A program understanding
support environment

Software maintenance represents the largest cost ele-
ment in the life of a software system, and the process
of understanding the software system utilizes 50 per-
cent of the time spent on software maintenance. Thus
there is a need for tools to aid the program under-
standing task. The tool described in this paper—
Program UNderstanding Support environment
(PUNS)—provides the needed environment. Here the
program understanding task is supported with multiple
views of the program and a simple strategy for moving
between views and exploring a particular view in
depth. PUNS consists of a repository component that
loads and manages a repository of information about
the program to be understood and a user interface
component that presents the information in the reposi-
tory, utilizing graphics to emphasize the relationships
and allowing the user to move among the pieces of
information quickly and easily.

Software maintenance is broadly defined as any
work done on an operational programming sys-
tem at any time, for any reason.' Maintenance begins
when the initial development effort ends and the
system is put into production. Recent surveys show
that expenditures for such software maintenance
(including improvements) account for between 50
and 90 percent of the total life-cycle expenditures on
the programming system.”

Many of the activities of a person who maintains
software—in adapting the system to new environ-
ments or enhancing the system by adding or im-
proving function—are very similar to activities of a
software developer during the initial creation of the
system. However, there is a difference in that soft-

324 cievetano

by L. Cleveland

ware maintainers are constrained by the framework
of the system being maintained. They must work
within this framework in developing adaptations or
enhancements. A software maintainer must be very
familiar with the current system and must fully
understand the framework of the particular system.
Studies of the activities of software maintainers have
shown that approximately 50 percent of their time
is spent in the process of understanding the code
they are to maintain.*’ This is particularly true for
code that was not developed using modern software
engineering principles (e.g., data abstraction and
structured programming).

As a programming system ages, the code for the
system becomes increasingly the only true definition
of the system, and ancillary specifications for the
system become out of sync with the system. A soft-
ware maintainer must read the code in order to
determine the framework for the system. Brooks’®
defines the essence of a software system as a complex
construct of interlocking concepts: data sets, rela-
tionships among data items, algorithms, and the
invocation of functions. The software maintainer
must understand these concepts and how they inter-
lock in order to fit an adaptation or enhancement
into the framework.

© Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

In determining the framework, a programmer is
attempting to determine the relationships that exist
within the program: where the variables are defined
and where these definitions are used; what the inter-
face of a piece of code is to other pieces; which data
items are imported and which are exported; what
data items are defined globally: where a function is
used: what are the interfaces of the function: what is
the scope of the definition of a particular piece of
data; which internal procedures assign the data a
value: which procedures reference the value: where
is a file referenced; where is an entity in a database
updated. By acquiring this information, the main-
tainer can begin to define the concepts that are used
within the programming system and determine how
the concepts have been interwoven to structure the
programming system.

Program elements (e.g., functions, subprograms, and
procedures) are still being written using a linear-
language paradigm and then stored in files. Relation-
ships among these files are understood only by ana-
lyzing the statements within the program elements.
These relationships that are defined within the pro-
gram are multidimensional. For example, a proce-
dure E might be called by procedure C, E might also
call procedure G and define data used by procedure
H, and then E might update data defined in proce-
dure B. Thus procedure E is related in various ways
to four additional procedures. The programmer, in
the task of understanding, must attempt to super-
impose these multidimensional relationships on the
linear text for the program. A tool that allows the
programmer to easily view the multidimensional
relationships that exist within the program would
make easier the task of understanding.

The tool discussed in this paper, a Program UNder-
standing Support environment, supports the pro-
gram understanding task by organizing and present-
ing the program from many different viewpoints
(e.g.. a call graph for a collection of procedures, a
control flow graph for a single procedure, a graph
that relates a file to the procedures that use it, a data-
flow graph, a use-def chain for a variable). The tool
detects the low-level relationships that exist within
the program using static analysis techniques, and it
consolidates and organizes these relationships and
presents them in a user-friendly environment. The
user interrogates various pieces of information pre-
sented by the tool using a point-and-click mouse
interface to point at a piece of information (an
object) and click the mouse. The tool responds by
providing more information about the object at

IBM SYSTEMS JOURNAL. VOL 28. NO 2, 1989

which the user was pointing, including the object’s
relationships to other objects. The user can follow
relationships between objects. easily moving between
high-level and low-level objects.

There are two components to the Program UNder-
standing Support environment tool (hereafter known
simply as PUNS): (1) a repository and the associated
routines to load the repository and respond to high-
level queries to the repository and (2) a user interface
that presents program information obtained from
the repository in a user-friendly manner and sup-
ports the programmer during the exploration of the
program. The repository component of PUNS must
be established prior to utilizing the user interface
component,

The two components are designed to be distributed.
The repository component resides on a host machine
(i.e., a powerful shared machine), able to use the
power of the host for efficient repository loading and
query response. The user interface component of
PUNS resides on a workstation, utilizing the graphical
strengths of the workstation in the presentation of
information to the user. The components are con-
nected via a communications link. The user interface
component sends queries to the repository compo-
nent over the communication link, and the reposi-
tory component responds using the communication
link.

A research prototype for the PUNS tool supports IBM
System/370 Assembler Language. The repository
component exists on an 1BM System/370 30X X host
and runs under the EAS-E Application Development
System, which supports an Entity-Relationship data
model and provides a language in which to write
programs to create and access a database developed
using this model.” The user interface exists on a
workstation (either an 1BM PC/AT or pS/2) and uses
Microsoft Windows® to support the multiwindow
point-click interface.

Several research vehicles have been developed that
investigat& the presentation of multiple views of a
program. ~ However, these systems have focused on
the initial development cycle and develop the views
as the program is developed. A few maintenance
environments have been explored,lo_13 most of which
have used a database to maintain information about
the program. However, to obtain information about
the program, the maintainer has been forced to use
a query language rather than a point-click interface.
Also, it has not been easy to move between views in
these environments.

CLEvELanD 325

In the first section of this paper, the user interface
component for PUNS is described from a user point
of view, The second section provides a general de-
scription of the PUNS repository and the routines to
support the repository. The third section discusses
the current research. The concluding section suggests
adjunct areas of research.

The PUNS user interface

The PUNS user interface is organized around the
notion of a set of objects that are of interest to the
programmer who is using PUNS. Examples of objects
include a module, a node in a control flow graph, a
statement in an assembly unit, a database, a global
data structure, and a symbol. Each of the objects is
supported in the interface by a separate window. All
information that pUNS knows about the object ap-
pears in the window for the object. Certain infor-
mation about the object may appear when the win-
dow for the object is first created in response to the
user’s having pointed at a representation for the
object and clicked the mouse. Other information is
indicated as being available by its appearing on a
menu bar, and it may be obtained by the selection
of the item on the menu bar. Objects exist in the
context of other objects. For example, a node of the
control flow graph for a module has meaning only
in the context of the module. The presentation of
the windows maintains this context. An object that
is known within the context of another object has its
window appear within the window of the contextual
object.

It is assumed that the maintainer using the PUNS
user interface has previously used the PUNS reposi-
tory component to structure a database for support
of the user interface. The scenario described next
also assumes that the communication link between
the two components has been established and that
the PUNS user interface component can talk to the
PUNS repository component.

