
A new development rhythm
for AS1400 software

by R. A. Sulack
R. J. Lindner
D. N. Dietz

Synchronizing the software development process with
hardware development and user involvement programs
yielded a product offering that met the user require
ments with a significantly reduced development cycle.
This paper emphasizes the key elements of Application
Systemj400" (ASj400") software development that
contributed to synchronization and project success. It
is intended to produce an awareness of the elements
that set this project apart from most others.

T he development of the Application Sys-
tem/400" (AS/400") system was a challenge from

the outset. A market analysis had shown the industry
needed a competitive solution in mid-1988, but de-
velopment directions for future products were prov-
ing infeasible. Customers, and the industry in gen-
eral, were demanding more powerful and compatible
systems to replace the IBM Rochester product line
led by the System136 and the System/38. The needed
system had to be developed in only two years and
had to exhibit a quality level equal to or better than
that which customers were currently enjoying.

The system had to provide a growth path for current
System136 and System138 users, which implied the
ability to run current system applications on the new
system hardware and software. This also implied a
requirement to provide programmer productivity
strengths equivalent to those of Systeml38, ease-of-
use strengths like those in System/36, and advanced
characteristics for future customer needs, all in a
single operating system. The operating system envi-
sioned had to satisfy the rapidly growing range of

386 SULACK. LINDNER AND DIETZ

businesses needing midrange systems. It would be
used in diverse environments and, to meet customer
needs, it had to improve the consistency with IBM
System/370 and personal computers.

These challenges required major changes to the de-
velopment process. Previously, systems were devel-
oped by building hardware, delivering it to program-
ming personnel for software development, and deliv-
ering the completed combination to early users for
evaluation before general availability. It was quite
clear that this course of events would not produce a
product timed with the market requirement. Hard-
ware and software development processes had to be
synchronized to achieve maximum overlap. Also,
user evaluation had to take place early in develop-
ment to make sure the product would meet user
expectations and to give the development commu-
nity time to react if changes were required before
general availability.

Early sizings determined that this would be the larg-
est programming effort undertaken at IBM Rochester
to date. Even with extensive reuse of software parts
from previous systems, the new code required would
be about one and one-half times the historical ca-
pacity of the programming team, given the time

Copyright 1989 by International Business MachinesCorporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

available. Additionally, to meet ease-of-use objec-
tives, a significant increase in the amount of on-line
information would be required over previous sys-
tems. This information would have to be translated
into 25 national language versions to be available for
a concurrent worldwide general availability. The
project would require coordinating the efforts of over
1500 developers at multiple locations.

Even with these challenges, all the key ingredients
appeared to be in place for a successful project. A
clear, high-level definition of requirements based on
the current products existed. The management team
had the latitude to shape the organization to match
the project. The project was basically autonomous
within the Rochester Development Laboratory,
which was responsible for both hardware and soft-
ware. The project had experienced programmers,
adequate tools, proven development process tech-
niques, and personnel who were highly motivated.

The process

Organizational considerations presented unique
challenges to the software development process. Sys-
tern136 and System138 were being developed in sep-
arately managed organizations with their own tools
and processes. Both organizations were committed
to provide support and follow-on development activ-

ity that required continued resource allocation. The
processes were quite similar in that they followed a
model known as the IBM programming process ar-
chitecture.' Both organizations conducted design re-
views and code inspections, though they had differ-
ent terminology and a certain amount of variation
in the application of the process, especially in the
early steps. In addition, another organization was
working on future product development. These three
organizations had to be united under a single process
and tool set, all working on the ASPOO software. Each
organization's process was reviewed to determine the
following: (1) the common elements, (2) the most
positive elements where differences existed, and (3)
shortcomings that could be addressed by introducing
new concepts. This resulted in a process definition
that was somewhat familiar to all, thus encouraging
confidence that it could be applied with minimal
disruption. (See Figure 1 .) A new operational process
definition was documented in on-line data sets that
could be accessed by all developers. This process
documentation was approved by all user organiza-
tions through formal inspections and accepted by
the development community as the basic method to
be used for producing software. The tool set used
was also a combination of the tools used in the
previous organizations and was a collection of the
best available tools, integrated under a common user
interface. Moving to a common tool set and process

Figure 1 Process similarities

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

FUTURE PRODUCT I AS/400 DEVELOPMENT I
REVIEW WALKTHROUGH

STRUCTURE INSPECTION SYSTEMIPRODUCT
DESIGN INSPECTION

EXTERNALS INSPECTION

INSPECTION INSPECTION

INSPECTION

INSPECTION INSPECTION

INSPECTION INSPECTION

INSPECTION INSPECTION

INSPECTION INSPECTION

SULACK, I JNDNER, AND DIETZ 387

IBM SYSTEMS JOURNAL VOL 28. NO 3, 1989

was essential to the project management control
required by a project of this size and proved benefi-
cial when the project reached the point of assembling
the software parts into an operating system on a
weekly basis.

The process steps. The process, as initially defined
for ~ ~ 1 4 0 0 software development, was to begin with a
walkthrough of system objectives, followed by the
completion and inspection of a system design direc-
tions document that would describe the basic designs
necessary to reach the objective. These activities were
necessary to establish a common understanding of
the end product throughout the development orga-
nization and to expose areas where further work was
necessary to clarify requirements prior to implemen-
tation. Design and implementation could then begin,
with the areas having firm definition proceeding
under the technical direction of design control
groups (DCGS), which are described in more detail
later in this paper.

All new functions for Operating System/400"
(ospoo'") were introduced into the process through
the DCGS. Component designs were documented
along with the intercomponent interfaces and were
validated by a high-level design inspection. Func-
tions being reused from prior systems that required
major development work were introduced into the
process in the high-level design step where they could
also be inspected to validate the redesign. All defects
discovered by inspection were recorded with the
point of origin identified. The resource required to
repair the defect and the resource required to pro-
duce the inspection material and hold the inspection
were also identified and recorded, so that analysis of
the data would allow the cost of defect removal to
be determined. In the low-level design step, the com-
ponents were refined into implementation modules,
with the code structure documented and inspected.
Some modules being reused from System/38 with
minor changes could enter the process in this step.
Again, the inspection defects were recorded as before.

