. Contributions to computer science include the PACCHIP system, an integrated computer-aided design (CAD) package for very large-scale integrated (VLSI) chip design, the CHRIS software tool for database conceptual design and prototyping, an expert system for heuristic learning of medical diagnoses, data compression algorithms for digital images storage and transmission, and halftoning algorithms for laser printers.

Rome, Italy (Established 1979)

The IBM Rome Scientific Center was chartered in 1979 and absorbed the projects and staffs of the Centers at Bari and Venice. Over time the project focus shifted from that of the former Centers to new areas, as described here.

Distributed processing: The Virtual Machine Distributed Facility (VMDF) was used on XCF (eXtended Communication Facility) to create a single-image VM system that allowed file sharing between remote virtual machines and catalog sharing between VM control programs. It was operational on the network for the Centers in Italy until 1984.

Hacienda (IBM 7350): Implemented the IBM 7350 Image Processing System and, since 1981, has used its special color capabilities, along with the IBM 3838 Array Processor, in numerical modeling projects such as seismic wave migration, fluid dynamics, and meteorology.

Natural-language processing: Among projects with relevance to Italy, one began in 1984 with the goal of understanding the Italian language and in 1987 resulted in the most complete text understanding system presently available in Italy.

Speech synthesis: A text-to-speech synthesizer project for Italian, begun in 1982, further resulted in speech recognition of 20 000 Italian words by 1988.

ECSEC: Projects in numerically intensive computing (NIC) resulted in the establishment of the European Center for Scientific and Engineering Computation (ECSEC) as a department of the IBM Rome Scientific Center in 1984. Since then, the Center has become the European focal point in IBM for NIC.

Tokyo, Japan (Established 1970)

The IBM Tokyo Scientific Center was founded in 1970. Main project areas have been natural-language support, image processing, graphics and displays, scientific and engineering computation, and education, as described below.

Natural languages: Research conducted in machine translation between English and Japanese. Work has also been done on converting Kana to Kanji for a Japanese word processor.

Image processing: Many joint studies with government and university groups emphasized regional and coastal planning. Recent studies included optical character recognition (printed and handwritten) and color image databases.

Graphics and displays: Designed the application programming interface (API) for the IBM 5080 display and its follow-on with Kingston, developed rendering methods including a new texture mapping, and applied them to visual simulation.

Scientific and engineering computation and visualization: Projects included chemical computer-aided design, computational chemistry, and engineering simulation, such as simulating the air flow in a clean

room. New graphics techniques have been applied to the visualization of molecules and air flow.

Education: Having always conducted projects with university partners, recent efforts have involved assistance for the handicapped, mathematical computer-aided instruction, and campus networking.

Winchester, United Kingdom (Established 1979)

In 1979 the IBM United Kingdom Scientific Centre (UKSC) adopted a new charter and a new project focus, and moved from Peterlee to Winchester, England. It remains the only Center with a formal connection to an IBM laboratory—IBM United Kingdom Laboratories Limited, at Hursley Park, England. It also is unusual in its extensive use of visiting professionals, forming roughly half of the staff. The new charter established a new set of project areas for the Center: image processing, graphics systems, and speech processing. The major contributions in these areas are outlined below. In 1988 the Center was a joint winner of the British Computer Society Award for applications of computing.

Interactive Applications eXecutive (IAX): An application of high content, high-resolution image processing capabilities to medical imaging of the heart and neurons, for example.

Graphics: A number of projects surrounding the use of graphical techniques for the presentation of forms and the visualization of large amounts of complex data. Areas for study have been solid geometry, raster display of complex three-dimensional constructions, molecular modeling for the pharmaceutical industry, high-speed imaging using arrays of transputers, automatic interpretation of images, stereoscopic computer vision, fluid flow, astronomy, archaeology, theoretical physics, molecular beam epitaxy, liquid crystal structure, and computer-generated art. The WINchester SOlid Modeling system (WINSOM) and its solid geometry applications are discussed in three other papers in this issue.

Speech processing: Projects focused on English speech synthesis from text and especially automatic phonetic construction from text.

Former IBM Scientific Centers

Bari, Italy (1969-1979)

One of the smallest Centers, the IBM Bari Scientific Center studied the fields of computer-aided instruction and natural-language processing and later relational databases and query languages. It saw the development of the A Query Language (AQL) interpreter as a relational database extension to the A Programming Language (APL) systems. It was consolidated into the new IBM Rome Scientific Center in 1979.

Brasilia, **Brazil** (1980–1986)

The IBM Brasilia Scientific Center was established in 1980 in the new capital city of Brazil. It's focus was on enhancing the quality of life, the work environment, and the overall community's well-being. In 1984 the Center was honored for this work by receiving the American Chamber of Commerce Award for Corporate Service to the Community. In 1986 the Center merged with other activities in Brazil and moved to Rio de Janeiro.

Grenoble, France (1967–1973)

The first Center outside the United States was the IBM Grenoble Scientific Center. Its efforts were on operating systems and compilers. It played a significant role in the development of CP-67/CMS, in close cooperation with the IBM Cambridge Scientific Center. There was also a project on incremental compilation, the results of which are in use in the FORTRAN Interactive Debug and PL/I Incremental Compiler products. The Center closed in 1973 and much of its work was reassigned to what later became the IBM Paris Scientific Center.

Houston, Texas (1966-1974)

Much of the work at the IBM Houston Scientific Center focused on the use of array processors, such as the IBM 2938 and 3838. These studies included numerical precision, seismic applications, and development of array algorithms. Specific efforts included the array processing language VECTRAN, optical and holographic image processing and display, medical data processing for the heart and X-rays,

chemical engineering real-time process control, and electrical power systems analysis. This Center was merged into the IBM Palo Alto Scientific Center in 1974.

New York City, New York (1964-1972)

Founded in 1964, the IBM New York Scientific Center was one of the first four Centers chartered. It grew out of the prototypical Mathematics and Application Department, originally formed in 1955 in New York City. There were two basic areas of concentration: management science, which included studies of simulation, network analysis, and computational programming; and engineering design, which devised nonstandard data acquisition attachment capabilities for the System/360, graphics facilities for use in textile design, and graphical methods for urban planning. This Center became part of the foundation for the IBM Philadelphia Scientific Center in 1972.

