
Object-oriented
programming

Object-oriented programming involves a new way of
thinking about and programming applications. The
thought process and techniques are introduced
through a discussion of the language Smalltalk and
through an illustrative example. These concepts are
extended to a hybrid functional language, object-
oriented system, KEF', and illustrated through the
use of knowledge-based system examples.

0 bject-oriented programming can trace its roots
to the earliest uses of the computer, yet it is

thought of by many as a new programming meth-
odology. It has been implemented as a programming
language, and its ideas and constructs have been
added to existing languages. Still, many who work
with computers are unfamiliar with object-oriented
programming and how it is distinguished from
more conventional programming methods. Object-
oriented programming is a methodology that em-
ploys data abstractions, called objects, as the basic
structure of the program. A data abstraction is a
way of defining data by the way in which it may be
used, rTther than by what it is. Goldberg and
Robson propose the following three views of object-
oriented programming:

A vision, or a way of organizing a system descrip-
tion. The central intuition in the object-oriented
vision is that systems can be built by describing

IBM SYSTEMS JOURNAL, VOL 28. NO 3, 1989

by R. P. Ten Dyke
J. C. Kunz

sets of related objects and that objects have attri-
butes and behavior.
A set of programming techniques that specifically
includes techniques to manipulate objects, attri-
butes, and behaviors.
A large complex system that enables and encour-
ages programmers to create applications using the
object-oriented vision and that provides tech-
niques to manipulate objects, attributes, and be-
haviors.

This paper describes object-oriented programming
as an important and continuing evolution of pro-
gramming methodology and focuses on its use in
developing knowledge systems. Our purpose is not
to achieve the technical depth that would be achieved
through user manuals for specific object-oriented
programming languages or through other means.
Rather, it is our purpose to put object-oriented pro-
gramming in perspective so as to give readers a
clearer view of where it fits into the program devel-
opment picture and an understanding of some of its
important benefits.

Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journalreference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

TEN DYKE AND KUNZ 465

Early background

The basic principles of object-oriented programming
date from the early commercial uses of computers.
For example, the Minuteman missile was designed
by computer in 1957, using primitive object-oriented
techniques. The design was divided into a handful
of related discrete components. One component
dealt with the structural design. Another considered

Object-oriented programming is like
having a group of specialists

working together to solve a problem.

drag for the portion of flight that took place in the
atmosphere. A third component dealt specifically
with nozzle design to determine thrust under various
speed and atmospheric conditions. A trajectory com-
ponent had two parts: powered flight (the engines
firing) and free flight (all fuel exhausted). Additional
components included one that would oversee the
whole operation, including the detachment of fuel
tanks as the fuel in each tank became exhausted.
The system provided for the passing of information
between the components. For example, the trajec-
tory component might ask the nozzle component
which thrust levels to use for each speed and altitude,
and the structure component might ask the nozzle
component what weight to add to the structure.

Each of the components was created by a specialist
who had a unique expertise, for no single individual
had the breadth of knowledge to create the whole
program. Each specialist determined what informa-
tion would be needed from the others in order to
complete one portion of the design. Each of the
program components was encapsulated, that is, it
had its private data and was virtually a separate
program with its own methods and procedures that
would apply to those data. By sending data and
commands between the components and by using
key design parameters supplied by the operator, the
computer program designed and simulated the flight
of experimental missiles in the computer. After a
large number of these experiments, one design spec-
ification was chosen by the engineers.

466 TEN DYKE AND KUNZ

Object-oriented programming as we currently con-
ceive it was not known or used in 1957. However,
the current term object is a suitable substitute for the
term component of the missile design program. The
missile specialists effectively developed the design
program as though they were working together, pass-
ing information back and forth. Similarly, in object-
oriented programming, the objects are made up of
private data and methods, and they communicate
with each other through the use of messages, which
may contain data arguments. In this way, object-
oriented programming is like having a group of
specialists working together to solve a problem.

In the missile design program, it was necessary to
design a system for keeping track of the status of
each of the components and for determining which
information to send where. In today's object-ori-
ented programming, these functions are formalized
and generalized so as to apply to many different
kinds of objects.

A need to find more general solutions to simulation
problems and the formalization of the concepts of
data abstraction led to the development, if the
196Os, of an Algol-based language, S I M U L A ~ ~ . This
language introduced the concept of class, which is
the implementation of a data abstraction through
encapsulation, and the concept of a class hierarchy
to permit the inheritance of methods. This general-
ized the approach used by the missile design program
to break a complex problem into smaller, more
manageable parts.

It was important to the development of object-ori-
ented programming to recognize that data abstrac-
tion was suitable for many different classes of prob-
lems, not just for simulation. Using S I M U L A ~ ~ as a
springboard, the language Smalltalk was developed
at the Xerox Corporation's Palo Alto Research Cen-
ter. Smalltalk has further formalized the notion of
objects and message passing among objects.

