
I Technical note
Engineering and Scientific
Subroutine Library Release 3
for IBM ES/3090 vector multiprocessors

I

This technical note should be read in conjunction with
the paper by McComb and Schmidt’ which describes
the Engineering and Scientific Subroutine Library
through Release 2. In this technical note, which is an
addendum to that paper, we briefly describe some of
the new features in Release 3 and indicate some of the
techniques used to optimize vector and parallel per-
formance.

I

T he paper by McComb and Schmidt’ previously
published in the IB.I! SJstrms Journal described

the contents and performance features of the Engi-
neering and Scientific Subroutine Library (ESSL) Re-
lease 2 . In this technical note, we describe several

1 new features in ESSL Release 3 and discuss some of
the techniques that were used to optimize vector and
parallel performance.

The following new features are provided in Release
3 :

Forty-seven new subroutines, including six paral-
lel processing subroutines
Seventy-one subroutines modified to improve per-
formance, to add capability, or for migration pur-

Calling sequence validation using the VS FORTRAN
l poses

lntercompilation Analysis (I C A) ’ - ~ feature

The new subroutines include:

A select group provided for parallel processing
usingFjther the vs FORTRAN Multitasking Facility
(MTF) . or Parallel FORTRAN,”‘ including matrix

by R. C. Agarwal
F. G. Gustavson
J. McComb
S. Schmidt

multiplication, general and positive definite sym-
metric matrix factorization, and one-, two-, and
three-dimensional complex Fourier transforms
In-place and out-of-place general matrix transpose
Complex general matrix factorization and solve
Positive definite symmetric matrix inverse, con-

Real ,triangular matrix solve (proposed Level 3

General sparse matrix factorization and solve by

General sparse matrix iterative solve
Extreme eigenvalues and corresponding eigenvec-
tors of real symmetric and complex Hermitian
matrices
Eigenvalues and eigenvectors for both generalized
real and generalized real symmetric eigensystems
Three-dimensional complex, real-to-complex, and
complex-to-real Fourier transforms
Long precision direct method convolution or cor-
relation with decimated output
Two-dimensional cubic spline interpolation
Two-dimensional Gauss-Legendre quadrature
Normally distributed random number generators
Utility to determine the stride value for optimal
performance in certain Fourier transform subrou-
tines
Utility to set the vector section size of the scalar
library

dition number reciprocal, and determinant

BLAS)

direct methods

Copyright 1989 by International Business Machines Corporation.
Copying ~n printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Joltrnalreference and IBM copyright
notice are included on the first page. The title and abstract. but no
other portions. of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to rcJpuhlish any other
portion of this paper must be obtained from the Editor.

I
IBM SYSTEMS JOURNAL VOL 28. NO 2 1989 AGARWAL ET AL 345

Parallel processing subroutines

IBM ES/3090’” systems presently consist of up to six
processors. Each processor has its own cache mem-
ory. If data in cache is repeatedly referenced, it
becomes cache resident, resulting in a very good
performance. For parallel processing, vs FORTRAN
Version 2 provides the Multitasking Facility (M T F) , ~ ‘ ~
which uses DSPTCH (a forking routine) and SYNCRO
(a joining routine) subroutines. The DSPTCH subrou-
tine creates a subtask by calling a parallel subroutine
with its set of parameters. Typically, several subtasks
are created with each subtask assigned a part of the
data. The operating system assigns these subtasks to
available processors. These subtasks work asynchro-
nously; therefore, it is important that they share only
“read only” data. All “write” data sets must be dis-
joint. Each processor has its own cache, and the
shared data can reside in “read only” mode on
several processors. The SYNCRO subroutine ensures
that all subtasks complete at each stage before pro-
ceeding further with the next parallel phase of the
computation. Parallel FORT RAN^,^ also provides a
similar capability. ESSL parallel routines work in both
environments.

