DS-Viewer—An interactive
graphical data structure
presentation facility

DS-Viewer is a tool that is the result of a research
project in data structure presentation within a program
state. This tool addresses two distinct issues in this
area: (1) to effectively present data structures them-
selves for a given program state and (2) to present
groups of data structures and their interrelationships
as described by their pointer definitions. Graphical
presentations were developed to address these issues.
For the data structure presentation, the user is pro-
vided a display window for any single data structure
instance formatted with its fields and field values. Flexi-
bility in display is provided by allowing the user a
choice from the various value formats for each field.
For groups of data structure instances, a graphical
drawing space is provided in which pictures of these
data structure instances and their interrelationships
are drawn as blocks and arrows. The computer assists
the user in drawing such a picture by describing its
components, allowing the user to choose which to
draw and to construct as much of the picture as de-
sired.

Program maintenance occupies a large portion of
a software product’s cost and affects its life cycle.
Estimates vary greatly, but it is reasonable to say that
50 to 90 percent of the total cost can be attributed
to continued enhancements, fixing defects, or adapt-
ing to new software or hardware. Consequently, there
1s a need for effective, efficient, and user-friendly
debugging tools to help decrease this overhead.

Major advances in debugging tools have been seen

in the last decade. The days of debugging directly
with the primitive machine state are nearing an end

IBM SYSTEMS JOURNAL, VOL 28, NO 2. 1989

by D. P. Pazel

as source level tools are bringing the debugging proc-
ess closer to the source program code. It is not
unusual for a debugging tool to present to the user
execution-level information in the context of the
source program code itself (e.g., current source line,
program variable values, etc.). Many debugging tools
are now highly interactive, making excellent use of
full-screen technology by initiating debugging ac-
tions through cursor-sensitive operations.

The personal computer, in conjunction with high-
resolution graphical displays, presents an opportu-
nity to the next generation of debugging tool devel-
opers. By using workstations, it is possible to enhance
the debugging process with highly visual graphical
displays and a high degree of interactivity. This paper
presents the results of research focused primarily on
data structure presentation. This research exploits
the graphical display capabilities of current 1BM PC
or PS/2 workstations while at the same time present-
ing data to the user in a familiar paradigm.

After a brief survey, a general discussion of the
problem domain is presented. Following that is a
description of the DS-Viewer tool, its function and
presentation schemes. A detailed examination of the

© Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions. of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

pazeL 307

various data displays and their features follows. The
graphical presentation of groups of structures and
their pointer relationships is discussed in detail. This
mode of presentation is the result of a highly inter-
active session whereby the computer describes the
picture’s components and the user selects which
components to show.

Recent work

There have been a number of significant advances
in graphical debugging systems. Each approaches the
problem differently and has its own particular limi-
tations. A debugger known as the Blit debugger' is a
C program debugger for programs on a particular
multiprocessing bitmap terminal. Among the most
useful features of the Blit debugger are the effective
use of overlapping windows, menu bars, and a
mouse. This debugger provides some function for
the display of data structures, but not for the display
of multiple data structures and their pointers, such
as graphical displays of linked lists.

Another debugging tool known as Incense’ targets
the Mesa programming language. Among its most
notable techniques is the use of formatted displays
of data. For example, data structures may be illus-
trated as rectangles with nested rectangles to indicate
substructures. Another interesting feature of this de-
bugging tool is its capacity to display groups of
related structures and their pointers. Both in display-
ing individual and related structures, Incense capi-
talizes on the graphical ability to compress infor-
mation on the screen in order to see the character of
the overall picture. The conceptual payoff of this
approach is not clear in very large, complex struc-
tures, nor when there is a very large number of
structures to display. Even with a minimum shrink
size, eventually structures simply become clusters of
blurred images.

VIPS' is a debugger for aADA that works on the PERQ
workstation. VIPS attempts to address all aspects of a
debugging system using a multiwindowed environ-
ment. The techniques used in data structure display
are quite similar to those used in Incense but are
slightly less powerful when it comes to displaying
groups of data structures. It is not clear what happens
when the complexity of data structures tests the size
of a data display window. Nor is it clear what hap-
pens to the display resolution when the display is
severely shrunk.

Rel&ted effg)rts in this area include the lzecan debug-
ger, Balsa,” and program visualization.

308 razeL

The problem

The need for data structure presentation tools is most
keenly felt in debugging applications that rely on the
data structure features of languages such as Pascal.
C. or pL/1 or the unrestricted data structure features
of an assembler language. The data structure seman-
tics of such languages are usually quite open-ended.
allowing the user to implement very complex data
structure operations consisting of many kinds of data
structures and data structure interrelationships. Typ-
ical of such data structure interrelationships and
operations are linked lists and trees, where the nodes
of each are data structures and their interrelation-
ships are implemented through pointers within the
data structure definitions. However. it is not unusual
for more complex structures to be designed for an
application, and the programs to manage such struc-
tures are similarly complex and fault-prone.

