Object-oriented
programming

Object-oriented programming involves a new way of
thinking about and programming applications. The
thought process and techniques are introduced
through a discussion of the language Smalitalk and
through an illustrative example. These concepts are
extended to a hybrid functional language, object-
oriented system, KEE*, and illustrated through the
use of knowledge-based system examples.

bject-oriented programming can trace its roots

to the earliest uses of the computer, yet it is
thought of by many as a new programming meth-
odology. It has been implemented as a programming
language, and its ideas and constructs have been
added to existing languages. Still, many who work
with computers are unfamiliar with object-oriented
programming and how it is distinguished from
more conventional programming methods. Object-
oriented programming is a methodology that em-
ploys data abstractions, called objects, as the basic
structure of the program. A data abstraction is a
way of defining data by the way in which it may be
used, rather than by what it is. Goldberg and
Robson' propose the following three views of object-
oriented programming:

s A vision, or a way of organizing a system descrip-

tion. The central intuition in the object-oriented
vision is that systems can be built by describing

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

by R. P. Ten Dyke
J. C. Kunz

sets of related objects and that objects have attri-
butes and behavior.

s A set of programming techniques that specifically
includes techniques to manipulate objects, attri-
butes, and behaviors.

s A Jarge complex system that enables and encour-
ages programmers to create applications using the
object-oriented vision and that provides tech-
niques to manipulate objects, attributes, and be-
haviors.

This paper describes object-oriented programming
as an important and continuing evolution of pro-
gramming methodology and focuses on its use in
developing knowledge systems. Our purpose is not
to achieve the technical depth that would be achieved
through user manuals for specific object-oriented
programming languages or through other means.
Rather, it is our purpose to put object-oriented pro-
gramming in perspective so as to give readers a
clearer view of where it fits into the program devel-
opment picture and an understanding of some of its
important benefits.

© Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

TEN DYKE AND KUNZ 465




Early background

The basic principles of object-oriented programming
date from the early commercial uses of computers.
For example, the Minuteman missile was designed
by computer in 1957, using primitive object-oriented
techniques. The design was divided into a handful
of related discrete components. One component
dealt with the structural design. Another considered

Object-oriented programming is like
having a group of specialists
working together to solve a problem.

drag for the portion of flight that took place in the
atmosphere. A third component dealt specifically
with nozzle design to determine thrust under various
speed and atmospheric conditions. A trajectory com-
ponent had two parts: powered flight (the engines
firing) and free flight (all fuel exhausted). Additional
components included one that would oversee the
whole operation, including the detachment of fuel
tanks as the fuel in each tank became exhausted.
The system provided for the passing of information
between the components. For example, the trajec-
tory component might ask the nozzle component
which thrust levels to use for each speed and altitude,
and the structure component might ask the nozzle
component what weight to add to the structure.

Each of the components was created by a specialist
who had a unique expertise, for no single individual
had the breadth of knowledge to create the whole
program. Each specialist determined what informa-
tion would be needed from the others in order to
complete one portion of the design. Each of the
program components was encapsulated, that is, it
had its private data and was virtually a separate
program with its own methods and procedures that
would apply to those data. By sending data and
commands between the components and by using
key design parameters supplied by the operator, the
computer program designed and simulated the flight
of experimental missiles in the computer. After a
large number of these experiments, one design spec-
ification was chosen by the engineers.

466 TEN DYKE AND KUNZ

Object-oriented programming as we currently con-
ceive it was not known or used in 1957. However,
the current term object is a suitable substitute for the
term component of the missile design program. The
missile specialists effectively developed the design
program as though they were working together, pass-
ing information back and forth. Similarly, in object-
oriented programming, the objects are made up of
private data and methods, and they communicate
with each other through the use of messages, which
may contain data arguments. In this way, object-
oriented programming is like having a group of
specialists working together to solve a problem.

In the missile design program, it was necessary to
design a system for keeping track of the status of
each of the components and for determining which
information to send where. In today’s object-ori-
ented programming, these functions are formalized
and generalized so as to apply to many different
kinds of objects.

A need to find more general solutions to simulation
problems and the formalization of the concepts of
data abstraction led to the development, in the
1960s, of an Algol-based language, sIMULA67.” This
language introduced the concept of class, which is
the implementation of a data abstraction through
encapsulation, and the concept of a class hierarchy
to permit the inheritance of methods. This general-
ized the approach used by the missile design program
to break a complex problem into smaller, more
manageable parts.