Other languages have been developed by adding
object-oriented constructs to existing procedural or
functiopal langyages. For example5, the languages
EIFFEL, C++@, and Objective-C" are extensions
of the C language. FLAVOR$ is an object-oriented
extension to LISP, and LOOPS and K E E ~ ' are program-
ming environments that use object-oriented pro-
gramming as a functional building block. It is also
possible to consider object-oriented programming as
a programming style, rather than as a language, and
build object-oriented programs using existing pro-
cedural or functional languages.

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

There is no complete agreement on all of the func-
tions that must be present for a language or system
to be called “object-oriented.’’ In 1987 Peter Wegner
proposed that the term object-based be used for
languages supporting objects, and object-oriented for
languages supporting objects, classes, and inheri-
t a n ~ e . ~

An object consists of data that are tightly coupled
with all of the operations that can act against it. The
operations are often referred to as methods, and the
communication between objects requesting that
some action take place is often referred to as a
message.

A class is a template from which objects are created.

Inheritance is a property of classes that allows them
to share resources. Classes may be arranged in a
hierarchy from most general to most specific. Classes
lower in the hierarchy may inherit methods and
attributes from classes above.

Other properties that are often provided by imple-
mentations of object-oriented programming are dy-
namic binding and encapsulation.

Dynamic binding is a capability that is not unique
to object-oriented programming. However, some ob-
ject-oriented implementations provide additional
generality by providing late or dynamic binding,
which allows storage to be defined at run time rather
than at compile time.

Encapsulation is a term that describes the scope of
unrestricted reference to the attributes of an object.
In general, an object can examine and modify all of
its own attributes. However, it may be desirable to
restrict the freedom of other objects to retrieve or
replace its attribute values. To provide access to
attribute values, an object can provide accessor func-
tions to allow other objects to inquire about its
attribute values or to change them. Accessor func-
tions control access to preserve privacy and integrity
of attribute values by allowing them to be read and
replaced only when appropriate. They can also pro-
vide traps to respond gracefully to ill-timed or ill-
formed requests.

Object-oriented programming concepts may be im-
plemented in varying degrees of completeness. These
concepts have been used as the organizing principle
for an application development. They have also been
used to supplement existing languages.

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1389

Smalltalk

In Smalltalk, all data elements, including integers,
are considered as objects that have associated meth-
ods. For example, the operation “2 + 3” is inter-

There are also file streams,
windows, and graphic images

available to the application
developer.

preted as sending the “+” message with the argument
“3” to the integer object “2.” The Integer class has a
method “+” that is inherited by the instance object,
“2,” which performs the addition and returns the
sum “5” to the sender.

The object classes in Smalltalk are arranged in a class
hierarchy. For example, the Integer class is a subclass
of Number, which in turn is a subclass of Magnitude.
The class Number also has a subclass Float for
floating-point numbers and a class Fraction for exact
representations of rational numbers. Similarly, the
class Integer has subclasses for large and small inte-
gers. Each of the subclasses of Number responds to
the message “+,” although the exact implementation
of each might depend upon the class in which it is
defined. When a message is received by an object, it
looks first for a method definition to the methods of
that particular class of which it is an instance. If
none is found, the search continues to the next higher
level in the hierarchy until the appropriate method
is found.

The Smalltalk class library also contains a class
Collection that provides for subclasses that are col-
lections of numbers or other objects, including Sets,
Arrays, Strings, and others. There are also classes for
file streams, windows, and graphic images. All of
these are available to the application developer.

Everything in Smalltalk is implemented as an object.
There is one super class, called Class, which is the
root of the class hierarchy tree. Smalltalk itself is
implemented in Smalltalk, being built upon a core