In ESSL parallel subroutines, we attempt to multitask
the problem at the highest possible level. If this
attempt fails, we multitask at the next lower level
such that a fairly large amount of computing is done
in each subtask. Such an arrangement makes the
multitasking overhead small compared to the com-
putational workload. One of our aims is to not
significantly increase the total CPU time compared
to a uniprocessor time. Attaining this goal requires
maintaining the performance obtainable from our
vectorized cache-based blocking algorithms. This
granularity determines the minimum subtask size to
obtain good performance. Thus, even if all the proc-
essors are not actually available for the task (often
the case in a multiuser environment), multitasking
does not significantly increase the total number of
processor cycles. Notwithstanding, when the desig-
nated number of processors are actually available,
we want an elapsed-time speedup to be close to the
number of processors available. Meeting this condi-
tion requires careful load balancing between each
synchronization step and eliminating or minimizing
the serial computation. In ESSL, different phases of
computation are often overlapped to achieve load
balancing. To put these ideas into perspective, we
briefly describe how we have used them to imple-
ment our uniprocessor and parallel routines for ma-
trix multiplication, general LU factorization, and
three-dimensional fast Fourier transform (FFT).

346 AGARWAL ET AL

The vector algorithms for matrix multiplication,
C = AB, and general A = LU factorization are
carefully tuned to take advantage of the memory
hierar$hy of the I B M 3090 system, especially its
cache. For matrix multiplication, DGEMUL, we get
cache data reuse by blocking the A matrix into
submatrices which fit into cache and by using a
matrix update routin?, an example of which is the
level 3 BLAS, DGEMM. The matrix update routine is
used repeatedly to do the entire computation. For
matrix factorization, DGEF, we use a recursive block
factorization and update algorithm. For large mat-
rices, almost all of the computation in both of these
routines is done during the update phase. The update
phase runs at close to the peak performance of the
machine. This ensures very good overall perform-
ance for both of these ESSL vectorized routines.
DGEMUL and DGEF.

These two vectorized routines have also been paral-
lelized. The main feature in the parallel matrix mul-
tiplication routine, DGEMLP, is the division of the C
array into P equal areas that are suitable to exploit
the matrix update algorithm. We then assign a proc-
essor to each of the P equal pieces of C and call
DGEMUL for each piece. This strategy balances the
load very well. In the parallel matrix factorization
routine, DGEFP, we initially, and outside of the par-
allel structure, factor a certain number of columns.
Then we initiate a recursive parallel computation.
On each parallel iteration there is a block update
step and the next block factorization step. We esti-
mate the total workload for this computation and
try to divide it equally among the available proces-
sors. The main task updates a certain number of
columns and factors the next block. Since the proc-
esses are asynchronous, the main task must update
at least those columns which are to be factored next.
The remaining columns of the update step are split
equally among the remaining processors. Any extra
columns assigned to the main task are chosen to
achieve load balancing. In principle, this gives close
to 100 percent efficiency for large problems.

We give the performance of the parallel routines
DGEMLP and DGEFP in Tables 1 and 2. Measurements
were made on the I B M ES/3090 model 600S, under
Multiple Virtual Storage System Product (MVS/SP”)
in a dedicated environment. All measured times are
in seconds and are rounded. The third column of
each table gives the performance of the correspond-
ing vector uniprocessor routines, DGEMUL and DGEF.
For the DGEMUL routine, the performance quickly
approaches the asymptotic value of 104 MFLOPS (mil-

IBM SYSTEMS JOURNAL, VOL 28. NO 2. 1989

lion floating point operations per second), which is
91 percent of the possible peak rate of 114 MFLOPS.
For the DGEF routine, as long as the matrix fits in
main memory, the performance keeps improving as
the matrix size increases. This performance should
eventually come close to the matrix multiply per-
formance. For the matrix factorization, the speedup
factor improves as the problem gets larger and even-
tually comes very close to the number of processors
used. For the parallel matrix multiplication routine,
the speedup is very close to the number of processors
used and is achieved even for a small problem. For
the matrix factorization routine, for the size 100
problem, we could not efficiently use more than three
processors; therefore, internally the number of proc-
essors used was limited to three. In summary, for
two important linear algebra kernels, we have ob-
tained close to the effective peak rate of the new
model ES/3090 600s.

