
I Technical note 
Engineering  and  Scientific 
Subroutine  Library  Release  3 
for IBM ES/3090 vector  multiprocessors 

I 

This technical note should  be  read  in conjunction with 
the paper by McComb and Schmidt’ which describes 
the Engineering and Scientific Subroutine  Library 
through Release 2. In this technical note, which is an 
addendum to that paper, we briefly describe some  of 
the new features in Release 3 and indicate some of the 
techniques used to optimize vector and parallel per- 
formance. 

I 

T he paper by McComb  and  Schmidt’ previously 
published in the IB.I! SJstrms Journal described 

the  contents  and  performance features of the Engi- 
neering and Scientific Subroutine Library (ESSL) Re- 
lease 2 .  In this technical note, we describe several 

1 new features in ESSL Release 3 and discuss some of 
the  techniques  that were used to optimize vector and 
parallel performance. 

The following new features  are provided in Release 
3 :  

Forty-seven new subroutines,  including six paral- 
lel processing subroutines 
Seventy-one subroutines modified to  improve per- 
formance, to add capability, or for migration pur- 

Calling sequence validation using the VS FORTRAN 
l poses 

lntercompilation Analysis ( I C A ) ’ - ~  feature 

The new subroutines  include: 

A select group provided for parallel processing 
usingFjther  the vs FORTRAN Multitasking Facility 
(MTF) .  or Parallel FORTRAN,”‘ including  matrix 
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multiplication, general and positive definite sym- 
metric  matrix  factorization,  and one-, two-, and 
three-dimensional complex Fourier  transforms 
In-place and out-of-place general matrix  transpose 
Complex general matrix  factorization  and solve 
Positive definite symmetric  matrix inverse, con- 

Real ,triangular matrix solve (proposed Level 3 

General sparse matrix factorization and solve by 

General sparse matrix iterative solve 
Extreme eigenvalues and corresponding eigenvec- 
tors of  real symmetric  and  complex  Hermitian 
matrices 
Eigenvalues and eigenvectors for both generalized 
real and generalized real symmetric eigensystems 
Three-dimensional  complex, real-to-complex, and 
complex-to-real Fourier  transforms 
Long precision direct  method  convolution or cor- 
relation with decimated  output 
Two-dimensional  cubic spline interpolation 
Two-dimensional Gauss-Legendre quadrature 
Normally  distributed  random number generators 
Utility to  determine  the stride value for optimal 
performance in certain  Fourier  transform  subrou- 
tines 
Utility to set the vector section size of the scalar 
library 

dition  number reciprocal, and  determinant 

BLAS) 

direct methods 
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Parallel  processing  subroutines 

IBM ES/3090’” systems presently consist of up  to six 
processors. Each processor has its own cache  mem- 
ory. If data  in cache is repeatedly referenced, it 
becomes cache resident, resulting in a very good 
performance.  For parallel processing, vs FORTRAN 
Version 2 provides the  Multitasking Facility ( M T F ) , ~ ‘ ~  
which uses DSPTCH (a forking routine)  and SYNCRO 
(a joining  routine)  subroutines.  The DSPTCH subrou- 
tine creates a  subtask by calling a parallel subroutine 
with its set of parameters. Typically, several subtasks 
are created with each subtask assigned a  part of the 
data.  The operating system assigns these subtasks to 
available processors. These  subtasks work asynchro- 
nously; therefore, it is important  that they share only 
“read  only” data. All “write” data sets must be dis- 
joint. Each processor has its  own  cache,  and  the 
shared data can reside in  “read  only”  mode on 
several processors. The SYNCRO subroutine  ensures 
that all subtasks  complete at each stage before pro- 
ceeding further with the next parallel phase of the 
computation. Parallel FORT RAN^,^ also provides a 
similar capability. ESSL parallel routines work in  both 
environments. 