TEN DYKE AND KUNZ 467


~~~ 

Table 1 Metes-and-bounds  description of a plot 

Feet  Degrees  Minutes  Seconds 

60.00 
244.84 
121.90 
30.04 

114.72 
139.74 
168.59 
112.07 

south 
south 
south 
north 
north 
north 
north 
south 

2 
25 
65 
55 
25 
58 
31 
87 

26 
0 
0 
7 
0 
2 

58 
33 

50 
0 
0 

57 
0 
0 

20 
10 

west 
east 

west 
west 
west 
west 
east 
east 

of functions  that  are directly implemented in ma- 
chine language. 

The language has tools to allow the  application  de- 
veloper to develop his own classes. These might be 
subclasses of existing classes. One might develop a 
special-purpose array  as  a subclass of the class Ar- 
rays, and  inherit  the use of all methods  that  are 
presently defined for Arrays. Or one might develop 
a class at  the highest level  of the hierarchy as 3 
subclass of Class, and make use of methods  that have 
been created by the developer only. 

An illustrative example 

The vision of object-oriented programming is that 
complex systems are created as sets of related objects 
and  that objects have attributes  and behavior. In the 
missile example, the objects were components of a 
rocket system-nozzles, trajectories, and structural 
design. Some of these objects described physical 
entities, such as  a nozzle, and others described ab- 
stractions, such as trajectories. We often find that 
systems can be represented effectively by combining 
both conceptual and concrete objects. Attributes of 
these objects include such parameters  as weight, 
diameter, trajectory profile, and  thrust profile. The 
objects in the  Minuteman system had behavior in 
that they could request information of other ob- 
jects-such as  thrust level-to use in  a  particular 
situation. They could compute new values for  attri- 
butes  and  store  the  computed values. 

This background example suggests a general theme 
in the vision  of object-oriented programming. In 
developing an application,  the  programmer asks for 
the following information: 

Objects. Identify the  conceptual  and  the physical 
objects that people specify to describe the problem 
area. 

468 TEN DYKE AND KUNZ 

Attributes. Name  the features and  important  prop- 
erties of the object. 
Behavior. State  the  action or function performed 
by the object and  what users or  other objects can 
ask of the given object. 

Our next illustration is an  application  that involves 
external data.  The  data items for this  application  are 
stored in  a file and  brought  into the object-oriented 
programming system. They  are  converted  into object 
instances within a class. On a plot of land we want 
to define a  home site that  conforms to  the town’s 
zoning laws. The law  says that  the house must be at 
least 50 feet from  any  boundary. As a surveying tool, 
we want to develop an application to  determine  the 
exact dimensions of that  portion of the plot of land 
on which a house may be  built. 

Start by thinking  about  the physical objects to be 
dealt with, beginning with the  plot of land. To de- 
scribe the  land as data,  the  example uses a legal 
description that has been copied from the  deed. 
Table I gives a description of the  actual plot in terms 
of its metes  and  bounds. A metes-and-bounds  de- 
scription is a way  of specifying land  that is based on 
the existence of a reference monument or marker, 
such as  a stake in  the  ground.  Starting at  that marker, 
a surveyor walks around  the  perimeter of the  prop- 
erty along  a series of straight-line boundaries,  ending 
each straight line with another  stake or reference 
marker. 

A surveyor uses a specialized way  of describing di- 
rection, based on the four  points of the  compass. 
Imagine that  at each stake  the surveyor faces either 
due  north or due  south,  then  turns in some direc- 
tion-either east or west-an amount no more  than 
90 degrees, and proceeds in  that  direction for the 
required distance. Degrees, minutes, and seconds are 
used for the  measure of all angles. 

Next, imagine  a  particular surveyor with whom we 
communicate only by sending messages. Let the first 
message  be our property description and  the request, 
“Send me  a description of the legal building site on 
this  property.” The surveyor has technicians  who 
will help on specific tasks. 

Thus we construct  a program in Smalltalk that  in- 
cludes object classes and instances  that behave much 
the  same  as  the  technicians  in the surveyor’s orga- 
nization. 

In the program we create  a class, Plots, that  under- 
stands  metes-and-bounds  descriptions of land. The 

IBM  SYSTEMS JOURNAL, VOL 28. NO 3, 1989 



class Plots knows that  a plot is a list composed of 
straight-line boundaries. Table 2 gives a list  of object 
classes in the example plot application. 

We add a class, Stakes, which  uses a traditional x-y 
coordinate system to determine  the location of each 
stake. Thus, for example, the  attribute FeetEast is 
the displacement in the x direction, and FeetNorth 
indicates the displacement in the y direction. 

We create another class, Boundaries, that under- 
stands line boundaries. A Boundary has three attri- 
butes, a Stake (as  just described), a Distance, and  a 
Direction. When it converts the legal description 
into  an instance of the class Plots, the program 
creates and adds the stake position data  to  the dis- 
tance and direction given in the plot description. 

Finally, a class Directions knows that  a direction 
contains five elements (attributes): (1)  either the 
word “north”  or  the word “south,” (2) an integer 
ranging from 0 to 90 degrees, (3) an integer in the 
range of 0 to 60 minutes, (4) an integer in  the range 