Sample scenario. The program being explored in the
sample scenario is one that allows the user to main-
tain and explore a database of bibliographic infor-
mation. In this discussion, the program is known as
the biblio program. The series of events that led to
the use of PUNS were: (1) a user of the biblio program
has requested information about a particular refer-
ence represented in the database that the biblio pro-
gram manages; (2) the biblio program was run and
produced a document that contained the citation
information for the reference as requested by the

326 cieveLano

user: (3) the user has found that the page numbers
given for the reference in the document are incorrect:
the page number specification should be 1024-1035
and is given as 1024-10: (4) the programmer who is
responsible for the biblio program. who has recently
assumed responsibility for the program and is not
familiar with all its parts, is attempting to determine
how incorrect page numbers were established.

A repository for the biblio program has previously
been created using the PUNS repository component.
The programmer invokes the PUNS user interface
component and establishes the communication link
to the PUNS repository component. The sample sce-
nario details the programmer’s exploration of the
biblio program.

The programmer is first presented with a window
that represents any component object. The only
option available for selection on the menu bar is the
component name. The programmer selects this op-
tion and enters the name of the component, biblio.
This name is sent to the PUNS repository component,
which selects the repository for the biblio program.
The component window is updated to reflect the
name of the component to be explored, and the
following options become available on the menu
bar: high-level structure, global data relations, and
intermodule data sharing. The programmer is inter-
ested in determining how a piece of information that
exists in the database is created, updated, and dis-
played, and selects the global-data-relations option
on the menu bar. This is accomplished by pointing
the mouse at the menu item and single-clicking the
left mouse button. Within the component window
appears a window that displays a graph showing the
relationships between the global data elements used
in the program (databases, files, screen definitions,
and global data structures) and the individual mod-
ules of the program. Figure 1 shows the window that
is displayed. Each module in the current PUNS con-
text that references a global data element is repre-
sented in the graph by an ellipse that contains the
name of the module. Each global data element is
represented by a rectangle that contains the name
and type of the global data element. The arcs (or
lines) that connect modules and global data elements
represent relationships among the moduies and the
global data elements. In the current PUNS prototype,
the arcs as seen in Figure 1 are undirected. However,
each arc should be directed to show the flow of data
between a module and a global data element. If a
module references data that exist within a global
data element, the arc is directed from the global data

1BM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Figure 1 Global data relations window

e T

PUNS for Biblio

bk natable
lats

|

bibliog-db

| o>

out~file

display-crt

D S R AT S R S

element to the module. If the module supplies (up-
dates or creates) data for the global data element, the
arc is directed from the module to the global data
element. In cases where the module both references
and supplies data, a doubly-directed arc exists be-
tween the module and the data element.

To provide another context in which to view the
modules, the programmer also decides to look at the
high-level structure chart by selecting this piece of
information through the menu bar of the component
window. Figure 2 shows the high-level structure chart
for the biblio program. As in the global-data-element
graph, an ellipse represents a module, and an arc in
the structure chart represents a call-return relation-
ship between two modules. Again, in the current
research prototype, the arcs are undirected. The
caller in the diagram is placed at a higher level than
the callee.

Figure 3 shows the two graphs within the context of
the component window. Microsoft Windows sup-
ports a feature that allows any window to be maxi-
mized to the size of the window in which it is
contained. The PUNS user interface uses this facility

IBM SYSTEMS JOURNAL. VOL 28. NO 2, 1989

to allow the programmer to concentrate on the de-
tails of a specific window. In Figures 1 and 2, maxi-
mized versions of the two graphs are shown. Figure
3 shows the graphs as they exist within the context
of the component window.

The relationships provided by the two charts show
overall organizational information about the biblio
program. The programmer uses this information to
delve further into the way that the biblio program
utilizes the database it maintains and points to the
database object on the global data relations chart
and double-clicks the left mouse button. A new
window, one representing the database, now appears.
The menu options on this window are: dbDef (da-
tabase definition), relGraph (graph of database usage
by program modules), dbObject (objects defined in
the database), objArtribute (attributes of the objects
defined in the database). Because the programmer is
specifically interested in the page numbers for a
journal article but is not sure whether the page
numbers are represented in the database as a separate
object or simply as an attribute of an object, the next
step is to select the dbDef option on the menu bar.
This selection brings up a window showing the da-

CLeveLanD 327

Figure 2 High-level structure window

Figure 3 PUNS component window

3]

setnwp

?

D) o = sl

@@ e][@)

] dstry}

.rev's
display-crt

b

)

328 ceveLano IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Figure 4 Bibliog database with dbDef window

= PUN

DBDef RelGraph Object Attribute

{5 {or Bibli
Component Name HighlLeve!Struct InterModuleData GlobalDataRelats
= | Databasi

database def|

create toble jrnientry

(author varchar(80),
title varchar(120),
Jrntname varchar(80),
vol varchar(10),
no varchar(5),
date varchar(20),
pps varchor(11),
category varchar(20),
comment varchar(200),
tokeread char(l),
onorder char(l),
filed char(1))

create table bookentry
(author varchar(80>,
title varchar(120),

tabase definition statements. The programmer scrolls
through the definition and finds the page numbers
as an attribute of the journal entry (jrulentry) object.
Figure 4 shows the dbDef window within the data-
base object window. The programmer finds that the
page number attribute seems to be defined to handle
a sufficiently large page number specification and
thus concludes that the problem of an incorrect page
number specification is not the result of any trun-
cation of data within the database. By pointing the
mouse at the page number specification attribute
(pps) and double-clicking, the programmer can bring
up two windows contained one within another. The
windows represent the object (jrnlentry) and the
specific attribute (pps) associated with the object.
The menu bar for the attribute window shows the
attribute-specific information that can be obtained:
description, references by, updates by. Because the
programmer is interested in who updates the page
number attribute, the updates by option is selected.
Figure 5 shows the window that results from this
selection.

Had the programmer known the specific attribute
specification for the page number specification and

IBM SYSTEMS JOURNAL. VOL 28, NO 2, 1989

the fact that it is an attribute of the journal object,
the object and attribute windows presented in Figure
S could have been obtained more directly. Rather
than having to select the dbDef option and find the
page number specification attribute therein, the pro-
grammer could have selected the attribute option on
the database object window menu bar and provided
the attribute and object specification. The windows
shown in Figure 5 would have appeared directly. If
the programmer had known the specific attribute
specification, but not the object specification, the
attribute option could also have been selected. The
programmer could then have provided the attribute
name, and the user interface would have presented
a list of objects in which attributes with the specified
name appeared. The programmer would then have
selected the appropriate object, and the object and
attribute windows shown in Figure 5 would have
appeared.