In debugging these types of applications, several
1ssues become apparent. Problems usually appear
within the data structures themselves. Values may
be incorrectly set or, even worse, the pointer to a
structure may be misused as a pointer to an incorrect
data structure type, resulting in data structure field
abuse. Pointers are often misplaced or missing alto-
gether. In this case, the current program state con-
tains violations of the intended data structure inter-
relationships defined for the application. Attempting
to find these violations usually involves trying to
construct a picture of these interrelationships from
the program state by locating many data structure
pointers and following them. Additionally, the prob-
lem is compounded by the number of data structures
that may be present at any given program state.
From the viewpoint of a debugger, the first problem
indicates a need for a facility to present formatted
data structures to easily validate the values of fields.
The second problem presents a need for a mecha-
nism that allows the user to visualize large groups of
data structures and how they interrelate or point to
each other, to see whether the program state is faith-
ful to the intended data structure plan. Generally
speaking, current debuggers provide the formatted
data structures but do not provide means for visu-
alizing large groups of data structures.

In some cases, the problem of debugging applications
using complex data structures is exacerbated by im-
plementation languages such as assembler or PL/I
which allow the use of untyped pointers. In these
cases, a pointer may indicate arbitrary data structure
types since the semantics of pointer definition may

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Figure 1 A DS-Viewer session screen

DS-Viewer

Scene 'PARSE:TREE'

DS2 @25080

151704s Atom
1 | 40 | DSaHALF [4040
151552u 00000000

not include the type of data structure. An under-
standing of the intended data structure scenario must
either be extracted from documentation or inferred
from the program. Even with the aid of a debugging
tool that solves the problems described above, the
user would find it helpful to know details about the
data structure. The information would help detect
aberrations in data structure or verify the intended
usage of pointers.

An overview of DS-Viewer

The DS-Viewer tool is the result of a research project
in program data structure presentation that grew out
of an earlier effort in multiwindowed machine-level
debugging.” The tool addresses two distinct issues in
data structure display: the effective presentation of
data structures themselves for a given program state,
and the presentation of groups of data structures and
their interrelationships as described by their pointer
definitions. The tool is written in C and runs under
Microsoft Windows® on an IBM PC/AT or PS/2. Being
a Microsoft Windows application, DS-Viewer is mul-
tiwindowed by nature. Microsoft Windows provides
a standard interface to several important graphical

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

display aids such as menu bars, pull-down menus,
and scroll bars, and provides a standard interface to
a mouse. These features facilitated the development
of the tool. The graphical support within Microsoft
Windows makes it possible to implement a presen-
tation of data using graphical pictures. Figure 1
shows DS-Viewer in operation.

DS-Viewer displays data structure information
through user-supplied semantic information about
the data structures. In part, DS-Viewer obtains this
information from a local file containing all or some
of the application’s data structure definitions. The
file is provided by the user. From this, DS-Viewer
provides the capability to recall a data structure
definition as a display window on the screen which
is formatted with field definition information. Simi-
lar displays are provided for data structure instance
(a specific data structure based on a generalized data
structure definition) which are comprised of actual
program memory data within a program state inter-
preted against some given data structure definition.
DS-Viewer uses the definitions to format a display
window with details of that data structure instance’s
field values. In either case, a window is dedicated to

razeL 309

Figure 2 DS-Viewer’s architecture configuration

the display, and the window possesses features which
are menu- and mouse-driven, to change the presen-
tation of the information at the user’s request.

The remaining input semantic information relates
to the definition of pointers. Pointer information
consists of the identity of the data structure definition
that owns the pointer, the field in the owner that
represents the pointer, and an identifier which rep-
resents the type of data indicated by the pointer. All
of this information comprises what is called a pointer
relationship. Since all information about a pointer
relationship is part of the language and is therefore
static, the input file could provide information about
pointer relationships. However, DS-Viewer attempts
to address implementation languages which contain
both typed and untyped pointers, such as pPL/1 or
assembler. In particular, DS-Viewer as presented in
this paper is tailored towards s/370 Assembler Lan-
guage.” In DS-Viewer, pointer relationships are de-
fined by means of a graphical editor that is part of
the tool. With this editor, data structure definitions
are visualized as blocks and pointer relationships as
arrows. The user creates and manipulates these ob-
Jjects to define pointer relationships. A collection of
data structure definitions and pointer relationships
is called a format, and the user may edit any number
of formats during a session. From a user-provided
format and a given program state, DS-Viewer is able
to construct with user interaction a picture consisting
of blocks to represent data structure instances and
arrows to represent actual pointers as defined by the
pointer relationships. This picture is called a scene
and the user may construct any number of scenes
during a session.

A unique feature of DS-Viewer is that it is a PC/AT
workstation tool that displays data structure infor-
mation from active mainframe programs. More spe-

310 razeL

cifically, DS-Viewer interacts with executing CMSs
application programs on VM/370 systems much as a
debugging tool would, except that DS-Viewer initi-
ates that interaction from a PC/AT workstation. A
schematic of the workstation/host interaction is il-
lustrated in Figure 2. Under cMs, an application
program executes. Coresident (i.e., nucleus-resident)
with this application is a software probe which con-
tains debugging and communications functions by
which the executing application can be monitored.
The software probe used is an internal 1BM research
debugging tool called pry. This tool debugs on the
370 code level and provides a noninteractive mode
whereby alternate means of debugger command in-
put may be provided, e.g., through a communica-
tions protocol, as described. On the workstation, DS-
Viewer exists as a task under Microsoft Windows.
DS-Viewer contains a communication component
(Com-Core) that utilizes ECF in its protocol to the
software probe on cMs. When the user initiates an
activity such as the display of a data structure, DS-
Viewer translates that activity into a debugging com-
mand (e.g., acquiring memory contents). That com-
mand is issued by Com-Core to the software probe
via the communications path. The activity is com-
pleted upon receipt of the information by Com-Core
and DS-Viewer. Although the function is limited, it
is expandable since any debugging command could
be issued by Com-Core to the probe in cMms. DS-
Viewer provides a primitive program control mech-
anism by which breakpoints may be set or unset,
and for resuming program execution. Two menu
items on the main window menu bar provide that
function. The Breaks option provides a standard
dialog window for adding and deleting program
break points. The Go option issues a program resume
command to the executing program. The Go option
becomes highlighted and remains so as long as the
program has not hit a break point. Thus, when Go
becomes unhighlighted, the programmer knows that
the program is in a state to be probed by DS-Viewer.
However, the main focus of this work is data pres-
entation.