With the successful completion of the low-level de-
sign inspection, the module code could be produced.
The code underwent the following three steps: (1) it
was validated by inspection; (2) it was unit-tested by
the developer; and (3) it was integrated into the base,
which came from reusing major elements of the
System/38 operating system without change. Once
again, the inspection defects were recorded as before.
In addition, the defects discovered during unit test
were recorded to provide a complete picture of defect

SULACK, LINDNER. AND DIETZ 389

Figure 3 Iterative process

I MILESTONES ------l

CONTINUOUS INTEQRATION

I
FEEDBACK INTO
CURRENT RELEASE

EARLY EXTERNAL INVOLVEMENT PROGRAMS

. REQUIREMENTS BRIEFINGS

I EARLY SHIP PR€X%Wd]

. ,. .

first milestone, additional system requirements could
be stabilized for the next milestone, thus focusing
resource on work activities least likely to change as
further clarification of requirements proceeded. Each
milestone could act as a prototype for the next,
allowing more and more user involvement with de-
velopment as function materialized with each suc-
cessive iteration.

User involvement actually began with the definition
of content for these milestones. Input from a Cus-

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

tomer Advisory Council formed the key elements of
the initial requirements. Systems engineers (SES), who
work in direct contact with end users, were briefed
on the system requirements and asked for their input
and assistance. Their first-hand knowledge provided
additional insight into the requirements of the users,
the types of applications the users would most likely
want to move to the new system first, and customers
or Business Partners who would be candidates for
participation in future development activities. This
activity served the key function of stabilizing the

SULACK, LINDNER, AND DIETZ 391

requirements for first milestone development. With
stable requirements for the first milestone, develop-
ment could proceed at an accelerated pace.

With the nature of a system milestone being defined
as a functional product or component rather than
the often-produced scaffolded pieces of function, end

The system could be demonstrated
to users who were interested

in developing applications
that could be available

at the time of general availability.

users could be contracted to evaluate specific func-
tions well before completion of the total system. This
provided user feedback on the function being eval-
uated in time to incorporate changes before delivery
and also stabilized additional requirements for later
milestones. The system could be demonstrated to
users who were interested in developing applications
that could be available at the time of general availa-
bility. As later milestones became available, com-
plete applications could be migrated and tested,
thereby maximizing the application support avail-
able at the time of general availability. This sup-
ported an underlying goal for the system of providing
immediate solutions for customer needs. The tech-
niques employed to involve users in the development
process are discussed in greater detail in the paper
on early user involvement.*

Cycle synchronization. The functional requirements
stated were known from the outset as a given for the
new system, but the immediate requirement was to
shorten the development cycle. The engineering de-
velopers could shorten their cycle, if necessary op-
erating-system function were available to allow en-
gineers to test the hardware with existing test cases
from previous systems. This, in addition to extensive
hardware simulation work, would allow for the ear-
lier delivery of hardware to programming personnel.
Therefore, an early prototype was defined and built
to synchronize software deliverables with hardware

392 SULACK, LINDNER, AND DIETZ

availability and meet this requirement. This inter-
dependence significantly overlapped the hardware
and software development cycles, as shown in Figure
4. Interdependence achieved greater parallelism in
the development sequence and reduced the magni-
tude of independent hardware testing. It also allowed
early evaluation of performance, usability, and serv-
iceability characteristics of the system, thereby re-
ducing rework late in the development cycle that
would otherwise have been required to improve these
characteristics. As a by-product of this activity, the
integration and build procedures were created and
debugged early in the development cycle.

Management techniques and controls

In addition to combining the past processes to unify
the prior organizations toward a common goal, the
management reporting structure was also completely
realigned. Organizational management span-of-con-
trol was changed from having responsibility for
many functions on a single system to specialized
functional responsibility for all systems supported.
Personnel with experience in a given function were
collected into a single organization. For example,
communications specialists on both System/36 and
System/38 were organized under a single manage-
ment structure, having responsibility for AWOO com-
munications as well as continuing responsibility for
System/36 and System/38 communications. This
reorganization had the effect of simplifying resource
balancing during plan generation. With a single man-
agement organization having responsibility for sup-
porting multiple system development efforts and
owning all the resource available with expertise in
the given function, the plan generation process could
be conducted more efficiently as it balanced the
resource across the various products. The organiza-
tion was also constructed so as to isolate the devel-
opment team from outside distractions, thereby
keeping the developers focused on the task of pro-
ducing the end product. Figure 5 shows this isolation,
created by channeling the activities involving orga-
nizations outside the Rochester Programming Cen-
ter through specific internal organizations designed
to deal with them, thus reducing or eliminating the
time-consuming multilocation activities from the
direct development team.

Change control techniques. The next challenge was
to manage the plan content throughout the devel-
opment phase. Specific tools to aid in project man-
agement had been tried before, and they all exhibited
the shortcoming of failing to provide a means for

IEM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

Figure 4 Hardwarelsoftware synchronization

c c

formal communication of technical details and de-
cisions in conjunction with schedule communica-
tion. This was viewed as necessary for effective con-
trol of change during development and was based
on the project management and change control con-
cepts used successfully on both SystemJ36 and Sys-
temJ38. In those projects, the technical information
and schedules were maintained in the same report
for each element of development activity. Therefore,
a similar technique was also established for A S ~ O O
development. Every plan item was translated into
one or more change control elements, which would
be tracked and managed through every step of the
development process from plan definition through
delivery for testing. The change control data were
structured to provide the documented technical and
schedule information necessary at every step of the
process. Guidelines were set up that defined the

information to be completed at each step. The tech-
nical information was on line and constantly avail-
able to all developers, with the guidelines available
as help text. Merely having guidelines is not sufficient
to ensure change control; rather, it also requires
management focus. Therefore, as was done on Sys-
temJ36 and SystemJ38, a status was defined for each
of the various levels of completeness; reports were
defined that produced documents with appropriate
technical and project management information nec-
essary to allow constant review of progress; and
weekly meetings were set up by the DCGS and by
development management to coordinate technical
interdependencies and monitor status transitions
and schedules. This approach combined technical
control with process and schedule control, and it was
applied to initial design and development as well as
follow-on design changes. In summary, the devel-