Peterlee, United Kingdom (1969–1979)

This Center was established in 1969 as the IBM United Kingdom Scientific Centre. The major project areas were relational databases and local and regional planning. The relational database work culminated in the early and successful "Peterlee Model" that did much to popularize the concept. The planning work involved a number of projects with governments on using computers for planning. In 1979 the Center altered its focus considerably and moved to Winchester.

Philadelphia, Pennsylvania (1972–1974)

In 1972 the IBM New York Scientific Center and the IBM Research Division group on A Programming Language (APL) joined forces and started the IBM Philadelphia Scientific Center. APL became the major project area for the Center, along with the project areas from New York: simulation, network analysis, and computational programming. The work on APL resulted in the APLNET network, an APL business planning system, a long-standing APL computer center and time-sharing service for other IBM groups, extensions to APL itself, and the groundwork in generalized array theory that became the basis for A Programming Language 2 (APL2). Other projects included airline crew and telephone operator schedul-

ing, cash and asset management, earth resources evaluation, and life insurance budget planning. Most of the Center's work was relocated to the Palo Alto APL development group in 1974, and this Center was closed.

Venice, Italy (1969-1979)

The IBM Venice Scientific Center was located in a thirteenth-century palace—the only Center so honored. A storm surge in 1966, and subsequent efforts to save Venice from the sea, resulted in the creation of this Center. As a result, much of its work centered on hydrology and air pollution. The numerical modeling of combined tidal and meteorological effects in the Venice lagoon, and of the sinking phenomenon in the Venice area due to the pumping of groundwater, remain the major contributions of this Center to basic knowledge in these fields. In 1979 the Center became part of the new IBM Rome Scientific Center.

Wheaton, Maryland (1967-1969)

A Center was established in 1967 in Wheaton, Maryland, to be known as the IBM Washington Scientific Center. Significant areas for this Center were environmental sciences, text processing, cartography, and microcode. The environmental sciences area involved work on mathematical techniques for descriptions and mapping of nature, such as weather prediction and water resources—reservoirs, pollution, and waste treatment automation. The Center's work moved to Palo Alto in 1969.

Advanced Interactive Executive, AIX, Processor Resource/Systems Manager, PR/SM, Application System/400, AS/400, Advanced Interactive Executive/370, AIX/370, PROFS, and SpeechViewer are trademarks, and Personal System/2 and PS/2 are registered trademarks, of International Business Machines Corporation.

Ethernet is a trademark of Xerox, Inc.

UNIX is a registered trademark of AT&T.

Selected publications

Current IBM Scientific Centers

Bergen, Norway

- L. de Pillis Lindheim, J. Petersen, and J. de Pillis, "An iterative solution to special linear systems on a vector hypercube," 3rd Conference on Hypercube Concurrent Computer and Applications, Vol. II, ACM Press (1988).
- A. D. Jenkins and J. H. Salvesen, "Ocean current modelling at the Bergen Scientific Centre," *ODAP Current Modelling Workshop, Roros, 1988*, Trondheim: Oceanor—MOMOP Report No. 1 (1988).
- A. Kamel, "Elastic modeling on the IBM 3090 vector multi-processor," European Conference on Mathematics in Industry, Glasgow (August 28–31, 1988).

Cairo, Egypt

- K. Abdel Hamid, M. Hashish, O. Emam, D. Kamal, A. El-Hetw, and K. Ahmed, "A multi-feature computer-based speech-training system for deaf children," *IEEE Engineering in Medicine and Biology (EMBS) 9th Annual Conference*, Boston (November 1987
- M. Elghonemy, M. Fikri, M. A. Hashish, and E. Talkan "An iterative method for formant extraction using zero crossing interval histograms," *IEEE Melcon '85*, Madrid, Spain (October 8–10, 1985).
- Hisham El-Shishiny and Bayoumi Attia, "Multi-objective modeling for the planning and management of new lands in Egypt—A case study," IFAC Conference on Systems Analysis Applied to Water and Related Land Resources, Lisbon (October 1985).
- O. S. Emam and M. A. Hashish, "Application of hidden Markov models to the recognition of isolated Arabic words," 10th National Computer Conference and Exhibition, Jeddah (February 28 to March 2, 1986).
- M. A. Serag El Din, "Spread of NG following a small LNG spill from a ship-tanker," Proceedings of the 4th International Conference on Numerical Methods in Thermal Problems, Swansea (July 1985).

Cambridge, Massachusetts

- Y. Bard, "The VM Performance Planning Facility (VMPPF),"
 Computer Measurement Group (CMG) Transactions 53, 53-59 (Summer 1986).
- R. J. Creasy, "The origin of the VM/370 time-sharing system," IBM Journal of Research and Development 25, No. 5, 483-490 (September 1981).
- E. C. Hendricks and T. C. Hartmann, "Evolution of a virtual machine subsystem," *IBM Systems Journal* 18, No. 1, 111-142 (1979).
- L. H. Holley, R. P. Parmelee, C. A. Salisbury, and D. N. Saul, "VM/370 asymmetric multiprocessing," IBM Systems Journal 18, No. 1, 47-70 (1979).
- F. T. Kozuh, D. L. Livingston, and T. C. Spillman, "System/370 capability in a desktop computer," *IBM Systems Journal* 23, No. 3, 245–254 (1984).

- R. A. Meyer and L. H. Seawright, "A virtual machine time-sharing system," *IBM Systems Journal* 9, No. 3, 199-218
- Daniel J. Oberst and Sheldon B. Smith, "BITNET: Past, present, and future," EDUCOM Bulletin 21, No. 2 (Summer 1986).
- R. P. Parmelee, T. L. Peterson, C. C. Tillman, and D. J. Hatfield, "Virtual storage and virtual machine concepts," *IBM* Systems Journal 11, No. 2, 99-130 (1972).
- L. H. Seawright and R. A. MacKinnon, "VM/370-a study of multiplicity and usefulness," IBM Systems Journal 18, No. 1, 4-17 (1979).