In Figure 5, the updates by window indicates that
the page number specification field in the journal
object is updated in two modules, the crt module
and the setnwp module. For each module, the spe-
cific statement(s) that accomplishes the update is

cLeveLano 329

Figure 5 Database object and attribute windows

=g
Component Name

DBDef RelGraph Object Attribute

=
database def]
create toble p
Cauthor A a—
title Descrip RefsBy UpdsBy
rnlname S T
301 =’| L Updater pps
no modute CRT
dote 177 EXEC SQL UPDATE JRNLENTRY SET PPS=:CPPS WHERE TITLE=:CTITLE
pps module SETNWP
category 236 EXEC SQL UPDATE JRNLENTRY SET PPS=:CPPS WHERE TITLE=:CTITLE
comment
toberead
onorder
filed

create tabl
Cauthor
title varchar(120),

also shown, but the context in which the update is
done is not shown. There are two aspects to context,
the context in which the module exists and the
context within the module. To see the context in
which the module exists, the programmer need only
look again at the structure chart shown in Figure 2.
To see the context within the module, the program-
mer points to a statement that updates the page
number specification and double-clicks the mouse.
Two new windows appear, a window that represents
the module object and a window within this window
that represents the statement object within the mod-
ule.

The programmer first chooses to explore the crt
module and the statement that updates the field
within this module. Figure 6 shows the windows that
appear when the programmer selects the statement
within the crt module. The updating statement shows
that the page specification attribute (pps) is updated
using the value in the vanable cpps, which is defined
within the program. By pointing to the CPPS symbol
and double-clicking the right mouse button, the pro-
grammer selects the symbol cpPps as an object of
interest, and a window with information about the

330 ceverano

symbol CPps appears within the module window.
Figure 7 shows this window in its maximized format.
The definition for cpps provides for eleven characters
in the variable-length-character-string portion of
cpps. When using sQL with variable-length character
strings. the storage for a symbol to supply the value
of the variable length character string is defined as a
half-word that contains the length of the actual char-
acter string followed by a set of bytes that contain
the actual character string data. In the current ver-
sion of PUNS, data-flow analysis is done only for
registers; thus the information about the symbol Cpps
is cross-reference information only. Data-flow analy-
sis for symbols is a planned extension to PUNS and,
when done, the window for the symbol cpps will
provide data-flow relationships for the references to
and sets of the symbol.

In this example, the other statements that reference
the symbol cpps appear immediately to precede the
statement that uses the value in CPPS to update the
database. The programmer brings up the source for
the ¢rf module, scrolls to the first statement specified
in the cross reference and studies the code. Figure 8
shows the windows that the programmer studies,

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Figure 6 Module and statement windows

Componem Name nghLevelStruct

InterModuleData ' GIobaIDataRelats

0 10¢

Stmt RefSet Reach

tatoment 177

177 %

EXEC SQL UPDATE JRNLENTRY SET PPS=:CPPS WHERE TITLE=:CTITLE

Figure 7 Symbol CPPS window

=]

Component Namg HughLevelStruct

InterModuleData GIoba|DataﬁeIats

=]

18130

Intertace Sre Cfg Symbol Loc

Reg DataStruct

=] =]

Stmt RefSet Reach

Symbo
defined In: CSECT CRT

CPPS

177 X EXEC SGQL UPDATE J value: 000152

length: 00002

type:

defined by:
26 CPPS IS H,CL7

referenced by:!
168 GETSTRNGLOC=CPPS, LENGTH=7
169+ LA PARAMO, CPPS+2
176+ STH PARAM1,CPPS
177 % EXEC SQL UPDATE JRNLENTRY SET PPS=:CPPS WHERE TITLE=:CTITLE
273 GETSTRNGLOC=CPPS, LENGTH=7

274+ LA PARAMO, CPPS+2
281+ STH PARAM1 , CPPS
282 X EXEC SQL UPDATE BOOKENTRY SET PPS=:CPPS WHERE TITLE=:CTITLE

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

cLeveeano 331

Figure 8 CRT module window

Inteﬁace Src Cfg Symbol Loc Reg DataStruct

SR o . 'PUNS for Biblio .
Component Name HighLeveiStruct InterModuleData GlobalDataRelats
al - Moduls:crt

StmtNo String
167 * GET PAGE NUMBERS

Symbol:iCPPS .

Symbo CPPS 1
defined in: CSECT CRT
value: 000132

length: 00002

type:

defined by:

26 CPPS N H,CL7
referenced by:

168 GETSTRNGLOC=CPPS, LENGTH=7

169+ LA PARAMO, CPPS+2

176+ STH PARAM1, CPPS

177 % EXEC SQL UPDATE JRNLENTRY SET PPS=:CPPS
273 GETSTRNGLOC=CPPS, LENGTH=7 T

168 GETSTRNGLOC=CPPS, LENGTH=7
169+ LA PARAMO,CPPS+2

170+ L PARAML,=F'7°

171+ L PARAM2,=V(IND

172+ LA RIS,=V(VARSTRNG)

173+ BALR R14,R1S N
174+ C RIS,=F'12

175+ BE ABORT

176+ STH PARAMI,CPPS

178 %

177 x EXEC SQL UPDATE JRNLENTRY SET PPS=:CPPS WHERE TITLE=:CTITLE

where the symbol cpps is referenced in a macroin-
struction as the operand of the keyword parameter
LoC. The expansion of this macroinstruction causes
the following actions: (1) it loads the address of the
symbol CPPS into a register; (2) a constant value,
specified as the operand of the other keyword
LENGTH is loaded into another register; and (3) con-
trol passes to a subprogram VARSTRNG. When the
subprogram returns, the value in the other register is
stored into the first half word associated with the
symbol CppS. The programmer thinks that this ma-
cro invokes a subroutine that reads a variable-length
character string (which is terminated by a special
character) from a file and places the character string
into the specified location, providing only as many
characters as requested. The length specification
given is 7. If the length specification indicates a
maximum number of characters to be read, the page
specification for the reference in which the user is
interested would have been truncated. However, if
the length specification indicates a minimum num-
ber of characters to be provided (including padding
with blanks, if fewer are available from the input
stream), the page specification has probably been
processed properly here, and the problem lies else-

332 clevetano

where. To determine which is the case, the program-
mer must look at the subprogram VARSTRNG.

On the high-level structure chart for the biblio pro-
gram, the programmer points the mouse at the mod-
ule VARSTRNG and double-clicks the left button. A
window for the module VARSTRNG appears. The
programmer first explores the interface of this mod-
ule to other modules by selecting the interface option
on the menu bar of the module window. An interface
window appears with menu options: Prologue, ESD,
EntryData, ExitData. The programmer selects the
Prologue option, and a window containing the com-
ments that appear in the program prior to the first
storage allocating statement appears. The interface
and prologue windows are shown in Figure 9. The
prologue seems to indicate that the length parameter
specifies a maximum length. However, the program-
mer decides to investigate the logic of the VARSTRNG
subprogram to be sure that the comment accurately
reflects what the module does. The programmer
displays the control flow graph for the subprogram
by selecting the Cfg option on the menu bar for the
module and displays the source for the module by
selecting the Src option on the menu bar for the

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Figure 9 VARSTRNG interface and prologue windows

=

i PUNS for Biblio [y
InterModuleData GlobalDataRelats

B Module:varstrng TN
8 (ntorface B

Componen

=2

f Name nghLeQeIStruct

StmtNo String

1 x 1

2 X SUBPROGRAM: VARSTRNG

3% B

4 X FUNCTION: READS RECORDS FROM INPUT FILE UNTIL ENCOUNTERS A

5 % TERMINATOR SYMBOL (‘@‘); MOVES REQUESTED AMOUNT OF

6 x DATA READ INTO AREA SPECIFIED DR MAXIMUM AMOUNT

7 x READ, WHICHEVER IS LESS

8 X

9 X ARGUMENTS: PARAMO REG CONTAINS THE ADDR OF AREA INTO WHICH 1O

10 x PLACE DATA : Q&

11 x PARAM1 REG CONTAINS THE COUNT DF MAX NUMBER OF

12 x CHARACTERS REQUESTED

13 x PARAM2 REG CONTAINS A POINTER TO THE FSCB TO BE :