SULACK, LINDNER, AND DlETZ 393 IEM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

Figure 5 Organization structure

INTER-
DIVISIONAL
REQUIRE-
MENTS

SYSTEM DESIGN
CONTROL GROUPS (WG)

A

+ PROGRAMMING SUPPORT

EARLY
INVOLVE-
MENT

1 PRO-
VENDOR

GRAMS

I

I

OPERATIONAL SERVICES COMMUNICATIONS DATA MANAGEMENT OFFICEANTELLIGENT TOOLS
WORKSTATION SUPPORT

I I "I I I-e
394 SULACK. LINDNER, AND DIETZ IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

opment plan was under change control from defini-
tion to release and had constant management super-
vision.

Close control of code integration and build activity
was also viewed as essential to development stability.
It was desirable to maintain operational test systems
from the start to the final product, so developers
would not be required to build and maintain their
own system versions. Continuous integration and
weekly builds were established to provide timely test
systems and minimize development-cycle time. Con-
trol of the software part libraries was integrated with
the change control process in such a way that a
specific change control element status was required
before the code could be integrated. Thus all code
being integrated had a valid reason that had been
communicated and understood by all affected par-
ties. This gave credibility to the change control proc-
ess, in that it relied on that process to ensure that
dependencies had been properly managed. The effect
was to prevent catastrophic failure when new code
was integrated into already existing code. Weekly
builds kept development systems current and
avoided rediscovery of known problems. To ensure
that each build was successful, a build verification
test was defined and conducted upon completion of
the build, before propagation to the development
systems. In addition, a special team of individuals
skilled in problem solving was established to increase
the efficiency of the problem-isolation tasks during
development.

Similar control was also applied to integrating prob-
lem fixes during the testing phase of development.
Once integrated, code could not be reintegrated with-
out a valid reason. Fixing a problem does not require
the same level of technical communication as the
development of new code. Therefore, different infor-
mation and guidelines were established for problem
tracking, reporting, and integration. This informa-
tion was focused on two-way communication of the
problem symptoms and the fix solution. It, too, was
integrated with the software part libraries in that a
specific problem-tracking element status was re-
quired before code could be integrated.

Design control groups. Design control groups (DCGS)
played a key role in development. They were com-
posed of technical experts in each area of the system
and reported to the managers responsible for the
major functional areas of product development. The
design control groups are the resident consultants
for the first-line developers. A system-wide DCG,

IBM SYSTEMS JOiiRNAL. VOL 28 NO 3, 1989

composed of members with system-wide technical
expertise, reported to the manager responsible for all
software development. This technical hierarchy pro-
vided a growth path for technical experts and pro-
vided a valuable resource for management decision
making. It allowed the management team to focus
on project management with confidence that tech-
nical control was being well handled. DCGS acted as
buffers for the developers, in that they handled set-

On a monthly basis, a project
management team focused

on problem identification
and progress.

ting most of the plan-item priorities and high-level
definition activity that would otherwise severely re-
duce a developer’s productivity. They provided the
initial assessment of the technical feasibility of plan
items. They focused on providing timely solutions
to pervasive problems and to bridging the gap be-
tween architecture and planning personnel and the
developers. This ensured consistency with the system
design direction and completeness of design during
development. The DCGS represented about 10 per-
cent of the development resource.

Dependency management. Although the change con-
trol techniques significantly enhanced development
communication, other meetings were required to
coordinate activities with other organizations sup-
porting software development. Weekly interlock
meetings, as they were called, were scheduled by
software development with software support and
engineering organizations. These meetings had a pre-
set agenda of required topics and attendees. These
were structured meetings that were generally held at
the same time and place each week; they focused on
problem identification and progress, rather than
problem solving. Problem-solving activities hap-
pened outside the meetings, where the most knowl-
edgeable people would be involved to ensure the
correct decision was made. On a monthly basis, a
project management team (PMT) of key development

SUIACK, LINDNER, AND DIET2 395

managers met in a similar meeting, once again fo-
cused on problem identification and progress. Also,
the overall system manager held a quarterly meeting
with upper-level management to focus on the sys-
tem-wide issues. Division-level managers did the
same. At critical phases of development these meet-

By conducting a system-level
review, the requirements were

validated and development
work began.

ings were held more frequently on any topic that
required attention. In all cases, they served a valuable
purpose of gathering the persons who would deal
with problems and development issues.

Design and development

Together the System/36 and System/38 consisted of
over five and one-half million lines of code. To
rebuild the functions with all new code, given our
resources, appeared to be beyond reasonable expec-
tation. Attention turned to an experimental project
that had demonstrated the ability to run a System/36
application in an environment built on a System/38.
This pilot project gave hope to the idea of reusing
major portions of the System/38 software and poten-
tially reusing significant elements of the System/36
software design. The advanced architecture of the
System/38 could be used to build upon, so that the
new system would inherit the strengths of that ar-
chitecture. Also, adding the System/36 ease-of-use
strengths for application processing would meet a
major portion of the system requirements.

Development objectives. The first objective in ~ ~ 1 4 0 0
development was to deliver the necessary software
to support hardware testing. The DCGS played a key
role in translating this objective into the first set of
stable requirements on which development could
begin. Elements of the system were identified that
could be reused from previous products, and new
elements were identified that would be consistent

396 SULACK. LINDNER, AND DIETZ

with the new hardware interfaces and system design
direction. By conducting a system-level review, the
requirements were validated and development work
began. We met the first objective by a series of
software and hardware drivers. The software drivers
had only software dependencies and could be built
and tested on existing hardware, before the new
hardware became available. The hardware drivers
depended on the new hardware to fully test the code.
When they were combined they became the devel-
opment prototype that supported the hardware test-
ing and accelerated the initial release of hardware to
programming. The engineering team focused on pro-
ducing high-quality, first-pass hardware through the
use of extensive simulation techniques and, with the
extensive testing capabilities provided by the soft-
ware prototype and test cases reused from previous
systems, engineers were able to deliver the first-pass
hardware to programming personnel for software
development and testing.

