Books

Object-Oriented Programming: An Evolutionary Ap-
proach, Brad J. Cox, Addison-Wesley Publishing
Company, Reading, MA, 1987. 274 pp. (ISBN 0-
201-10393-1).

The term object oriented is the victim of hyperbole.
Since the ideas attracted favorable attention in the
early 1980s, the term has been distorted by propo-
nents of particular technologies and products. Poten-
tial readers might pass by the Cox book with hardly
a glance. They shouldn’t. Cox identifies precisely
what he means by object oriented, the programming
style pioneered by Smalltalk. He describes the con-
cepts lucidly and relates them to practical program-
ming in a way this reviewer has not previously
encountered.

The book declares its objective in the preface: “Ob-
ject-oriented programming . . . puts reusability at the
center of the software development process, making
reusability the usual way that new components are
built, instead of occasionally calling a function from
some library as programmers now do. . .. It will be
described thoroughly enough to show how hybrids
can be built on [conventional] base languages.” The
book then, chapter by chapter, never strays; often
the connection between each immediate topic and
the objective is explicitly drawn.

The practical thrust of the book is exemplified by
the discussion in chapter 6 of the social environment
required to achieve reuse. The analogy with inte-
grated circuits is useful to introduce the topic, but
the term Software-IC becomes tedious as a para-
phrase for “encapsulated type definition.” Another
practical compromise Cox emphasizes is the ability
“to bypass the object-oriented machinery to access
an object’s private information directly. This is one
of a hybrid language’s greatest theoretical weaknesses
and one of its greatest pragmatic strengths.”

1BM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Implementations of object-oriented languages have
mostly been embedded in operating environments.
The main advantage over older programming tech-
niques, such as reusability, is often lost because of
operating system dependencies. This has slowed
commercial applications. Using a proprietary lan-
guage—Objective-C™—for his examples, Cox sepa-
rates the language from the environment.

The first principal tool, “encapsulation . . . restricting
the effects of change,” is repeatedly illustrated. A
concise example, managing the capacity of an “Or-
dered Collection” (chapter 8), is persuasive.

The second principal tool, “inheritance . .. for au-
tomatically broadcasting code to classes developed
by different members of a team,” is most persuasively
illustrated in chapter 7. Passivation and activation
serve to translate executable versions of objects to
and from linear representations, providing for check-
point/recovery and transmission from one applica-
tion to another. A single implementation in the
ultimate ancestor class, Object, suffices.

Most of what is published about object-oriented
programming is directed toward personal computing
services. Its focus on productivity of programmers
who are more concerned with innovation and im-
proving their own tools can be traced to the Xerox
PARC Learning Research group in the late 1970s.
Commercial programming and the work of large
development teams have not received proportionate
attention. Cox starts to remedy the imbalance, but
does not go as far as he might. He pays more atten-
tion than other writers to programming standards
and the control of user interface appearance. How-
ever, his quantitative examples address the efficiency
of machines rather than the effectiveness of program-
mer teams.

gooks 351




Cox’s largest programming example, “Iconic User
Interfaces™ in chapter 9, is an excellent illustration
not only of the fact that programming is still a
complex task, but also of the way in which window
interfaces are constructed.

However, many expositions illustrate encapsulation
and inheritance by building object-oriented screen
interfaces with windows, icons, and pop-up menus.
This distracts the student from the language features
that should be his or her focus. This reviewer would
have preferred an example from some other area,
such as telecommunications control, scientific pro-
gramming, or computer-aided design of “hardware
1Cs.”

Cox articulates a keen appreciation of the limits of
his topic, especially in chapter 10, “Different Tools
for Different Jobs,” where he separates what is essen-
tial to object-oriented programming and what can
be discussed under other labels. The technical focus
1s on storage management and addressing scope,
addressed as engineering decisions. What is best for
long-running interactive applications is different
from what is best for batch applications; alternative
designs are briefly discussed. The chapter finishes
with a deserved indictment of another subject of
hyperbole: “Although system builders often speak of
office automation systems, such systems hardly even
address office productivity at all, let alone automate
it. . .. A true office automation system has to be able
to carry ... binding agreements. . .. understanding
for words like role, individual, responsibility, and
concurrency, and recognize that they embody what
is truly important. ... Is object-oriented program-
ming the answer? Absolutely not. It merely helps
develop large, complicated, but basically conven-
tional systems.”