Three-dimensional FFT routines have been provided
in ESSL Release 3. In performing multidimensional
Fourier transforms, data are accessed with large
strides. Because of the memory hierarchy of the
3090, it is very important that these strides are
chosen such that blocks of data fit comfortably in
various levels of memory. ESSL FFT routines do ap-
propriate blocking of data and, where necessary,
internal transpositions so that blocks of data fit in
memory. In spite of this, certain strides, for example,
powers of two, degrade performance. To help users
in selecting good strides, a utility routine, STRIDE,
that recommends good strides for any given size
problem has been provided.

A parallel three-dimensional FFT routine, SCFT3P, has
also been provided.’ This routine is functionally
equivalent to the uniprocessor S C F T ~ (three-dimen-
sional complex-to-complex FFT routine) and uses
multiple processors when available to speed up the
computation. In both of these routines, the first two
dimensions are transformed one plane at a time, and
the total number of planes is divided among all of
the processors. At the end of this step, the Fourier
transform is computed along the third dimension.
This step is also divided among the available proces-
sors.

In Table 3, we give the performance of S C F T ~ and
SCFT~P. Measurements were made on the IBM
ESJ3090 model 600s under Mvs/sP in a dedicated
environment. The timings include the initialization
times. The routine was run for three-dimensional
arrays of size N , and L = N’ is the total number of

IBM SYSTEMS JOURNAL. VOL 28, NO 2. 1989

Table 1 General matrix multiplication performance

I MFLOPS
N T 1-way

100 0.022 89.7
200 0.167 101.8
500 2.400 104.1

1000 19.150 104.4
1500 64.600 104.5
2000 153.000 104.6

P-way Speedup

2 4 6 6-way
MFLOPS

1.93 3.63 5.02 448
1.97 3.85 5.53 565
1.98 3.92 5.75 599
2.00 3.97 5.91 617
1.99 3.98 5.91 617
2.00 3.99 5.94 621

Table 2 General matrix factorization performance

N

100
200
500

IO00
2000
3000

MFLOPS
T 1-way

0.0145 45.9
0.0787 67.8
0.9840 84.7
7.1800 92.8

54.3200 98.2
179.7000 100.1

~

P-way Speedup

2 4 6 6-way
MFLOPS

1.68 1.86 1.85 85
1.90 3.08 3.40 230
2.00 3.95 5.64 478
2.00 4.00 5.93 551
2.00 3.98 5.94 583
2.00 3.99 5.96 597

Table 3 Three-dimensional FFT performance

N Size
L = N 3

60 216000
84 592704

128 2097 152
180 5832000
240 13824OOO
256 16777216
320 32768000
360 46656000

P-way Parallel
Speedup

T P

0.30 0.078 1.95 3.79 5.53
0.89 0.078 1.97 3.91 5.66
3.65 0.083 1.99 3.95 5.71

10.9 0.083 1.99 3.98 5.86
28.8 0.088 1.97 3.93 5.88
38.9 0.097 1.99 3.91 5.69
77.0 0.094 1.99 3.93 5.75

101.6 0.086 1.99 3.91 5.65

N is the matrix order or transform length
T is the elapsed tune ofthe ESSL nonparallel version ofthe subroutine in seconds.
P is the number of processors used for parallel processing.

points processed. The array was dimensioned for
optimal performance, using the ESSL STRIDE routine.
All times are actual “wall clock” (elapsed) times. The
fourth column gives the uniprocessor time (for SCFT~)
normalized by L log,(L), in microseconds. These
numbers are quite uniform indicating that uniformly
good performance can be obtained for large prob-
lems in spite of the large strides. The last three
columns give the elapsed time speedup of the parallel
routine SCFT~P over S C F T ~ , using two, four, and six
processors.