It was important to the development of object-ori-
ented programming to recognize that data abstrac-
tion was suitable for many different classes of prob-
lems, not just for simulation. Using SIMULA67 as a
springboard, the language Smalltalk was developed
at the Xerox Corporation’s Palo Alto Research Cen-
ter. Smalltalk has further formalized the notion of
objects and message passing among objects.

Other languages have been developed by adding
object-oriented constructs to existing procedural or
functional languages. For example, the languages
EIFFEL,” C++®,* and Objective-C™ are extensions
of the C language. FLAVORS® is an object-oriented
extension to LISP, and LOOPS’ and KEE®® are program-
ming environments that use object-oriented pro-
gramming as a functional building block. It is also
possible to consider object-oriented programming as
a programming style, rather than as a language, and
build object-oriented programs using existing pro-
cedural or functional languages.

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989




There is no complete agreement on all of the func-
tions that must be present for a language or system
to be called “object-oriented.” In 1987 Peter Wegner
proposed that the term object-based be used for
languages supporting objects, and object-oriented for
languages supporting objects, classes, and inheri-
tance.

An object consists of data that are tightly coupled
with all of the operations that can act against it. The
operations are often referred to as methods, and the
communication between objects requesting that
some action take place is often referred to as a
message.

A class is a template from which objects are created.

Inheritance is a property of classes that allows them
to share resources. Classes may be arranged in a
hierarchy from most general to most specific. Classes
lower in the hierarchy may inherit methods and
attributes from classes above.

Other properties that are often provided by imple-
mentations of object-oriented programming are dy-
namic binding and encapsulation.

Dynamic binding is a capability that is not unique
to object-oriented programming. However, some ob-
ject-oriented implementations provide additional
generality by providing late or dynamic binding,
which allows storage to be defined at run time rather
than at compile time.

Encapsulation is a term that describes the scope of
unrestricted reference to the attributes of an object.
In general, an object can examine and modify all of
its own attributes. However, it may be desirable to
restrict the freedom of other objects to retrieve or
replace its attribute values. To provide access to
attribute values, an object can provide accessor func-
tions to allow other objects to inquire about its
attribute values or to change them. Accessor func-
tions control access to preserve privacy and integrity
of attribute values by allowing them to be read and
replaced only when appropriate. They can also pro-
vide traps to respond gracefully to ill-timed or ill-
formed requests.

Object-oriented programming concepts may be im-
plemented in varying degrees of completeness. These
concepts have been used as the organizing principle
for an application development. They have also been
used to supplement existing languages.

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

Smalltalk

In Smalltalk, all data elements, including integers,
are considered as objects that have associated meth-
ods. For example, the operation “2 + 3” is inter-

There are also file streams,
windows, and graphic images
available to the application
developer.

preted as sending the “+” message with the argument
“3” to the integer object “2.” The Integer class has a
method “+” that is inherited by the instance object,
“2,” which performs the addition and returns the
sum “5” to the sender.

The object classes in Smalltalk are arranged in a class
hierarchy. For example, the Integer class is a subclass
of Number, which in turn is a subclass of Magnitude.
The class Number also has a subclass Float for
floating-point numbers and a class Fraction for exact
representations of rational numbers. Similarly, the
class Integer has subclasses for large and small inte-
gers. Each of the subclasses of Number responds to
the message “-+,” although the exact implementation
of each might depend upon the class in which it is
defined. When a message is received by an object, it
looks first for a method definition to the methods of
that particular class of which it is an instance. If
none is found, the search continues to the next higher
level in the hierarchy until the appropnate method
is found.

The Smalltalk class library also contains a class
Collection that provides for subclasses that are col-
lections of numbers or other objects, including Sets,
Arrays, Strings, and others. There are also classes for
file streams, windows, and graphic images. All of
these are available to the application developer.

Everything in Smalltalk is implemented as an object.
There is one super class, called Class, which is the
root of the class hierarchy tree. Smalltalk itself is
implemented in Smalltalk, being built upon a core

TEN DYKE AND KUNZ 467




Table 1 Metes-and-bounds description of a plot

Feet Degrees Minutes Seconds

60.00 south 2 26 50 west
244 .84 south 25 0 0 east
121.90 south 65 0 0 west

30.04 north 55 7 57 west
114.72 north 25 0 0 west
139.74 north 58 2 0 west
168.59 north 31 58 20 east
112.07 south 87 33 10 east

of functions that are directly implemented in ma-
chine language.