Style, layout, and typography are all good. The pres-
entation is clear, to the point, and relatively com-
plete. The programming examples are developed to
the right level of detail to illustrate the points in-
tended, and, in chapter 9, to suggest what an appli-
cation prototype would require. One disappointment
1s the index, which contains inaccuracies. For ex-
ample, the term identifiers refers to page 234, where
we find the specification of the Object class, but not
the word “identifier”; the mystery might be explained
on page 54, where the author states, “Objects are
identified by a new Objective-C data type called an
id, or object identifier,” but we cannot be quite sure.

Another example is “portability of Objective-C,”
with which this reviewer sought to check his own

352 =ooxs

suppositions against author’s claims. The reviewer
never did find the discussion of portability he sought.
Objective-C applications seem to be as portable as
the underlying C language, since the language is
implemented as C-macros and a discipline on link
hibraries. Personal experience is needed to test the
limits of portability and reusability.

The appeal of Cox’s book is that it shows specifically
how an important methodology may help. After
reading Object-Oriented Programming: An Evolu-
tionary Approach, many readers will want to try the
methods on a real problem. Most books leave this
reviewer feeling that he either understands every-
thing offered well before the end of the book, or is
exhausted by more than he can absorb; this book is
the exception.

H. M. Gladney

IBM Almaden Research Center
San Jose

California

Objective C is a trademark of Stepstone, Inc.

File Structures: A Conceptional Tool Kit, Michael
J. Folk and Bill Zoellick, Addison-Wesley Pub-
lishing Company, Reading, MA, 1987. 528 pp.
(ISBN 0-201-12003-8).

This book discusses the implementation of file
structures on secondary storage, beginning with
simple sequential files and building up—via sort-
ing, merging, and searching—to B-trees and hash-
ing. On the way, it discusses the basic features of
disks, tapes, and buffering.

The text is very clearly written, well structured,
and goes into ample detail. The many excellent
examples illustrate both principles and applica-
tions. If the reader finds too much detail, the
organization of the book makes it easy to skip
material. Probably not very many people will read
every word cover to cover, but all should be able
to find what they need in this useful introduction
and reference work. It is also a source of code that
one may freely adapt to one’s own purposes.

My main reservation is the book’s limited scope.

It covers neither the problems of linking collec-
tions of data of different types nor the physical

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989




interleaving of different record types, which are
central to the implementation of database systems
such as DBTG, IMS, and DB2. The book is correct
to avoid the higher-level aspects of databases.
However, it describes file structures as “an appli-
cation of data-structure techniques to . . . data on
secondary storage devices.” Does this include da-
tabase physical storage?

These limitations are probably derived from
Course CS-5 in the ACM Curriculum °78 and,
although they do not detract from the book as
teaching material, tend to make it less attractive
for a professional reader.

Overall, the excellence of the book in the areas
covered makes it well worth reading.

Stephen Todd

IBM United Kingdom
Scientific Centre
Winchester, Hants

0OS/2™: A Business Perspective, Dick Conklin, John
Wiley & Sons, Inc., New York, 1988. 258 pp. (ISBN
0-471-63503-0).

True to its title, Dick Conklin’s, OS/2™: A Business
Perspective, gives the 1BM PC user a broad perspective
of 0s/2 in the context of Ms-DOSs and the 1BM family
of personal computers. Emanating from classes and
seminars delivered to varied audiences, the book
reflects the kind of information a decision maker
needs before embarking on a road to 0s/2. Although
programmers and technicians will benefit from the
descriptive nature of the chapters, the level of the
book targets it to managers and users.

As one introductory section title suggests, the author
sees 08/2 as a bridge between DOS and System Appli-
cation Architecture (SAA). This viewpoint pervades
the early chapters and gives the reader an under-
standing and appreciation for the evolution of the
IBM PC, PS/2%, and 0s/2. The relationship between
hardware and operating system is emphasized with
informative descriptions of the Intel® chip family
(8088 through the 80386), 1BM PC family (original
1BM PC through the 1BM pS/2 Model 80), and p0s-0s/2
development (pos 1.0 through pos 3.3, 0s/2 Standard
Edition, 0s/2 Extended Edition, and finally 0s/2 and
its relationship to SAA).