The sample screen in Figure 1 shows several of the
typical windows found in a DS-Viewer session. The
small window titled ps2 @25080 is an example of a
data structure instance. It indicates that Ds2 is the
data structure definition and 25080 is the program
data memory address of the instance. The figure
illustrates how the tool displays a particular data
structure instance as a window formatted with field
values. The larger window titled PARSE:TREE is an
example of a scene of data structure instances with

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

their pointer relationships. The NODE blocks repre-
sent specific data structure instances of NODEs, and
the arrows represent pointers. Later it will be seen
DS-Viewer : that from these NODE blocks the user can easily

produce the formatted data structure instance win-
dows. Partially obscured by the scene window is an
edit window for the format used to generate the
scene shown.

Figure 3 (A) List view; (B) block view of a data structure definition

DSAVDS DS 1 DS-Viewer also provides a number of other windows
ggéz ggzggs gg gH that contain information pertinent to the machine
0028 DS4CHARS DS 3CL5 state, such as the psw, general-purpose registers,
0038|DS4WORD DS F floating-point registers, and arbitrary storage areas.
gggg gs“ggg - gg €130 These windows are displayed through the Windows
0060 DngLDQ s E option on the main window’s menu bar. These win-
0064|DS4FLD3 DS F dows are self-descriptive and will not be discussed in
0068|DS4FLD4 DS H 14 this paper.

Data structure definition windows

A data structure definition consists of an identifying
name and the source code that defines it. DS-Viewer
receives these definitions as input through a defini-
tion file which is a local user file containing the
definitions extracted from an application’s source

0000 DS4WDS(0) DS4WDSCD) 1 code. Many definition files may be specified, pro-

gg‘l’g gg::gg:i; ns4Hng§g\)’DIS]$:msu> vided that each definition has a unique name. How-

0018| DSAHDS(2) | DSAHDS(3) | DS4HDS(4) | DS4HDS(S) ever, it is possible to use the same name to specify

0020 DS4DD definitions across different files, allowing for different

0028 DS4CHARS(0) | DS4CHARS(1) versions of a data structure.

9030] ... | DS4CHARS (2) I

0038 IS4VORD I DS4CHR User control in entering, displaying, and deleting

0040 o . ; X 2

0048 14 definitions is focused through a dialog window
N obtained from a menu item on the main window.
\ This dialog provides a list of definitions and their

originating files, an input area for specifying new
definition files, and a variety of options to execute
Figure 4 Dialog for constructing a data structure instance against definitions. For example, when a definition
file name is entered at the input field and the ADD
option is selected, the name of each data structure
definition in that file appears in a scrollable list box
and is recognized by DS-Viewer. To aid in further
identification, each structure definition name has as
a suffix in parentheses the file name from which it
Memory Address: originated. During a session the user may identify a
STYLE definition’s origin or distinguish among several def-

initions with the same name. An individual defini-
@ sLock tion may be deleted by selecting it in the list box and
Ouist choosing the DELETE option. Similarly, a definition
may be displayed with an ILLUSTRATE option through

DS-Viewer

DSICTEST)

DS2(TEST)

DS3(TEST)
%

%

which a window appears showing the contents of the
definition.
(caNceL)
N The two styles of definition display supported by DS-
— Viewer are shown in Figures 3A and 3B. The same

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989 pazel 311

Figure 5 Block view of a data structure instance

DS-Viewer

tures. Breaks Go

00025070 DSaWDsS (1) 1
0008 Os 0s
0610 -15234s 0u 0u
0018 ou | 0u 0u 0u
0020 DS4DD
0028 Gx123 [C34
0030 | Solid
0038 0s | DS4CHR "
0040 . :
0048 . 14

N

definition is illustrated in these two styles. The ex-
ample in Figure 3A shows the data structure defini-
tion of Ds4 in /ist style. This is the assembler language
definition named Ds4, and each line shows the defi-
nition of each field. For example, the field psawDs
is declared as five full integer words (32-bit words).
The running sum in hexadecimal along the left col-
umn is an indication of the location of each defined
field relative to the structure’s base. In this case
DS4wDS occupies 20 bytes starting from the begin-
ning of the structure.

The example in Figure 3B shows the data structure
definition Ds4 in block style. This form of definition
representation is well known to systems program-
mers, and this paradigm may be found in numerous
program language manuals.'' Each row in this pres-
entation represents 8 bytes of contiguous memory.
The tiling of the picture provides a partitioning of
the data structure into the fields. For example, the
five indexed instances of DS4wDS correspond to the
five adjacent 4-byte words that define that field,
Ds4DD is a double-word (8-byte) field, etc. Also,
continuations of fields across rows is indicated by
“...” appearing in the succeeding areas. This repre-
sentation provides a topography of the fields. With
this knowledge of field adjacency, the programmer
is more able to observe data patterns or distinguish
data structure instances in foreign memory areas.