The next objective was to provide sufficient func-
tional capabilities to allow System/36 applications
to run on the new hardware. With the initial proto-
type as a base, additional function was added to
demonstrate this capability. Process metrics became
very important during this phase, as the project
progressed toward its first committed milestone de-
liverable. This was a product that would be shown
to customers through the early user involvement
programs to obtain the feedback critical to the defi-
nition of remaining requirements. The metrics estab-
lished were designed to detect anomalies in defect
removal, module size, and code complexity, and
indicate the cost of quality at each development step.
Reporting techniques were established that would
provide current component and department data for
feedback to the developers and management. Process
compliance was also depicted by the data. Regularly
scheduled feedback meetings were established to
evaluate data and discuss shortcuts to increase pro-
ductivity without affecting quality, and to analyze
defect-prone parts or components for actions neces-
sary to ensure high quality. Performance measure-
ments could also begin with this first system mile-
stone.

In the next iteration of the development cycle, we
focused on the ability to run System/38 applications.
This cycle was designed to provide tools for an
application programmer, including the system con-
trol language and an application development lan-
guage, and to support an ease-of-use interface that
the end user would see, as previously prototyped.

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

Significant system test, information development,
and national language translation involvement could
begin with this level of functional capability. To
prepare for this, these organizations were required to
be involved with the development process much
earlier than traditionally expected, as shown in Fig-
ure 6. The result was that resources for these activi-
ties were spread over a longer time period in the
development cycle, thereby reducing the extreme
peaks traditionally experienced late in the cycle.
With this milestone, external users could be shown
the functional capability of the A S ~ O O system so they
could plan the way in which they would migrate

Throughout development, progress
was tracked against defect removal

models.

applications from the predecessor systems. Usability
evaluations could also begin to ensure that the pro-
totyped interface was correctly implemented and
that they met the usability objectives.

The third milestone focused on bringing the existing
function up to a de!iverable product level and adding
the application programming languages necessary
for system level testing (milestone test) to begin.
Application migration aids were added to help bring
across test cases from the predecessor systems and to
allow the next phase of external user involvement to
begin. During this phase, IBM application developers
and external users would begin migrating critical
applications, in preparation for concurrent availabil-
ity with the system. This activity was critical to the
system objective of providing complete solutions for
customer needs.

The last iteration of the development cycle produced
the final product for system test entry. This included
the final version of translatable text and publications
that was sent to countries around the world for
translation into their national languages. Attention
turned from defect prevention to defect removal, as
the product proceeded through the final cycle.
Throughout development and especially in this last

iteration, progress was tracked against defect removal
models in an attempt to measure the effectiveness of
the process as well as the quality of the product.
Change control focused on the process for fixing
problems to ensure that the code being integrated
would not create additional problems. Measures like
the number of problems in a backlog, problem se-
verity, and length of time to fix a problem became
very important, as the schedule closed in on the final
dates.

Performance design points. An early review of the
existing performance process determined that
changes would be necessary. The process had evolved
over many years of System136 and System138 devel-
opment and was chiefly measurement-based. This
resulted in major changes late in the cycle as per-
formance problems were discovered, a characteristic
that could potentially destroy the ability to meet the
required delivery date. In response to this concern,
a new second-line performance area was established
to define and implement a performance process that
would eliminate this exposure. The resulting per-
formance process was called the design point process,
because of its having a requirement to establish
performance design points early in the product de-
velopment cycle. The working relationships for the
process were documented and agreed to in advance.
Performance-critical functions of the system were
identified, and an early agreement to follow the
process was reached with the developers of those
functions. Both performance and development per-
sonnel knew what was expected of them.

In the design point process, the end-user tasks sup-
ported by a system function were determined, and
the high-use transactions were identified. These
transactions were grouped according to the accepta-
ble response time for the activity (for example, ranges
of less than 1.0 to 2.0 seconds and greater than 2.0
seconds). Reaching agreement on response times
brought an end-user perspective of performance to
the developers.

Next, the transaction control flow was defined and
design points for performance-critical components
were set according to the expected response time.
The design points were stated in terms of the exe-
cutable instructions and objects touched while run-
ning the component’s function. Development per-
sonnel estimated the corresponding path length and
a series of iterations took place until both parties
agreed on the time values, making tradeoffs within
and across components as appropriate.

IBM SYSTEMS JOURNAL. VOL 28, NO 3, 1989 SULACK, LINDNER, AND DIETZ 397

As development proceeded, the design points were
tracked against the estimates in the design and code
reviews and were adjusted with each level of refine-
ment. The adjustments were fed into the system-
level model to ensure the end-user requirements were
being met. The results were summarized and pre-
sented to management regularly.

Measurement occurred during component test, on
the first milestone into which the component was
integrated. Early measurement substantiated the es-
timates and, in the event of a problem, gave devel-
opment personnel time to solve the problem before
shipment.

Usability development. Usability activities were put
in place early in the development cycle to ensure
that the delivered product would provide superior
levels of user productivity, satisfaction, and ease of
use. A very high level of function was designed into
~ ~ 1 4 0 0 Release 1, so particular attention was paid to
the development of on-line facilities for user educa-
tion and information. In addition, implementing an
interface that is highly consistent was emphasized.
This was accomplished by writing specifications for
the user interface and using screen, command, and
message review processes to ensure compliance. A
user interface prototype was then developed on the
first milestone to test the acceptability of the initial
user interface design early in the development cycle.
Based on feedback from these early tests, the user
interface was enhanced to reflect user needs. Subse-
quent prototype testing enabled further refinement
of the user interface. Customer involvement in this
work began at this early stage and continued
throughout the development cycle. Initially, cus-
tomers provided feedback on the specifications
through a series of focus-session round-table discus-
sions in which the initial design was reviewed. Later,
functional demonstrations were conducted, using the
prototype to provide a more realistic view of the
interface and to solicit additional feedback. When
functional hardware and software was available for
a specific task, full usability testing was conducted
using customer test subjects, recording time-on-task,
error rate, attitude, and satisfaction measurements.