The language has tools to allow the application de-
veloper to develop his own classes. These might be
subclasses of existing classes. One might develop a
special-purpose array as a subclass of the class Ar-
rays, and inherit the use of all methods that are
presently defined for Arrays. Or one might develop
a class at the highest level of the hierarchy as a
subclass of Class, and make use of methods that have
been created by the developer only.

An illustrative example

The vision of object-oriented programming is that
complex systems are created as sets of related objects
and that objects have attributes and behavior. In the
missile example, the objects were components of a
rocket system—nozzles, trajectories, and structural
design. Some of these objects described physical
entities, such as a nozzle, and others described ab-
stractions, such as trajectories. We often find that
systems can be represented effectively by combining
both conceptual and concrete objects. Attributes of
these objects include such parameters as weight,
diameter, trajectory profile, and thrust profile. The
objects in the Minuteman system had behavior in
that they could request information of other ob-
jects—such as thrust level—to use in a particular
situation. They could compute new values for attri-
butes and store the computed values.

This background example suggests a general theme
in the vision of object-oriented programming. In
developing an application, the programmer asks for
the following information:

¢ Objects. Identify the conceptual and the physical
objects that people specify to describe the problem
area.

468 vEN DYKE AND KUNZ

o Attributes. Name the features and important prop-
erties of the object.

e Behavior. State the action or function performed
by the object and what users or other objects can
ask of the given object.

Our next illustration is an application that involves
external data. The data items for this application are
stored in a file and brought into the object-oriented
programming system. They are converted into object
instances within a class. On a plot of land we want
to define a home site that conforms to the town’s
zoning laws. The law says that the house must be at
least 50 feet from any boundary. As a surveying tool,
we want to develop an application to determine the
exact dimensions of that portion of the plot of land
on which a house may be built.

Start by thinking about the physical objects to be
dealt with, beginning with the plot of land. To de-
scribe the land as data, the example uses a legal
description that has been copied from the deed.
Table | gives a description of the actual plot in terms
of its metes and bounds. A metes-and-bounds de-
scription is a way of specifying land that is based on
the existence of a reference monument or marker,
such as a stake in the ground. Starting at that marker,
a surveyor walks around the perimeter of the prop-
erty along a series of straight-line boundaries, ending
each straight line with another stake or reference
marker.

A surveyor uses a specialized way of describing di-
rection, based on the four points of the compass.
Imagine that at each stake the surveyor faces either
due north or due south, then turns in some direc-
tion—either east or west—an amount no more than
90 degrees, and proceeds in that direction for the
required distance. Degrees, minutes, and seconds are
used for the measure of all angles.

Next, imagine a particular surveyor with whom we
communicate only by sending messages. Let the first
message be our property description and the request,
“Send me a description of the legal building site on
this property.” The surveyor has technicians who
will help on specific tasks.

Thus we construct a program in Smalltalk that in-
cludes object classes and instances that behave much
the same as the technicians in the surveyor’s orga-
nization.

In the program we create a class, Plots, that under-
stands metes-and-bounds descriptions of land. The

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989




class Plots knows that a plot is a list composed of
straight-line boundaries. Table 2 gives a list of object
classes in the example plot application.

We add a class, Stakes, which uses a traditional x-y
coordinate system to determine the location of each
stake. Thus, for example, the attribute FeetEast is
the displacement in the x direction, and FeetNorth
indicates the displacement in the y direction.

We create another class, Boundaries, that under-
stands line boundaries. A Boundary has three attri-
butes, a Stake (as just described), a Distance, and a
Direction. When it converts the legal description
into an instance of the class Plots, the program
creates and adds the stake position data to the dis-
tance and direction given in the plot description.

Finally, a class Directions knows that a direction
contains five elements (attributes): (1) either the
word “north” or the word “south,” (2) an integer
ranging from 0 to 90 degrees, (3) an integer in the
range of 0 to 60 minutes, (4) an integer in the range
of 0 to 60 seconds, and (5) either the word “east” or
the word “west.”

Each class has a list of messages (with corresponding
methods) to which it can respond, to allow for com-
munication between objects. We also note that a
class may contain attributes that are members of
some other class. For example, Plots knows how to
respond to the message “shrink” and responds with
a metes-and-bounds description of a plot that is
smaller. “Shrink” is the message that corresponds to
a method in the Plots class. To solve the building-
site application, the program user sends Plots the
message “shrink 50 feet,” because a legal building
site requires 50 feet of clearance from each boundary.