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Chapter 1 is introductory in nature and describes the
basic concepts of 0s/2 and the role of an operating
system as an interface between the bare machine and
the applications. Chapter 2 discusses the first major
motivation for a new operating system to replace
DOS, taking advantage of the new microprocessor
capability for addressing larger memory. This chap-
ter provides a good description of how memory is
addressed on earlier pcs and why there is a 640K
Dos limit. Even experienced users will appreciate the
discussion on breaking this barrier and the motiva-
tion for chip and operating system design which can
take advantage of larger memory.

In chapter 3, multitasking, the second motivation
for a new operating system, is presented. The need
for 0s/2 is presented against the background of what
came before: poOs shells, memory resident “pop-up”
programs, printer spooling, and multitasking win-
dowed environments such as 1BM’s TopView® and
Microsoft’s Windows®. A description of the Intel
80286/80386 hardware support for multitasking de-
scribes the real and protect modes (what 1BM calls
DOSs and 0s/2 modes, respectively) and how segments
are managed. There is also a section on security and
the protection-ring structure of the 80286. The chap-
ter concludes with a discussion of the 0s/2 multitask-
ing user and programming interface, although entire
chapters are devoted to these topics later in the book.

Chapter 4 describes the user interface to 0S/2. This
includes a discussion of pc-DOS for comparison and
the Ps/2 user interface components (keyboard, mon-
itor, and mouse). The first part of the chapter de-
scribes the single screen, special key stroke user
interface for os/2 Standard Edition 1.0. It describes
how to boot the system, start new programs, and
switch between them. The special key sequences to
perform some of these functions (e.g., <alt esc> to
rotate between running programs) and some for the
0s/2 commands are presented here. The latter part
of the chapter describes the graphics and windowed
interface of 0s/2 Standard Edition 1.1 which is the
0s/2 Presentation Manager™ and conforms to the
Common User Access part of SAA.

The issues involved in converting from DOS to 0s/2
are covered in chapters 5 and 6. Chapter 5 sets the
stage by describing the pos 3.3 environment and
reviewing the existing hardware and software support
for larger memortes and multitasking. It then ex-
plains how to migrate data and applications from
the DOS to 0s/2. Chapter 6 details the issues involved
in installing and maintaining an 0s/2 system, includ-

sooks 353




ing application installation, disk management, con-
figuration parameters, and 0s/2 performance.

The final chapters of the book take the reader in two
different directions. Chapter 7 goes beyond the 0s/2
Standard Edition to the 0s/2 Extended Edition which
includes two 1BM products, the Communication
Manager™ and the Database Manager™. This chapter
tries to paint a total picture of where 1BM 0s/2 fits in
the move toward an integrated saA world. The last
chapter turns inward and discusses some of the tech-
nical aspects of the 0s/2 programming interface.
Conklin explores the system interface and program-
ming aspects for multitasking and resource manage-
ment. A brief description of the 0s/2 Application
Program Interface (AP1) is presented with a list of the
different system calls available to the application
developer.

It is difficult to write a technical book in layman’s
terms. Conklin has tried to give the reader an under-
standing of 0s/2, its motivation, and why one would
want to migrate to a more sophisticated operating
system. Through ample diagrams, prechapter glos-
saries, and a perspective which respects and rein-
forces the existing knowledge base of the reader, the
author has written an enjoyable and informative
introduction to 0S/2.

Daniel Farkas
Assistant Professor
Pace University
White Plains

New York

0S/2, Presentation Manager, Communication Manager, and Da-
tabase Manager are trademarks, and PS/2 and TopView are reg-
istered trademarks, of International Business Machines Corpora-
tion.

Intel is a registered trademark of Intel Corporation.

Microsoft Windows is a registered trademark of Microsoft Cor-
poration.

Expert Systems Applications to Telecommunica-
tions, Jay Liebowitz, Ed., John Wiley & Sons, Inc.,
New York, 1988. 371 pp. (ISBN 0-471-62459-4).