In addition, early in the cycle, an assessment tool
was developed to determine the extent to which the
design was going to satisfy the needs of different user
types. Output from this assessment enabled us to set
priorities for subsequent usability activities and to
understand the positioning of the A S / ~ O O system in
comparison with its predecessor and with competi-
tive products.

IEM SYSTEMS JOURNAL. VOL 28, NO 3, 1969

Toward the end of the development cycle, a series
of usability certification tests were performed, again
involving customer participants. The points of com-
parison in much of this work were the System/36
and System/38. These late-cycle activities demon-
strated that we had achieved the user interface char-
acteristics we had targeted and that AS/4OO’s user
interface was indeed a step forward.

Product verification

The size of the product and the scope of the devel-
opment process were daunting for the verification
and testing team. The A S / ~ O O system was over twice
the size of any previous product or release tested in
the Rochester Development Laboratory, both in
lines of code developed and processing power. If the
traditional verification and testing process had been
followed, the ~ S / 4 0 0 system would have been shipped
to its customers months beyond the date required
for market competitiveness. For us to be successful,
new technical and control processes had to be put in
place to handle the size and magnitude of the project,
without compromising the resulting product func-
tion and quality.

To meet these challenges, an independent system
test organization was established from similar orga-
nizations for System/36 and System/38 testing. Little
development and verification experience was avail-
able in Rochester with a project this large. To make
it work, we decided first to carry over test philoso-
phies, strategies, and the key strengths of the previous
testing organizations. Then, by employing new tech-
niques and innovations, we would meet the chal-
lenges posed by the size and schedules of the AS1400
system.

Four-phase test process. With the desire to involve
users in the development process through the use of
milestones, we established a test process that would
verify the quality of each milestone. This had to be
done from an end-user perspective, which implied
product- and system-level testing on each milestone.
In the first phase (informal unit testing conducted
by the module developer prior to integration), the
focus is on the individual program module (or unit)
readiness for integration. Variable limits, internal
interfaces, logic, data paths, and code paths are all
tested before the code is made available to others for
general testing. In the second phase (formal compo-
nent testing after integration also conducted by the
development organization), discrete component
functions and interfaces are tested in a system envi-

SULACK. I .INDNER, AND DIET2 399

ronment. Formal, repeatable test cases were used,
many of which were developed with the same design
review and code inspection rigor as product code. In
the third and fourth phases (formal product and

Formal, repeatable test cases were
used.

system test), the product and system focus began,
thus providing the level of testing required for cus-
tomer involvement programs. Therefore, a struc-
tured milestone test conducted by the independent
testing organization was defined for each system
milestone. The independent system test organiza-
tion’s objective was to represent the first customer
as they tested each milestone and feed a customer’s
perspective back to development. Milestone testing
had other benefits. The earlier product-level and
system-level evaluation of function forced earlier
involvement of the system test group in the devel-
opment process. It also forced earlier stability in key
system elements that were delivered in the earlier
milestones.

Testing cycle considerations. Milestone test evalu-
ated the product from an end-user perspective, as
with system test, but in a nonstress system environ-
ment. All components for an end-user function were
tested together. Milestone test was a subset of system
test but, like system test, concentrated on system
(hardware and software) characteristics such as reli-
ability, usability, and performance. With milestones,
system testing could be staged, thus reducing peak
resource demands late in the cycle by spreading the
testing effort over a longer period of time. Where
traditional sequential schedules required all the func-
tion to be available before starting the testing process,
the milestone concept allowed significant overlap of
development and testing activities. This high-level
testing focus early in the development cycle uncov-
ered areas requiring improvement while there was
still time to react before shipment. The focus actually
began during the development of the prototype.
With this early software deliverable, the test teams
could begin design and development of the testing

techniques to be employed during the formal mile-
stone test and system test periods.

The last test phase, system test, tested all products
and end-user functions together in a multiproduct,
multiuser, and multisystem configuration. It started
after all functional milestones were available. System
stability and reliability were verified for extended
periods of time under loaded and stressed conditions.
Reliability and defect metrics were tracked through-
out system test.

Reuse in testing. The milestone and system test
strategy was based on the standard test processes
from System/36 and System/38 and expanded where
necessary to include the advanced functions of the
~ ~ 1 4 0 0 system.

A significant portion of the existing scenarios and
applications were brought over to run in the Sys-
tem/36 and System/38 environments on the A S ~ O O
system, whereas others were modified as needed to
run the same function in the native AS1400 environ-
ment. Testing was required for stand-alone systems,
systems with a peer relationship (AS1400 to AS1400,
A S ~ O O to System/38, and ~ S 1 4 0 0 to System/36), and
systems connected to a host (A S ~ O O to System/370),
including both high- and low-end system models.

In Figure 7, the four basic building blocks used to
create milestone and system tests are illustrated: (1)
test scenarios, (2) test applications, (3) test environ-
ments, and (4) artistic tests. Scenarios were user-level
tasks defined to test specific functions of the product,
such as for example, creating, compiling, debugging,
and running an RPG or COBOL program, or distrib-
uting mail and documents across a multisystem
communications network. Scenarios were created
and debugged during milestone test and run in sev-
eral variations or versions, depending on the func-
tion being evaluated. Applications were selected
combinations of multiple scenarios that were run
concurrently or serially. Applications were designed
to stress product versatility, because individual prod-
ucts may have several applications. Scenarios and
applications were automated during milestone test,
where possible, so they were easily repeatable in
system test and could be combined with other scen-
arios to create new applications. Test environments
were selected combinations of multiple applications
that were run concurrently, such as an office test
environment, a communications test environment,
and a programming development test environment.
Test environments were designed to stress cross-

IEM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

ENVIRONMENTS

i ARTISTIC

product concurrency and were designed to emulate plex function and configurations. The objective of
end-user or customer configurations and situations. artistic testing was to drive out problems that might
Artistic testing included all testing activities that were not be encountered with well-structured, repeatable
not easily automated as part of a scenario, applica- test cases. Planning for artistic testing allowed testing
tion, or environment, or were unstructured tests personnel the freedom to focus additional time and
targeted at known or suspected problem areas, such resources on suspected problem areas and the free-
as testing error recovery and support or testing com- dom to be creative with their testing.