14 % USED FOR READING THE INPUT LINES "

15 X bid
4

Figure 10 VARSTRNG module window

PUNS for Biblio

‘Hl'ﬁ R Varstrng CFG 1S

readdata-2

havedata-3

Prologue ESD EntryData ExitData

StmtNo String checkagn-5

17 VARSTRNG CSECT

18 STM R14,R12,D12(R13) SAVE REGS IN SAVE AREA

19 BALR BASE, 0 ESTABLISH ADDRESSABILITY

20 USING X, BASE

21 VARSTRN DS [OH l = e

22 LA LOCSTART,PARAMC PTR TO BEGINNING OF AREA movetct-16] [endm |
23 LR TCOUNT,PARAM! CURRENT COUNT OF CHARS TO MOVE (Tmove-13 |
24 SR LOCINDEX,LOCINDEX INDEX INTO AREA WHERE MOVE DATA —

25 SR DOKMOVE, OKMOVE FLAG TO MARK FOUND TERMINATOR movetct2-18
26 X LOOP TO CONTINUE READING DATA

27 READLODP LA R11,BUFFERI ’ bypassmv-20
28 FSREADFSCB=(PARAMR) , BUFFER=(R11)READ A RCD INTO BUFFERI [return—21]
29+ LR 1,PARAMR

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989 CLEVELAND 333

module. Figure 10 shows the module window and
contained windows at this point. The programmer
is particularly interested in the use of the length
parameter and selects the EntryData option on the
menu bar of the interface window to see how the
parameter register (register 1, in this case) is used
initially within the module. Figure 11 shows the
contents of the interface window at this point.

The EntryData window shows that register 1 is used
to set register 5 (TCOUNT) in the subprogram. Thus
register 5 is now an alias for register 1, and the
programmer explores how register 5 is used in the

The schema captures many of the
low-level relationships that
exist within a program.

module. By pointing the mouse at statement 23 in
the EntryData window (which is the statement that
assigns the value in register 1 to register 5) and by
double-clicking the left button, the programmer in-
dicates an interest in statement 23 as an object. A
window appears for statement 23. The particular
concern of the programmer is in how register 5 is
used in the module. Thus the RefSer option is se-
lected on the menu bar for the statement window
for statement 23. A window containing information
about where the value placed in register 5 is refer-
enced in the program appears. Figure 12 shows the
contents of this window. Using the statement num-
ber and node information given in this window,
along with the control flow graph and source for the
module, the programmer explores the subprogram.
From the prologue, one finds that the initial impres-
sion that the length parameter specifies a maximum
is correct.

At this point, the programmer may wish to explore
the other updating of the database to ensure that no
truncation occurs there. Once the error(s) in the
biblio program have been found, the programmer
can correct them and test the program.

334 ceveLanp

User interface summary. The sample scenario just
described is intended to provide a feeling for the
functions available in the user interface. This sample
scenario illustrates the two governing principles fol-
lowed in the development of the user interface: (1)
organizing information about the program around
the notion of sets of objects and (2) supporting the
point-click technique for exploring an object and
moving between objects. In the sample scenario,
several of the types of objects supported by the user
interface have been illustrated (the component ob-
ject, the database object, the database object object,
the database attribute object, the module object, the
module symbol object, the module statement object,
and the module interface object). Windows to sup-
port these objects and to support information about
these objects are also illustrated. The point-click
technique for navigation is used extensively.

PUNS repository component

There are three elements of the PUNS repository
component: (1) a schema for the repository, (2) a set
of routines to load the repository with data, and (3)
a set of routines to pull from the repository the
appropriate information to satisfy high-level queries
from the user interface component. The schema uses
an entity-attribute-relationship (EAR) model. The
schema captures many of the low-level relationships
that exist within a program. The set of routines that
load the repository are of three types: (1) a set of
routines that scan assembler listings (outputs from
the assembler) and load a portion of the repository
with information directly discernable from the listing
information, (2) a set of routines that are environ-
ment-specific (the environment in which the code
runs, with a knowledge of ways in which services
provided by the environment are invoked) which
extract/update information about global objects as-
sociated with each assembler listing, and (3) a set of
routines that do control flow and data-flow analysis
on the information available in the repository. The
routines that respond to queries from the worksta-
tion interpret each query to determine what data are
needed from the repository to satisfy the query.
These routines may need to analyze some of the
extracted information to determine additional data
to extract from the repository. Each of these elements
of the repository component is now described in
greater detail.

Schema for the repository. The model used for PUNS
is an entity-attribute-relationship model. The
schema can be depicted using a graph in which each

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Figure 11 VARSTRNG interface window

- PUNS-for Bibtio
InterModuleData GlobalDataRelats
Moduleivarstrng

Interface §

Component Name HighLevelStruct

from node 1
23 LR TCOUNT,PARAM1 CURRENT COUNT OF CHARS TO MOVE

Figure 12 VARSTRNG statement window

PUNS for-Bibli
InterModuleData GlobalDataRelats
Module:varstrng

Component Name HighLevelStruct

Stmt RefSet Reach
23 LR TCOUNT, PARAM1 CURRENT COUNT OF CHARS TO MOVE

(=]
Reglster: 5
Set in current stmt
Follow-on references:
in node 12
54 c TCOUNT,=F 80" STILL NEED ENTIRE RECORD?
in node 15
57 N TCOUNT, =F '8¢ REDUCE NUMBER NEEDED
in node 16
61 MOVETCT S TCOUNT,=F "1~
In node 13
72 CR TCOUNT, TERMIN WHICH IS MORE, WANTED OR ACTUAL?
In node 20
80 SR TCOUNT, TERMIN
In node 18
84 MOVETCT2 S TCOUNT, =F "1’

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989 CLEVELAND 335

node represents an entity that may have attributes
associated with it. The directed arcs in the graph
represent the relationships between entities. A rela-
lionship exists between an entity that is a member of
a set owned and the entity that owns the set. The
owner of the set is shown at the tail of the directed
arc, and the member of the set is shown at the head
of the directed arc. Each one of the nodes represents
a class, and there may be many entity instances each
of which will belong to the class. As an example,
consider an entity that represents a statement in a
higher-level language. In a particular program, there
would exist many statements. Each of these state-
ments would be represented in the database by an
entity instance as defined by the entity statement in
the schema. The entity instances would differ in their
associated attributes. Each unique statement would
have at least one unique attribute (where attribute
may include the sets owned by the entity instance).
In the specific EAR model used by PUNS, the relation-
ships are restricted to one-to-many relationships.

The simplified schema for the repository component
of puUNs is shown in Figure 13. Different colors are
used to represent different entities. The coloring
indicates the routine that created each entity (and
thus when and how the information represented by
the entity has been derived). The arcs are labeled to
specify the relationships which are specified for the
schema. The arcs are also colored to indicate which
routine established the relationship indicated by the
arc. The schema is simplified to remove details that
are unimportant to the understanding of the func-
tioning of the tool but necessary to handle idiosyn-
cracies in the language supported. Discussed next are
the entities shown in the schema.

