
Program understanding:
Challenge for the 1990s

by T. A. Corbi

In the Program Understanding Project at IBM’s R e
search Division, work began in late 1986 on tools
which could help programmers in two key areas: static
analysis (reading the code) and dynamic analysis (run-
ning the code). The work is reported in the companion
papers by Cleveland and by Pazel in this issue. The
history and background which motivated and which
led to the start of this research on tools to assist
programmers in understanding existing program code
is reported here.

“If th
e poor workman hates his tools, the good

workman hates poor tools. The work of the
workingman is, in a sense, defined by his tool-
witness the way in which the tool is so often taken to
symbolize the worker: the tri-square for the carpenter,
the trowel for the mason, the transit for the surveyor,
the camera for the photographer, the hammer for the
laborer, and the sickle for the farmer.

“Working with defective or poorly designed tools,
even the finest craftsman is reduced to producing
inferior work, and is thereby reduced to being an
inferior craftsman. No craftsman, i fhe aspires to the
highest work in his profession, will accept such tools;
and no employer, if he appreciates the quality of
work, will ask the craftsman to accept them.”‘

Today a variety of motivators are causing corpora-
tions to invest in software tools to increase software
productivity, including: (1) increased demand for
software, (2) limited supply of software engineers, (3)
rising expectations of support from software engi-
neers, and (4) reduced hardware costs.’ A key moti-

vator for software tools in the 1990s will be the result
of having software evolve over the previous decades
from several-thousand-line, sequential programming
systems into multimillion-line, multitasking “busi-
ness-critical’’ systems. As the programming systems
written in the 1960s and 1970s continue to mature,
the focus for software tools will shift from tools that
help develop new programming systems to tools that
help us understand and enhance aging programming
systems.

In the 1970s, the work of Belady and Lehman3-5
strongly suggested that all large programs would
undergo significant change during the in-service
phase of their life cycle, regardless of the a priori
intentions of the organization. Clearly, they were
right. As an industry, we have continued to grow
and change our large software systems to:

Remove defects
Address new requirements
Improve design and/or performance
Interface to new programs
Adjust to changes in data structures or formats
Exploit new hardware and software features

As we extended the lifetimes of our systems by
continuing to modify and enhance them, we also

Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IEM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

increased our already significant data processing in-
vestments in them and continued to increase our
reliance on them. Software systems have grown to
be significant assets in many companies.

However, as we introduce changes and enhance-
ments into our maturing systems, the structure of
the systems begins to deteriorate. Modifications alter
originally “clean” designs. Fix is made upon fix. Data
structures are altered. Members of the original and
intervening programming teams disperse. Once cur-
rent documentation gradually becomes outdated.
System erosion takes its toll and key systems steadily
become less and less maintainable, being more error
prone and increasingly difficult and expensive to
modify.

Flaherty’s study‘ indicates the effect on productivity
of modifying product code as compared to producing
new code. His data for the studied System/370 com-
munications, control, and language software show
that productivity differences were greater between
the ratio of changed source code to total amount of
code than productivity differences between the dif-
ferent kinds of product classes-productivity was
lowest when changing less than 20 percent of the
total code in each product studied. The kind of
software seemed to be a less-important factor con-
tributing to lower productivity than did the attribute
of changing a small percentage of the total source
code of the product.

Clearly, as systems grow older, larger, and more
complex, the challenges which will face tomorrow’s
programming community will be even more difficult
than those of today. Even the Wall Street Journal
stereotypes today’s “beeper-carrying’’ programmer
who answers the call when catastrophe strikes:

“He is so vital because the computer software he
maintains keeps blowing up, threatening to keep
paychecks from being issued or invoices from being
mailed. He must repeatedly ride to the rescue night
and day because the software, altered repeatedly over
the years, has become brittle. Programming prob-
lems have simply gotten out of hand.

“Corporate computer programmers, in fact, now
spend 80 percent of their time just repairing the
software and updating it to keep it running. Devel-
oping new applications in this patchwork quilt has
become so muddled that many companies can’t
figure out where all the money is going.”’