A large, complex network test was added to the test
strategy. This was a cooperative effort between the
programming development and system evaluation
groups to set up a large network that simulated the
larger and more complex customer networks that
existed in the field, including System/36, System/38,
and ~ S / 4 0 0 systems. Testing focused on evaluating
characteristics and problems, such as network relia-
bility, error recovery, and problem isolation and
determination.

Automation advantages. Two key aspects of the mile-
stone and system test strategy were test automation
and system reliability measurement. Test case auto-
mation is the foundation of the entire milestone and
system test strategy. Automating the test scenarios
saved both personnel resources and calendar time.
Once a set of scenarios was automated, it was easily
assembled into the applications to provide an auto-
mated test environment. Automation also provided
a way to drive the system utilization to the maximum
limits. Automated jobs were set up to provide a
background system load. These automated jobs were
able to run 24 hours per day, 7 days per week,
providing a means for reliability measurement while
using off-hours effectively. They were also run during
the debugging and running of the new AS/400 test
scenarios for milestone test and during the system
test period to provide an increased system load while
doing these activities.

A method to measure reliability was a necessary part
of system evaluation. Using test data from System/36
and System/38 history, aggressive goals and expec-
tations were created for the A S / ~ O O system. Reliability
measurement data were gathered from several sys-
tems in the controlled test environment over a week's
time. There data were tracked closely against the
established goals. The measurement was based on
the time between unscheduled initial program loads
(IPL) and defined as a four-week weighted average of
the weekly system mean time to unscheduled IPL
(MTI), which is calculated by the following equation:

H1 H2
MTI = 0.5 - + 0.3 -

I1 + 1 I2 + 1

H3 + 0.05 - + 0.15 - I3 + 1 14 + 1
H4

Where:

H = Total system run hours in week(n)
I = Number of unscheduled IPLs in week(n)
Current week = 1

An unscheduled IPL was any IPL that was unplanned,
usually due to a system problem or recovery from a
severe problem that caused system-wide failures. To-
tal system run hours was the sum of the hours
accumulated by all the test systems operating in a
live or automated testing environment. The MTI
measurement was a good indicator of overall prog-
ress during milestone and system testing.

The challenges of staging. The staged delivery of
product function in system milestones also provided
a major challenge to ~ ~ 1 4 0 0 product verification.
Even though a formal plan had been put in place to
manage and evaluate the delivery process, many
product dependencies existed, which made testing
the early milestones with scenarios and applications
difficult. The heavy overlap of component testing
with milestone testing created a situation in which
many of the intercomponent interfaces and user
interfaces were changing during the test period. The
changes led to frustration because the test personnel
met the same problems as the developers. This made
it difficult to automate scenarios. The problem back-
log grew rapidly and received weekly and daily atten-
tion by development and test management. To help
control the process, strict test entry and exit criteria
were established for functions entering milestone and
system test. This included an analysis of the problem
backlog to identify problem-prone areas requiring
additional test or attention by development person-
nel.

Another major challenge faced in system testing of
the ~ ~ 1 4 0 0 system was one of skills availability. Ad-
ditional skilled people were needed to develop the
testing, and the existing skills-based on the Sys-
tern136 and System/38 experience-had to be up-
graded quickly. However, the product schedule did
not allow for lengthy education plans. The problem
was solved by getting the testers involved with the
product development wherever and however possi-
ble. System test design guides and test plans were
written earlier in the process, using product design
information. System test personnel made themselves
available to assist in unit and component testing,
helping the product make its development schedule
checkpoints while gaining the needed product and
system education.

Earlier development by test personnel involvement
helped address the current skills problem, but a
resource shortfall remained a likelihood. Staffing
plans to meet the challenges indicated that a three-
fold increase was required that would last many

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

I assignment changes.

Vendor and contract programming companies were
contracted to provide skilled and experienced pro-
grammers for testing. These contract programmers
worked either as an independent team working off-
site on a specific deliverable or they worked directly

I

Teams of students were hired to test
specific function under the

guidance of a faculty adviser.

1
with the IBM test personnel as an integral part of the
IBM test team. The contract programmers brought a
level of experience and knowledge that proved ben-
eficial in a short time, but it represented additional
project expense.

Two area universities were subcontracted to do test-
ing. IBM supplied the needed hardware and software
for a university-controlled, secure testing facility.
Teams of students were hired to test specific function
under the guidance of a faculty adviser from the
computer science department. The student test team
worked very closely with IBM to develop the test
plans and test cases. The level of enthusiasm and
commitment of the students was very high, because
they were eager to put their education to work and
gain job-related experience. The students also gained
experience working in a team environment under
schedule commitments and acquired A S ~ O O knowl-
edge that would be valuable to them as they start
their careers.

1
As development neared completion, the task of test-
ing the system grew significantly. Earlier personnel
transfers from the test organization to the develop-
ment organization had depleted the resource and
skills necessary to develop and run a thorough system
test. The “full team approach to development” was
then reversed and became a full team approach to
testing, as development personnel transferred to the
test organization applying additional resource to en-

b

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

1

levels of management that was demonstrated by- the
willingness of development managers to transfer into
the test organization. This provided the leadership
that was key to the willingness of development per-
sonnel to transfer to the test team to complete the
testing and avoid schedule delays.

