Technical note

Engineering and Scientific
Subroutine Library Release 3
for IBM ES/3090 vector multiprocessors

This technical note should be read in conjunction with
the paper by McComb and Schmidt' which describes
the Engineering and Scientific Subroutine Library
through Release 2. In this technical note, which is an
addendum to that paper, we briefly describe some of
the new features in Release 3 and indicate some of the
techniques used to optimize vector and parallel per-
formance.

he paper by McComb and Schmidt' previously

published in the /8531 Systems Journal described
the contents and performance features of the Engi-
neering and Scientific Subroutine Library (EssL) Re-
lease 2. In this technical note, we describe several
new features in ESSL Release 3 and discuss some of
the techniques that were used to optimize vector and
parallel performance.

The following new features are provided in Release
3

s Forty-seven new subroutines, including six paral-
lel processing subroutines

« Seventy-one subroutines modified to improve per-
formance, to add capability, or for migration pur-
poses

s Calling sequence validation usir}g4the VS FORTRAN
Intercompilation Analysis (IcA)” feature

The new subroutines include:

s A select group provided for parallel processing
using either the vs FORTRAN Multitasking Facility

(MTF)** or Parallel FORTRAN,™ including matrix
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multiplication, general and positive definite sym-
metric matrix factorization, and one-, two-, and
three-dimensional complex Fourier transforms

s In-place and out-of-place general matrix transpose

» Complex general matrix factorization and solve

s Positive definite symmetric matrix inverse, con-
dition number reciprocal, and determinant

¢ Real triangular matrix solve (proposed Level 3
BLAS)’

» General sparse matrix factorization and solve by
direct methods

» General sparse matrix iterative solve

s Extreme eigenvalues and corresponding eigenvec-
tors of real symmetric and complex Hermitian
matrices

» Eigenvalues and eigenvectors for both generalized
real and generalized real symmetric eigensystems

» Three-dimensional complex, real-to-complex, and
complex-to-real Fourier transforms

» Long precision direct method convolution or cor-

relation with decimated output

Two-dimensional cubic spline interpolation

Two-dimensional Gauss-Legendre quadrature

Normally distributed random number generators

Utility to determine the stride value for optimal

performance in certain Fourier transform subrou-

tines

o Utility to set the vector section size of the scalar
library
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Parallel processing subroutines

1BM ES/3090™ systems presently consist of up to six
processors. Each processor has its own cache mem-
ory. If data in cache is repeatedly referenced, it
becomes cache resident, resulting in a very good
performance. For parallel processing, vS FORTRAN
Version 2 provides the Multitasking Facility (MTF),“
which uses DSPTCH (a forking routine) and SYNCRO
(a joining routine) subroutines. The DSPTCH subrou-
tine creates a subtask by calling a parallel subroutine
with its set of parameters. Typically, several subtasks
are created with each subtask assigned a part of the
data. The operating system assigns these subtasks to
available processors. These subtasks work asynchro-
nously; therefore, it is important that they share only
“read only” data. All “write” data sets must be dis-
joint. Each processor has its own cache, and the
shared data can reside in “read only” mode on
several processors. The SYNCRO subroutine ensures
that all subtasks complete at each stage before pro-
ceeding further with the next parallel phase of the
computation. Parallel FORTRAN™® also provides a
similar capability. ESSL parallel routines work in both
environments.

In ESSL parallel subroutines, we attempt to multitask
the problem at the highest possible level. If this
attempt fails, we multitask at the next lower level
such that a fairly large amount of computing is done
in each subtask. Such an arrangement makes the
multitasking overhead small compared to the com-
putational workload. One of our aims is to not
significantly increase the total CPU time compared
to a uniprocessor time. Attaining this goal requires
maintaining the performance obtainable from our
vectorized cache-based blocking algorithms. This
granularity determines the minimum subtask size to
obtain good performance. Thus, even if all the proc-
essors are not actually available for the task (often
the case in a multiuser environment), multitasking
does not significantly increase the total number of
processor cycles. Notwithstanding, when the desig-
nated number of processors are actually available,
we want an elapsed-time speedup to be close to the
number of processors available. Meeting this condi-
tion requires careful load balancing between each
synchronization step and eliminating or minimizing
the serial computation. In EssL, different phases of
computation are often overlapped to achieve load
balancing. To put these ideas into perspective, we
briefly describe how we have used them to imple-
ment our uniprocessor and parallel routines for ma-
trix multiplication, general LU factorization, and
three-dimensional fast Fourier transform (FFT).
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The vector algorithms for matrix multiplication,
C = AB, and general 4 = LU factorization are
carefully tuned to take advantage of the memory
hierarchy of the 1BM 3090 system, especially its
cache.’ For matrix multiplication, DGEMUL, we get
cache data reuse by blocking the 4 matrix into
submatrices which fit into cache and by using a
matrix update routine, an example of which is the
level 3 BLAS, DGEMM.” The matrix update routine is
used repeatedly to do the entire computation. For
matrix factorization, DGEF, we use a recursive block
factorization and update algorithm. For large mat-
rices, almost all of the computation in both of these
routines is done during the update phase. The update
phase runs at close to the peak performance of the
machine. This ensures very good overall perform-
ance for both of these EsSL vectorized routines,
DGEMUL and DGEF.