During a session, the user may request any number -

of definition windows to be displayed. However, two
definition windows cannot present the same defini-
tion at the same time—a definition display is unique

312 Pazel

across the user session. Also, the user may flip-flop
between the two presentations, BLOCK and LIST,
through menu options on the definition window
itself. Since the visual image of a definition may
easily exceed the size of the screen, scroll bars are
provided to view other parts of a definition, and of
course the window may be resized to the user’s liking.

Data structure instance windows

The display of a data structure instance is closely
allied to that of the definition. A data structure
instance is, after all, program memory data inter-
preted against a data structure definition. In fact the
same display styles are used, but with some modifi-
cations to allow the user to obtain different field
value representations.

The focus of operations on data structure instances
is a dialog invoked through an option on the main
window menu bar. This dialog window invoked is
illustrated in Figure 4. The user is given a complete
selection of definitions in a list box and a prompt
area to enter the location of the data structure within
program memory. The definition is selected by de-
pressing a mouse button on an entry in the list box.
When OK is selected, the data structure instance
window is displayed.

Figure 5 shows an example of a data structure in-
stance in block style. In this case a data structure
instance is based on the data structure definition Ds4.
Similarly, like the block style of definition display,
this display shows an area partitioned into field areas.
However, the values of the fields are displayed in-
stead of field names. The representation of the values
may be changed by using the right mouse button on
any field area. With that, a decimal typed field (de-
clared F or H) will change to signed decimal, un-
signed decimal, character, and hexadecimal cycli-
cally through successive depressions of that button.
The symbols s and u provide the necessary clues to
the user as to the current representation. For char-
acter fields (declared C) the change is strictly between
character interpretation and hexadecimal. But in
addition, a field area can flip-flop between its name
written in black and its value written in red by using
the left mouse button on any field area. In the
example, DS4wDS(1), DS4DD, and DS4CHR are field
names acquired in this manner.

Again, similar to data structure definitions, data
structure instances may be displayed in list style. In
such a display, the window shows each field name

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

followed by the value of the field itself. The user may
change the field representation by depressing a
mouse button on the field as mentioned above. Scroll
bars are provided to scan through all the fields or
across any field’s value that extends beyond the limits
of the window.

The strong similarity between the data structure
definition and instance displays provides a consis-
tency for the user to interact with them. For example,
both have a Styles menu option which allows the

The user is presented a drawing
space into which a picture or
schema representing the format
will be drawn.

user to switch between list and block styles within
the same window. However, data structure instances
additionally allow a Change option whereby the user
may quickly change the instance memory location
or the interpreting data structure definition. The
selection of this option provides a dialog window,
offering a complete list of additional definitions from
which one must be selected (the current one is high-
lighted by default), and a prompt to enter a new
instance location in program memory (the current
location 1s present by default). This feature allows
the user to explore the identity of unknown program
memory data by interpreting it against different data
structure definitions. It also allows the user to adjust
the instance location against a given data structure
definition, possibly revealing pointer values that may
be “off” by a few memory bytes.

Formats and scenes

DS-Viewer’s semantic information about data struc-
tures up to this point has been confined to informa-
tion about each structure definition individually.
The presentation of a scene of data structure in-
stances and their pointer relationships requires far
more information. For DS-Viewer to accomplish
such a presentation, interstructure information must

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

be provided in the form of pointer relationships. A
pointer relationship consists of a field contained in a
source data structure definition, and a target data
structure definition representing the type of data
structure to which the field points. An application’s
pointer relationships are usually provided by the
definition of implementation language’s data struc-
ture syntax. For implementation languages with un-
typed pointers this is not the case: the target data
structure definition cannot be deduced from the
pointer definition. Thus to specify the pointer rela-
tionships, DS-Viewer provides a graphical editor
called the format editor. The format editor allows
the user to specify the pointer relationships through
a paradigm familiar to most programmers. As an
example, data structure types are represented by
blocks and pointer relationships are represented by
arrows. This phase of semantic information input
will be described in the next section.

The scene-building process is an interactive process
between the user and DS-Viewer. This is achieved
through a graphical scene editor based on the same
paradigm used in the format editor. At this time
blocks represent data structure instances and arrows
represent actual pointers. Through a user-specified
format, the scene editor enumerates and describes to
the user all the pointers for any specific data structure
instance. From that list, the user may select specific
pointers and the data structures to which they point
and add them to the scene, a process called resolving
a data structure instance. Thus, a typical user sce-
nario for the scene editor is as follows. The user
places on the scene a few known data structure
instances. These initially placed data structures are
referred to as anchors. This term’s intent is to convey
a sense that the scene is built from a foundation of
a few known data structure instances. The user then
proceeds to ask DS-Viewer to calculate and list the
pointers for some anchor. The various pointers and
instances to which they point are presented to the
user who selects those that are to be added to the
scene. Then the user selects another anchor or data
structure instance for resolution and so forth, until
the user determines that the scene is sufficiently built.
The full process of scene building will be described
later.