Caracas, Venezuela

- W. Cunto and J. L. Gascon, "Improving time and space efficiency in generalized binary search trees," Acta Informatica efficiency in generalized binary search trees,' **24,** 583 (1987).
- W. Cunto, G. H. Gonnet, and J. I. Munro, "EXTQUICK: an in situ distributive external sorting algorithm," Proceedings VI International Conference of the Chilean Computer Science Society (1986), p. 61.
- W. Cunto and P. V. Poblete, "Two hybrid methods for collision resolution in open addressing hashing," *Scandinavian Workshop on Algorithm Theory*, Lecture Notes in Computer Science 318, Springer-Verlag, NY (1988), p. 113.
- C. Mendoza, "Electron impact excitation of 2p q and 3p ions," Atomic Data Workshop: Low Energy Collision Theory Techniques for Atomic Excitation and Radiative Data, W. B. Eissner, Editor, Proceedings of the DL/SCI/R24 (SERC Daresbury Laboratory) (1986), p. 80.
- C. Mendoza and C. J. Zeippen, "Radiative atomic data for neutral magnesium. I. Oscillator strengths," Astronomy and Astrophysics 179, 339 (1987).

Haifa, Israel

- A. Angel, S. Gal, and J. Raviv, "Optimal procedures for sequential discrimination between two classes," *Proceedings of* MEDINFO 80, Tokyo (October 1980).
- Y. Ben-Ari and S. Gal, "Optimization of replacement policy in a dairy herd," European Journal of Operations Research 23, No. 2 (February 1986).
- D. Chazan and S. Gal, "A markovian model for a central blood bank," Management Science 23 (January 1977).
- D. Chazan, Y. Medan, and U. Shvadron, "Noise cancellation for hearing aids," *Proceedings of ICASSP 86*, Tokyo (April 1986).
- I. Efrat and M. Tismenetsky, "Parallel iterative linear solvers for oil reservoir models," *IBM Journal of Research and Devel* opment 30, No. 2, 184-192 (March 1986).
- S. Gal, M. Landsberger, and B. Levykson, "A compound strategy for search in the labor market," *International Eco*nomic Review 22, No. 3, 597-609 (1981).
- L. Gofman and M. Rodeh, "Incorporating unknown pipe characteristics into loop oriented hydraulic network solvers Journal of the Hydraulics Division, ASCE, No. HY9, 107 (September 1981).
- M. C. Golumbic, M. Markovich, U. J. Schild, and S. Tsur, "A knowledge-based expert system for student advising, Transactions on Education E-28, 120-124 (March 1986).

- D. Ramm and D. Chazan, "A mixed numerical-analytical method for underground water flow and tracer displacement," Water Resources Research 16 (1980).
- E. Walach, J. Bruck, D. Chevion, E. Karnin, and D. Ramm, "A modified block truncation coding technique for image compression," Proceedings of the International Conference on Advances in Image Processing and Pattern Recognition, Pisa, Italy (December 1985).
- A. Ziv and V. Amdursky, "On the numerical solution of stiff linear systems of the oscillatory type," SIAM Journal of Applied Mathematics 33, No. 4 (December 1977).

Heidelberg, Federal Republic of Germany

- B. Alschwee and S. Grundmann, "System design for a computer aided juridical expert system," *Automated Analysis of Legal Texts, Logic, Informatics, Law*, A. A. Martino and F. Socci Natali, Editors, North Holland, Elsevier Science Publishers, Amsterdam, 1986.
- U. Arend and J. Wandmacher, "On the generality of logical recording in spatial inference tasks," *Acta Psychologica* **65**, 193–210 (1987).
- A. Blaser et al., "Integrated Data Analysis and Management System (IDAMS)—Feature description," in *Relational Data Base Systems*, J. W. Schmidt and M. L. Brodie, Editors, Springer-Verlag, NY (1983).
- T. Bollinger, U. Hedtstuck, C.-R. Rollinger, and R. Studer, "Text understanding in LILOG," in *Linguistic Approaches in Artificial Intelligence, Duisburg Papers on Research in Language and Culture* **6**, A. Kunz and U. Schmitz, Editors, Verlag Peter Lang, Frankfurt (1988).
- G. Bouma, E. König, and H. Uszkoreit, "A flexible graphunification formalism and its application to natural-language processing," *IBM Journal of Research and Development* 32, No. 2, 170–184 (March 1988).
- P. Dadam, R. Erbe, J. Guenauer, V. Lum, P. Pistor, G. Walch, H.-D. Werner, and J. Woodfill, "Designing DBMS support for the temporal dimension," *Proceedings of the 1984 ACM SIG-MOD Conference*, June 18–21, 1984, Boston, ACM Order No. 472840
- G. Dueck and T. Scheuer, "Threshold accepting—A general purpose optimizing algorithm appearing superior to simulated annealing," to appear in the SIAM Journal on Computing (1989).
- F. Guenthner, H. Lehmann, and W. Schönfeld, "A theory for the representation of knowledge," *IBM Journal of Research* and Development 30, No. 1, 39-56 (January 1986).
- G. Jaeschke and H.-J. Schek, "Remarks on the algebra of non first normal form relations," *Proceedings of the ACM SIGACT-SIGMOD Conference on Principles of Database Systems*, Los Angeles (March 29–31, 1982).
- E. Keppel et al., "Implementation of a data dictionary system to maintain a distributed information system for transplant data," *Lecture Notes in Medical Informatics* 35, Springer-Verlag, Berlin (1988).
- H. Lehmann, N. Ott, and M. Zoeppritz, "User experiments with natural language for data base access," *Proceedings of the 7th International Conference on Computational Linguistics (COLING'78)*, Bergen, Norway (August 14–16, 1978).
- H. Lehmann, N. Ott and M. Zoeppritz, "A multilingual interface to databases," *IEEE Database Engineering Bulletin* **8**, No. 3 (September 1985).
- V. Linnemann, "Non-first-normal-form relations and recursive queries: An SQL based approach," *Proceedings of the 3rd IEEE International Conference on Data Engineering*, Los Angeles (February 1987).

- G. Rohr, "Mental models—On the relation between structure and its symbolic representation in human-computer interaction," *Zeitschrift für Psychologie* 193, No. 4 (1985).
- M. Zoeppritz, "Human factors of a natural language enduser system," Enduser Systems and Their Human Factors, Lecture Notes in Computer Science, A. Blaser and M. Zoeppritz, Editors 150, Springer-Verlag, Berlin (1983).