The exact syntaxes for sending messages in various
object-oriented languages vary, but they can resem-
ble the assignment-statement-and-function-call syn-
tax of traditional languages. In Smalitalk, a message
to shrink the plot might read as follows:

Plot1 shrink:50

where Plotl is an instance object of the class Plots
and is called the receiver of the message. Shrink is
the message, and the colon followed by 50 indicates
that the number 50 is an argument to be used in the
corresponding method. Implementing the method
returns a new plot that becomes a new instance of
the class Plots, called Plot2, as follows:

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

Table 2 Obiject classes in the example plot application

Class Private Data
Plots A list of Boundaries
Boundaries Stake, Distance, Direction
Directions North/south, degrees, minutes,
seconds, east/west
Stakes FeetNorth, FeetEast

Plot2 = Plot! shrink:50 .

To implement the “shrink” method, Plots will need
to ask Boundaries for a boundary that is turned 90
degrees and has a length of 50 feet.

Boundaries, in turn, asks Directions for the new
direction with a 90-degree rotation.

Plots, Boundaries, Directions, and Stakes are all
subclasses of some parent class. Each of these is an
ordered list of items, so one implementation is to
make each of them a subclass of the Arrays class.
The Arrays class is a pre-existing class that comes
with the Smalltalk language and has methods for
dealing with ordered lists. By making Arrays the
parent, Plots, Boundaries, Directions, and Stakes
inherit all methods and messages that are understood
by the class Arrays. This includes the message that
requests a return of that item which is located in any
particular integer position on the data list. Thus a
message to return the third item to Plots causes the
return of the third Boundary on the plot.

Similarly, to know the Direction indicated by a
Boundary, send Boundaries a message to return the
third item to obtain the correct response. However,
this approach violates the encapsulation principle of
object-oriented programming. A piece of data should
not have its type or meaning determined by its
location in a list. This principle distinguishes objects
from data. At some future time, a programmer may
change the internal representation of data in the
Boundaries class. If, as a result, Direction became
the second or fourth item, requesting the third to get
that information would yield an incorrect result.
Users of data would then become responsible for
understanding changes that take place in internal
data format. All methods using the message to obtain
Direction based on its position would now have to
be identified and changed, leading to a potentially
expensive and time-consuming maintenance bur-

TEN DYKE AND KUNZ 469




den. Rather, it should be the responsibility of the
person who makes the change in the internal data
format, and only that person, to protect the users
from the effects of that change.

To protect the data user, we create a method to allow

Boundaries to respond to a message “direction.” At
the same time, we can disable any message in the

Messages and methods give the
classes the ability to work together.

Boundaries subclass to return data by position by
creating a method for Direction that supersedes the
one which would otherwise be inherited.

Now, when we send the message “direction” to
Boundaries, Boundaries responds with the element
that represents Direction at that moment. If the
internal representation changes, only the person
making the change needs to change Boundaries’
interpretation of the message “direction.” All classes
that send the direction message to Boundaries con-
tinue to receive the correct response.

Certainly, another approach would be to define
Boundary not as a subclass of Array, in which case,
none of the Array methods would be inherited.

Using the word direction to mean both an object and
a message causes no confusion, because the syntax
of our statements makes it clear when a word is
meant as a message and when it is meant as an
object. To make the object-message distinction eas-
ier, a convention has been adopted in Smalltalk.
When a symbol represents an object, start it with a
capital letter (Direction); when used as a message,
start it with a lower-case letter (direction).

Messages and methods give the classes the ability to
work together.

Another Smalltalk class, Pen, operates like a pen on
a drawing table. We can lift it, move it, drop it, and
draw. Using this class, we are able to translate the
symbolic representation of the plot of land into a

470 TEN DYKE AND KUNZ

graphics one, Figure 1A is a drawing of the original
plot of land. Figure 1B shows each of the boundaries
moved toward the center by 50 feet.

The eye immediately sees the possible building site
enclosed by the new parallel lines, but some addi-
tional calculation is needed to get a complete descrip-
tion. This is shown in Figure IC by using a method
we created to resize each boundary to the length that
is defined by its intersection with the next boundary.
The eye immediately goes to the southwest corner
of the new plot, because there seems to be something
wrong with it, and indeed there is. We failed to
recognize that the new plot takes on a different and
simpler shape than the original. Using an editing
method, we delete the offending boundary, recalcu-
late the intersection, and the result is shown in Figure
ID.

By treating graphics as objects, object-oriented pro-
gramming makes mapping symbolic information to
pictorial information relatively easy. It is well under-
stood that charts, diagrams, and icons can enhance
the understanding of data, and this example again
demonstrates that presentation can dramatically af-
fect how quickly data can be perceived.