It is universally recognized that modern telecom-
munications networks are increasing in complexity
at an astounding rate. This complexity derives both
from the sheer number of resources that make up

354 sooks

these networks and from the diversity of equipment
and the variety of communications protocols that
may be incorporated in a single network. The level
of knowledge and sophistication required of the peo-
ple who must design, operate, and administer such
networks has grown at nearly the same pace. These
factors, coupled with the fact that expert systems
have emerged among the first serious commercial
successes of research in Artificial Intelligence, have
made the topic of applying expert systems to prob-
lems in the telecommunications field one of the
hottest at industry conferences, in technical journals,
and in more popular trade publications.

It is very difficult to conceive of a textbook that
could adequately treat an area that is still so early in
its development. There are numerous research and
prototyping efforts underway throughout the data
processing and telecommunications communities to
find ways to exploit expert systems technology.
Nevertheless, this book offers an interesting collec-
tion of viewpoints on the subject. In a field where
there is not yet a well-established repertoire of tricks
and techniques, this book provides a glimpse of a
variety of application development programs at dif-
ferent stages of maturity.

The book is like a collection of papers from a work-
shop on expert systems in telecommunications. It is
divided into three sections, Case Studies, Methodol-
ogies, and Future Applications, with the case studies
making up over two-thirds of the text. Each chapter
in the Case Studies section reflects the views and
experiences of a different group of developers, with
the telephone industry and programs sponsored by
the Federal government being best represented. As
the editor notes in his introduction, some very sig-
nificant and successful projects are not included in
this selection of case studies, but it is difficult to deny
that telephone companies and government agencies
have been among the most visible proponents of this
technology.

The case studies that provide the most self-conscious
descriptions of the process of developing expert sys-
tems applications are those describing FIS, a project
of the U.S. Navy Center for Applied Research in
Artificial Intelligence; FIESTA, a NASA-sponsored proj-
ect; and XTEL, a project initiated to cope with re-
quirements of the Defense Communications Agency.

FIS, a Fault Isolation System, uses descriptions of the
causal relationships between failures and measurable
parameters to assist in locating problems in elec-

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989




tronic equipment. The case study describes some of
the issues that were addressed in building the knowl-
edge acquisition aids for the project, and outlines
the reasoning schemes that were developed. FIESTA
is a Fault Isolation Expert System for TDRsS Appli-
cations and was created to assist operators in the
Nasa Network Control Center responsible for man-
aging the Tracking and Data Relay Satellite System
network. The case study for this system outlines the
types of problems that face NASA operators, and the
expert system is portrayed as being integrated into
the existing network management structure. The
kinds of knowledge about network components and
processes that are represented in the system and the
scheme used to manipulate certainty factors also
receive special attention. XTEL is a design tool built
to assist in planning the types of military telecom-
munications that are needed to meet the require-
ments of a regional conflict. The case study focuses
on the kinds of knowledge about the characteristics
and vulnerabilities of various media and frequency
ranges that are required to allow the system to imi-
tate experienced network designers and spends con-
siderable time on the problems associated with pre-
senting a flexible user interface.

The section on Methodologies contains some serious
thoughts about the relationship between building
expert systems and building traditional applications.
Although there are no prescriptions for success here,
the term expert system has had a sort of mystical
cachet that hides the amount of hard work required
to build and field such a system. The set of tasks that
the system will perform must be carefully selected,
the performance and interface requirements that the
system must meet have to be well documented and
understood, and then an effective means must be
devised for verifying that the system does indeed
meet the requirements and perform the designated
tasks. It is helpful to see a thoughtful discussion of
these kinds of problems published.

The section on Future Applications is not so much
a projection of the eventual impact of expert systems
on telecommunications as a place for articles on
projects which had not yet reached the prototype
phase when the book went to press. On the other
hand, many of the case study chapters include par-
agraphs on the directions those projects were antici-
pated to take in the future, and general predictions
about the future of a relatively new and evolving set
of techniques are seldom very reliable.