IBM SYSTEMS JOURNAL, VOL 28. NO 2, 1989

Widespread routinization of computer programming
and deskilling and fragmentation of programming
work predicted by Kraft’ has not occurred in the
West because of management practices, the intro-
duction of structured programming, and software

Programmers have become
part historian, part detective,

and part clairvoyant.

production processes. To the contrary, the skills
needed to do today’s programming job have become
much more diverse. To successfully modify some
aging programs, programmers have become part his-
torian, part detective, and part clairvoyant. Why?

“Software renewal” or “enhancement” programming
is quite different from the kind of idealized soft-
ware engineering programming taught in university
courses as stated by Jones:

“The major difference between new development
and enhancement work is the enormous impact that
the base system has on key activities. For example,
while a new system might start with exploring users’
requirements and then move into design, an en-
hancements project will often force the users’ re-
quirements to fit into existing data and structural
constraints, and much of the design effort will be
devoted to exploring the current programs to find
out how and where new features can be added and
what their impact will be on existing functions.

“The task of making functional enhancements to
existing systems can be likened to the architectural
work of adding a new room to an existing building.
The design will be severely constrained by the exist-
ing structure, and both the architect and the builders
must take care not to weaken the existing structure
when the additions are made. Although the costs of
the new room usually will be lower than the costs of
constructing an entirely new building, the costs per
square foot may be much higher because of the need

to remove existing walls, reroute plumbing and elec-
trical circuits and take special care to avoid disrupt-
ing the current site.”’

The industry is becoming increasingly mired in these
kinds of application softwaryo “renovation” and
maintenance problems. Parikh reports the magni-
tude of the problem through:

Results of a survey of 149 managers of Multiple
Virtual Storage (MVS) installations with program-
ming staffs ranging from 25-800 programmers
indicating that maintenance tasks (program
fixes/modifications) represent from 55 to 95 per-
cent of their workload
Estimates that $30 billion is spent each year on
maintenance ($10 billion in the United States)
with 50 percent of the data processing budgets of
most companies going to maintenance and that
50-80 percent of the time of an estimated one
million programmers or programming managers
is spent on maintenance
A Massachusetts Institute of Technology study
which indicates that for every $1 allocated for a
new development project, $9 will be spent on
maintenance for the life cycle of the project

Whereas today’s modern design techniques and no-
tations and wider acceptance of reusable software
parts may help pr7,vent propagating “old code” to
future generations, programmers will need tools to
assist in reconstructing and analyzing information
in previously developed and modified programs to
aid them in debugging, enhancing, modifying,
and/or rewriting “old” programs until these ap-
proaches take widespread hold in our critical sys-
tems.

“Software renewal” tools are needed to reduce the
costs of modifying and maintaining large program-
ming systems, to improve our understanding of pro-
grams so that we can continue to extend their life
and restructure them as needed, and to build bridges
from old software to updated software that is im-
proved with new design techniques and notations
and reuse technologies.

Just as library and configuration control systems
were developed when the volumes of source code
and the numbers of programmers working on a
system increased, it is inevitable that new tools sys-
tems for managing the information about large pro-
gramming systems will emerge to support long-term
software renewal.

296 CORBI

Approaches to aging systems

The notion of providing tools for program under-
standing is not new. Work in the 1 9 7 0 ~ , ’ ~ - ’ ~ which
grew out of program proving, automatic program-
ming and debugging, and artificial intelligence (AI)
efforts, first broached the subject. Researchers
stressed how rich program descriptions (assertions,
invariants, etc.) could automate error detection and
debugging. The difficulty of modeling interesting
problem domains and representing programming

Positive effects can result from
restructuring.

~~

knowledge, coupled with the problems of symbolic
execution, has inhibited progr7;s. Although there
has been some limited success, the lack of fully
implemented, robust systems capable of “under-
standing” and/or debugging a wide range of pro-
grams underscores the difficulty of the problem and
the shortcomings of these AI-based approaches.