This simple example has shown how object-oriented
programming might be used to create an application
program. If, however, object-oriented programming
were to be used to develop many applications of a
particular kind—knowledge-based systems, for ex-
ample—one would expect that special tools could be
developed and made a part of the class library.
Knowledge-based systems are heavy users of rule-
based inferencing and frames, so it would be reason-
able to add these capabilities to the basic language.

Knowledge Engineering Environment

The development of the tool Knowledge Engineering
Environment™ (KEE) was a response to this need.
KEE is a development environment for knowledge
systems that uses object-oriented programming. De-
veloped by IntelliCorp, Inc., the intended user of
KEE is the developer of knowledge systems at the
high-end of the complexity scale, which includes
applications of planning, scheduling, and product or
systems design.

In one application, for example, an airline has deter-
mined that it can improve its revenue and profit by
offering a certain number of reduced-fare, no-refund
seats for its flights. Each flight has a certain number

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989




Figure 1 (A} Plot drawing; (B) plot drawing with parallels; (C) building site as newly described; (D) revised building site

of these reduced-fare seats allocated. Experts in fare
structures assign the number of each fare category of
each flight, depending upon the time of day, day of
week, competition, nature of the market, and the
airline’s business goals. It is a function of airline fare
policy to determine, on a flight-by-flight and day-by-
day basis, the number of these special seats to allo-

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

cate. More seats are allocated on flights that are not
expected to have a heavy demand for the regularly
priced seats. Further, these expectations may change
as the date and time for the flight approach.

Historically, this allocation policy has been carried
out manually. Using KEE, a knowledge-system user

TEN DYKE AND kunz 471




Representative

KEE
Applications

The KEE system has been
used for many kinds of
knowledge-processing appli-
cations. Three representative
examples are the following
diagnostic, analysis, and
planning applications:

472 TEN DYKE AND KUNZ BM SYSTEMS JOURNAL, VOL 28, NO 3, 1989




i

&
g

s

SYSTEMS JOURNAL, VOL 28, NO 3, 1989 TEN DYKE AND kunz 473




Figure 2 Capabilities of the hybrid system KEE

e_N—‘-ATION

OBJECT-ORIENTED PROGRAMMING

A KEE Unit includes s/ots, which store the attributes
of the Unit. Some slots may contain data and others
may contain methods. The selection of slots and
their uses give a KEE Unit its personality. Each slot,
in turn, has its own attributes, which are called facers.
Facets are used for many purposes. Facets can con-
trol the specific means by which inheritance is im-
plemented for that particular slot. In some cases,
local values override inherited values, and in other
cases local values are appended to inherited values.
KEE facets also provide a capability to establish the
inheritance rules that govern the way a particular

474 TEN DYKE AND KUNZ

value may be derived from multiple ancestors. Facets
are also used to store the type of information for the
data. If a data slot contains a list of elements, for
example, one facet can define the set from which
elements may be drawn and another may control
the minimum and maximum number of elements
that may be included.

A pictorial representation of the functions offered by
KEE is given in Figure 2. Object-oriented program-
ming is at the center because it is viewed as the
unifying concept of the program. The surrounding

IBM SYSTEMS JOURNAL, VOL. 28, NO 3, 1988




elements represent major capabilities of a KEE system
that are implemented by the KEg Units. Following
are explanations of these elements,

Representation. When used for data storage, the KEE
Unit structure is like a frame structure with multiple
inheritance. There might be a general KEE Unit of
financial instruments, for example, that defines a
share of stock or a government bond. All financial
instruments have certain characteristics in common.
One is a current purchase price. Another is a term
of duration, even if indefinite. Yet another is interest

Graphics can reveal the structure
of an application and its behavior.

or dividend to be paid. However, different instru-
ments may have important distinctions. In terms of
risk and taxes, bonds differ from stocks. Government
bonds are different from corporate bonds and so on.
KEE Units can be formed to increase the ability to
define specific attributes for each of the separate types
of instruments.

Rule-based reasoning. A KEE Unit may include a
rule slot that forms a part of a forward-chaining or
backward-chaining inferencing capability. Rules and
facts in KEE are of the same form as those found in
PROLOG. That is, they may be an assertion without
condition: This is a high-risk investment is a fact. Or
they may be an assertion with a condition: If the
recommended instrument is a common stock, the
investment may involve high risk is a rule. The rule-
processing capability allows for the inclusion of vari-
ables. For example: If x is a common stock, the
investment has high risk. This statement provides
for resolution by unification. The rule system also
allows recursion.