Kuwait City, Kuwait

- O. Alameddine, "Arabesques and Koufi art," Die Pixel Revolution, IBM Deutschland, GmbH (1987).
- O. Alameddine, M. F. Quinn, K. Al-Jamal, "Experimental measurements of the downward infra red sky radiation in Kuwait," *Applied Optics* 23, No. 3 (February 1984).
- K. Al-Jamal, O. Alameddine, H. Al-Shami, and N. Shaabaan, "Passive cooling evaluation of room pond systems," *Solar and Wind Technology* 5, No. 1 (1988).
- Y. A. El-Imam, "Synthesis of Arabic speech using partial syllables," *Proceedings of the First International Conference on Arabization and Informatics*, AED and IRSIT, Tunisia, Tunis (March 9–11, 1988).
- A. H. Kamel, S. E. Akashah, F. A. Leeri, and M. Fahim, "Particle size distribution in oil-water dispersions using image processing," *Computers and Chemical Engineering* 11, No. 4, 435–439 (1987).
- S. M. Metwalli, A. H. Kamel, and A. A. Saheb, "Surface roughness effect on laser speckle spectral density," *SPIE's Technical Symposium Southeast on Optics and Optoelectronic Systems*, Orlando, FL (March 31-April 4, 1986).
- M. Quinn and O. Alameddine, et al., "A deconvolution technique for determining the intrinsic fluorescence decay lifetimes of crude oil," *Applied Spectroscopy* **42**, No. 3 (1988).
- A. R. Ragab, S. M. Metwalli, and J. Rueda, "Preliminary assessment of image processing application to large deformation measurement," *Proceedings of the Third Cairo University Conference on Mechanical Design and Production*, Pergamon Press, Elmsford, NY (March 1986).
- S. Sami, "Towards high quality Arabic script output," *Panel on Non-Latin and Non-alphabetic Scripts, IFIP Congress 86: 10th World Computer Congress*, Dublin, Ireland (September 1–5, 1986).

Los Angeles, California

- B. Arbab, "Object identification from parallel light stripes," *Proceedings 10th International Joint Conference on Artificial Intelligence*, 1145–1148 (1987).
- R. M. Buckley and W. B. Broadwell, "A dynamic model for contouring NC devices," *The Expanding World of Numerical Control*, M. A. DeVries, Editor, Village Press, NY (1972), pp. 156–161.
- R. M. Buckley and J. P. Mayfield, "Applications of a numerical geometry system in engineering," *Proceedings of the IEEE 13th Annual Design Automation Conference* (1976), pp. 23-23
- M. M. Connors, C. Coray, C. J. Cuccaro, W. K. Green, D. W. Low, and H. M. Markowitz, "Distributed system analysis: The distribution system simulator," *Management Science* 18, B425-453 (1972).
- E. H. Coughran, A Preliminary Report on Shipboard Computing, Report G320-2615, IBM Los Angeles (1968).

- K. Dahlgren, Naive Semantics for Natural Language Understanding, Kluwer Academic Publications, Boston (1988).
- B. Dimsdale, "A natural language information retrieval system," *Proceedings of the IEEE* **54**, No. 12 (1966).
- B. Dimsdale, "On multiconic surfaces," IBM Journal of Research and Development 19, 523-529 (1975).
- B. Dimsdale, "Convex cubic splines," IBM Journal of Research and Development 22, 168-178 (1976).
- E. B. Fernandez, R. C. Summers, T. Lang, and C. D. Coleman, "Architectural support for system protection and database security," IEEE Transactions on Computer C-27, No. 8 (1978).
- E. B. Fernandez, R. C. Summers, and C. Wood, *Database Security*, Addison-Wesley, Reading (1977).
- P. Gongla, G. Sakamoto, A. Back-Hock, P. Goldweic, L. Ramos, R. C. Sprowls, and C.-K. Kim, "S*P*A*R*K: A knowledge-based system for identifying competitive uses of information technology," *IBM Systems Journal* 28, No. 4, 628, 648 (1989), which is the control of the control o 628-645 (1989); this issue.
- A. Inselberg, "Cochlear dynamics: The evolution of mathematical model," SIAM Review 20, 301-904 (1978).
- A. Inselberg, "Multi-dimensional graphics," *Proceedings of Eurographics* '85, Nice, France (1985), pp. 315-325.
- A. Inselberg. "Intelligent instrumentation and process control," *Proceedings of the IEEE Conference on Artificial Intelligence Applications* (December 1985), pp. 302-307.
- A. Inselberg, "Parallel coordinates for multidimensional graphics," Proceedings of the National Computer Association Annual Conference, Philadelphia (March 1987), pp. 547–566.
- A. Inselberg and B. Dimsdale, "Intelligent manufacturing and integrated instrumentation," *Proceedings of ASME Conference on Integrated Intelligent Manufacturing*, Anaheim, CA (December 1986), pp. 341-357.
- S. A. Jurovics, "Solar radiation data, natural lighting and building energy minimization," Proceedings of ASHRAE (1979).
- D. Knight, M. Harry, J. Howard, and J. Rivero, "Engineering support systems for engineering managers," IEEE Micro 5 (1985), pp. 22–26.
- P. S. Newman, "Towards an integrated development environment," *IBM Systems Journal* 21, No. 1, 81-107 (1982).
- M. M. Parker, "Enterprise information analysis: Cost-benefit and the data managed system," *IBM Systems Journal* 21, No. 1, 108–123 (1982).
- M. M. Parker and R. J. Benson with H. E. Trainor, "Information economics: Linking business performance to information technology," Prentice Hall, Inc., Englewood Cliffs (1988).
- N. C. Shu, "Visual programming," Van Nostrand Reinhold Co., New York (1988).
- G. Silverman, R. Tsai, and M. Lavin, "Locating polyhedral objects from edge point data," Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Milano, Italy (1987).
- R. C. Summers, "A resource sharing system for personal computers in a LAN: Concepts, design, and experience," *IEEE* Transactions on Software Engineering, 895-904 (1987).
- R. C. Summers, "An overview of computer security," Computer and Network Security, M. D. Abrams and H. J. Podel, Editors, IEEE Computer Society Press (1987), pp. 9-25.