Recognizing the growing “old program” problem
present in mature applications, entrepreneurs have
transformed this problem into a business opportu-
nity and are marketing code-restructuring tools. A
variety of restructuring tools have emerged (see Ref-
erence 18 for an examination of restructuring). The
restructuring approach to address “old” programs
has had mixed success. Although helpful in some
cases for cleaning up some modules, restructuring
does not appear to help in other cases.

One government study” has shown that positive
effects can result from restructuring, including some
reduced maintenance and testing time, more con-
sistency of style, reduced violations of local coding
and structure standards, better learning, and addi-
tional structural documentation output from restruc-
turing tools. However, on the negative side, the
initial source may not be able to be successfully
processed by some restructurers that require modi-
fication before restructuring; compile times, load
module size, and execution time for the restructured

IBM SYSTEMS JOURNAL, VOL 28. NO 2, 1989

program can increase; human intervention may be
required to provide meaningful names for structures
introduced by the tool.

Movement and replacement of block commentary
is problematic for some restructurers. And, as has

Automatically recapturing a design
from source code

is not considered feasible.

been observed, overall system control and data struc-
tures that have eroded over time are not addressed,
as indicated by Wendel:

“If you pass an unstructured, unmodular mess
through one of these restructuring systems, you end
up with at best, a structured, unmodular mess. I
personally feel modularity is more important than
structured code; I have an easier time dealing with
programs with a bunch of GO TOS than one with its
control logic spread out over the entire program.’’2o

In general, automatically recapturing a design from
source code, at the present state of the art, is not
considered feasible. But some work is underway and
some success has been reported. Sneed et a1?’.12 have
been working with a unique set of COBOL tools which
can be used to assist in rediscovering information
about old code via static analysis, to interactively
assist in remodularizing and then restructuring, and
finally to generate a new source code representation
of the original software. Also, research carried out
jointly by CRIAI (Consorzio Campano di Ricerca per
1’Informatica e 1’Automazione Industriale) and DIS
(Dipartimento di Informatica e Sistemistica at the
University of Naples) reports that the automatic
generation of low-level Jackson or Warnier/Orr doc-
uments is totally consistent with COBOL source
code.23

Both Sneed and CRIAI/DIS agree, however, that deter-
mining higher-level design abstractions will require
additional knowledge outside of that which can be
analyzed directly from the source code.

IBM SYSTEMS JOURNAL, VOL 28. NO 2, 1989

The experience of IBM’S former Federal Systems Di-
vision with the aging Federal Aviation 4dministra-
tion’s National Airspace System (N A S) ~ seems to
indicate that the best way out is to relearn the old
software, relying primarily on the source code, to
rediscover the module and data structure design, and
to use a structured a p p r o a ~ h ~ ~ - ~ ’ of formally record-
ing the design in a design language which supports
data typing, abstract types, control structures, and
data abstraction models.

This process often proved to be iterative (from very
detailed design levels to more abstract), but it re-
sulted in a uniform means for understanding and
communicating about the original design. The func-
tion and state machine models then provided the
designer a specification from which, subsequently,
to make changes to the source code.

The need to expand “traditional” software engineer-
ing techniques to encompass reverse engineering de-
sign and to address “software redevelopment” has
been recognized elsewhere:

“The principal technical activity of software engi-
neering is moving toward something akin to ‘soft-
ware redevelopment.’ Software redevelopment
means taking an existing software description (e.g.,
as expressed in a programming or very high-level
language) and transforming it into an efficient, eas-
ier-to-maintain realization portable across local
computing environments. This redevelopment tech-
nology would ideally be applicable to both (1) rapidly
assembled system prototypes into production quality
systems, and (2) old procrustean software developed
3 to 20 years ago still in use and embedded in
ongoing organization routines but increasingly diffi-
cult to maintain.732x

Definitions

Two working definitions are needed before discuss-
ing how program understanding relates to software
renewal.