AGARWAL ET AL 347

Table 4 Performance of some Release 3 vector subroutines

(Sparse Matrix Stored by Indices and Rows)
DGSF-Sparse Matrix Factorization

N PNZ T(S) T(E) T(S)IT(E) T(E) T(S)IT(E)
(indces) (indices) (rows) (rows)

1442
3606
4422
4482
7020

0.9 2.127 0.625 3.40 0.607 3.50
0.4 0.781 0.504 1.55 0.418 1.87
0.2 0.776 0.353 2.20 0.290 2.68
0.1 0.171 0.063 2.7 1 0.037 4.62
0.2 1.511 0.707 2.14 0.568 2.66

(Lower Triangular Matrix on Left Side)
DTRSM-Triangular Solve

M N T(S) T(E) T(S)IT(E)

100 100 0.1116 0.0222
500 500 14.2825 1.6760 8.52

5.03

1000 IO00 114.8365 11.8617 9.68

DSPSV-Largest (10%) Eigenvalues 81 Eigenvectors
(Symmetric Matrix in Upper Packed Storage Mode)

N M T(S) T(E) T(S)IT(E)

100 10 0.23901 0.09362 2.55
300 30 5.19810
500 50

1.272 13 4.09
22.87726 5.04824 4.53

N = Order of the matrix or the number of columns in solution matrix B
M = Number of eigenvalues and eigenvectors computed or the number of rows in solution matrix B

PNZ = Percentage of nonzero elements of the matrix
T(S) = IBM ES/3090 CPU time in seconds for scalar subroutme
T(E) = IBM ES/3090-VF CPU time in seconds for ESSL subroutine

Vector subroutines

In addition to the parallel processing subroutines,
several new vector subroutines were added in Release
3. Among others, a direct method for sparse matrix
factorization-subroutine DGSF,” a triangular
solve-DTRsM, and an eigenvalue-eigenvector
code-DsPsv are included. DGSF has two main com-
ponents: a fast scalar factorization and a vectorized
factorization designed mainly for dense matrices. I I

The scalar Lu-factorization uses a simple algorithm
to identify triangular factors by permutations. The
remaining nucleus is factorized by Gaussian elimi-
nation using threshold pivoting with an approximate
Markowitz count criteria. Several improvements to
other known techniques contribute to the speed of
DGSF during the search for a pivot.’* DGSF proceeds
with scalar processing if the active submatrix is rea-
sonably sparse and switches over to dense vectorized
processing if the density of the active submatrix
reaches a certain threshold value. The design of the
vectorized part is described in the paper by Suhl,
Aittqniemi, and Su.13 DTRSM is a proposed Level 3
BLAS which solves triangular systems of equations

348 AGARWAL ET AL

with multiple right-hand sides. DSPSV computes the
extreme eigenvalues and eigenvectors of a real sym-
metric matrix by the rational QR method with New-
ton corrections. Performance information for these
subroutines is given in Table 4.

Acknowledgments

The authors would like to acknowledge the contri-
butions of additional developers, U. Suhl and L.
Aittoniemi, for ESSL Release 3.

ES/3090 and MVS/SP are trademarks of International Business
Machines Corporation.

Cited references and notes

1. J. McComb and S. Schmidt, “Engineering and Scientific Sub-
routine Library for the IBM 3090 Vector Facility,” IEM
Systems Journal 27, No. 4, 404-4 I5 (I 988).

2. The VS FORTRAN Intercompilation Analysis (ICA) feature
allows the diagnosis of inconsistencies in call sequence argu-
ments passed to ESSL subroutines at compile time. These
inconsistencies can be corrected before running the program,
thus saving time in debugging large, complex FORTRAN
programs.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

3 . VS FORTRAN Version 2 Languuge and Library Reference.
SC26-422 I , IBM Corporation (1 988); available through IBM

4. VS FORTRAN Version 2 Progrumming Guide, SC26-4222,
branch offices.

IBM Corporation (1988); available through IBM branch of-
fices.

5. Parallel FORTRAN Language and Library Refircnce, SC23-
0431. IBM Corporation (1988); available through IBM branch
offices.