W. J. Van De Lindt, "Movement of the mohorvicic discontinuity under isostatic conditions," *Journal of Geophysical Re*search, No. 4, 72 (1967).

Madrid, Spain

- M. Aguilar, A. Garcia, P. J. Pascual, J. Presa, and A. Santisteban, "Computer system for scanning tunneling microscope automation," Surface Science 181, 191-199 (1987)
- J. Brown and M. Alfonseca, "Solutions to logic problems in APL2," ACM SIGAPL, APL Quote Quad 17-4, 356-361 (May 1987).
- L. E. Donate, L. Herranz, J. P. Secilla, J. M. Carazo, H. Fujisawa, and J. L. Carrascosa, "Bacteriophage T3 connector: three-dimensional structure and comparison with other viral head-tail connecting regions," Journal of Molecular Biology, 201 (1988).
- L. F. Escudero and M. Rebollo, "A mixed integer programming approach to multispectral image classification," Pattern Recognition 9, 45-57 (1977).
- J. Jimenez and M. A. Hernan, "Computer analysis of a high speed film of the plane turbulent mixing layer," Journal of Fluid Mechanics 119, 323-345 (1982)
- J. Jimenez, P. Moin, R. Moser, and L. Keefe, "Ejection mechanisms in the sublayer of a turbulent channel," *Physics* of Fluids 31, 1311-1313 (1988).
- J. Jimenez, A. Santisteban, J. M. Carazo, and J. L. Carrascosa, "Computer graphics display method for visualizing three-dimensional biological structures," Science 232, 1113-1115
- M. Kindelan, "Dynamic modelling of greenhouse environment," *Transactions of the ASAE* 23, 1233-1239 (1980).
- A. Santisteban, L. R. Berriel, and J. Bescos, "Image restoration for a defocused optical system," Applied Optics 22, 2772-2780 (1983).
- L. Sopena, "Linguistica y procesamiento de textos en castellano," PC WORLD Espana 8, 63-69 (February 1986).
- L. Sopena, "Natural language grammars for an information system," ACM SIG Information Retrieval 17, No. 4, 75-80 (1983).
- M. L. Tavera, M. Alfonseca, and J. Rojas, "The IBM Personal Computer APL system," ACM SIGAPL, APL Quote Quad 14-4, 333-337 (June 1984).
- M. Udo, Y. Akimoto, S. Kaneko, T. Sanuki, and M. Alfonseca, "Japanese APL language system on IBM multistation 5550," ACM SIGAPL, APL Quote Quad 16-4, 326-334 (July 1986).

Mexico City, Mexico

- S. Castillo, E. Gutierrez, and O. Alvarez, "Phenology of coastal dune vegetation," *Proceedings of the X Mexican Botany Congress*, Guadalajara, Mexico (1987).
- E. Gonzalez, S. Negrete, and P. Noriega, "An evolving data base design," *Proceedings of the V Meeting of the Mexican AI* Association, Merida, Mexico (1988).
- J. Macias and M. Angulo, "A climatic-botanic information system of the state of Veracruz," Proceedings of the XIII Conference of the International Cartographic Association, Morelia, Mexico (October 1987).

Palo Alto, California

J. F. Asmus, R. Bernstein, J. V. Dave, and H. J. Myers, "Mona Lisa," Perspectives in Computing 7, No. 1, 11-22 (1987).

- J. V. Dave, "Contrast attenuation factors for remote sensing," *IBM Journal of Research and Development* 23, No. 2, 214–223 (1979).
- J. V. Dave, R. Bernstein, and H. G. Kolsky, "Importance of higher-order components to multispectral classification," *IBM Journal of Research and Development* 26, No. 6, 715–723 (1982).
- J. V. Dave and J. Gazdag, "Reduction of random noise from multiband data using phase relationships among their Fourier coefficients," *IBM Journal of Research and Development* 28, No. 4, 399-411 (1984).
- A. A. Dubrulle, A Version of EISPACK for the IBM 3090VF, Report G320-3510, IBM Corporation (June 1988); available through IBM branch offices.
- A. A. Dubrulle, R. G. Scarborough, and H. G. Kolsky, *How to Write Good Vectorizable FORTRAN*, Report G320-3478, IBM Corporation (September 1985); available through IBM branch offices.
- H. P. Flatt, "Computer modeling in energy and the environment," *IBM Journal of Research and Development* 25, No. 5, 571-580 (1981).
- P. J. Friedl, "The use of computer conferencing by a university faculty," IFIP TC6/WG6.5, Conference on Message Handling Systems (April 1987), pp. 387-402.
- J. Gazdag, G. Radicati, P. Sguazzero, and H. H. Wang, "Seismic migration on the IBM 3090 Vector Facility," *IBM Journal of Research and Development* 30, No. 2, 173–183 (1986).
- J. Gazdag and H.-H. Wang, "Concurrent computing by sequential staging of tasks," *IBM Systems Journal* 28, No. 4, 646-660 (1989); this issue.
- A. Hassitt, J. W. Lageschulte, and L. E. Lyon, "Implementation of a high level language machine," *Communications of the ACM* 16, No. 4, 199-212 (April 1973).
- A. Hassitt and L. E. Lyon, "An APL emulator on System/370," IBM Systems Journal 15, No. 4, 358-378 (1976).
- A. H. Karp and R. G. Babb II, "A comparison of twelve parallel FORTRAN dialects," *IEEE Software*, 52-66 (September 1988).
- J. Littman, "The first portable computer," PC World 1, No. 7, 294-300 (1983).
- L. E. Lyon, "Striped I/O for FORTRAN," Report G320-3513, IBM Corporation (June 1988); available through IBM branch offices
- H. J. Myers, "Compiling optimized code from decision tables," *IBM Journal of Research and Development* **16**, No. 5, 489–503 (September 1972).
- R. G. Scarborough and H. G. Kolsky, "Improved optimization of FORTRAN object programs," *IBM Journal of Research and Development* **24**, No. 6, 660-676 (1980).
- R. G. Scarborough and H. G. Kolsky, "A vectorizing FOR-TRAN compiler," *IBM Journal of Research and Development* 30, No. 2, 163-171 (1986).
- IBM Program 5875-EEE, Personal Computer Image Processing System (PCIPS), IBM Corporation; available through IBM branch offices.
- IBM Programs PRPQ 5799-AYB, Interactive Geo-Facilities Graphics Support; 5668-941, Graphics Program Generator Program Product; Graphics One-Line Diagram: Display, Edit, and Query Program (FDP); 5668-905, Composed Document Viewing Utility (Part of Graphic Data Query Facility, Release 3), IBM Corporation; available through IBM branch offices.
- IBM Program 5796-PLN, A Departmental Reporting System II (ADRS II), IBM Corporation; available through IBM branch offices