The component entity serves as the consolidating
entity for all component-wide information. If the
repository is established to represent exactly one
component, there will be only a single instance of
the entity in the repository. The component entity
owns collections of entity instances that represent
the basic objects which make up the component:
modules, databases, files, screen definitions, and
global data structures. For ease of reference, each
type of object, as represented by an instance of an
entity for that object, is owned by the component
entity via a unique set. The component entity itself
would contain the name of the component and
might contain functional or ownership information
that is solicited from humans at the time the database
is established. The sets that the component entity
owns are: files_are with an entity representing a file

336 cLeveLano

as the member, dbs_are with an entity representing
a database as the member, sub_units_are with an
entity representing a module (generally an assembly
unit) as the member, screens_are with an entity
representing a screen definition as the member, and
glblds_are with an entity representing a global data
structure as the member.

The module entity represents a unifying entity for a
particular assembly that results in a single module
to consider. The only attribute is file name for the
source for the assembly. This entity owns a number
of sets, many of which relate the module to objects
within the module as described later in this paper.
The module entity is connected to the global domain
of the component entity. It belongs to the sub_units_
are set, which is owned directly by the component
entity. Also defined at the component level are en-
tities that represent objects that may be used globally,
i.e., in more than one module. Because a global
object may be used by many modules and a module
may use many global objects of a particular type, a
set of connector entities are shown in the graph to
resolve the many-to-many relationships. The module
entity owns a connector entity via a set relationship,
and the entity representing the global object owns
the connector entity via a different set relationship.
This allows the many-to-many relationships to be
established. The sets owned by the module entity in
this context are: uses_glbl to relate a module to a
global data structure (connector entity is mod-_
glblds), uses_screens to relate a module to a screen
definition (connector entity is mod_scrdef’), uses_.db
to relate a module to a database (connector entity is
mod_db), and uses_file to relate a module to a file
used by the module (connector entity is mod_file).

In this version of the schema, the only connection
between the global objects and the modules that act
upon the global objects is via the sets that relate the
module entity to each of the entities for these global
objects. Certainly there are finer relationships that
could be expressed in the schema for any of the
objects: the information specifying where within the
module the object is referenced, the type of reference,
and whether the module in fact defines the object.
In the schema, we opted to walk through the repos-
itory (i.e., knowing the module, find the references
to the global object through the local symbol table
and determine the reference types and definitions)
to determine this information as it was needed,
rather than capturing it in the database at the time
the database is established. The schema also shows

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Figure 13 PUNS repository schema

——————jglbids_are ———— ") component I lflles_arel

E\screens_areg U:ldbs_areﬂ

_ts_are H l—l__lentltles_wlthlnl:“

glblds__used scrdef used db_used flle__usod

N

h

vV
uses_screens [uses_db db_entity

uses_glbl—————————— Iﬁ&
member of owner_ of

lcatier juses_file

inter_m_call < Jcallesl

Jhas_associated " | i &
successor predecessor
generates consists_of ™ | sub_divided_into

181

stmt < |nc|udes|j|—_"mroken_lntor:(> node
— lcontains { l_l

uses_within defs_within

entries_are gives_def has_operand

def_symbol r;—I —where D (define)

use_instance
- oper defined_by used_by

G = L=

L defined_atL

SCAN ROUTINES | [ENVIRONMENT ROUTINES | FLOW ROUTINES N

IBM SYSTEMS JOURNAL. VOL 28, NO 2, 1989 ceveuano 337

the modude entity owning two sets (caller and callee)
that both have as a member the inter_m_call entity.
This structure captures the use of one module entity
instance by another module entity instance. The
inter_m_call entity contains a pointer to a stmi entity
instance representing the point at which the call is
made. The global_ds, screen_def, and file entities are
handled in a similar fashion in the schema.

The data_base entity, which represents a global da-
tabase is connected in a similar fashion to the mod-
ules that reference the database. However, as ele-
ments within the database are distinguishable and
may serve as focus points for an exploration session.
they have been abstracted from the schema defini-
tion of the database and exist as separate entities.
The data_base entity has a textual specification of
its schema as an attribute. It owns the db_used set
for connection to modules (via the mod_db entity).
The data_base entity also owns an entities_within
set, whose members are the db_entity entity. In order
to capture the relationships between db_entity enti-
ties, the db_entity entity owns two sets, the owner_
of set and the member_of set. The member of each
of these sets is the ser entity. Such an organization
resolves the many-to-many relationships that may
exist between entities in the database. In representing
a referenced database in the PUNS repository, the EAR
model has been selected to describe the referenced
database. For a referenced relational database, each
db_entity entity represents a table, each ser entity
represents a key used to move from table to table.
For a referenced hierarchical database, each db_
entity entity represents a record, each ser entity rep-
resents a parent-child relationship.

The module entity is described above in terms of its
interconnection with other global objects. As the
unifying element for an assembly unit, the module
entity owns several sets: (1) the sub_divided_into set,
which associates entities representing individual sec-
tion definitions within the assembly, i.e., the section
entity, with the module entity; (2) the consists_of set,
which associates entities representing individual
statements in the assembly, i.e., the stmi entity, to
the module entity; and (3) the has_associated set,
which links the entity representing the local symbol
table, i.e., the symbol_table entity, with the module
entity.

The symbol_table entity represents the local symbol
table for the module. It owns an entries_are set which
has as a member the def_symbol entity which rep-

338 creveLano

resents the individual symbols defined in the local
symbol table. Each def_symbol entity is a member
of a gives_def set owned by the stmr entity, which
defines the symbol represented. The def_symbol en-
tity also owns the use_instance set whose member is
the symb_use entity, which represents a particular
use of the symbol (and resolves an otherwise many-
to-many relationship).

The section entity represents a control section or a
dummy section within the assembly. The section
entity owns two sets and serves as an organizing
vehicle for each defined control or dummy section.
The sets are the following: (1) includes set, which has
as member the stnt entity and connects those state-
ments defined within the section with the section
entity and (2) broken_into set, which connects the
section entity to the node entity, which represents
the set of statements to be treated as a single node
in the control flow graph for a control section.

The operand entity represents a single operand. It is
singled out, as it is the operand that provides the
reference to a symbol and also the use or definition
of a variable in the data flow. The operand entity
owns one set, the use_refed set, which associates the
operand entity with its use of a symbol (and resolves
a many-to-many relationship). The operand entity
also participates as member in three set relationships:
(1) has_operand set owned by the stmt entity, (2)
where set owned by the use entity and relating a use
of the variable represented by the operand to the
operand, and (3) defined_at set, which relates the
definition of a variable represented by the operand
to the operand entity. '

The node entity represents a division of the module
according to control flow. Each node entity is con-
nected to other node entities (to show the flow of
control) via the predecessor and successor sets and
the /ink entity which is a member of both sets. This
structure reduces the many-to-many relationship of
the flow of control among nodes into one-to-many
relationships. The node entity is also a member of
the broken_into set that is owned by the section
entity. It is an owner of the contains set that shows
the statements within the node and the owner of two
sets, the wuses_within and defs_within sets, which
relate specific definitions and uses of variables (for
data flow) that occur within the node. The definition
of a variable is represented by the define entity, which
is connected to uses of the variable via the used_by
set, and to the operand entity which provides the
definition via the defined_at set. The use of a variable

IBM SYSTEMS JOURNAL. VOL 28, NO 2, 1989

within a node is represented by the use entity. The
use entity is connected to definitions for the variable
it represents via the defined_by set and to the operand
entity that represents the use via the where set. The
use_def entity connects uses of variables to defini-
tions and is needed to resolve a many-to-many re-
lationship.