Ensuring user acceptance

Customer acceptance was critical to the success of
the A S ~ O O system. The only way to discover customer
reaction with any certainty was to have end users
provide their reactions. With this in mind, a number
of related programs were set up to provide insight
into the marketplace reaction prior to shipment.
Customers, Business Partners, consultants, and sys-
tems engineers (SES) from the field were contacted to
participate in programs that would be mutually ben-
eficial to the participants and the development or-
ganization.

The Field Partners program brought SES to Rochester
to obtain the field perspective. They provided addi-
tional resources for component and system test ac-
tivities while learning about the system capabilities.
Their individual product and field expertise was used
to help design and create individual test scenarios,
to review product documentation, and to do other
tasks that were containable within the three- to eight-
week time period they were assigned to the project.

The contract testing program involved two consult-
ants, one for significant testing of the System/36
environment throughout the development cycle and
another to provide an independent verification of
system quality. The independent system test (IST)
was set up using an offsite, non-IBM programming
center and contract programmers. This independent
programming center was provided with the required
hardware, software, and tools, but was given limited
direction. The programmers were allowed to proceed
on their own and establish and run their testing
independently. IBM reviewed their test plans and
made sure that they received the information needed
to proceed with their testing. Their test results were
also reviewed, but no attempt was made to influence
how they tested or where they focused their re-
sources. Weekly review meetings were held to assess
their progress and problems and provide them with
the current driver updates. By reviewing their prog-
ress and results, development and test organizations
were able to get an independent assessment of the

SULACK. LINDNER, AND DIETZ 403

severity of the impact of specific problems encoun-
tered during system testing.

A communications field test was set up to extend
the system testing to customer communications net-
works not easily recreated in the laboratory. Cus-

Business Partners and customers
were invited to test migrating and
running their applications on the

AS/400 system.

tomers were selected on the basis of the complexity
of their network, their application, and their com-
munications knowledge. The participants were pro-
vided with ~ ~ 1 4 0 0 hardware and software and weekly
driver updates. This field test provided a truly inde-
pendent view of the products tested. It also helped
identify additional problems earlier in the develop-
ment cycle, by using networks and environments not
found in our own network testing. This field test
further provided customers with a chance to test
their own applications earlier and get a head start
working with new products as well as developing a
working relationship with the development labora-
tory.

IBM migrations provided interactions with the appli-
cation programmers in the Application Systems Di-
vision to gain their insight on the system, while they
were migrating MAPICS and DMAS applications to the
A S ~ O O system. However, the most significant pro-
gram was the migration invitational, in which 175
Business Partners and customers were invited to
Rochester to test migrating and running their appli-
cations on the A S ~ O O system. This program provided
a greater variety of test applications than what is
normally achieved with internal testing.2

In addition to testing and improving the quality of
the ~ ~ 1 4 0 0 software, these programs allowed other
than IBM people to apply their unique knowledge,
experiences, and skills to writing and reviewing on-
line help text and printed examples, as well as to
testing software function. While all of these persons

404 SULACK, LINDNER, AND DIETZ

were applying their knowledge to provide significant
additional testing beyond the normal development
process, they were all learning about the system
themselves and preparing for its announcement.
Whether migrating an application to be announced
as commercially available at the same time as the
AS1400 system or converting their own specific appli-
cation for their business needs, it was an environ-
ment where all participants derived a benefit.

Worldwide announcement and general
availability

The release and distribution process also received a
major challenge in the objective of concurrent world-
wide announcement and general availability for all
products in all major countries. No system or prod-
uct of this size had ever shipped concurrently with
as much translatable material, translated into as
many national languages. The first major challenge
was the translation of displays, messages, on-line
help text, and manuals into 25 different national
languages. In the past, each national language re-
quired a unique version of the software. The software
had to be built with the translated text included,
functionally verified after the build, and distributed
within the country. This process normally resulted
in software shipment to countries outside the United
States and Canada nearly three months before it
could be generally available within that country, to
allow time for the translation to be completed. To
improve this process, the program messages, dis-
plays, and on-line help text were designed to be
separate objects from the program source modules.
This separation allowed the national language ma-
terial to be packaged and managed independently of
the source code. It allowed translation to begin sev-
eral months before the source code had been com-
pleted, and allowed the translated material to be
shipped as a separate object, selectable during system
installation.

In addition to the objective of concurrent worldwide
announcement and shipment, several other new fac-
tors were addressed for release and distribution. The
AS1400 system had a new distribution medium in the
form of quarter-inch tape, as well as the usual tape
and diskette. A new ordering methodology was de-
veloped to improve the accuracy of the order defi-
nition for the customer delivery that required all
ordering systems and tools to be modified. The A S ~ O O
system was to expand the total system package (TSP)
ordering option that was first introduced with the
System/36. With the TSP option, the customer orders

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

a preloaded and customized system package that was
created as one of the last steps in the manufacturing
process. To address these challenges and deal with
new areas of the business and new countries that
were not familiar with the AS/400 product or proc-
esses, a distribution project office was established
early in the development cycle. This project office
was responsible for managing the translation, release,
and distribution processes required for concurrent
worldwide announcement and general availability.
Members of the project office were able to identify
problems early and often used the program manage-
ment team to assist in getting problems and issues
resolved.

Prior to worldwide general availability, the release
and distribution process was validated through an
early shipment program (ESP). Systems were shipped
to selected customers or agents both within and
outside the United States using the distribution proc-
esses established for the AS1400 system. Field service
support was also provided, using the processes estab-
lished for the AS/400 system. ESP was another program
that involved customers in the development process
of providing customer feedback and product verifi-
cation. The primary objective of ESP was to verify
the distribution and service support processes prior
to shipment.