- IBM Program 5798-DRT, PROFS Note Maintenance Facility, IBM Corporation; available through IBM branch offices.
- IBM Installed User Program 5796-PQW, SORT/MERGE Performance Improvements, IBM Corporation; available through IBM branch offices.
- IBM Installed User Program 5796-PKR, FORTRAN H Extended Optimization Enhancement, IBM Corporation (1978); available through IBM branch offices.
- IBM Programs 5799-ALK, IBM PRPQ MF2608 and IBM RPQ 500256, APL/CMS and APL Assist, IBM Corporation (1974); available through IBM branch offices.
- IBM Installed User Programs 5796-PJB, APL Decision Table Compiler (1977); 5796-PKD, General Cross Assembler Generator (1978); and 5790-PPJ, APL Performance Tools, IBM Corporation; available through IBM branch offices.

Paris, France

- M. Abrams, A. Blusson, V. Carrere, T. Nguyen, Y. Rabu, "Image processing applications for geologic mapping," *IBM Journal of Research and Development* 29, No. 2, 177-187 (1985).
- F. Chatelin, "A probabilistic round off error propagation model," *Reliable Numerical Computing, Oxford University Press*, New York (1988).
- P. Dague, P. Deves, and O. Raiman, "Trouble shooting: when modelling is the trouble," *Proceedings of the National Conference on Artificial Intelligence* **AAAI-87**, American Association for Artificial Intelligence (1987).
- D. Ho, "A soil thermal model for remote sensing," *IEEE Transactions in Geoscience and Remote Sensing* **25**, No. 2 (1987).
- F. Marcotorchino and P. Michaud, Optimisation en Analyse Ordinale des Donnees, Masson, Paris (1979).
- R. Moreau, *The Computer Comes of Age*, MIT Press, Cambridge (1984), English translation of *Ainsi Naquit L'Informatique*, Dunod, Paris (1981).
- O. Raiman, "Order of magnitude," *Proceedings of the National Conference on Artificial Intelligence* **AAAI-86**, American Association for Artificial Intelligence (1986).

Pisa, Italy

- C. Bianchi, G. Calzolari, and P. Corsi, "A program for stochastic simulation of econometric models," *Econometrica*, No. 46, 235–236 (1978).
- A. Fahmy, L. Panattoni, and E. Todini, "A mathematical model of the River Nile," *Engineering Applications of Computational Hydraulics*, 111-130 (1982).
- P. Franchi, C. Paoli, J. Gonzales, P. Mantey, A. Parolo, and J. Simmons, "Design issues and architecture of HACIENDA, an experimental image processing system," *IBM Journal of Research and Development* 27, No. 2, 116-126 (1983).
- C. Paoli, R. Porinelli, A. L'Abbate, and M. G. Trivella, "A computerized autoradiographic technique for simultaneous millimetric mapping of myocardial blood flow and metabolism," *IBM Journal of Research and Development* 30, No. 6, 627-634 (1986).
- C. Paoli, R. Porinelli, C. Lettera, and L. Masera, "Use of a dictionary in conjunction with handwritten texts recognizer," *IEEE Proceedings of the 8th International Conference on Pattern Recognition*, International Association for Pattern Recognition (IAPR), Paris, 699-701 (1986).

- M. T. Pareschi, P. Armienti, and G. Macedonio, "A numerical model for the simulation of tephra transport and deposition: Applications to May 18, 1980 Mt. St. Helens eruption," Journal of Geophysical Research 93, No. B6, 6463-6476 (1987).
- M. T. Pareschi and R. Bernstein, "Modeling and image processing for visualization of volcanic mapping," *IBM Journal of Research and Development* 33, No. 4, 406–416 (1989).

Rio de Janeiro, Brazil

- M. A. Casanova, F. A. C. Giorno, and A. L. Furtado, Logic Programming and the Prolog Language (1987).
- R. C. B. Martins and A. V. Moura, Systematic Derivation of Correct Programs: The Denotational Approach (1988).

Rome, Italy

- F. Antonacci, P. Dell'Orco, and A. Turtur, "A territorial database management system," *Proceedings of the International Conference on Management of Data*, ACM SIGMOD, Orlando, FL (June 1982).
- F. Antonacci, M. T. Pazienza, M. Russo, and P. Velardi, "A system for the analysis and generation of sentences in Italian" Conceptual Graphs for Knowledge Systems, J. Sowa and N. Foo, Editors, Addison-Wesley Publishing Co., Reading, MA
- F. Antonacci, M. T. Pazienza, M. Russo, and P. Velardi, "Representation and control strategies for large knowledge domain: An application to NLP," to be published in the Journal of Applied Artificial Intelligence (1989).
- R. Benzi, H. R. Hansen, and A. Sutera, "On stochastic perturbations of simple blocking models," *Quarterly Journal of the Royal Meteorological Society* **110** (1984).
- P. Carnevali, A. Selloni, A. Baratoff, and E. Stoll, "Current distribution in the scanning vacuum tunnel microscope: Free electron model," *Journal of Physics C. Solid State Physics* 17 (1984).
- S. Cavaliere, M. Fantini, and A. Turtur "An integrated system for printing and publishing applications," Computer-Generated Images, Springer-Verlag, New York (1986), pp. 436-447.
- E. de Castro, G. Cristini, A. Martelli, C. Morandi, and M. Vascotto, "Compensation of random eye motion in an electronic ophtalmoscope: Preliminary results," *IEEE Transaction* on Medical Imaging (March 1987).
- S. Di Zenzo, R. Bernstein, S. De Gloria, and H. G. Kolsky, "Gaussian maximum likelihood and contextual classification algorithms," *IEEE Transactions on Geoscience and Remote* Sensing GE-25, No. 6 (1987).
- P. D'Orta, M. Ferretti, A. Martelli, S. Melecrinis, S. Scarci, and G. Volpi, "A speech recognition system for the Italian language," *IEEE 1987 International Conference on Acoustic*, Speech and Signal Processing, Dallas (1987).
- P. D'Orta, M. Ferretti, and S. Scarci, "Fast speaker adaptation for large-dictionary real-time speech recognition," IEEE Workshop on Speech Recognition, Arden House, Harriman, NY (1988).
- G. Fronza and P. Melli, Editors, Mathematical Models for Planning and Controlling Air Quality, Pergamon Press, Elmsford, NY (1982).
- A. Fusi and G. Sommi, "Distributed virtual systems," Proceedings of the 2nd International Conference on Distributed Computing Systems, Paris (April 1981).