In ESSL parallel subroutines, we attempt to multitask 
the problem at  the highest possible level. If this 
attempt fails, we multitask at  the next lower level 
such that  a fairly large amount of computing is done 
in each subtask. Such an  arrangement makes  the 
multitasking  overhead  small  compared to  the  com- 
putational workload. One of our aims is to not 
significantly increase the total CPU time  compared 
to a uniprocessor time.  Attaining  this goal requires 
maintaining  the  performance  obtainable  from our 
vectorized cache-based blocking algorithms.  This 
granularity  determines the  minimum subtask size to 
obtain good performance.  Thus, even if all the proc- 
essors are  not actually available for the task (often 
the case in  a  multiuser  environment),  multitasking 
does  not significantly increase the  total number of 
processor cycles. Notwithstanding, when the desig- 
nated number of processors are actually available, 
we want an elapsed-time  speedup to be close to  the 
number of processors available. Meeting this  condi- 
tion requires careful load balancing between each 
synchronization  step and eliminating or minimizing 
the serial computation. In ESSL, different phases of 
computation  are often overlapped to achieve load 
balancing. To put these ideas into perspective, we 
briefly describe how we have used them  to imple- 
ment our uniprocessor and parallel routines for ma- 
trix multiplication, general LU factorization,  and 
three-dimensional fast Fourier  transform ( FFT). 
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The vector algorithms for matrix  multiplication, 
C = AB, and general A = LU factorization  are 
carefully tuned  to  take  advantage of the  memory 
hierar$hy of the I B M  3090 system, especially its 
cache.  For  matrix  multiplication, DGEMUL, we get 
cache data reuse by blocking the A matrix into 
submatrices which fit into  cache and by using a 
matrix  update routin?, an example of which is the 
level 3 BLAS, DGEMM. The matrix  update  routine is 
used repeatedly to  do  the  entire  computation.  For 
matrix  factorization, DGEF, we use a recursive block 
factorization and  update algorithm.  For large mat- 
rices, almost all of the  computation  in  both of these 
routines is done  during  the update phase. The update 
phase runs  at close to  the peak performance of the 
machine.  This  ensures very good overall perform- 
ance for both of these ESSL vectorized routines. 
DGEMUL and DGEF. 

These two vectorized routines have also been paral- 
lelized. The main feature in the parallel matrix  mul- 
tiplication  routine, DGEMLP, is the division of the C 
array into P equal  areas  that  are  suitable to exploit 
the  matrix  update  algorithm. We then assign a proc- 
essor to each of the P equal pieces of C and call 
DGEMUL for each piece. This strategy balances the 
load very  well. In the parallel matrix  factorization 
routine, DGEFP, we initially, and outside of the par- 
allel structure, factor a  certain number of columns. 
Then we initiate  a recursive parallel computation. 
On each parallel iteration  there is a block update 
step and  the next block factorization  step. We esti- 
mate  the  total workload for this  computation  and 
try to divide it equally among  the available proces- 
sors. The main task updates  a  certain  number of 
columns  and factors  the next block. Since the proc- 
esses are  asynchronous, the main task must  update 
at least those  columns which are to be factored next. 
The remaining  columns of the  update  step  are split 
equally among  the  remaining processors. Any extra 
columns assigned to  the main task are chosen to 
achieve load balancing. In principle, this gives close 
to 100 percent efficiency for large problems. 

We  give the  performance of the parallel routines 
DGEMLP and DGEFP in  Tables 1 and 2. Measurements 
were made on the I B M  ES/3090 model 600S, under 
Multiple Virtual Storage System Product (MVS/SP”) 
in a dedicated environment. All measured  times  are 
in seconds and are  rounded.  The  third  column of 
each table gives the  performance of the  correspond- 
ing vector uniprocessor routines, DGEMUL and DGEF. 
For  the DGEMUL routine,  the  performance quickly 
approaches  the  asymptotic value of 104 MFLOPS (mil- 
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lion floating point  operations per second), which  is 
91 percent of the possible peak rate of 114 MFLOPS. 
For the DGEF routine,  as long as  the matrix fits in 
main  memory,  the performance keeps improving as 
the matrix size increases. This performance should 
eventually come close to the matrix multiply per- 
formance. For the matrix factorization, the  speedup 
factor improves  as  the problem gets larger and even- 
tually comes very  close to the  number of processors 
used. For the parallel matrix multiplication routine, 
the  speedup is  very  close to the  number of processors 
used and is achieved even for a small problem.  For 
the matrix factorization routine, for the size 100 
problem, we could not efficiently  use more  than three 
processors; therefore, internally the  number of proc- 
essors used  was limited to three. In summary, for 
two important linear algebra kernels, we have ob- 
tained close to the effective peak rate of the new 
model ES/3090 600s. 