Several interesting points should be made. Although
format building may be necessitated by the weakness
of languages which contain typeless pointers, it could
be argued that this process i1$ necessary in any case.
Format editing provides a focus for scene construc-
tion by specifying what items to present. The number

pazet 313

Figure 6 Format editing screen

“ DELETE STRUCTURES PTRS MOVE MACRO

DS-Viewer

S
Format

MYSYS

A

A

of pointer relationships in a complex application in
any language is apt to be large. Format editing pro-
vides a way to consider just those that are of interest
to the programmer. In the case of languages with
typed pointers, a format editor would be used to
restrict attention to specific pointer relationships
used to implement specific data structure constructs,
as linked list and trees. Generally speaking, languages
with typeless pointers and languages with typed
pointers would use a format editor in complemen-
tary ways; the typeless pointer for providing detail
and the typed pointers for restricting detail. Format
editing provides a way to improvise formats to reveal
the true function of the pointer’s usage in the case
of applications where a pointer’s usage is not clearly
defined.

The interactive method of building a scene previ-
ously described bears an advantage over fully com-
puter-generated scenes from a format. Even with a
highly restricted format, the full detail encompassed
in an associated scene could be very complex. User
interaction provides a way to explore around a scene
in unstructured but user-directed ways. For example,
a full tree or linked list does not have to be fully
built onto the scene. Instead, branches of a tree or
partial traversals of lists may suffice. Also, with the
user “growing” the scene through a graphical inter-
face, the scene can be constructed so as to augment
the known semantics of the application. That is, the
user can place the data structure instances and point-

314 raz=

ers so as to reveal higher-level relationships among
them that are not apparent, such as related link lists,
trees, and ragged tables.

Format editing

A format editor defines formats, collections of data
structure, and pointer relationship definitions, to the
DS-Viewer. An unspecified number of formats may
be defined during a session. Each is given a unique
name by the user and in this way is distinguishable.
The format editor is invoked through an option on
the main window and focuses the editing session
through another dialog window. This dialog window
provides basic services for operating on formats such
as reviewing, adding, deleting, or changing formats.
A list box provides a list of current formats and
prompting information is provided to enter the
names of formats. The various options mentioned
are provided as visual push buttons. To add a new
format, a name is entered at the prompt and the
ADD option is selected. For example, to edit a format,
a format name is selected in the list box and the EDIT
option is selected. This action invokes the format
edit window.

An example of a format edit window is shown in
Figure 6. The user is presented a drawing space into
which a picture or schema representing the format
will be drawn. To accommodate large formats, the
drawing space is much larger than the window size.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

During the editing process, the user may move
through different areas of the drawing space with the
scroll bars shown at the right and bottom. However,
a “bird’s eye” view of the entire drawing space may
be acquired through the MACRO option on the format
edit window menu bar. Selection of this option
creates a child window of the format edit window
depicting the full scale of the drawing area. This is
shown in the MACRO VIEW window in Figure 7. This
window shows the full drawing area divided into a
10-by-10 gnid and a broader rectangular outline re-
flecting the area encompassed by the current editing
window, called the focus. The scroll bars on the right
and bottom of the MACRO VIEw window allow the
user to move through different areas of the drawing
space, that is, the focus may be changed. Being a
child window, MACRO VIEW is totally constrained to
the format window, and in fact could be shoved off
to the side of the format edit window even to the
point of being clipped by its parent window."” The
MACRO option on the format edit window’s menu
bar is highlighted as long as the MACRO VIEW is
present. The child can be discarded by selecting
MACRO again, in which case the MACRO option is no
longer highlighted.

The user specifies to the editor which structure defi-
nitions are part of the format through a dialog win-
dow invoked through a menu option on the format
edit window. The user is provided a list of structure
definitions available for constructing the format, and
definitions that are already part of the format are not
presented. The user selects multiple definitions from
the list box with the mouse.” A CANCEL option
cancels any selections made during the dialog session
and terminates the dialog.

After choices have been made and the user exits the
dialog session, the user begins to graphically draw
the format definition based on the previous selec-
tions. For each selection, the user is prompted to
find a location on the screen for the definition’s
graphical representation. An option is also provided
for skipping a selection (an ad hoc way to “undo” a
selection made earlier). At the same time, grid lines
as referenced on the MACRO VIEW window appear on
the screen as a guide for location reference. The user
indicates a location for the graphical representation
by selecting a vacant grid square with the mouse.
Thereupon a graphical representation of the struc-
ture, a small box inscribed with the name of the
structure, appears centered on that grid square. The
user proceeds with the successive prompts until all
selections have been acted upon. After that the grid

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Figure 7 Macro view for format editing

MACRO VIEW

T -

vanishes from the screen, and the user may revisit
the structure selection dialog later. Figure 8 shows
an example of a format edit window with several
structure definitions represented. Notice the MACRO
vIEW window also indicates the presence of structure
definitions, providing more topographical informa-
tion about the entire drawing space.