- J. Gazdag and P. Sguazzero, "Migration of seismic data by phase shift plus interpolation," *Geophysics* **49** (1984).
- L. Lenzini and G. Sommi, "Architecture and implementation of RPCNET," Proceedings of the Third International Conference on Computer Communication, P. K. Verma, Editor, Toronto (1976).
- E. Runca, P. Melli, and F. Sardei, "Finite difference and variational methods applied to numerical treatment of advection and diffusion of environmental pollutants from a line-source," *Journal of Computational Physics* **59**, No. 1 (1985).
- G. Volpi, G. Gambolati, L. Carbognin, P. Gatto, and G. Mozzi, "Groundwater contour mapping in Venice by stochastic interpolation. 2. Results," Water Resources Research 15,

Tokyo, Japan

- J-K. Hong and J. Iisaka, "Coastal environmental change analysis by Landsat MSS data" Journal of Remote Sensing of Environment 12, No. 2, 107-116 (1982).
- A. Koide, A. Doi, and K. Kajioka, "Polyhedral approximation approach to molecular orbital graphics," *Journal of Molecular* Graphics 4, No. 3, 149-156 and 160 (1986).
- T. Nishino and T. Fujisaki, "A Stochastic parsing of Kanji compound words," *Transactions of the Information Processing Society of Japan* **29**, No. 11, 1034–1042 (November 1988).
- M. Sakaki, H. Samukawa, and N. Honjou, "Effective utilization of the IBM 3090 large virtual storage in the numerically intensive computations of ab initio molecular orbitals," IBM Systems Journal 27, No. 4, 528-540 (1988).
- M. Udo, Y. Akimoto, S. Kaneko, and T. Sanuki, "Japanese APL language system on IBM multistation 5550," ACM/SIGAPL APL Quote Quad 16, No. 4, 326-334 (July 1986).
- O. Wakita and S. Kadekawa "Computer for the blind and the deaf," Journal of the Information Processing Society of Japan 25, No. 5, 462-470 (May 1984).
- Y-L. Yang, A. Kondo, and J-K. Hong "An assessment of environmental changes by Landsat data," *Ocean Space Utilization* '85 1, Springer-Verlag, NY (1985), pp. 715–722.

Winchester, United Kingdom

- M. L. Cocklin, "Digital chest radiology: Spatial and contrast resolution requirements," Proceedings of the International Symposium on Computer Assisted Radiology, Springer-Verlag, Berlin (1987), pp. 215-219.
- H. M. Cole, T. R. Harris, E. W. Stockley, and H. V. Wheale, "Interactive three-dimensional display of reconstructed neurons," *Journal of Physiology*, 400 (1988).
- G. Kaye, "The design of the database for the survey of English usage," Corpus Linguistics, Hard and Soft, M. Kyte, O. Ihalainen, and M. Rissanen, Editors, Rodopi Publisher, Amsterdam (1988).
- S. G. C. Lawrence, B. J. Williams, and G. Kaye, "The automatic phonemic transcription of English," *Orthography and Phonology*, P. A. Luelsdorff, Editor, J. Benjamins Publisher, Amsterdam (1987)
- R. W. Phippen, G. R. Luckhurst, and D. J. Adams, "Computer simulation studies of anisotropic systems XVII: the Gay-Berne model nematogen," *Molecular Physics* **61**, No. 6, 1575–1580 (1987).

- P. Reilly and R. Zambardino, "A computer-based system for the organization and processing of site-location and boundary data," *Computers and Humanities* 27, 177–191 (1987).
- J. R. Woodwark, "Eliminating redundant primitives from settheoretic solid models by a consideration of constituents," *IEEE Computer Graphics and Applications* 8, No. 3, 38–47 (May 1988).

Former IBM Scientific Centers

Bari, Italy

- F. Antonacci, P. Dell'Orco, and V. N. Spadavecchia, "AQL: an APL-based system for accessing and manipulating data in a relational data base system," *Proceedings of the APL 76 Conference*, G. Truman Hunter, Editor, Ottawa (September 1976)
- P. Dell'Orco, V. N. Spadavecchia, and M. King, "Using knowledge of a data base world in interpreting natural language queries," *Information Processing 77 (Proceedings of the IFIP Congress 1977)*, B. Gilchrist, Editor, Toronto, North Holland Publishing Company (August 1977).

Brasilia, Brazil

M. A. Casanova and A. V. Moura, An Introduction to Distributed Data Bases Management Systems (1984).

Grenoble, France

- J. Bellino and C. Hans, "Virtual machine or virtual operating system?" ACM-SIGARCH-SIGOPS, Harvard University, Cambridge, MA (1973); may be obtained from the Association for Computing Machinery.
- J. Rodriguez-Rosell, "Experimental data on how program behavior affects the choices of scheduler parameters," *ACM*, Stanford University, Stanford, CA (1971); may be obtained from the Association for Computing Machinery.

Nguyen Thanh Thi, "A graphic conversational aid for error searching and teaching of an operating system," ACM-SIG-ARCH-SIGOPS, Harvard University, Cambridge, MA (1973).