Load routines. There are three types of routines that
are used to load the PUNS repository: (1) routines to
scan the input statements for the modules that make
up the component to be described in the PUNS re-
pository, (2) routines to deal with the environmental
services used by the modules, and (3) routines to
deal with representing the control and data-flow
aspects of the modules. These three types of routines
are now presented under the headings scan, environ-
ment, and flow.

Scan. The routines that scan the individual assem-
bler listings for the component for which the repos-
itory is being established do the following: set up the
module entity instance; set up the symbol_table en-
tity instance; set up section entity instances for each
control or dummy section encountered; set up a stmt
entity instance for each statement encountered (from
macro expansion information contained within the
assembly listing also establishing the generates set);
establish a def_symbol entity instance for each sym-
bol defined in a statement; identify operands for
each statement that has such and creates appropriate
operand entity instances; and set up the appropriate
symb_use entity instance for each operand reference.

As each of the entity instances is created it is placed
in the proper set(s) to express the relationship of the
entity instance to other entity instances that exist
within the repository. In certain cases (for example
with the generates, consists_of, includes, and has_
operands relationships), it is necessary for the rou-
tines to establish a context for the processing of
information so that as new entity instances are cre-
ated, the necessary information to connect them to
existing entity instances is available.

Attributes are established for each of the entity in-
stances as the instance is created. The collection of
attributes for a particular entity instance may not be
complete at this time. The scan routines are written
to utilize only information about the syntax of the
language in which the module is expressed. These
routines do not utilize semantic information about
the statements of the language used. The semantic

IBM SYSTEMS JOURNAL, VOL 28. NO 2, 1989

information provided by the statements is captured
in the repository by the flow routines. For example,
the operand entity instance contains an attribute that
identifies where the operand represents a use or
redefinition of the variable represented by the oper-
and. In order to determine how the operand is used,

When dealing with an assembler
language, the use of services
provided in the environment
is evidenced in the assembly
listing by the use of macros.

the meaning of the operation on the operand must
be established. The scan routines do not deal with
this type of information and thus the use/redef at-
tribute information is not established at this time.

Environment. When dealing with an assembler lan-
guage, the use of services provided in the environ-
ment (e.g., linking, use of files, and use of databases)
is evidenced in the assembly listing by the use of
macros. The environment routines are aware of the
macros supported within the environments in which
the code is to run. By locating the macro calls that
have been used (by inspecting the created stmt entity
instances) and evaluating the paramaters specified
on each macro call, these environment routines can
create the global objects associated with the compo-
nent and establish the relationships between these
global objects and the particular module entity in-
stances that reference the global objects. There may
exist several sets of environmental routines that must
be run, one set for each of the support subsystems
called upon by the modules within the component.

Flow. The routines that establish the control and
data-flow entity instances within the PUNS repository
must be written to deal with the semantic informa-
tion associated with each executable statement. This
information can either be encoded into the routines
or the routines can be written to operate on a sepa-
rate body of knowledge that provides the semantic
information for each executable statement. The sec-
ond option was utilized in setting up the PUNS re-

cLevetano 339

pository. A database—the semantic database—was
built that contained an entity instance for each exe-
cutable statement type. The entities were subdivided
into those representing data manipulation opera-

In an assembler setting, it may be
impossible to resolve completely the
control flow and branch-link
relationships.

ttons, those representing conditional or uncondi-
tional branch operations, and those representing
branch-link operations.

The first task for the flow routines is to identify the
executable statements and classify each according to
the types specified by the entity instances in the
semantic database. Once the branch operations are
identified, the basic blocks (nodes) for each module
can be established, and by examining branch targets
the control flow can be represented by using link-
entity instances to interconnect the basic blocks
(nodes). The possible entry points for each control
section (each represented by a node entity instance)
can be identified and represented in the repository
as can the exit points for each control section.

The next task for the flow routines is to determine
the data flow within each node. The semantic data-
base provides the necessary information to classify
operands as to use or redefinition. The appropriate
use and define entity instances can be created and
associated with the node entity instances. These en-
tity instances can be associated with the appropriate
operands. Where the use of a data item is satisfied
by a prior redefine within the block, a use_def_
connect entity instance can also be created. Once
intrablock data flow is established, interblock data
flow can also be established, and the appropriate
use_def_connect entity instances can be created. In
the PUNS context, all data-flow analysis should be
optimistic. That is, if it appears that a particular
data-flow assertion may be true, it should be cap-
tured. In doing this, a weighting can be used to
indicate that the assertion is probably true, although
not necessarily exact.

340 cteveLano

The final task for the flow routines is to deal with
the branch-link operations and, where possible, to
resolve these branch-links within or across the mod-
ules and build the appropriate entity instances to
express these interconnections.

In an assembler setting, it may be impossible to
resolve completely the control flow and branch-link
relationships. Inasmuch as the interblock data flow
depends on the established control flow, the data
flow may also be incompletely determined. Although
the current PUNS implementation accepts this in-
complete resolution, a better solution is to involve a
human expert during the running of the flow rou-
tines to achieve a more complete resolution. For
branch and branch-link types, where the flow rou-
tines are unable to detect a target, the human expert
can be queried to provide a target. The information
from the expert can be treated using a weighting
factor so that the future user of PUNS knows that the
information is a best guess.

Query-response routines. The PUNS user interface
queries the PUNS repository component to obtain
information necessary for developing the windows
that are presented to the user via the user interface.
These queries may require interrogation of many of
the repository-entity instances and the following of
many relationships or may be able to be satisfied by
attention to only one or a few entity instances. The
repository schema should be developed to allow
those queries that will be issued frequently by the
user interface to be satisfied by accessing only one or
a few entity instances. Queries that will be issued
more infrequently or at points at which user activities
can be overlapped with a wait for response from the
query can require interrogation of many repository-
entity instances. The current implementation of the
PUNS repository has not been optimized to minimize
the time for queries that are frequently issued by the
PUNS user interface component.

We now discuss a few of the queries that are issued
by the PUNS user interface component and then
sketch the method used to develop the appropriate
information to respond to each query. Our intention
is to give a flavor for the types of queries and show
how the repository component can navigate the re-
pository schema to provide the requested informa-
tion.

High-level structure chart query. To satisfy the query
to provide a high-level structure chart for the com-
ponent, each one of the module entity instances

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

existing in the subunits relationship to the compo-
nent entity instance must be enumerated. The caller-
callee relationship between the modules is captured
by the inter_m_call entity and the caller and callee
relationships. For each caller module, the appropri-
ate callees must be specified.