First, what is “old” code? It may be the manifestation
of age that makes code old. Oldness may come from
the lack of familiarity of the current programming
team with the part of the system being enhanced.
Modern programming practices now accepted as
standard may not have been used “way back then”
when the code was originally developed. Other key
characteristics of old code, which are not necessarily
linked to age, are poor design, a constraining design

point, use of an obsolete programming language,
and/or missing or inaccurate documentation.

Was old code written a week ago or a decade ago?
Unfortunately, the answer is that it could be either.
Old code is existing code that cannot be easily under-
stood, redesigned, modified, debugged, or rewritten.
Why? It has the following attributes:

Design was done with methods and techniques
that do not clearly communicate the program
structure, data abstractions, and function abstrac-
tions.
Code was written with a programming language
and techniques that do not quickly and clearly
communicate the program structure, the program
interfaces, data structures and types, and functions
of the system.
Documentation is nonexistent, incomplete, or not
current.
Design and code are not organized in such a way
as to be insulated from changing external hard-
ware or software.
Design was targeted to system constraints that no
longer exist.
Code contains parts where nonstandard or unor-
thodox coding techniques were used.

Next, what are programmers doing when they are
working on old code? The process of working on old
code has acquired many names: software renewal,
software evolution, program redevelopment, soft-
ware renovation, “unprogramming,” reverse engi-
neering, and software maintenance. I have used the
term software renewal here because for me that
phrase cames more of the notion of enhancement.
Today, however, software maintenance is still the
term most commonly used to describe the process
of working on old code, but it has a much wider
connotation than just “fixing bugs.” Parikh and Zve-
gintzov define the software maintenance process very
broadly:

“. . . understanding and documenting existing sys-
tems; extending existing functions; adding new func-
tions; finding and correcting bugs; answering ques-
tions for users and operations staff; rewriting, restruc-
turing, converting, and purging software; managing
the software of an operational system, and many
other activities that go into running a successful
software system.7729

As defined by the National Bureau of Standards
(NBS), “Software maintenance is the performance of

298 CORBI

those activities required to keep a software system
operational and responsive after it is accepted and
placed into production.’73o The NBS and other^^"^^

To understand a program, three
actions can be taken.

generally recognize software maintenance as involv-
ing four major kinds of work:

1. Corrective maintenance (20 percent), which acts
to correct errors that are uncovered after software
is in use, including diagnosis and fixing design,
logic, or coding errors

2. Adaptive maintenance (25 percent), which is ap-
plied when changes in the external environment
precipitate modifications to the software, such as
new hardware, operating system changes, periph-
eral upgrades, etc.

3. Perfective maintenance (50 percent or more),
which incorporates enhancements that are re-
quested by the user community, such as changes,
insertions, deletions, and modifications

4. Preventive maintenance (5 percent), which im-
proves future maintainability and reliability and
provides a basis for future enhancement

The above per5Fntages are based on the Lientz and
Swanson study of 487 software development orga-
nizations and represent the distribution of the differ-
ent kinds of software maintenance activities which
those authors saw in the surveyed organizations. The
numbers are consistent with the Fjeldstad and Ham-
len survey” of 25 MVS, VirtuaI System 1 (vsl), and
Disk Operating System (DOS) datf processing instal-
lations and a government study of software main-
tenance done by the U.S. General Accounting Office
in 1981.

Understanding programs: A key activity

With software maintenance defined in this broad
sense, studies indicate that ?nore than half of the

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

programmer’s task i s in understanding the system.”’9
The Fjeldstad-Hamlen study” found that, in mak-
ing an enhancement, maintenance programmers
studied the original program

About three-and-a-half times as long as they stud-

Just as long as they spent implementing the en-
ied the documentation

hancement

In order to work with old code, today’s programmers
are forced to spend most of their time studying the
only really accurate representation of the system.