Programming language. A KEE Unit may have slots
that store methods. In KEE, these methods are written
in LIsp or C, if available. Methods are initiated on
the receipt of a message. As in Smalltalk, messages
may be sent and received from other objects.

BM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

Active values. Sometimes called demons in other
systems, active values are special methods that are
initiated when an item of data within the KEg Unit is
changed or accessed. Active values are useful in
simulation and model-based reasoning. One might
use active values to warn of an impending out-of-
bounds condition, for example. They are also useful
for simulating such user-interface devices as push
buttons and switches.

Graphics. Graphics can reveal the structure of an
application and its behavior, thus showing the users
of an application that it is correct or visually reveal-
ing errors in applications that make them incorrect.
The KEE system includes graphics explanation and
debugging facilities, hard-copy graphics output, dis-
play of gages and meters, and a graphics program-
ming language. A KEE Unit may contain a slot for a
graphics representation or icon and automatically
draws upon a hierarchy of functions available for
graphics representation. The graphics possibilities
include bit-mapped icons and line drawings, Also
included are available functions such as overlaying,
shrinking, zooming, and translation of position.

Multiple worlds. Multiple worlds is a facility in KEE
that employs a truth-maintenance system for hypo-
thetical reasoning. A user starts with a set of primi-
tive facts and rules and, by proposing certain op-
tions—new rules or facts, follows them to a logical
conclusion. This process may lead to a contradiction,
which indicates that a particular set of facts and rules
is inconsistent. On the other hand, the process may
lead to the creation of sets of possible rules and facts
that are consistent. This allows for a kind of “cut-
and-fit” approach to problems to find a particular
combination of conditions or solutions that work
together.

Although KEE is an object-oriented development en-
vironment, it is not object-oriented in the sense of
Smalltalk for several reasons. First, with KEE the user
has ready access to the Lisp language, which underlies
the entire system. Thus it is not necessary to use the
object-oriented programming facilities of KEE. Also,
KEE encapsulates objects in a manner different from
that of Smalltalk. In Smalltalk, access to an object’s
data is available only through methods (accessor
functions) that are designed within the class. The
KEE architecture allows access to values of data attri-
butes of all objects. In other words, the scope of
encapsulation in Smalltalk is circumscribed and the
scope of encapsulation in KEE is broad.

TEN DYKE AND kUNZ 475




In summary, KEE is a hybrid system, combining the
power of a functional language, LiSP, with object-
oriented programming and with an environment
that is rich in function for the knowledge-systems
developer.

Clearly, one of the advantages of employing the
object-oriented approach is the ability to pass the
power of object-oriented programming to the user,
along with a rich collection of capabilities. However,
other advantages have accrued by this choice. KEE
has been an evolving product, which means that
change is constant, and new capabilities are being
experimented with and added regularly.

For example, multiple worlds was not a part of the
original KEE implementation. It was important to be
able to integrate this new function within the original
KEE framework. Further additions of function are
planned, as well as the creation of new KEE systems
for new machine architectures. Often, new personnel
are asked to make these changes or additions, and it
is believed that once the basic concepts of object-
oriented programming are understood, the time re-
quired for a new employee to learn the system will
be short, compared to a non-object-oriented ap-
proach. The ability to add this capability is a direct
result of having already developed the basic KEE
program, using object-oriented techniques.

In addition, KEEconnection™ is a recently developed
software bridge between one or more relational da-
tabases that use the sQL query language and knowl-
edge bases created within the KEE environment.
Guided by mapping information supplied by the
application developer, KEEconnection generates SQL
queries and transforms the data obtained into slot
values within KEE Units. It also provides the user
with the ability to upload data, so that the database
can incorporate the results of a knowledge-based
analysis.

Status of object-oriented programming

Perhaps it is a problem of object-oriented program-
ming that it can be viewed so many different ways,
from a programming language to a programming
style. It is perhaps best to view object-oriented pro-
gramming as a discipline that can be employed with
a wide range of implementations in any program-
ming language. We have reviewed two approaches.
Smalltalk implements all of the necessary and desir-
able characteristics of an object-oriented program-
ming language except multiple inheritance. KEE is a

476 TEN DYKE AND KUNZ

hybrid language that implements most of the object-
oriented programming features plus many additional
functions.

How is object-oriented programming any better than
the way things have previously been done? Present
users of object-oriented programming see several
benefits.