Concluding remarks

To accelerate the programming process, an iterative
and innovative approach was used within software
development. This approach can be characterized by
three phases: (1) initial design, (2) milestone devel-
opment, and (3) final evaluation. All three involved
the end user as a key element of successful comple-
tion. The initial design phase consisted of producing
a rapid prototype on existing hardware. This proto-
type became a tool for early user involvement in the
process to verify known requirements and to finalize
product requirements still under investigation. The
development phase consisted of a series of milestones
of system function that were intended to be a deliv-
erable entity for user evaluation and feedback. The
significance of this approach is that if a deliverable
was not satisfying the user’s needs, development
personnel had time to make the necessary correc-
tions to ensure satisfaction at product shipment.
Final evaluation was shortened because of the prior
testing of system milestones. This phase focused on
ensuring the final product quality, performance, and
usability through customer-supplied applications as
well as traditional test cases.

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

Management techniques encouraged problem iden-
tification and change control from plan definition
through final product testing. Design control groups
formed a nucleus of technical expertise to ensure
timely solutions to pervasive problems, consistency
with the system architecture and design direction,
and design correctness and completeness. Develop-
ment methodologies, like continuous integration,
weekly build and build verification, and expert debug
teams, increased development efficiency and product
quality. Together, these elements combined to en-
sure that A S ~ O O development achieved its goals.

Acknowledgments

The authors wish to acknowledge David L.
Schleicher under whose direction this process was
defined and followed; David G. Ness, Donald W.
Van Ryn, and Leslie S. Wilkes for their cooperative
leadership in the management of the Development
Support, Program Office, and System Design orga-
nizations, respectively; Ronald 0. Fess, Keith W.
Fisher, Rodney H. Morlock, Robert J. Chappuis,
Judith A. Kinsey, and Kenneth R. Johnson for their
leadership of the development organizations; Beverly
J. Gerzevske, Stephen F. June, Dean R. Ascheman,
and Richard J. Hedger for their leadership of the
development support organizations; and B. J. (Joe)
Pine I1 who managed the early user involvement
programs. We wish to thank William H. Walker,
Thomas A. Hallstrom, Barry L. Smith, Diane E.
Straka, and Kurt W. Pinnow for their contributions
to this paper.

Application System/400, AS/400, Operating System/400, and
OS/400 are trademarks of International Business Machines Cor-
poration.

Cited references

1 . R. A. Radice, N. K. Roth, A. C. OHara, Jr., and W. A. Ciarfella,
“A programming process architecture,” IBM S.vsIem.7 Journal
24, No. 2, 79-90 (1985).

2. B. J. Pine 11, “Design, test, and validation of the Application
System/400 through early user involvement.” IBM Sy.ytems
Journal 28, No. 3, 376-385 (1989, this issue).

Richard A. Sulack IBM Applrcalion Busine.!s SwIems, Hrghway
52 & NW37Ih Sired, Rachestcr, Minnesota 55901. Mr. Sulack is
the programming development manager of OS/400 and related
products. He joined the IBM Rochester Development Laboratory
in I962 after receiving a B.A. degree from Winona State University
and subsequently entered a programming training program. His
first assignment was as a systems diagnostic programmer in the
former Data Products Division, Kingston, New York, working on
the New York Stock Exchange Project. In 1965, he was assigned
as a systems programmer on the Time-sharing System/360 Project

SULACK, LINDNER, AND DIETZ 405

in the then Systems Development Division (SDD), Mohansic.
New York. He advanced to manager of the TSS/360 Resident
Supervisor in 1968. Also in 1968. Mr. Sulack attended the Systems
Research Institute in New York City. He transferred to the Roch-
ester. Minnesota, SDD Programming Development Center in 1969
where he held management positions in DOS/OS data manage-
ment technology and advanced technology. He joined the Sys-
tem/38 programming group as manager of language/utility devel-
opment in 1973 and advanced to third-line manager of the group.
He then joined the System/38 Control Program Facility develop-
ment group as manager of data management facilities. During
1982 and 1983. Mr. Sulack managed the System/38 Kanji Project
management oflice reporting to the System/38 system manager.
He was promoted to program manager in 1983 reporting to the
IBM Canada laboratory director. As the manager of general sys-
tems programming in Toronto. he was responsible for language
and utility programming for System/36. System/38. and future
products. He returned to Rochester in 1985 as manager of Sys-
tem/38 programming. In 1986 he was appointed the third-line
manager of communications programming, responsible for Sys-
tem/36, System/38, and AS/400 communications programming
products. In August of 1986 he was promoted to his current
position as development manager of all AS/400 software in Roch-
ester.

Richard J. Lindner 1BM Applicaiion Business Systems. Highway
52 & NU: 37th Street, Rochester, Minnesota 55901. Mr. Lindner
is an advisory programmer responsible for the software develop-
ment process strategy. He joined IBM, Rochester. Minnesota, in
1966 and participated in both engineering and programming de-
velopment of System/3 with responsibility for developing and
maintaining many aspects of the 1/0 supervisor. He then accepted
an assignment in the development of the System/38 Control
Program Facility. Since then, he has held management assignments
in both development and development-support areas. He became
a professional engineer through training in the IBM undergraduate
engineering education program in conjunction with the University
of Minnesota.

David N. Dietz IBM Application Business Sysiems. Highway 52
& NU: 371h Street, Rochester, Minnesota 55901. Mr. Dietz is an
advisory programmer and manager of languages and utilities sys-
tem evaluation in the product evaluation group. He joined IBM,
Rochester. in 1977 and was responsible for software cost estimat-
ing. He has held a number of assignments in the System/36 and
System/38 development support organizations where he was re-
sponsible for software quality plans, process improvement, and
quality measurements and reviews. In 1985, Mr. Dietz accepted
an assignment on the division and group headquarters staff in
White Plains, New York, where he was responsible for quality and
productivity measurements and definitions. In 1987, he returned
to Rochester to accept a management position in system evalua-
tion and was responsible for system evaluation of AS/400 office
and related products. Mr. Dietz received a B.S. in computer
science, physics, and mathematics from Mankato State University,
Mankato, Minnesota.

Reprint Order No. G321-5366.

406 SULACK. LINDNER, AND DIETZ IBM SYSTEMS JOURNAL, VOL 28, NO 3. 1989