6. L. J. Toomey, E. C. Plachy, R. G. Scarborough, R. J. Sahulka,
J. F. Shaw, and A. W. Shannon, “IBM Parallel FORTRAN,”
IBMS.v.~tems Journal 27, No. 4, 416-435 (1988).

7. J . J. Dongarra, J . Du Croz, I. Duff, and S. Hammarling, “A
set of Level 3 basic linear algebra subprograms,” Technical
Mcvnorandlrm 88, Argonne National Laboratory, Argonne, IL
(May 1988).

8. R. C. Aganval and F. G. Gustavson, “A parallel implementa-
tion of matrix multiplication and LU factorization on IBM
3090,” IFIP WG 2.5 Working Conference 5, held at Stanford
University (August 22-26, 1988). Published in Aspects uf
Computation on Asynchronous Processors, M. H. Wright,
Editor, Elsevier Science Publishers B.V. (North-Holland), Am-
sterdam (1989).

9. R. C. Aganval, “A vector and parallel implementation of the
FFT algorithm on IBM 3090,” IFIP WG 2.5 Working Con/kr-
ence 5, held at Stanford University (August 22-26, 1988).
Published in Aspects ofCompulation on Asynchronous Proces-
sors, M. H. Wright, Editor. Elsevier Science Publishers B.V.
(North-Holland), Amsterdam (1989).

IO. The DGSF comparison scalar code used in Table 4 is MA28.
MA28 is described in: I. S. Duff, MA28-A Sa o f Fortran
Subroutinesfi,r Spurse (insymmetric Linear Equations, AERE
Hanvell Report, R.8730 (1977).

I I . F. G. Gustavson, “Aspects of dense/sparse LU-factorizations
for vector processing,” SIAM Conjiwnce on Sparse Matrices,
Gleneden Beach, Oregon (May 1989).

12. U. H. Suhl and L. Aittoniemi, Computing Sparse LU-Factor-
izutions.fi)r Large-Scale Linear Programming Bases, Working
Paper 58/87, Freie Universitat Berlin, FB IO, WE 6.

13. U. H. Suhl, L. Aittoniemi, and J. Su, “Computing LU-factor-
izations for large sparse general matrices,” SIAM Confkrencr
on Sparse Matrices, Gleneden Beach, Oregon (May 1989).

Ramesh C. Agarwal IBM Reseurch Division, T. J. Watson Re-
search Ccwtcw, P.O. Box 218, Yorktown Heights, New York 10598.
Dr. Aganval received a B.Tech. (Hons.) degree from the Indian
Institute of Technology (IIT) Bombay, India, and the MS. and
Ph.D. degrees from Rice University, Houston, all in electrical
engineering in 1968, 1970. and 1974. respectively. During 1971-
72, he was an associate lecturer at the School of Radar Studies,
IIT Delhi. India, and from 1974 to 1977, he was with the T. J.
Watson Research Center. From 1977 to 198 I he was a principal
scientific officer at the Center for Applied Research in Electronics
at IIT Delhi. and then he returned to IBM in 1982. His research
interests have included network synthesis, information theory and
coding, number theoretic transforms, fast algorithms for comput-
ing convolution and DIT, application of digital signal processing
to structure refinement of large biological molecules using X-ray
diffraction data, sonar signal processing, architecture for special-
purpose signal processors, digital DTMF/MF receivers, filter struc-
tures. analysis of the Kennedy assassination tapes, computation of
elementary functions, and vectorization and parallelization of
engineering/scientific computation. Dr. Aganval received the Pres-
ident’s Gold Medal from IIT Bombay in 1968, the Best Ph.D.
Thesis Award from Sigma Xi Society of Rice University in 1974,

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

the 1974 IEEE ASSP Senior Award for papers on number theoretic
transforms, an IBM Outstanding Contribution Award in 1979 for
work on cyrstallographic refinement of biological molecules, an
IBM Outstanding Technical Achievement Award in 1984 for
elementary functions work, and an IBM Outstanding Innovation
Award in 1985 for work on vectorizing the FFT algorithm. He is
a Fellow of the IEEE.