These two vectorized routines have also been paral-
lelized. The main feature in the parallel matrix mul-
tiplication routine, DGEMLP, is the division of the C
array into P equal areas that are suitable to exploit
the matrix update algorithm. We then assign a proc-
essor to each of the P equal pieces of C and call
DGEMUL for each piece. This strategy balances the
load very well. In the parallel matrix factorization
routine, DGEFP, we initially, and outside of the par-
allel structure, factor a certain number of columns.
Then we initiate a recursive parallel computation.
On each parallel iteration there is a block update
step and the next block factorization step. We esti-
mate the total workload for this computation and
try to divide it equally among the available proces-
sors. The main task updates a certain number of
columns and factors the next block. Since the proc-
esses are asynchronous, the main task must update
at least those columns which are to be factored next.
The remaining columns of the update step are split
equally among the remaining processors. Any extra
columns assigned to the main task are chosen to
achieve load balancing. In principle, this gives close
to 100 percent efficiency for large problems.

We give the performance of the parallel routines
DGEMLP and DGEFP in Tables | and 2. Measurements
were made on the 1BM ES/3090 model 600S, under
Multiple Virtual Storage System Product (Mvs/sp™)
in a dedicated environment. All measured times are
in seconds and are rounded. The third column of
each table gives the performance of the correspond-
ing vector uniprocessor routines, DGEMUL and DGEF.
For the DGEMUL routine, the performance quickly
approaches the asymptotic value of 104 MFLOPS (mil-
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lion floating point operations per second), which is
91 percent of the possible peak rate of 114 MFLOPS.
For the DGEF routine, as long as the matrix fits in
main memory, the performance keeps improving as
the matrix size increases. This performance should
eventually come close to the matrix mulitiply per-
formance. For the matrix factorization, the speedup
factor improves as the problem gets larger and even-
tually comes very close to the number of processors
used. For the parallel matrix multiplication routine,
the speedup is very close to the number of processors
used and is achieved even for a small problem. For
the matrix factorization routine, for the size 100
problem, we could not efficiently use more than three
processors; therefore, internally the number of proc-
essors used was limited to three. In summary, for
two important linear algebra kernels, we have ob-
tained close to the effective peak rate of the new
model ES/3090 600S.

Three-dimensional FFT routines have been provided
in ESSL Release 3. In performing multidimensional
Fourier transforms, data are accessed with large
strides. Because of the memory hierarchy of the
3090, it is very important that these strides are
chosen such that blocks of data fit comfortably in
various levels of memory. ESSL FFT routines do ap-
propriate blocking of data and, where necessary,
internal transpositions so that blocks of data fit in
memory. In spite of this, certain strides, for example,
powers of two, degrade performance. To help users
in selecting good strides, a utility routine, STRIDE,
that recommends good strides for any given size
problem has been provided.

A parallel three-dimensional FFT routine, SCFT3P, has
also been provided.9 This routine is functionally
equivalent to the uniprocessor SCFT3 (three-dimen-
sional complex-to-complex FFT routine) and uses
multiple processors when avatilable to speed up the
computation. In both of these routines, the first two
dimensions are transformed one plane at a time, and
the total number of planes is divided among all of
the processors. At the end of this step, the Fourier
transform is computed along the third dimension.
This step is also divided among the available proces-
SOrs.