Organization. In his book The Mythical Man
Month,'® Fred Brooks makes clear that large pro-

Object-oriented programming allows
a finer degree of subdivision.

gramming projects are not infinitely divisible. One
cannot reduce the elapsed time to completion by
putting more people on the project. Object-oriented
programming allows for a finer degree of subdivision,
which is akin to the specialization of the workforce
brought about by interchangeable parts. Since the
idea of interchangeable parts has been around for
more than three generations, few people can imagine
what manufacturing might be like without it. Yet,
there were some who said that the idea was unwork-
able because the need for closer tolerances would
increase manufacturing cost. Over time, the concept
of interchangeable parts had a profound effect on
the ability to manufacture complex mechanisms.

To create self-contained component parts of a pro-
gramming system and treat them independently is a
goal similar to that of interchangeable parts. In ob-
ject-oriented programming, each component is de-
fined by its interface, and a complete description of
the interface is all that is needed to be able to use a
component successfully.

Reusable code. Over time, an extensive object library
is developed. In doing so, new functions can borrow
heavily on those that have preceded them, without
the necessity of writing wholly new code. The hier-
archical structure and inheritance capability allows
for the creation of generic components that can be
reused in many parts of the system.

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989




Flexibility. The designer of each component has the
freedom to make internal changes that do not affect
the interfaces, such as the internal representation of
data. Improvements that can be made within a class
do not have to affect the users of that class. Thus
there is less concern that unexpected problems will
occur. New classes and methods can be added with-
out affecting those already there, thus allowing for
incremental modification. These benefits, if
achieved, result in improved programming produc-
tivity and shortened development schedules.

Object-oriented programming has some drawbacks,
however. It takes more computer processing to han-
dle message passing than to perform function calls.
Some users argue that the difference becomes mini-
mal as the methods being performed become more
complex. For simple methods that must be per-
formed repeatedly, it is possible to program a “fast
path” around the message-passing delays.

Also on the negative side is the increased training
required. Whereas it is relatively easy to learn the
basic concepts of object-oriented programming, it
takes much longer for an individual to learn a large
class library. Some argue that this is not a disadvan-
tage, because the large library exists to provide ca-
pabilities that become powerful tools in the hands of
the skilled user.

Some issues are not argued, but are merely questions
the answers to which may depend upon the appli-
cation or means of implementation. Inasmuch as
object-oriented programming is an emerging tech-
nology, a number of these issues are being actively
discussed, including the following.

Static versus dynamic binding. There is a question
as to whether to define a particular symbol to storage
(binding) at compile time or at run time. Advocates
of compile-time static binding say that it helps to
discover errors at that time, and the program ulti-
mately runs faster. Others say that run-time dynamic
binding frees the developer from the constraints of
having to make such fixed decisions that may ulti-
mately lead to more complex programs. A compro-
mise position says that dynamic binding is best in
the early development phases of a project, but that
static binding is better later on, when the product is
going to be installed for general use.

Static versus dynamic typing. The issue is similar to
that of dynamic binding as to whether to determine
a particular data element’s type at compile time or
run time.

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

Single versus multiple inheritance. Single inheritance
derives from the classic tree hierarchy of classes,
wherein each class has at most a single parent class.
Multiple inheritance derives from the frame concept
and argues that the tree structure is too limiting.
Some objects can legitimately belong to more than
one hierarchical structure. People, for example,
might for some purposes be classified as men and
women, and for other purposes as regular employees
and temporary employees. It is not true that one
form of inheritance is right and the other is wrong,
but some languages today permit only a single in-
heritance path.

Interfacing with large databases. The basic concept
of a database is contrary to the concept of an object.
That is, the user of the data is not protected from
changes in representation and must know how to
use the data. An effective commercial system, how-
ever, is likely to use large databases and may also
use a variety of programs and programming tech-
niques with it. Initially, some of these programs may
be object-oriented programs and others not. There-
fore, there is a need for a bridge between the tradi-
tional view of data and the object view, which prob-
ably means that with object-oriented programming
the data will be temporarily converted into an object
form. Upon completion of processing, appropriate
modifications will be made to the originating data-
base, as KEEconnection provides. In the future, object
capability may be added to database management
systems to provide for some of the benefits of encap-
sulation.

Storage management. Storage management is the
necessity to reclaim working storage that is no longer
needed. LISP has a built-in “garbage collection” tech-
nique that periodically reclaims unused space. Small-
talk has methods for reclaiming space released by
objects that no longer have references to them. In
large systems, paging is the means of overlaying
storage that has not been used for some time with
new data that is likely to be used.