To understand a program, three actions can be
taken: read about it (e.g., read documentation); read
it (e.g., read source code); or run it (e.g., watch
execution, get trace data, examine dynamic storage,
etc.). Documentation can be excellent or it can be
misleading. Studying the dynamic behavior of an
executing program can be very useful and can dra-
matically improve understanding by revealing pro-
gram characteristics which cannot be assimilated
from reading the source code alone. However, the
source code is usually the primary source of infor-
mation.

We all recognize that “understanding” a program is
important, but most often it goes unmentioned as
an explicit task in most programmer job or task
descriptions. Why? The process of understanding a
piece of code is not an explicit deliverable in a
programming project. Sometimes a junior program-
mer will have an assignment to “learn this piece of
code’’-oddly, as if it were a one-time activity.

Experienced programmers who do enhancement
programming realize, just as do architects and build-
ers doing a major renovation, that they must repeat-
edly examine the actual existing structure. Old ar-
chitectural designs and blueprints may be of some
use, but to be certain that a modification will be
successful, they must discover or rediscover and
assemble detailed pieces of information by going to
the site of the structure. In programming, this kind
of investigation happens throughout the project:

While requirements are being examined, lead de-
signers or developers are typically navigating
through the existing code base to get a rough idea
of the size of the job, the areas of the system that
will be impacted, and the knowledge and skills
needed by the programming team which does the
work.

IBM SYSTEMS JOURNAL VOL 28 NO 2 1989

As design proceeds from high level to low level,
each of the team members repeatedly examines
the existing code base to discover how the new
function can be grafted onto the existing data
structures and into the general control flow and
data flow of the existing system.
Wise designers may “tour” the existing code to get
an idea of performance implications that the en-
hancement may have on various critical paths
through the existing system.
Just before the coding begins, programmers are
looking over the “neighborhood” of modules that
will be involved in the enhancement. They are
planning the detailed packaging-separating the
low-level design into pieces which must be imple-
mented by new modules or which can be fit into
existing modules. Often, they are building the lists
of new and changed modules and macros for the
configuration management or library control team
who need this information in order to reintegrate
the new and changed source code when putting
the pieces of the system back together again.
During the coding phase, programmers are im-
mersed in the old code. Programmers are con-
stantly choosing between courses of action: mak-
ing very detailed decisions to rewrite or restructure
existing code versus decisions to change the exist-
ing code by deleting, moving, and adding a few
lines here and a few lines there. Understanding
the existing programs is also the key to adding
new modules: How to interface to existing func-
tions in the old code? How to use the existing data
structures properly? How not to cause unwanted
side effects?
A new requirement or two and a few design
changes usually come into focus after the program-
mers have begun their work. These additions must
be evaluated as to their potential impact on the
system and as to whether or not the proposed
changes can be contained in the current schedules
and resources. The “old base” and the “new evolv-
ing” code under development must be scrutinized
to supplement the intuitions of the lead program-
mers before notifying management of the risks.
Testers may delve into the code if they are using
“white-box’’ techniques. Sometimes even a tech-
nical writer will venture into the source code to
clarify something for a publication under revision.
Debugging, dump reading, and trace analysis con-
stantly require long terminal sessions of “program
understanding” in which symptoms are used to
postulate causes of an error, or bug. Each hypoth-
esis causes the programmer to explore the existing
system to find the source of the bug. When the

COREI 299

problem is found, a more “bounded” exploration
is usually required to gather the key information
necessary to actually build the fix and insert yet
another modification into the system.

Therefore, the program understanding process is a
crucial subelement in achieving many of the project

The investigation process which
programmers undertake when doing

software maintenance is akin
to idea processing.

deliverables: sizings, high-level design, low-level de-
sign, build plan, actual code, debugged code, fixes,
etc.