Three-dimensional FFT routines have been provided 
in ESSL Release 3. In performing multidimensional 
Fourier  transforms,  data  are accessed with large 
strides. Because  of the  memory hierarchy of the 
3090, it is  very important  that these strides are 
chosen such that blocks of data fit comfortably in 
various levels of memory. ESSL FFT routines do ap- 
propriate blocking of data  and, where necessary, 
internal  transpositions so that blocks of data fit in 
memory. In spite of this, certain strides, for example, 
powers of two, degrade performance. To help users 
in selecting good strides, a utility routine, STRIDE, 
that  recommends good strides for any given  size 
problem has been provided. 

A parallel three-dimensional FFT routine, SCFT3P, has 
also been  provided.’ This  routine is functionally 
equivalent to the uniprocessor S C F T ~  (three-dimen- 
sional complex-to-complex FFT routine)  and uses 
multiple processors when available to speed up the 
computation. In both of these routines, the first two 
dimensions  are transformed one plane at a  time,  and 
the total number of planes is divided among all of 
the processors. At the  end of this step, the Fourier 
transform is computed  along  the  third  dimension. 
This step is also divided among  the available proces- 
sors. 

In Table 3, we  give the performance of S C F T ~  and 
SCFT~P.  Measurements were made on the IBM 
ESJ3090 model 600s under Mvs/sP in a dedicated 
environment. The timings include the initialization 
times. The routine was run for three-dimensional 
arrays of size N ,  and L = N’ is the total number of 
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Table  1  General  matrix  multiplication  performance 

I MFLOPS 
N T 1-way 

100 0.022 89.7 
200 0.167 101.8 
500 2.400 104.1 

1000 19.150 104.4 
1500 64.600 104.5 
2000 153.000 104.6 

P-way  Speedup 

2 4 6  6-way 
MFLOPS 

1.93 3.63 5.02 448 
1.97 3.85 5.53 565 
1.98 3.92 5.75 599 
2.00 3.97 5.91 617 
1.99 3.98 5.91 617 
2.00 3.99 5.94 621 

Table 2 General  matrix  factorization  performance 

N 

100 
200 
500 

IO00 
2000 
3000 

MFLOPS 
T 1-way 

0.0145 45.9 
0.0787 67.8 
0.9840 84.7 
7.1800 92.8 

54.3200 98.2 
179.7000 100.1 

~ 

P-way  Speedup 

2 4 6  6-way 
MFLOPS 

1.68 1.86 1.85 85 
1.90 3.08 3.40 230 
2.00 3.95 5.64 478 
2.00 4.00 5.93 551 
2.00 3.98 5.94 583 
2.00 3.99 5.96 597 

Table 3 Three-dimensional FFT performance 

N Size 
L = N 3  

60  216000 
84  592704 

128  2097 152 
180  5832000 
240 13824OOO 
256  16777216 
320  32768000 
360  46656000 

P-way  Parallel 
Speedup 

T P 

0.30 0.078 1.95 3.79 5.53 
0.89 0.078 1.97 3.91 5.66 
3.65 0.083 1.99 3.95 5.71 

10.9 0.083 1.99 3.98 5.86 
28.8 0.088 1.97 3.93 5.88 
38.9 0.097 1.99 3.91 5.69 
77.0 0.094 1.99 3.93 5.75 