The basic question is whether storage management
should be the responsibility of the object-oriented
language, as in Smalltalk, or of the system. There
may be some dependence upon whether the language
being used employs static binding, where the system
manages the storage, or dynamic binding, where the
language polices its own storage use.

In the Objective C and C++ implementations, stor-
age management is left to the responsibility of the
system or the application programmer.

TeN DYKE AnD kuNZ 477




Concluding remarks

Object-oriented programming is one way of using
the continually improving capabilities of computer
technology to provide improvements in programmer
productivity and user function. Object-oriented pro-
gramming is being used for a wide range of applica-
tions, particularly for knowledge-based systems in-
volving close human interaction and judgment. It
may also be used as a tool for specifying and building
large, integrated data processing systems.

This paper has reviewed Smalltalk as one example
of a large system and the Knowledge Engineering
Environment (KEE) as another, with emphasis on
object-oriented programming as a vision and as a set
of programming techniques. In our experience, the
vision and the techniques have great value in pro-
gramming as we build large systems that have long
life cycles. We find the vision and the techniques
immediately relevant to a central role in knowledge
systems.

The C++ system is a registered trademark of American Telephone
and Telegraph, Inc.

The Knowledge Engineering Environment system is a trademark
of IntelliCorp, Inc., and the KEE system is a registered trademark
of IntelliCorp, Inc.

KEEconnection software is a trademark of IntelliCorp, Inc.
KEE/370 is the IBM version of IntelliCorp’s KEE system.
The Objective-C system is a trademark of Stepstone, Inc.

Cited references

[. A. Goldberg and D. Robson, Smalltalk-80, Addison-Wesley
Publishing Co., Reading, MA (1983).

2. O. J. Dahl, B. Myhrhaug, and K. Nygaard, “The SIMULA67
Common Base Language,” Publication S-2, Norwegian Com-
puting Center, Oslo (May 1968).

3. B. Meyer, Object-Oriented Software Construction, Prentice
Hall, Inc., Englewood Cliffs, NJ (1988).

4. B. Stroustrup, The C++ Programming Language, Addison-
Wesley Publishing Co., Reading, MA (1986).

5. B. J. Cox, Object-Oriented Programming: An Evolutionary
Approach, Addison-Wesley Publishing Co., Reading, MA
(1986).

6. D. Weinreb and D. Moon, “Objects, message passing, and
flavors,” LISP Machine Manual, Symbolics, Inc. (July 1981).

7. D. Bobrow and M. Stefik, The LOOPS Manual, Xerox Cor-
poration (1983).

8. R. Fikes and T. Kehler, “The role of frame-based representa-
tion in reasoning,” Communications of the ACM 28, No. 9,
904-920 (September 1985).

9. P. Wegner, “Dimensions of object-based language design,”
OOPSLA '87 Conference Proceedings, October 4-8, 1987,
Orlando, FL, N. Meyrowitz, Editor; sponsored by the Associ-
ation for Computing Machinery, 11 West 42nd Street, New
York, NY (1987), pp. 168-182.

478 TEN DYKE AND KUNZ

10. F. P. Brooks, Jr., The Mythical Man Month, Addison-Wesley
Publishing Co., Reading, MA (1979).

Richard P. Ten Dyke P.O. Box 789, Bedford, New York 10506.
Mr. Ten Dyke is an independent consultant working in the field
of advanced application technology. Prior to his retirement from
IBM, he was the assistant for business analysis for Advanced
Systems, Enterprise Systems, where he worked in the Artificial
Intelligence Project office. He holds a B.S. degree from the Uni-
versity of Minnesota, and an M.B.A. from Harvard University.

John Kunz IntelliCorp, 1975 El Camino Real West, Mountain
View, California 94040. Dr. Kunz is chief knowledge-systems
engineer and director of manufacturing applications at IntelliCorp.
He is one of the initial developers of the IntelliCorp KEE system
and has since developed applications systems in diverse areas
including experiment design for molecular biologists, power plant
control, petroleumn exploration, project management, and factory
scheduling. Prior to joining IntelliCorp, he directed development
of the PUFF medical diagnosis system, the first Artificial Intelli-
gence-based system to be used routinely. Author of numerous
articles and book chapters, he has also spoken to many groups on
Artificial Intelligence and its applications. Originally trained in
engineering and computer science at Dartmouth and UCLA, his
Ph.D. emphasized computer science and physiology at Stanford.

Reprint Order No. G321-5370.

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989