of 0 to 60 seconds, and (5) either the word “east” or 
the word “west.” 

Each  class  has a list of messages (with corresponding 
methods) to which  it can respond, to allow for com- 
munication between objects. We also note that  a 
class  may contain  attributes  that  are members of 
some other class. For example, Plots knows how to 
respond to  the message “shrink”  and responds with 
a metes-and-bounds description of a plot that is 
smaller. “Shrink” is the message that corresponds to 
a method in the Plots class. To solve the building- 
site application, the program user sends Plots the 
message “shrink 50 feet,” because a legal building 
site requires 50 feet  of clearance from each boundary. 

The exact syntaxes for sending messages in various 
object-oriented languages  vary, but they can resem- 
ble the assignment-statement-and-function-call syn- 
tax of traditional languages. In Smalltalk, a message 
to shrink the plot might  read as follows: 

Plot 1 shrink:50 

where Plotl is an instance object of the class Plots 
and is called the receiver of the message. Shrink is 
the message, and  the colon followed by 50 indicates 
that the number 50 is an argument to be  used in the 
corresponding method. Implementing the method 
returns a new plot that becomes a new instance of 
the class Plots, called Plot2, as follows: 

IBM SYSTEMS JOURNAL, VOL 28. NO 3, 1989 

Table 2 Object  classes in the example  plot  application 

Class  Private  Data 

Plots A list of Boundaries 
Boundaries  Stake,  Distance,  Direction 
Directions North/south, degrees,  minutes, 

seconds,  eastlwest 
Stakes  FeetNorth,  FeetEast 

Plot2 = Plotl  shrink50 . 

To implement the “shrink” method, Plots will need 
to ask Boundaries for a boundary that is turned 90 
degrees and has a length of 50 feet. 

Boundaries, in turn, asks Directions for the new 
direction with a 90-degree rotation. 

Plots, Boundaries, Directions, and Stakes are all 
subclasses of some parent class.  Each of these is an 
ordered list of items, so one implementation is to 
make each of them a subclass of the Arrays class. 
The Arrays  class  is a pre-existing  class that comes 
with the Smalltalk language and has methods for 
dealing with ordered lists. By making Arrays the 
parent, Plots, Boundaries, Directions, and Stakes 
inherit all methods and messages that  are understood 
by the class  Arrays. This includes the message that 
requests a return of that item which  is located in any 
particular integer position on  the  data list. Thus  a 
message to return the  third item to Plots causes the 
return of the  third Boundary on the plot. 

Similarly, to know the Direction indicated by a 
Boundary, send Boundaries a message to return the 
third item to obtain the correct response. However, 
this approach violates the encapsulation principle of 
object-oriented programming. A piece of data should 
not have its type or meaning determined by its 
location in a list. This principle distinguishes objects 
from data. At some future time, a programmer may 
change the internal representation of data in the 
Boundaries class. If, as a result, Direction became 
the second or fourth item, requesting the  third to get 
that information would  yield an incorrect result. 
Users of data would then become responsible for 
understanding changes that take place in internal 
data format. All methods using the message to obtain 
Direction based on its position would  now  have to 
be identified and changed, leading to  a potentially 
expensive and time-consuming maintenance bur- 

TEN DYKE AND KUNZ 469 



den. Rather, it should be the responsibility of the 
person  who makes the change in the  internal  data 
format, and only that person, to protect the users 
from the effects  of that change. 

To protect the  data user, we create a method to allow 
Boundaries to respond to  a message “direction.” At 
the same time, we can disable any message in the 

Messages and  methods  give  the 
classes  the ability to work together. 

Boundaries subclass to  return  data by position by 
creating a method for Direction that supersedes the 
one which  would otherwise be inherited. 

Now,  when we send the message “direction” to 
Boundaries, Boundaries responds with the element 
that represents Direction at  that  moment. If the 
internal representation changes, only the person 
making the change needs to change Boundaries’ 
interpretation of the message “direction.” All  classes 
that send the direction message to Boundaries con- 
tinue  to receive the correct response. 

Certainly, another approach would be to define 
Boundary not as a subclass of Array, in which  case, 
none of the Array methods would be inherited. 

Using the word direction to mean both an object and 
a message causes no confusion, because the syntax 
of our  statements makes it clear when a word is 
meant as a message and when it is meant as an 
object. To make the object-message distinction eas- 
ier, a convention has been adopted in Smalltalk. 
When a symbol represents an object, start it with a 
capital letter (Direction); when  used as a message, 
start it  with a lower-case letter (direction). 

Messages and methods give the classes the ability to 
work together. 

Another Smalltalk class, Pen, operates like a pen on 
a drawing table. We can lift it, move it, drop it, and 
draw. Using this class, we are able to translate the 
symbolic representation of the plot of land into  a 

470 TEN DYKE AND KUNZ 

graphics one. Figure 1A is a drawing of the original 
plot of land. Figure IB shows each of the boundaries 
moved toward the center by 50 feet. 

The eye immediately sees the possible building site 
enclosed by the new parallel lines, but some addi- 