Global data relations query. To satisfy the query to
provide a graph description showing the use of the
global data elements by modules, each one of the
global data element entity instances must be enu-
merated. For each global data element entity in-
stance (global_ds, screen_def, file, data_base) the
modules to which it is connected via the xxx_used
and uses_xxx sets and the connector entity instances
must also be enumerated. If a relationship is defined
for the use of a global data element and a separate
relationship for the definition of a global data ele-
ment, the enumeration of modules can specify a
direction for the arcs.

Prologue for interface query. To satisfy this query, it
1s necessary to specify which statements within a
module are part of the prologue for the module.
Currently, the prologue is interpreted to mean those
statements in a module that precede the first storage-
allocating statement within the module. Because the
statements forming the prologue are contiguous, a
specification of the first and last statement numbers
and a count of the number of statements in the
prologue suffices. The module entity for the module
for which the information is desired must be located.
Then each of the st entities in the set consists_of
owned by the module entity must be checked until
an entity representing a storage-allocating statement
is encountered. All checked entities prior to that
representing a storage-allocating statement are part
of the prologue. The data representation to satisfy
the query is then the statement number attribute for
the first and last of these entities and a count of the
number of entities.

RefSet query for registers within a statement within
a module. This query provides reference and set
information for registers used within a statement in
a particular module. For each register used in the
statement, the query identifies the use of the register
(reference or set). For a reference register, the query
supplies all statements (and nodes within which the
statements exist) that previously set the register in
the module. For a set register, the query supplies all
statements {and nodes within which the statements
exist) that reference the register following the set.

IBM SYSTEMS JOURNAL. VOL 28, NO 2, 1989

The entity representing the module (module entity)
and the entity representing the statement (stmt en-
tity) within the module must be located. Then each
of the operands of the statement (operand entity)
must be inspected to see whether it represents a
register. If the operand entity represents a register,
then the membership of the operand entity in either
the where or defined_at sets indicates whether the
register 1s set or referenced in the statement. For
purposes of illustration, assume that the operand is
set (defined) in the statement under consideration.
The operand entity then belongs to a defined_at set
owned by a define entity. By looking at each use_def
entity that is owned by the define entity in the used_
by set, one can find the use entity that owns
the use_def entity in its defined_by set. Then tracing
back to the operand entity associated with the wuse
entity, the stmr entity that owns the operand entity
via the has_operand set can be determined. To find
the node in which the statement exists, one must
find the owner of the contains set to which the stmt
belongs. This owner will be the node entity repre-
senting the node in which the statement exists. Re-
peating this procedure for each of the use entities
linked to the define entity via the use_def entity, all
the necessary information for an operand that is set
in a statement can be found. For an operand that is
referenced in a statement, one begins with the use
entity and finds the define entity linked to the use
entity via the use_def entity. From the define entity,
one can determine the statement and node infor-
mation needed to satisfy this query.

Current research

There are many directions that extensions to the
current work on PUNS might take. These include
performance issues, dynamic information updating,
a logging of explorations with a replay option, a
checkpoint/restart facility, a notebook facility for
recording discoveries, and experimentation with the
current prototype.

Performance. To achieve reasonable performance for
a system such as PUNS requires an analysis of fre-
quently issued queries and of the expectations of the
user as to response for different query types. The
repository can be organized so that those queries that
are frequently issued or have a user expectation for
immediate response can be quickly satisfied. That is,
all the analysis to answer the query is done during
the loading of the repository. Queries that are less
frequently issued or are perceived by the user either
to take time to answer or to be capable of being

ceveLano 341

overlapped with other user activities can be satisfied
by analysis on the fly by using the current data in
the repository as the source for analysis routines to
isolate what is actually needed to satisfy the query.

At one extreme is a repository whose schema allows
immediate satisfaction of all queries. A repository
built using such a schema would—for even a very
small component—be enormous in size. However,
the response time would be very short, even on a
moderately powerful host. At the other extreme is a

If a high-performance host is
available, a minimal schema can be
used, saving disk space for
repository storage and allowing
the repository to be more quickly
loaded.

repository schema that captures only the most sig-
nificant relationships; all other relationships must be
dynamically derived. A repository built using such a
schema would be compact and not require a signifi-
cant amount of space. However, the number of
instructions that would have to be executed to satisfy
any but the most basic query would be very large.
Only if a very high performance computer were used
as host, would the resulting response time be accept-
able. Thus a compromise between these extremes in
terms of space is indicated.

One interesting point about the design of PUNS is
that different repository components can be used,
depending on the availability of resources. If a high-
performance host is available, a minimal schema can
be used, saving disk space for repository storage and
aliowing the repository to be more quickly loaded.
On the other hand, if a low-performance host, such
as a workstation with sufficient storage is used, a
more comprehensive schema can be used. It takes
more disk space and a longer set-up time, but per-
formance during a use of the PUNS user interface
component would be acceptable. The intended users

342 cieveLano

for PUNS and the types of available hardware need
to be taken into account in the research to produce
a tool that will satisfy the performance needs of the
users.

Dynamic information updating. The PUNS tool as
described does not allow for the dynamic updating
of information. The PUNS repository is set up prior
to a user session using the current versions of mod-
ules of the component and not changed during the
user session.

However, there is much to be gained by allowing the
user to update incomplete information on the com-
ponent during an exploratory session. There will
always be relationships that cannot be determined
via the static analysis done in setting up the reposi-
tory. Allowing the user to add information to the
repository raises the question of the accuracy of the
information provided, particularly if more than one
user has access to the PUNS repository for a particular
component. Should the added information be held
as user-specific information and not shared with
others using the repository? Should the information
have a probability associated with it, so that if it is
presented to a user it is flagged as only being a
possible truth? What if the information presented by
a user affects relationships previously determined by
static analysis on the basis of incomplete informa-
tion?

The question of the need to update the PUNS repos-
itory also arises in the case of allowing the user to
investigate the impact of changes in the module
versions during an exploratory session. Each change
would have an impact on the relationships repre-
sented in the repository, and there would be a need
for incremental updating of the repository. The ex-
tent of such incremental updating would be a func-
tion of the number of relationships explicitly ex-
pressed in the repository. If most of the relationships
are derived dynamically from a minimal set of rela-
tionships expressed in the repository, the updating
would be minimal. However, if almost all relation-
ships were expressed in the repository, a significant
amount of reanalysis and updating would be neces-
sary prior to continuing to use the repository.

Logging of an exploration. The current prototype for
PUNS has no facility to record the use of the PUNS
user interface for a particular exploration. Such a
recording could prove to be very beneficial. A pro-
grammer using the system who is interrupted during
a task could quickly replay the recording of that

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

prior exploration upon returning to the task to set
the context for continuing the task. Even more ben-
eficial would be a facility to allow a replay of an
exploration session with interruption to alter the
exploration at a point where it went astray or where
more information is needed that was not gathered
in the initial exploration.

Checkpoint and restart. Not as extensive as logging,
the ability to checkpoint the PUNS user interface
during an exploration session and then restart at a
later point is also a needed extension and subject for
further study. Given this facility, the system could
be checkpointed at predetermined or user-selected
points so that, in case of interruption—a loss of
machine facility or a hopeless deadend in an explo-
ration—the user could restart without the need to
repeat the entire exploration.