Fred G. Gustavson IBM Research Division, T. J. Watson Re-
search Center, P.O. Box 218, Yorklown Heights, New York 10598.
Dr. Gustavson is manager of Algorithms and Architectures in the
Mathematical Sciences department at the Research Center. He
received his B.S. in physics in 1957 and his MS. and Ph.D. in
applied mathematics in 1960 and 1963 from Rensselaer Polytech-
nic Institute. Since joining IBM in 1963, his primary interest has
been in developing theory and programming techniques for ex-
ploiting the sparseness inherent in large systems of linear equa-
tions. He has worked in the areas of nonlinear differential equa-
tions, linear algebra, symbolic computation, computer-aided de-
sign of networks, design and analysis of algorithms, and
programming applications. As a manager, he designed and headed
a project to improve IBM’s elementary function package and to
produce vector algorithms for IBM’s first vector computer, the
3090. He recently designed and headed a project to produce high-
performance software for matrix algebra, linear systems, signal
processing, and fast Fourier transforms. He and his group pro-
duced state-of-the-art software which became part of IBM’s VS
FORTRAN Version 2 Library and Engineering and Scientific
Subroutine Library. He also contributed to designing algorithms
for IBM’s linear programming package, MPSX2, and, with R. K.
Brayton and G. D. Hachtel, was responsible for many of the
essential algorithms of the IBM circuit analysis package ASTAP.
Dr. Gustavson has received an IBM Outstanding Contribution
Award for his work in sparse matrices and an IBM Outstanding
Invention Award, jointly with Brayton and Hachtel, for the sparse
tableau approach to network analysis and design. In 1984, he
received an IBM Outstanding Innovation Award, jointly with
R. C. Aganval, J. W. Cooley, and B. Tuckerman, for producing
highly accurate and significantly faster elementary function algo-
rithms for System/370 machines. In 1985, he received an IBM
Outstanding Technical Achievement Award for his contribution
to the design and implementation of novel high-performance
algorithms for solving linear equations. In 1988, he received an
IBM Outstanding Technical Achievement Award for his prior
contributions to the theory, design, and implementation of a new
approach which became the embodiment of ASTAP. This work
was also recognized with a corporate award.

Joan McComb IBMDalu Systems Division, P.O. Box 100, King.%-
ton. New York 12401. Ms. McComb is an advisory programmer
in the Engineering and Scientific Library Development Group.
She received a B.A. and M.S. in mathematics from New York
University in 1976 and 1978, respectively, and an M.S. in com-
puter engineering from Syracuse University in 1987. She joined
IBM in Owego, New York, in 1978, and worked on a real-time
simulator for the LAMPS (Light Airborne Multipurpose System)
project and on the CPEXEC microcode for the IBM 3838 Array
Processor. Ms. McComb transferred to Poughkeepsie, New York,
in 198 1 and became involved in design verification of large sys-
tems. Since 1984, she has worked on ESSL development in Kings-
ton.

AGARWAL ET AL 349

Stanley Schmidt IBM Data Systems Division, P.O. Box 100.
Kingston, New York 12401. Mr. Schmidt is currently a senior
engineering manager in the Engineering and Scientific Program
Development department where he is responsible for the ESSL
program product. He has B.S. and M.S. degrees in mathematics
from the University of Wisconsin. He joined IBM in Poughkeepsie,
New York, in 1963 in a scientific computations department as a
mathematical analyst. His primary involvement has been with
numerical solutions to problems in circuit, device, and packaging
analysis as well as algorithms for machine design. He has also
participated in the development of APL mathematical functions.
In 1972-73, Mr. Schmidt was a visiting Associate Professor at
Hampton Institute, teaching numerical analysis and programming.
In 198 1 he joined Scientific and Engineering Processor Develop-
ment where he worked on architecture issues. He subsequently
initiated the ESSL development effort in which he continues to be
involved. Mr. Schmidt has received an IBM Data Systems Division
award for his ESSL contributions.

Reprint Order No. (3321-5363.

350 AGARWAL ET AL IBM SYSTEMS JOURNAL, VOL 28. NO 2, 1989