To define pointer relationships, the user enters a
pointer definition editor “mode” through a menu
option. In this mode, the user may only perform
activities related to defining pointer relationships. As
before, the window grid appears as an aid to the user
in navigating through the drawing area to find other
structures in the format. In this mode, the user selects
a source structure type by using the left mouse
button, and a target structure type by using the right
mouse button. Visually, the source and the target
turn are displayed in different colors on both the the
edit and MACRO VIEW windows upon selection. To
complete the operation, a dialog window appears
along with a display of the source definition. Figure
9 shows an example of this with definitions Ds4 as
the source and Ds3 as the target. The user selects the
field name, here DSawDS(0), by selecting the field in
the source definition display with the mouse. The
dialog focuses information about the pointer defini-
tion. For example, the name of the field selected will
automatically appear in the dialog window. Addi-

pazeL 315

Figure 8 Definitions represented during format editing

= 7 | DS-Viewer

T
}
+
l
|
|
]
i

0000] DSAWDS(D) DS4WDSCL)

[[
I I
{ : 0008 DS4WDS(2) DS4WDS(3)
| | [eoto DS4WDS(4) DS4HDS(0) DS4HDS (1}
0018] DSAHDS(2) DSaHDS (3) DS4HDS (4) DS4HDS(5)
______ DS4DD
SC0) | DS4CHARS (1)
DS4CHARS ()]
DS4CHR
. 3
T T T
! | |
““““““““““ e K R

4
Le

316 PAZEL IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Figure 10 A fully defined format in a format editing session

DS-Viewer
Format

o84

tionally, the user may specify a null value for the
pointer field, that is, a value indicating that the
pointer points to no structure instance. When the
user selects OK, the dialog vanishes and the pointer
is represented as an arrow on the edit window.
Optionally, the user may CANCEL this pointer speci-
fication.

When multiple pointers exist between two specific
structure types, the pointers are represented by arcs
stretching out on each side of the straight line con-
necting the two. For pointers where the source and
target are identical, the pointers are represented by
concentric arcs along the upper right of the structure
type’s image. A full format is illustrated in Figure
10, and one fairly direct interpretation of this infor-
mation follows. This format shows that each instance
of Ds4 has a pointer to a bs3 and a pointer to a DS2.
The Ds2s are self-referential indicating a queue of
them, and the pointer from Ds2 to Ds4 indicates each
member of the queue points back to the owner.

The format edit window provides a unique method
of querying the pointer relationships and structure
types. By pointing to an arc or line representing the
pointer and using the left mouse button, additional
information describing the pointer appears on the
screen. It disappears when the button is released.
This feature is illustrated in Figure 11. As the struc-
ture type’s name may be truncated, a similar feature
exists when the mouse is on the structure type’s
image and the button is pressed.

1BM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

The editor also provides a move mode initiated by
the MOVE option on the menu bar. In this mode the
left mouse button is used to select some block and
the right mouse button to indicate a new position
(vacant grid square). The structure image is reposi-
tioned and all the pointer lines and arcs are adjusted
to accommodate. This method was preferred over
“dragging” the block to allow the user to scroll to
other areas of the drawing space in order to place
the block.

Similarly, delete mode allows selection of a pointer
or structure type with the left mouse button, where-
upon a dialog window appears with information
about the pointer or structure type. The user may
elect either to confirm this deletion or cancel it. If
confirmed and a pointer is selected, the pointer line
disappears and the pointer represented by it is no
longer part of the format. If a structure type, its
image and all pointers to and from it vanish and are
deleted from the format definition.

Finally, the user many keep any number of edit
sessions open during a DS-Viewer session. An edit
session is ended by the usual Microsoft Windows
close option on the menu of the edit window’s
system.

Scene editing

The process of building a scene is similar to that of
building a format. Both involve drawing a picture

pazel 317

Figure 11 Querying a pointer definition

SOURCE:
TARGET:
FIELD:

NULL

DS4(TEST)
DS3(TEST)
DS4WDSC0)
0

on a drawing space and the pictures of each are quite
similar. The chief differences are that in a scene, each
block image represents a unique data structure in-
stance and each arrow an actual pointer.

The scene editing process is initiated by selecting the
Scene option on the main window menu. The user
works with a dialog window containing a list box
with the names of all available scenes for this session.
Since a scene is associated with a format, two
prompts for a unique name for the scene and the
name of an associated format are provided, as well
as options to add, delete, and present (show) the
scene. As mentioned before, the format will help
drive the building of a scene and so is an essential
part of a scene’s specification. If only the scene name
is given in adding a new scene, DS-Viewer will
conveniently provide a second dialog window listing
all the available formats from which the user may
choose.

When Present is selected, the user is given a drawing
space in which to construct the scene as shown in
Figure 12. The drawing space is quite similar to the
drawing space for formats except that it is much
larger as depicted in MACRO VIEW window. The rea-
son for this is that the number of data structure
instances could be large, and the user could require
a large drawing space. A grid square’s size on the
scene window is the same size as that on the format

318 razee

window; however, the scene window encompasses a
61-by-61 drawing area. The scroll bars on the scene
window operate in the same way as the format
window but with a small difference. Since the draw-
ing space is large, if the scroll bars on the scene editor
were scaled to the entire drawing space, a slight
change in the scroll elevator position would radically
change the focus of the window. Thus, movement
of the scene editor’s scroll bars is scaled to a fraction
of the total drawing space. Changing the focus to
remote positions of the drawing space is accom-
plished by the scroll bars of the MACRO VIEW window,
whereafter the scene editor’s scroll bars could be
used for finer adjustment.