tional calculation is needed to get a complete descrip- 
tion. This is shown in Figure IC by using a method 
we created to resize each boundary to  the length that 
is  defined by its intersection with the next boundary. 
The eye immediately goes to the southwest corner 
of the new plot, because there seems to be something 
wrong  with it, and indeed there is.  We  failed to 
recognize that  the new plot takes on a different and 
simpler shape than  the original. Using an editing 
method, we delete the offending boundary, recalcu- 
late the intersection, and  the result  is shown in Figure 
ID. 

By treating graphics as objects, object-oriented pro- 
gramming makes mapping symbolic information to 
pictorial information relatively  easy. It is well under- 
stood that charts, diagrams, and icons can  enhance 
the understanding of data,  and  this example again 
demonstrates that presentation can dramatically af- 
fect  how quickly data can be perceived. 

This simple example has shown  how object-oriented 
programming might be  used to create an application 
program. If,  however, object-oriented programming 
were to be  used to develop many applications of a 
particular kind-knowledge-based  systems, for ex- 
ample-one  would expect that special tools could be 
developed and made a part of the class library. 
Knowledge-based systems are heavy  users  of rule- 
based inferencing and frames, so it would be reason- 
able to  add these capabilities to  the basic  language. 

Knowledge  Engineering  Environment 

The development of the tool Knowledge Engineering 
Environment’“ (KEE) was a response to this need. 
KEE is a development environment for knowledge 
systems that uses object-oriented programming. De- 
veloped by IntelliCorp, Inc., the intended user of 
KEE is the developer of  knowledge systems at  the 
high-end of the complexity scale,  which includes 
applications of planning, scheduling, and product or 
systems design. 

In one application, for example, an airline has deter- 
mined that it can improve its revenue and profit by 
offering a certain number of reduced-fare, no-refund 
seats  for its flights. Each flight has a certain number 

IBM  SYSTEMS JOURNAL, VOL 28, NO 3. 1989 



Figure 1 (A) Plot drawing; (B) plot drawing  with parallels; (C) building site as newly described; (D) revised building site 

of these reduced-fare seats allocated. Experts in fare cate. More seats are allocated on flights that  are  not 
structures assign the  number of each fare category of expected to have a heavy demand for the regularly 
each flight, depending upon the  time of day, day of  priced  seats. Further, these expectations may change 
week, competition, nature of the market, and  the as the  date  and  time for the flight approach. 
airline’s business goals. It is a function of airline fare 
policy to determine, on a flight-by-flight and day-by- Historically, this allocation policy has been camed 
day basis, the  number of these special seats to allo- out manually. Using KEE, a knowledge-system  user 

IBM SYSTEMS JOURNAL, VOL 28. NO 3, 1989 TEN DYKE AND KUNZ 471 







Figure 2 Capabilities of the hybrid  system KEE 

OBJECT-ORIENTED PROGRAMMING 

A KEE Unit includes slots, which store the  attributes 
of the  Unit. Some slots may contain  data and others 
may contain methods. The selection of slots and 
their uses  give a KEE Unit  its personality. Each slot, 
in turn, has its own attributes, which are calledfucets. 
Facets are used for many purposes. Facets can con- 
trol the specific means by which inheritance is im- 
plemented for that particular slot. In some cases, 
local  values override inherited values, and in other 
cases  local  values are appended to inherited values. 
KEE facets  also provide a capability to establish the 
inheritance rules that govern the way a particular 

value may be derived from multiple ancestors. Facets 
are also  used to store the type of information for the 
data. If a  data slot contains  a list of elements, for 
example, one facet can define the set from which 
elements may be drawn and  another may control 
the minimum  and  maximum  number of elements 
that may be included. 

A pictorial representation of the functions offered by 
KEE is given in Figure 2. Object-oriented program- 
ming is at  the center because  it  is  viewed as the 
unifying concept of the program. The surrounding 

474 TEN DYKE AND KllNZ IBM SYSTEMS JOURNAL,  VOL 28. NO 3, 1989 



elements represent major capabilities of a KEE system 
that are implemented by the KEE Units. Following 
are explanations of these elements. 

Representation. When used for data storage, the KEE 
Unit  structure is like a frame structure with multiple 
inheritance. There might be a general KEE Unit of 
financial instruments, for example, that defines a 
share of stock or a  government  bond. All financial 
instruments have certain characteristics in  common. 
One is a  current purchase price. Another is a  term 
of duration, even if indefinite. Yet another is interest 

Graphics  can reveal  the structure 
of an application  and  its  behavior. 

or dividend to be paid. However, different instru- 
ments may have important distinctions. In  terms of 
risk and taxes, bonds differ from stocks. Government 
bonds are different from corporate  bonds  and so on. 
KEE Units can be formed to increase the ability to 
define  specific attributes for each of the separate types 
of instruments. 

Rule-based reasoning. A KEE Unit may include a 
rule slot that  forms  a part of a forward-chaining or 
backward-chaining inferencing capability. Rules and 
facts in KEE are of the same form as those found in 
PROLOG. That is, they may be an assertion without 
condition: This  is a high-risk investment is a fact. Or 