101.6 0.086 1.99 3.91 5.65 

N is  the  matrix  order or transform length 
T is the elapsed tune ofthe ESSL nonparallel version ofthe subroutine in seconds. 
P is the number of processors used  for  parallel processing. 

points processed. The  array was dimensioned for 
optimal performance, using the ESSL STRIDE routine. 
All times are actual “wall clock” (elapsed) times. The 
fourth column gives the uniprocessor time  (for SCFT~)  
normalized by L log,(L), in microseconds. These 
numbers are quite  uniform indicating that uniformly 
good performance can be obtained for large prob- 
lems in spite of the large strides. The last three 
columns give the elapsed time  speedup of the parallel 
routine SCFT~P over S C F T ~ ,  using two, four, and six 
processors. 
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Table 4 Performance of some Release 3 vector  subroutines 

(Sparse Matrix  Stored by Indices and Rows) 
DGSF-Sparse  Matrix  Factorization 

N PNZ T(S)  T(E) T(S)IT(E) T(E) T(S)IT(E) 
(indces)  (indices) (rows) (rows) 

1442 
3606 
4422 
4482 
7020 

0.9  2.127 0.625 3.40  0.607  3.50 
0.4  0.781  0.504 1.55  0.418 1.87 
0.2  0.776 0.353 2.20  0.290 2.68 
0.1 0.171 0.063 2.7 1 0.037  4.62 
0.2 1.511  0.707  2.14  0.568  2.66 

(Lower  Triangular  Matrix  on Left Side) 
DTRSM-Triangular  Solve 

M N T(S)  T(E)  T(S)IT(E) 

100 100 0.1116  0.0222 
500  500  14.2825  1.6760  8.52 

5.03 

1000 IO00 114.8365  11.8617  9.68 

DSPSV-Largest (10%) Eigenvalues 81 Eigenvectors 
(Symmetric  Matrix in Upper Packed Storage Mode) 

N M T(S)  T(E) T(S)IT(E) 

100 10 0.23901  0.09362 2.55 
300  30  5.19810 
500 50 

1.272  13  4.09 
22.87726  5.04824  4.53 

N = Order  of  the matrix or the number of columns in solution matrix B 
M = Number  of eigenvalues and eigenvectors computed or the  number of rows in solution matrix B 

PNZ = Percentage of  nonzero elements of the  matrix 
T(S) = IBM ES/3090 CPU  time in seconds for scalar subroutme 
T(E) = IBM ES/3090-VF CPU  time in seconds for ESSL subroutine 

Vector  subroutines 

In addition  to  the parallel processing subroutines, 
several new vector subroutines were added  in Release 
3. Among others, a direct method for sparse matrix 
factorization-subroutine DGSF,” a  triangular 
solve-DTRsM, and  an eigenvalue-eigenvector 
code-DsPsv are  included. DGSF has two  main  com- 
ponents:  a fast scalar factorization and  a vectorized 
factorization designed mainly for dense matrices. I I 

The scalar Lu-factorization uses a  simple algorithm 
to identify triangular factors by permutations. The 
remaining nucleus is factorized by Gaussian elimi- 
nation using threshold pivoting with an approximate 
Markowitz count criteria. Several improvements to 
other known techniques  contribute to  the speed of 
DGSF during the search for  a pivot.’* DGSF proceeds 
with scalar processing if the active submatrix is rea- 
sonably sparse and switches over to dense vectorized 
processing if the density of the active submatrix 
reaches a  certain threshold value. The design  of the 
vectorized part is described in the  paper by Suhl, 
Aittqniemi, and Su.13 DTRSM is a proposed Level 3 
BLAS which solves triangular systems of equations 
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with multiple  right-hand sides. DSPSV computes  the 
extreme eigenvalues and eigenvectors of a real sym- 
metric  matrix by the  rational QR method with New- 
ton  corrections.  Performance  information for these 
subroutines is given in  Table 4. 
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