The book is not without weakness. It is a loosely
edited collection of papers and suffers from a certain

IBM SYSTEMS JOURNAL, VOL 28. NO 2, 1989

amount of repetitiveness. Many of the authors ad-
dress the question of why expert systems are attrac-
tive as solutions to problems in telecommunications.
and many reiterate the standard sorts of lists of what
is required for an expert system application to be
successful. The individual chapters are not well in-
tegrated, and there is significant variation in the level
of detail from one chapter to the next. Some of the
systems described have already been treated at length
in other books and in conference proceedings. The
fact that the chapters are not better coordinated
detracts from the book’s value as a text, since there
are no unifying themes and the authors of later
chapters are unable to refer back to results or obser-
vations appearing earlier in the book.

Still, Expert Svstems Applications to Telecommuni-
cations does offer an interesting sampling of work in
this area, emphasizing a very practical perspective.
In a field where it is often difficult to distinguish
substance from optimistic speculation, this is a useful
contribution.

Stephen Brady

IBM Thomas J. Watson
Research Center

Yorktown Heights

New York

On Writing Well, 3rd edition, William Zinsser, Har-
per and Row Publishers, New York, 1985. 246 pp.
(ISBN 0-06-015409-8). Writing to Learn, William
Zinsser, Harper and Row Publishers, New York,
1988. 256 pp. (ISBN 0-06-015884-0).

Written and oral communication are vital skills for
those of us in technical fields. We must present ideas
in a way that is understandable and interesting.
William Zinsser offers two entertaining and well-
written books that address how we can improve our
writing skills.

I loved reading these books, because their messages
are useful and the presentation makes them fun to
read. Zinsser follows his own advice by taking the
time to write simply and clearly.

On Writing Well should be read by anyone who
writes anything from memos to books. Whatever a
writer’s message, the goal is to get the reader to
understand its meaning. Zinsser points out how sim-

sooks 355




ple ideas can be made unnecessarily complex when
they are written. He gives concrete suggestions on
how to achieve simplicity and cohesion in writing.
His principles also apply to anyone who teaches or
does public speaking.

1 appreciate writers and speakers who have taken
time to prepare their presentation so that they get to
the point quickly. Zinsser does this, presenting useful
information in such a way that reading this book
makes good use of the reader’s time.

The author discusses how to begin writing, how to
let one idea lead to the next, and how to finish. He
stresses the importance of maintaining momentum
through the writing and keeping the reader’s interest.
All of the ideas are simple, but until now no one has
conveyed them to me with such clarity.

This is not a book that teaches how to write correctly.
It is a book that teaches how to write simply, with a
style that holds the reader’s interest. If I had read
this book earlier in my life, I wouldn’t have been so
afraid of using a sense of myself, my beliefs, or my
own experience in writing.

When I finished reading On Writing Well, 1 had been
given lots of ideas on how to improve my writing
and had been entertained in the process.

Writing to Learn is an excellent book to read after
On Writing Well. Zinsser continues in this book by
saying that if we can think clearly about a subject
and understand it well, we should be able to express
ourselves clearly when writing about it. If we don’t
fully understand a subject, Zinsser feels that we can
learn through the process of writing itself.

I believe that Writing to Learn would be of interest
to people in technical areas. It may seem inconceiv-
able that writing in some subject areas can be made
both interesting and understandable. However, this
book shows that it can be done and encourages more
of us to do the same.

This book is full of examples by authors who know
their subjects well and can explain them in simple
terms. Zinsser includes examples of good writing in
fields such as mathematics, science, chemistry, geol-
ogy, and art. One of his prime examples is from
Albert Einstein’s book on relativity. Einstein’s writ-
ing is clear and understandable without a suggestion
of talking “down” to his audience. His style is given
as an illustration that even the most complex con-

356 Eooks

cepts can be explained clearly. “If clear writing is
clear thinking,” Zinsser explains, “a mind clear
enough to think of the theory of relativity would be
likely to express itself simply and well.”

My favorite part of this book is where the author
states that no one should “have to read a sentence
... twice to find out what it means.” At one time I
believed that I was a poor reader, since I often had
to read sentences more than once; now I suspect that
I may have been reading poorly prepared writing.

Sharon Perkins
Assistant Professor
University of Houston
Clear Lake

Texas

1BM SYSTEMS JOURNAL, VOL 28, NO 2, 1989