they may be an assertion with a  condition: If the 
recommended  instrument is a common stock, the 
investment may involve high risk is a rule. The rule- 
processing capability allows for the inclusion of van- 
ables. For example: If x is  a  common stock, the 
investment  has  high  risk. This statement provides 
for resolution by unification. The rule system also 
allows recursion. 

Programming language. A KEE Unit may have slots 
that store methods. In KEE, these methods  are written 
in LISP or C ,  if available. Methods are initiated on 
the receipt of a message.  As in Smalltalk, messages 
may be sent and received from other objects. 

IBM SYSTEMS JOURNAL,  VOL 28, NO 3, 1989 

Active values. Sometimes called demons in other 
systems, active values are special methods  that  are 
initiated when an item of data within the KEE Unit is 
changed or accessed.  Active values are useful  in 
simulation and model-based reasoning. One might 
use active values to warn of an impending out-of- 
bounds  condition, for example. They are also useful 
for simulating such user-interface devices as push 
buttons  and switches. 

Graphics. Graphics can reveal the  structure of an 
application and its behavior, thus showing the users 
of an application that it is correct or visually  reveal- 
ing errors in applications that  make  them incorrect. 
The KEE system includes graphics explanation  and 
debugging facilities, hard-copy graphics output, dis- 
play  of  gages and meters, and  a graphics program- 
ming language. A KEE Unit may contain  a slot for a 
graphics representation or icon and automatically 
draws upon  a hierarchy of functions available for 
graphics representation. The graphics possibilities 
include bit-mapped icons and line drawings. Also 
included are available functions such as overlaying, 
shrinking, zooming, and  translation of position. 

Mullipk worlds. Multiple worlds is a facility in KEE 
that employs a  truth-maintenance system for hypo- 
thetical reasoning. A user starts with a set of primi- 
tive facts and rules and, by proposing certain op- 
tions-new rules or facts, follows them to a logical 
conclusion. This process may lead to a  contradiction, 
which indicates that  a particular set  of facts and rules 
is inconsistent. On the  other  hand,  the process may 
lead to the creation of sets of  possible rules and facts 
that are consistent. This allows for a kind of “cut- 
and-fit’’ approach to problems to find a  particular 
combination of conditions  or  solutions  that work 
together. 

Although KEE is an object-oriented development en- 
vironment, it is not object-oriented in  the sense of 
Smalltalk for several reasons. First, with KEE the user 
has ready  access to the LISP language, which underlies 
the entire system. Thus it is not necessary to use the 
object-oriented programming facilities of KEE. Also, 
KEE encapsulates objects in a  manner different from 
that of Smalltalk. In Smalltalk, access to  an object’s 
data is available only through methods (accessor 
functions) that  are designed within the class. The 
KEE architecture allows  access to values of data  attri- 
butes of  all objects. In  other words, the scope of 
encapsulation in Smalltalk is circumscribed and the 
scope of encapsulation in KEE is broad. 

TEN  DYKE AND  KUNZ 475 



In summary, KEE is a hybrid system, combining the 
power of a functional language, LISP, with object- 
oriented programming and with an  environment 
that is  rich in function for the knowledge-systems 
developer. 

Clearly, one of the advantages of employing the 
object-oriented approach is the ability to pass the 
power of object-oriented programming to the user, 
along with a rich collection of capabilities. However, 
other advantages have accrued by this choice. KEE 
has  been an evolving product, which means  that 
change is constant,  and new capabilities are being 
experimented with and added regularly. 

For example, multiple worlds was not  a part of the 
original KEE implementation. It was important  to be 
able to integrate this new function within the original 
KEE framework. Further additions of function are 
planned, as well as the creation of new KEE systems 
for new machine architectures. Often, new personnel 
are asked to  make these changes or additions, and it 
is believed that once the basic concepts of object- 
oriented programming are understood, the  time re- 
quired for a new employee to learn the system will 
be short, compared to a non-object-oriented ap- 
proach. The ability to add this capability is a direct 
result of having already developed the basic KEE 
program, using object-oriented techniques. 

In addition, KEEconnectionTM is a recently developed 
software  bridge  between one  or more relational da- 
tabases that use the SQL query language and knowl- 
edge  bases created within the KEE environment. 
Guided by mapping information supplied by the 
application developer, KEEconnection generates SQL 
queries and transforms the  data obtained into slot 
values within KEE Units. It also provides the user 
with the ability to upload data, so that  the database 
can incorporate the results of a knowledge-based 
analysis. 

~ 

Status of object-oriented programming 

Perhaps it  is a problem of object-oriented program- 
ming that it can be  viewed so many different ways, 
from a programming language to  a programming 
style. It is perhaps best to view object-oriented pro- 
gramming as a discipline that  can be employed with 
a wide  range  of implementations in any program- 
ming language. We have  reviewed two approaches. 
Smalltalk implements all of the necessary and desir- 
able characteristics of an object-oriented program- 