In Table 3, we give the performance of sCFT3 and
SCFT3P. Measurements were made on the IBM
ES/3090 model 600S under Mvs/sP in a dedicated
environment. The timings include the initialization
times. The routine was run for three-dimensional
arrays of size NV, and L = N’ is the total number of
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Table 1 General matrix muitiplication performance

P-way Speedup
MFLOPS —————————— MFLOPS
N T 1-way 2 4 6 6-way

100 0.022 897 193 3.63 502 448
200 0.167 101.8 197 385 553 565
500 2400 1041 198 392 575 599
1000 19.150 1044 200 397 591 617
1500 64.600 1045 199 398 591 617
2000 153.000 1046 2.00 399 594 621

Table 2 General matrix factorization performance

P- Speedu
MFLOPS ' oY SPeeUP  rLops
N T 1-way 2 4 6 6-way

100 00145 459 168 186 185 85
200 0.0787 678 190 3.08 340 230
500 09840 847 200 395 564 478
1000 7.1800 928 200 400 593 551
2000 543200 982 200 398 594 583
3000 179.7000 100.1 200 3.99 596 597

Table 3 Three-dimensional FFT performance

P-way Parallel
Speedup
T P
N Size3 T L*log, (L) 2 4 6
L=N (s) (ps)

60 216000 0.30 0.078 195 379 5353

84 592704 0.89 0.078 1.97 391 5.66
128 2097152 3.65 0.083 1.99 395 571
180 5832000  10.9 0.083 1.99 398 5.86
240 13824000 28.8 0.088 1.97 393 5.88
256 16777216 389 0.097 1.99 391 5.69
320 32768000 77.0 0.094 1.99 393 575
360 46656000 101.6 0.086 1.99 391 5.65

N is the matrix order or transform length.
T is the elapsed time of the ESSL nonparallel version of the subroutine in seconds.
P is the number of processors used for parallel processing.

points processed. The array was dimensioned for
optimal performance, using the ESSL STRIDE routine.
All times are actual “wall clock” (elapsed) times. The
fourth column gives the uniprocessor time (for SCFT3)
normalized by L log,(L), in microseconds. These
numbers are quite uniform indicating that uniformly
good performance can be obtained for large prob-
lems in spite of the large strides. The last three
columns give the elapsed time speedup of the parallel
routine SCFT3P over SCFT3, using two, four, and six
Processors.
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Table 4 Performance of some Release 3 vector subroutines

DGSF—Sparse Matrix Factorization
(Sparse Matrix Stored by Indices and Rows)

N PNZ T(S) T(E) T(S)/T(E) T(E) T(S)/T(E)
(indices) (indices) {rows) (rows)
1442 0.9 2.127 0.625 3.40 0.607 3.50
3606 0.4 0.781 0.504 1.55 0418 1.87
4422 0.2 0.776 0.353 2.20 0.290 2.68
4482 0.1 0.171 0.063 2.71 0.037 4.62
7020 0.2 1.511 0.707 2.14 0.568 2.66

DTRSM—Triangular Solve
(Lower Triangular Matrix on Left Side)

M N T(s) T(E) T(S)/T(E)

100 100 0.1116 0.0222 5.03

500 500 14.2825 1.6760 8.52
1000 1000 114.8365 11.8617 9.68

DSPSV—Largest (10%) Eigenvalues & Eigenvectors
(Symmetric Matrix in Upper Packed Storage Mode)

N M 7(S) T(E) T(S)/T(E)
100 10 0.23901 0.09362 2.55
300 30 5.19810 1.27213 4.09
500 50 22.87726 5.04824 4.53

N = Order of the matrix or the number of columns in solution matrix B

M = Number of eigenvalues and eigenvectors computed or the number of rows in solution matrix B
PNZ7Z = Percentage of nonzero elements of the matrix
T(S) = IBM ES/3090 CPU time in seconds for scalar subroutine
T(E) = IBM ES/3090-VF CPU time in seconds for ESSL subroutine
Vector subroutines with multiple right-hand sides. Dspsv computes the
extreme eigenvalues and eigenvectors of a real sym-
metric matrix by the rational QR method with New-

ton corrections. Performance information for these

In addition to the parallel processing subroutines,
several new vector subroutines were added in Release

3. Among others, a direct method for sparse matrix
factorization—subroutine DGsE,'’ a triangular
solve—DTRSM, and an eigenvalue-eigenvector
code—Dpspsv are included. DGSF has two main com-
ponents: a fast scalar factorization and a vectorized
factorization designed mainly for dense matrices."'
The scalar Lu-factorization uses a simple algorithm
to identify triangular factors by permutations. The
remaining nucleus is factorized by Gaussian elimi-
nation using threshold pivoting with an approximate
Markowitz count criteria. Several improvements to
other known techniques contribute to the speed of
DGSF during the search for a pivot.”> DGSF proceeds
with scalar processing if the active submatrix is rea-
sonably sparse and switches over to dense vectorized
processing if the density of the active submatrix
reaches a certain threshold value. The design of the
vectorized part 1s described in the paper by Suhl,
Aitto7niemi, and Su.”’ DTRSM is a proposed Level 3
BLAS which solves triangular systems of equations
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subroutines is given in Table 4.
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