The first step in constructing a scene is to specify
one or more anchors. This is initiated by selecting
the ANCHOR option on the menu bar. The user is
given the full list of data structure types in a list box
and a prompt for a program memory location. The
full list of data structure types is given as opposed to
only those of the format to allow inclusion of struc-
ture instances on the scene that would add more
meaning to the scene. After selecting a type and
entering a location, the user is prompted to place the
anchor, and a grid is drawn to aid the user in
navigating through the drawing space. After placing
the anchor, the grid vanishes and the instance is
represented as a square image with the definition
name inscribed within as shown in Figure 13.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Figure 12 Scene editing screen

D5-Viewer

THESYS:MY

Any anchor or data structure instance represented
on the scene drawing space is either a yellow or green
block. Yellow indicates that the instance has at least
one pointer (as defined in the format) that is not null
and not present. That is, the non-null target instance
either does not appear on the scene, or it appears on
the scene but the pointer arrow does not. Conversely,
green indicates that all of the instance’s pointers are
“resolved” in the sense implied above. A yellow data

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

structure instance is an invitation to the user to select
it for reviewing those pointers not present on the
scene and to proceed to select which ones should be
drawn. This process is initiated through the BUILD
option on the menu bar.

The selection of BUILD actually initiates a mode of
operation on the scene. The grid lines appear for
navigational purposes, and the left mouse button is

razet 319

Figure 14 Constructing a scene through resolving pointers

B Scone THESYS:MYSYS'

used to select an unresolved data structure instance.
If the lone instance of Ds4 in Figure 13 is selected in
build mode, the user is given a series of prompts,
one per pointer to resolve. In this case the Ds3 target
instance does not exist on the scene, and DS-Viewer
indicates that the user must place it on the scene. As
in the format editor, the user must indicate a vacant
grid square with the mouse for the placement to
occur. Optionally, the user may forgo the placement
by selecting CANCEL and move on to the next
prompt. If the target instance already exists on the
scene, a different prompt is given indicating that
situation and asking the user only if the arrow for
the pointer should be drawn. Figure 14 shows the
scene after all the pointers of Ds4 have been resolved.
The Ds4 instance has now turned green indicating
full resolution; ps3, being fully resolved, is green;
and Ds2 is yellow, indicating that it could be selected
for resolution. Build mode will remain in effect until
the user selects the now highlighted BUILD option on
the menu bar.

The fully resolved scene in this example is shown in
Figure 15A. The main data structure pattern present
is the queue of DS2s having the Ds4 as the owner. The
last DS2 has a red semi-arc pointing to the right. This
arc represents a pointer with a non-null but illegal
value. In this case illegal means that the program
data memory location indicated by the pointer has
no meaning in the user work space. As in the format
editor, the user may query the pointers and data
structure instances graphically by pointing the mouse

320 raze

cursor to any image or arrow and pressing a mouse
button. Figure 15B shows such a query for the illegal
pointer in the final DS2.

Several other menu items on the scene menu bar are
of interest. BLOW_UP initiates a mode of operation
whereby the user can acquire a data structure in-
stance window of any structure image on the scene.
This is done by pointing to any structure image and
pressing a mouse button. With that the data structure
instance window appears. CLEAR 1S an option to
totally erase the contents of a scene, allowing a user
to reconstruct the scene on a fresh background.
DELETE and MOVE are similar to their counterparts
on the format editor.

Summary and further work

DS-Viewer is a reasonable first step towards a prac-
tical display facility for data structures. Features such
as the saving and retrieving of formats and scenes,
further editing capabilities, and improvements in
scene building could be easily added. An effort to
extend DS-Viewer into a full-screen or even graphi-
cal debugger would be fairly straightforward, provid-
ing only some interesting side issues such as initiating
scene drawing from source variables, or seeing what
program variables refer to specific instances on a
scene through mouse selection.

Some fundamental directions for further enhance-
ments concern interactive searching for specific data

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Figure 15 (A) Completed scene and (B) queried pointer

[A]

Scone THESYSMYSYS' HiE

ANCHOR

BLOW UP BUILD CLEAR DELETE ’MOVEbeACRO

Ds4

VAN

D83

—> D82 [—P| DS2 —| DS2 —D| D82

B Scene THESYS:MYSYS' BB

ANCHOR

BLOW UP BUILD CLEAR DELETE MOVE MACRO

D84

VAN

Ds3

SOURCE: 250E0 (DS2CTEST))
TARGET: FFFFFFFB Illegal (DS2(TEST))

FIELD:

DS2WORD1

0-[_

structure instances and displaying those results. For
example, one might want to search through queues
of structure instances to find specific data structure
instances that meet certain criteria. One interesting
approach to this problem is based on a technique for
mteractlvely browsing an entity-relationship data-
base.”” The DS-Viewer format could be used for
graphically selecting structure types and pointer
paths as the foundation of the query. Additional field
value criteria would be supplied by the user via dialog
windows to qualify the query. The resulting data
structure instances could be given to the user one by

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

one much as in scene building mode described ear-
lier. However, it would be ideal to see the instance
images which satisfy the query criteria in the context
of the queue(s) from which they were gleaned, but
the presence of the entire queue(s) would be detri-
mental to the scene’s understandability. A subtle
change in the presentation may overcome this diffi-
culty. The searched instances could be attached to
other members of the queue by dashed lines indicat-
ing indirect connection between the two along these
pointers. The full impact of this technique requires
further exploration.

pazer 321

Another area concerns the validity of a data structure
scene after the program has moved to another state.
Without information about how the internal data
structure state has been affected with the change of
program state, it is impossible to change details on a
given data structure scene to reflect those changes.
A sophisticated knowledge base about the applica-
tion and1 6its code as found in program understanding
projects may provide the kind of information that
could make this possible. If a scene could be auto-
matically updated throughout program execution, it
would be possible to take successive “snapshots” of
the data structure scene as it evolves and play them
back as needed through the debug cycle.