Notebook facility. A user working through any ex-
ploration of a system usually takes notes of the
significant issues uncovered or needing to be re-
solved. These notes generally include. information
about the current point in the exploration and how
the information available at that point has led to a
particular conclusion. The PUNS user interface pro-
vides support for the exploration phase of a system,
and the user also needs support for the notetaking
activity. It should be possible for the user to select
certain pieces of information currently available on
the screen, place them into an on-line notebook
(probably represented as a viewable, scrollable win-
dow), indicate relationships between the items of
information, and add comments. What is placed in
the notebook may be fairly static information. How-
ever, it may also be quite dynamic, thereby allowing
a sequence of windows to be captured as the note-
book is written and replayed when the notebook is
read. The notebook need not be simply a linear text.
Rather, it could encompass many of the aspects of
hypertext.14

Experimentation. The PUNS prototype described in
this paper has been demonstrated extensively. How-
ever, it has not been used in a production program-
ming environment. There is a need to define, con-
duct, and analyze experiments for using the tool in
such a realistic environment. Such experiments can
provide much feedback to the research team from
which would come an understanding of such things
as relationships that have been ignored, perform-
ance, extensions to the tool, and areas of the tool
that are not user friendly. Such experiments are
contemplated and we hope they will be carried out.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Concluding remarks

PUNS is a tool to support programmers in their effort
to understand a program. The PUNS user interface
presents many views of a program under considera-
tion and allows the programmer to gain an overview
of the program and to explore any aspect of the
program in depth. The interface is so structured that
the user can move between the overview type infor-
mation and the detailed levels using a simple point-
click interaction with the PUNS tool. The PUNS re-
pository component is designed to provide the nec-
essary information to the user interface component,
so that the many views can be made available when
requested.

With continuing development and extension the
PUNS tool described in this paper should allow pro-
grammers to reduce the proportion of time they
spend on the program understanding task while in-
creasing their level of comprehension of the program.
As such, it should be a valuable tool in any software
maintainer’s toolbox.

It is interesting to speculate on potential adjacent
areas of research. The availability of a tool such as
PUNS should prove useful to the community of sci-
entists attempting to understand how people com-
prehend programs. By recording exploration sessions
using PUNS, a machine readable, nonintrusively ob-
tained set of data on sequences of actions taken by
an individual trying to comprehend a portion of a
program to accomplish a particular task is available
for analysis. If the scope of the PUNS tool is sufficient,
any desired set of relationships can be explored in
any logical sequence, and the tool will not constrain
the explorer. The data obtained by recording tool
exploration will not be contaminated by the facilities
provided by the tool.

Not only can the recording of exploratory sessions
provide detailed input for the study of how people
go about certain tasks involving comprehension, but
also the tool can provide a vehicle for exploring
whether a certain set of steps are necessary and
sufficient for a particular task. By adding on top of
PUNS a component that constrains the user of the
tool to following certain relationships at any partic-
ular point in the exploration only, the tool could be
programmed to force the user into following a certain
task structure. Experiments using different task
structures could yield valuable information about
task content.

cLeveeano 343

A third area of associated research in which a tool
such as PUNS could prove useful is that of reverse
engineering, that is, the attempt to capture design
information from existing code. The PUNS repository
component provides much of the relationship infor-
mation necessary to begin a reverse engineering task.
The user interface could be modified (or extended)
to maximize user input for cases in which there is
insufficient information to make the reverse-engi-
neering decisions. Thus, human guided reverse en-
gineering could be done easily and interactively.

Acknowledgments

I want to thank Don Pazel and Ashok Malhotra for
their technical assistance in this work. I thank Tom
Corbi for his vision of what PUNS could be and for
his continuing enthusiasm and support for the work
as it has progressed.

Microsoft Windows is a registered trademark of Microsoft Cor-
poration.

Cited references

1. G. Parikh, Handbook of Software Maintenance, John Wiley
& Sons, Inc.. New York (1986), p. 14.

2. B. P. Lientz. E. B. Swanson. and G. E. Tomkins, “Character-
istics of application software maintenance.” Communications
of the ACM 21, No. 6, 466-471 (June 1978).

3. E. B. Swanson, "The dimension of maintenance,” Proceedings
of the Second International Conference on Software Engineer-
ing, San Francisco (October 1976), pp. 492-497.

4. R. K. Fjeldstad and W. T. Hamlen, “Application program
maintenance-report to our respondents.” in G. Parikh and
N. Zvegintzov. Editors. Turorial on Sofiware Maintenance,
IEEE Computer Society Press, Silver Springs, MD (1983),
pp. 13-27,

S. T. A. Standish, “An essay on software reuse,” JEEE Trans-
actions on Software Engineering SE-10, No. 5, 494-497 (Sep-
tember 1984).

6. F. P. Brooks. Jr.. *No silver bullet: Essence and accidents of
software engineering,” IEEE Computer 20, No. 4, 10-19
(April 1987).

7. A. Malhotra. H. M. Markowitz, and D. P. Pazel, “EAS-E: An
integrated approach to application development.,” ACM
Transactions on Database Systems 8, No. 4, 515-542 (Decem-
ber 1983).

8. M. Moriconi and D. F. Hare, “The PegaSys System: Pictures
as formal documentation of large,” ACM Transactions on
Programming Languages and Systems 8, No. 4, 524-546
(October 1986).

9. S. Reiss, “PECAN: Program development systems that sup-
port multiple views.” IEEE Transactions on Software Engi-
neering SE-11, No. 3, 30-41 (March 1985).

10. J. Ambras and V. O'Day. “Microscope: A program analysis
system.” Proceedings of Hawaii International Conference on
System Sciences-20 (January 1987), pp. 71-81.

11. Y. Chen and C. V. Ramamoorthy, “The C information ab-
stractor,” COMPSAC 86, Chicago (October 1986). pp. 291-
298.

344 cieveLanp

12. J. S. Collofello and J. W. Blaylock, “Syntactic information
useful for software maintenance,” National Computer Confer-
ence 85, Chicago (July 1985), pp. 547-553.

13. W. Teitelman, Interlisp Reference Manual, Xerox PARC, Palo
Alto, CA (1978).

14. J. Conklin, “Hypertext,” IEEE Computer 20, No. 9, 17-41
(September 1987).

Linore Cleveland /BM Research Division, T. J. Watson Research
Center, P.O. Box 704, Yorktown Heights, New York 10598. Ms.
Cleveland worked for IBM from 1963-1969, teaching in and
managing an internal programmer education group in Poughkeep-
sie, New York. After leaving IBM, she taught at Vassar College in
Poughkeepsie and Polytechnic University in Brooklyn, New York,
and served as chairman of Vassar’s Computer Science Studies
Program. She also spent two years as a guest researcher at the
Tokyo Research Laboratory of IBM Japan. She rejoined IBM in
late 1986. She has been working in a program understanding group
developing demonstration vehicles and prototypes of a tool to
assist programmers in understanding programs written in old code.
Ms. Cleveland has a B.S. in mathematics from Michigan State
University, East Lansing, Michigan, an M.S. in computer science
from Polytechnic University, and is currently a candidate for the
Ph.D. in computer science at Polytechnic University.

Reprint Order No. G321-5362.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