Programmers attempt to understand a programming
system so that they can make informed decisions
about the changes they are making. The literature
refers to this “understanding process” as “program
comprehension”:

“The program comprehension task is a critical one
because it is a subtask of debugging, modification,
and learning. The programmer is given a program
and is asked to study it. We conjecture that the
programmer, with the aid of his or her syntactic
knowledge of the language, constructs a multileveled
internal semantic structure to represent the program.
At the highest level the programmer should develop
an understanding of what the program does: for
example, this program sorts an input tape containing
fixed-length records, prints a word frequency diction-
ary, or parses an arithmetic expression. This high-
level comprehension may be accomplished even if
low-level details are not fully understood. At lower
semantic levels the programmer may recognize fa-
miliar sequences of statements or algorithms. Simi-
larly, the programmer may comprehend low-level
details without recognizing the overall pattern of
operation. The central contention is that program-
mers develop an internal semantic structure to rep-
resent the syntax of the program, but they do not

memorize or comprehend the program in a line-by-
line form based on ~yntax.”~’

The investigation process which programmers un-
dertake when doing software maintenance is akin to
idea processing, very clearly described by Halasz,
Moran, and Trigg:

“The goal of all idea processing tasks is to move
from a chaotic collection of unrelated ideas to an
integrated, orderly interpretation of the ideas and
their interconnections. Analyzing one’s business
competitors is a prototypical example. The task be-
gins with an analyst extracting scraps of information
about competitors from available sources. The col-
lected information must be organized and filed away
for subsequent use. More importantly, the collected
information needs to be analyzed. The relationships
between the various ideas have to be discovered and
represented. Multiple analyses should be developed
in order to understand the significance of the col-
lected information. Once these analyses are com-
plete, the analyst composes and writes a document
or presentation that communicates the discovered
information and its significance.

“Idea processing is a convolution of several different
activities that can be roughly divided into three
phases: acquisition, analysis, and exposition. Acqui-
sition involves the capture or extraction of ideas and
information from sources of various sorts, e.g., tak-
ing notes from a document or recording the ideas
produced during brainstorming. Analysis involves
discovering the significance of ideas, in particular,
discovering the connections and relationships among
ideas. Developing legal arguments based on case
research is an example. Exposition involves com-
municatingideas and analyses in the form of reports,
talks, etc. ”

How do programmers learn to acquire key pieces of
information about code, to organize and analyze it,
and then to use it to make decisions?

Learning to understand programs

Although software engineering (e.g., applied com-
puter science) appears as a course offering in many
university and college computer science depart-
ments, software renewal, program comprehension,
or enhancement programming are absent. In terms
of the skills that are needed as our software assets
grow and age, lack of academic training in how to
go about understanding programs will be a major
inhibitor to programmer productivity in the 1990s:

IBM SYSTEMS JOURNAL, VOL 28, NO 2 1989

“. . . Unfortunately, a review by the author of more
than 50 books on programming methodologies re-
vealed almost no citations dealing with the produc-
tivity of functional enhancements, except a few mi-
nor observations in the context of maintenance.

“The work of functional enhancements to existing
software systems is underreported in the software
engineering curriculums, too, and very few courses
exist in which this kind of programming is even
discussed, much less taught effectively.”’

For other “language” disciplines, classical training
includes learning to speak, read, and write. Reading
comprehension is a partner with composition and
rhetoric. In school, we are required to read and
critique various authors. An English education cur-
riculum does not teach basic language skills (pro-
gramming language syntax and semantics), recom-
mended sentence structures (structured program-
ming), and short stories (algorithms), expecting
students to be fully trained, productive copy editors
or authors for major publications upon completing
the curriculum. Yet, many computer science depart-
ments sincerely believe that they are preparing their
students to be ready for the workplace.

Unfortunately, most new college graduates entering
today’s software industry must confront a very con-
siderable learning curve about an existing system
before they get to the point where they can begin to
try to do design or coding. They have little or no
training nor much tool assistance to do this. Acquir-
ing programming comprehension skills has been left
largely to on-the-job training while trying to learn
about an existing system.3y Even experienced pro-
grammers can have trouble moving to a different
project.