Finally, another topic in this area concerns finding
strategies for automatic layout of the data structure
scene. When dealing with more than a trivial scene,
the identification of a reasonable layout policy is not
clear. Ideally, an automatic layout policy would al-
low the user to easily understand a very large part of
a scene’s structure, as well as allow the user to
reasonably peruse and navigate through it. DS-
Viewer avoids the layout problem by allowing the
user to construct pieces of the picture as needed, but
the user does all the layout work which could be very
time-consuming. Some compromise might be pos-
sible if the scene could be at least partially decom-
posed into subcomponents built upon some higher-
level data structure constructs. Then some degree of
automatic picture layout might be achieved without
losing clarity of the entire picture. These higher-level
constructs might be visualized as some new object
or icon on the scene which “opens up” into a window
with more detail.

Acknowledgments

I would like to acknowledge Michel Hack and Calvin
Swart for their technical aid on this work and
Thomas Corbi and Linore Cleveland for their sup-
port.

Microsoft Windows is a registered trademark of Microsoft Cor-
poration.

Cited references and notes

1. T. A. Cargill. “The Blit debugger.” SIGPlan Notices 18, No.
8. 190-200 (August 1983).

. B. A. Myers, “Incense: A system for displaying data struc-
tures,” Computer Graphics 17, No. 3, 115-125 (July 1983).
3. S. Isoda, T. Shimomura, and Y. Ono “VIPS: A visual debug-

ger,” IEEFE Software 4, No. 3, 8-19 (May 1987).
4. S. P. Reiss, “Pecan: Program development systems that sup-
port multiple views,” Proceedings of the Seventh International

o

322 pazeL

Conference on Software Engineering, Los Alamitos, CA; IEEE
Computer Society (1984), pp. 324-333.

5. M. H. Brown and R. Sedgewick, “Techniques for algorithm
animation,” IEEE Software 2, No. 1, 28-39 (January 1985).

6. G. P. Brown, R. T. Carling, C. F. Herot, D. A. Kramlich, and
P. Souza, “Program visualization: Graphical support for soft-
ware development,” Computer 18, No. 8, 27-35 (August
1985).

7. D. P. Pazel, A Graphical Workstation-based Host Debugger,
Research Report RC-12871, IBM T. J. Watson Research
Center, Yorktown Heights, NY 10598 (June 23, 1987).

8. OS/VS-DOS/VSE-VM/370 Assembler Language, GC33-
4010-4, IBM Corporation; available through IBM branch of-
fices.

9. Introduction to IBM System/370 to IBM Personal Computer
Enhanced Connectivity Facilities, GC23-0957-1, IBM Corpo-
ration; available through IBM branch offices.

10. Dialog window represents a feature in Microsoft Windows
that allows a variety of ways to enter interactive information
to the application. A large variety of input methods are pro-
vided such as list boxes, push buttons and radio buttons, and
prompts called edit windows.

11. Virtual Machine/System Product, Data Areas and Control
Block Logic Volume I (CP), LY24-5220-3, IBM Corporation;
available through IBM branch offices.

12. Microsoft Windows provides a standard method of moving a
window. The user puts the mouse cursor over the window’s
caption bar, holds down a mouse button and moves an outline
of the window to a new area. When the mouse button is
released, the window appears in the new location. The same
holds for child windows, and the clipping mentioned is a
natural effect of the child window being constrained to the
parent by Microsoft Windows.

13. Normally in Microsoft Windows, an item selection on a list
box discards the prior selection. However, Microsoft Windows
provides list boxes whereby multiple selections may be made.
In that case, the user selects as usual but while doing so holds
the shift key on the keyboard. The prior selections remain in
effect (and highlighted) and the new selection is also in effect
(and highlighted).

14, Arcs between different structure images are based on a circle
computed with three points. Two of the points are the centers
of the two structure images. The third point is located normal
to the center of the straight line connecting the two centers.
For successive pointer arcs, the distance of this point from the
straight line increases by a discrete amount on each side of
that line.

15. L. M. Burns, J. L. Archibald, and A. Malhotra, “A graphical
entity-relationship browser,” Proceedings of the Twenty-First
Annual Hawaii International Conference on Systems Science,
Vol. IT (January 1988). pp. 694-704.

16. L. Cleveland, “An environment for understanding programs,”
Proceedings of the Twenty-First Annual Hawaii International
Conference on Systems Science, Vol. I (January 1988), pp.
500-509.

Donald P. Pazel /BM Research Division, T. J. Watson Research
Center. P.O. Box 218, Yorktown Heights, New York 10598. Mr.
Pazel is an advisory programmer in the Computer Sciences de-
partment at the T. J. Watson Research Center. He joined IBM in
1973 at Morris Plains, New Jersey, where he worked on the
Safeguard project for the Federal Systems Division. Since joining
IBM Research in 1975, Mr. Pazel has worked in the areas of
operating systems, languages, databases, and language debuggers.
His current work includes program understanding tools and visual

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

paradigms in debugging systems. In 1972, Mr. Pazel graduated
maxima cum laude from LaSalle College. Philadelphia. with a
B.A. in mathematics, and received an M.S. degree in mathematics
from the University of Virginia in 1973. He is a member of the
Mathematics Assoctation of America and the Association for
Computing Machinery.

Reprint Order No. G321-5361.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