ming language  except multiple inheritance. KEE is a 

I 476 TEN DYKE AND KUNZ 

hybrid language that implements most of the object- 
oriented programming features plus many additional 
functions. 

How  is object-oriented programming any better than 
the way things have  previously been done? Present 
users of object-oriented programming see  several 
benefits. 

Organization. In his book The Mythical Man 
Month," Fred Brooks makes clear that large pro- 

Object-oriented  programming  allows 
a finer degree of  subdivision. 

gramming projects are  not infinitely divisible. One 
cannot reduce the elapsed time to completion by 
putting more people on the project. Object-oriented 
programming allows for a finer degree of subdivision, 
which  is akin to  the specialization of the workforce 
brought about by interchangeable parts. Since the 
idea of interchangeable parts has been around  for 
more than three generations, few people can imagine 
what manufacturing might be like without it. Yet, 
there were some who said that  the idea was unwork- 
able because the need for closer tolerances would 
increase manufacturing cost. Over time, the concept 
of interchangeable parts had a profound effect on 
the ability to manufacture complex mechanisms. 

To create self-contained component  parts of a pro- 
gramming system and treat them independently is a 
goal similar to that of interchangeable parts. In ob- 
ject-oriented programming, each component is de- 
fined by its interface, and  a complete description of 
the interface is all that is  needed to be able to use a 
component successfully. 

Reusable code. Over time, an extensive object library 
is developed. In doing so, new functions can borrow 
heavily on those that have  preceded them, without 
the necessity  of writing wholly  new code. The hier- 
archical structure and inheritance capability allows 
for the creation of generic components  that can be 
reused in many parts of the system. 

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989 



Flexibility. The designer of each component has the 
freedom to make  internal changes that  do not affect 
the interfaces, such as  the  internal representation of 
data.  Improvements  that can be made within a class 
do not have to affect the users of that class. Thus 
there is  less concern that unexpected problems will 
occur. New  classes and  methods can be added with- 
out affecting those already there, thus allowing for 
incremental modification. These benefits, if 
achieved, result in improved programming produc- 
tivity and shortened development schedules. 

Object-oriented programming has some drawbacks, 
however.  It takes more computer processing to han- 
dle message  passing than  to perform function calls. 
Some users argue that  the difference becomes mini- 
mal as the  methods being performed become more 
complex. For simple methods  that  must be per- 
formed repeatedly, it is  possible to program a “fast 
path”  around  the message-passing delays. 

Also on the negative side is the increased training 
required. Whereas it is  relatively  easy to learn the 
basic concepts of object-oriented programming, it 
takes much longer for an individual to learn a large 
class library. Some argue that  this is not  a disadvan- 
tage, because the large library exists to provide ca- 
pabilities that become powerful tools in the  hands of 
the skilled  user. 

Some issues are not argued, but are merely questions 
the answers to which may depend upon the appli- 
cation or means of implementation. Inasmuch as 
object-oriented programming is an emerging tech- 
nology, a  number of these issues are being actively 
discussed, including the following. 

Static versus dynamic binding. There is a question 
as to whether to define a particular symbol to storage 
(binding)  at compile time or at run time. Advocates 
of compile-time static binding say that it helps to 
discover errors at  that  time,  and  the program ulti- 
mately runs faster. Others say that  run-time  dynamic 
binding frees the developer from the  constraints of 
having to make such  fixed decisions that may ulti- 
mately lead to more complex programs. A compro- 
mise position says that  dynamic binding is best  in 
the early development phases of a project, but that 
static binding is better later on, when the  product is 
going to be installed for general use. 

Static versus dynamic typing. The issue is similar to 
that of dynamic binding as to whether to determine 
a particular data element’s type at compile time or 
run time. 

IBM SYSTEMS JOURNAL, VOL 28. NO 3, 1989 

Single versus multiple inheritance. Single inheritance 
derives from the classic tree hierarchy of classes, 
wherein each class has at most a single parent class. 
Multiple inheritance derives from the frame concept 
and argues that  the tree structure is too limiting. 
Some objects can legitimately belong to more  than 
one hierarchical structure. People, for example, 
might for some purposes be  classified as  men  and 
women, and for other purposes as regular employees 
and  temporary employees. It  is not  true  that  one 
form of inheritance is  right and  the  other is wrong, 
but  some languages today permit only a single in- 
heritance path. 

Interfacing with large databases. The basic concept 
of a database is contrary to the concept of an object. 
That is, the user of the  data is not protected from 
changes in representation and  must know how to 
use the  data. An effective commercial system, how- 
ever, is likely to use  large databases and may also 
use a variety of programs and programming tech- 
niques with it. Initially, some of these programs may 
be object-oriented programs and  others  not. There- 