Houston, Texas

- M. M. Adibi, P. M. Hirsch, and J. A. Jordan, Jr., "Solution methods for transient and dynamic stability," *Proceedings of the IEEE* 69, 951–958 (1974).
- T. A. Hughes, et al., Application of Security Indices and Restraints to a Real Power System, Final Report to the Electric Power Research Institute (1975).
- L. B. Lesem, P. M. Hirsch, and J. A. Jordan, Jr., "Computer synthesis of holograms for 3-D display," *Communications of the ACM* 11, 661-674 (1968).
- L. B. Lesem, P. M. Hirsch, and J. A. Jordan, Jr., "The kinoform: A new wavefront reconstruction device," *IBM Journal of Research and Development* 13, 150-155 (1969).

George Paul and M. Wayne Wilson, *The VECTRAN Language*, PASC Technical Report G320-3334, IBM Corporation (August 1975); may be obtained through IBM branch offices.

New York City, New York

- J. Greenstadt, "On the reduction of continuous problems to discrete form," *IBM Journal of Research and Development* 3, No. 4, 355–363 (1959).
- M. Grigoriadis and W. F. Walker, "A treatment of transportation problems by primal partition programming," *Management Science* **14**, No. 9, 565–599 (1968).
- D. A. Quarles and K. Spielberg, "A computer model for global study of the general circulation of the atmosphere," *IBM Journal of Research and Development* 11, No. 3, 312–336 (1967).

Peterlee, United Kingdom

- M. G. Notley, *The Peterlee IS/1 System*, Report UKSC-0018, IBM Scientific Centre (March 1972).
- S. J. P. Todd, "The Peterlee relational test vehicle—A system overview," *IBM Systems Journal* **15**, No. 4, 285–308 (1976).

Philadelphia, Pennsylvania

- P. G. Comba, "A language for three-dimensional geometry," *IBM Systems Journal* 7, Nos. 3 and 4, 292-306 (1969).
- K. Spielberg, "Algorithms for the simple plant location problem with some side conditions," *Operations Research* 17, No. 1, 85–111 (1969).

Venice, Italy

- G. Gambolati, "Use of over-relaxation techniques in the simulation of large groundwater basins by the finite element method," *International Journal of Numerical Methods in Engineering* 9, No. 1, John Wiley & Sons, Inc., New York (1975).
- E. Runca, P. Zannetti, and P. Melli, "A computer-oriented emissions inventory procedure for urban and industrial sources," *Journal of the Air Pollution Control Association* 6 (1978).

Wheaton, Maryland

- A. Hassitt, Solution of the Stochastic Programming Model of Reservoir Regulation, Report 320-3506, IBM Washington Scientific Center (May 1968).
- H. H. Wang, P. Halpern, and P. Wrotenbery, *Primitive Equation Limited Area Fine Mesh Numerical Weather Prediction Model*, Report 320-3512, IBM Washington Scientific Center (October 1968).

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989 KOLSKY AND MACKINNON 523

Harwood G. Kolsky University of California, Santa Cruz (UCSC), Computer Engineering Department, 225 Applied Sciences Building, Santa Cruz, California 95064. Dr. Kolsky is a retired IBM Fellow, Palo Alto Scientific Center. He is a physicist who became a computer scientist when that field was new. His work has been on a variety of topics including programming languages, scientific applications, and digital image processing. He received his B.S. degree in engineering physics from the University of Kansas and his M.A. and Ph.D. degrees in physics from Harvard University. After seven years at the Los Alamos National Laboratory, Dr. Kolsky joined IBM in 1957 in Poughkeepsie as a member of the product planning group for the STRETCH (IBM 7030) computer. In 1959 he became assistant manager of the IBM Federal Systems Division office in Omaha, Nebraska. Following this he spent some time at FSD headquarters, before being named manager of the systems science department of the San Jose Research Laboratory in 1961. In 1962 he headed an advanced technology group in the Advanced Systems Development Division at Los Gatos, California. He joined the Palo Alto Scientific Center when it was formed in 1964 as manager of the atmospheric physics group. Later he headed projects in programming languages and digital image processing. Dr. Kolsky was named an IBM Fellow in 1969. He served on the IBM Corporate Technical Committee at Armonk, New York, from 1974 to 1975. He was also head of the Board of Consultants for the IBM European Scientific Centers. In 1985 he came to the new UCSC computer engineering board of studies as a visiting professor. In 1986 he retired from IBM and began a new career as a full-time professor at UCSC. He is a member of Sigma Xi, the American Physical Society, and a senior member of the IEEE.

Richard A. MacKinnon IBM Cambridge Scientific Center, 101 Main Street, Cambridge, Massachusetts 02142. Mr. MacKinnon has been manager of the Cambridge Scientific Center since 1975. He holds a B.A. degree in American history from Yale University (magna cum laude) and an M.B.A. in finance from the Harvard Graduate School of Business Administration. He joined IBM in 1962, working first as a systems engineer, then marketing representative in a banking territory in Boston. In 1966 Mr. MacKinnon installed the first on-line banking system on System/360. From 1967 to 1969 he worked in the banking development department in the Data Processing Division (DPD) headquarters, White Plains, New York. In 1970 he became systems support manager in IBM's largest DPD region, New England and upper New York state. There he was responsible for introduction and early support of System/370, its virtual storage operating systems, and its associated hardware and system software products. In 1972 Mr. MacKinnon was responsible for the installation of the second System/370 shipped by IBM, which was the first system installed using OS/360. In 1975 he joined the Cambridge Scientific Center as its manager. Since 1976 he has taught the Advanced Computing Systems course at the MIT Sloan School of Management where he currently holds the position of senior lecturer. He is the author of three previous papers in the IBM Systems Journal on IBM multiprocessing and virtual machine operating systems. Outside IBM, Mr. MacKinnon is a member of the foundation and the board of managers of the Massachusetts Eye & Ear Infirmary, a Harvard University teaching hospital founded in 1824. He is also on the visiting committee of the radiation medicine department of the Massachusetts General Hospital and an elected member of Phi Beta Kappa.

IBM Scientific Centers map, Reprint Order No. G321-0097.

Paper Reprint Order No. G321-5372.