fore, there is a need for a bridge between the tradi- 
tional view of data  and  the object view,  which prob- 
ably means that with object-oriented programming 
the  data will be temporarily converted into  an object 
form. Upon  completion of processing, appropriate 
modifications will be made to the originating data- 
base, as KEEconnection provides. In the  future, object 
capability may be added to database management 
systems to provide for some of the benefits of encap- 
sulation. 

Storage management. Storage management is the 
necessity to reclaim working storage that is no longer 
needed. LISP has a built-in “garbage collection” tech- 
nique that periodically reclaims unused space. Small- 
talk has methods for reclaiming space released by 
objects that no longer have references to  them. In 
large systems, paging  is the  means of overlaying 
storage that has not been used for some  time with 
new data  that is likely to be  used. 

The basic question is whether storage management 
should be the responsibility of the object-oriented 
language, as in Smalltalk, or of the system. There 
may  be some dependence upon whether the language 
being used employs static binding, where the system 
manages the storage, or dynamic binding, where the 
language  polices its own storage use. 

In the Objective C and C++ implementations, stor- 
age management is left to the responsibility of the 
system or the application programmer. 

TEN  DYKE AND  KUNZ 477 



Concluding  remarks 

Object-oriented programming is one way of  using 
the continually improving capabilities of computer 
technology to provide improvements in programmer 
productivity and user function. Object-oriented pro- 
gramming is  being  used for a wide  range of applica- 
tions, particularly for knowledge-based systems in- 
volving  close human interaction and  judgment.  It 
may also be  used as a tool for specifying and building 
large, integrated data processing  systems. 

This paper has reviewed Smalltalk as one example 
of a large  system and  the Knowledge Engineering 
Environment (KEE) as another, with emphasis on 
object-oriented programming as  a vision and as a set 
of programming techniques. In our experience, the 
vision and  the techniques have great value in pro- 
gramming as we build large systems that have  long 
life  cycles.  We  find the vision and  the techniques 
immediately relevant to  a central role in knowledge 
systems. 

The C++ system is a registered trademark  of  American  Telephone 
and Telegraph, Inc. 
The Knowledge Engineering Environment system is a  trademark 
of IntelliCorp, Inc., and  the  KEE system is a registered trademark 
of IntelliCorp,  Inc. 
KEEconnection software is a  trademark  of  IntelliCorp, Inc. 
KEE/370 is the IBM version of IntelliCorp’s KEE system. 
The Objective-C system is a  trademark  of  Stepstone,  Inc. 

Cited  references 

1. A. Goldberg  and  D.  Robson, Smalllalk-XO, Addison-Wesley 
Publishing Co., Reading, MA (1983). 

2. 0. J .  Dahl, B. Myhrhaug,  and  K.  Nygaard,  “The  SIMULA67 
Common Base Language,” Publication S-2, Norwegian Com- 
puting  Center, Oslo (May 1968). 

3. B. Meyer, Object-Oriented Software Construction, Prentice 
Hall, Inc., Englewood Cliffs, NJ (1988). 

4. B. Stroustrup, The C++ Programming Language, Addison- 
Wesley Publishing Co., Reading, MA ( 1  986). 

5.  B. J .  Cox, Object-Oriented Programming: An Evolutionary 
Approach, Addison-Wesley Publishing Co., Reading, MA 
(1986). 

6. D. Weinreb  and  D.  Moon, “Objects, message passing, and 
flavors,” LISP Machine  Manual, Symbolics, Inc. (July 198 I ) .  

7. D. Bobrow and M. Stefik, The  LOOPS  Manual, Xerox Cor- 
poration (1983). 

8. R. Fikes and  T.  Kehler,  “The role of frame-based representa- 
tion in reasoning,” Communications of the ACM 28, No.  9, 
904-920 (September 1985). 

9.  P. Wegner, “Dimensions  of object-based language design,” 
OOPSLA ‘87 Conference Proceedings, October 4-8, 1987, 
Orlando, FL, N. Meyrowitz, Editor: sponsored by the Associ- 
ation  for  Computing  Machinery, 11  West 42nd Street, New 
York,  NY (1987), pp. 168-182. 

10. F. P. Brooks, Jr., The  Mythical  Man  Month, Addison-Wesley 
Publishing Co., Reading, MA (1979). 

Richard P. Ten Dyke P.O. Box  789, Bedford, New York 10506. 
Mr. Ten  Dyke is an independent  consultant working in  the field 
of advanced  application technology. Prior to his retirement  from 
IBM, he was the assistant for business analysis  for Advanced 
Systems, Enterprise Systems, where he worked in  the Artificial 
Intelligence Project office. He holds a B.S. degree from  the  Uni- 
versity of  Minnesota,  and an M.B.A. from  Harvard University. 

John  Kunz InteNiCorp, 1975 El Camino  Real  West,  Mounlain 
View, California 94040. Dr.  Kunz is chief knowledge-systems 
engineer and  director of manufacturing  applications  at  IntelliCorp. 
He is one of the  initial developers of  the  IntelliCorp  KEE system 
and has since developed applications systems in diverse areas 
including  experiment design for  molecular biologists, power plant 
control,  petroleum  exploration, project management,  and factory 
scheduling. Prior to  joining  IntelliCorp, he directed  development 
of the  PUFF medical diagnosis system, the first Artificial Intelli- 
gence-based system to  be used routinely.  Author of numerous 
articles and  book  chapters, he has  also  spoken to many  groups on 
Artificial Intelligence and  its  applications. Originally trained  in 
engineering and  computer science at  Dartmouth  and UCLA, his 
Ph.D.  emphasized  computer science and physiology at  Stanford. 

Reprint  Order  No.  G321-5370. 

I 478 TEN DYKE AND KUNZ IBM SYSTEMS JOURNAL, VOL 28. NO 3, 1989 