The lack of training and tools to help in understand-
ing large, old programming systems also has another
negative effect on productivity. It is resulting in a
kind ofjob stagnation throughout the industry ghich
Boehm terms the “Inverse Peter Principle”:

“The Inverse Peter Principle: ‘People rise to an or-
ganizational position in which they become irre-
placeable, and get stuck there forever.’ This is most
often encountered in software maintenance, where a
programmer becomes so uniquely expert on the
inner complexities and operating rituals of a piece
of software that the organization refuses to let the
person work on anything else. The usual outcome is
for the programmer to leave the organization en-
tirely, leaving an even worse situation.”

IBM SYSTEMS JOURNAL, VOL 28. NO 2. 1989

As a large programming system grows older and
older, more and more talented programmers will
“get stuck” in accordance with the Inverse Peter
Principle. Getting stuck directly impacts attempts by
management to maximize project productivity by
assigning the most talented programmers to get the
next job done. Therefore, a lack of program under-
standing, training, and tools is a productivity inhib-
itor for new programmers on a project as well as a
career inhibitor for the key project ‘‘gurus.” As our
programming systems grow in age, size, and com-
plexity, these problems will compound, becoming
increasingly more acute.

Theories of program understanding

Before we can build tools or begin any training
programs, we must go deeper into the question: How
do programmers “understand” a system? There are
varying cognitive theories as to how a programmer
constructs a “multileveled internal semantic repre-
sentation” which Shneiderman3’ has postulated.
Studies have been performed with programmers, and
three current theories appear in the literature. Each
theory appears plausible:

1. The “bottom up” or “chunking” theory-By read-
ing the code, a programmer essentially iteratively
“abstracts” a higher-level understanding of the
program by recognizing and then “naming” more
and more of the program. This is described in the
book edited by Curtis:

“A process called ‘chunking’ expands the capacity
of the short-term mental workspace. In chunking,
several items with similar or related attributes are
bound together conceptually to form a unique
item. For example, through experience and train-
ing programmers are able to build increasingly
large chunks based on solution patterns which
emerge frequently in solving problems. Accord-
ing to4*Michael Atwood and Rudy Ramsey
(1978), the lines of code in the program listing:

SUM = 0
D O l O l = l , N
SUM = SUM + X(1)

IO CONTINUE

would be fused by an experienced programmer
into the chunk ‘calculate the sum of array X.’
The programmer can now think about working
with an array sum, a single entity, rather than the
six unique operators and seven unique operands
in the four program statements above. When it is

CORE1 301

necessary to deal with the procedural implemen-
tation, the programmer can call from long-term
memory these four statements underlying the
chunk ‘array sum.’

“As programmers mature they observe more al-
gorithmic patterns and build larger chunks. The
scope of the concepts that programmers have
been able to build into chunks provides one in-
dication of their programming ability. The partic-
ular elements chunked together have important
implications for educating programmers. Educa-
tional materials and exercises should be presented
in a way that best allows programmers to build
useful chunk^."^'

2. The “top-down’’ theory-This theory proposes
that programmers use their own experience and
repeatedly try to confirm their expectations on
the basis of what they believe the design to be. If
they are told that the program they will be work-
ing on is a “payroll” system, just hearing that
phrase before looking at the code causes them to
expect to see certain constructs in the code: a
master employee file with names, employee num-
bers, and salary fields; a timecard or attendance-
gathering process; a process for updating salary; a
process for deleting or adding employees; various
report processors; a check-printing process; var-
ious exception-handling mechanisms (vacation,
sickness, etc.).

Now, when they pick up the code, they look for
where these elements occur and “fill in” their
belief of what the design most probably is. If
something is missing or is radically different from
their expectations (e.g., master file sorted by date
of hire), the “surprise” causes some new experi-
ence to be stored for the next encounter.

“The major points of the theory can be summa-
rized as follows.

a. The programming process is one of construct-
ing mappings from a problem domain, possi-
bly through several intermediate domains, into
the programming domain.

b. Comprehending a program involves recon-
structing part or all of these mappings.

c. The reconstruction process is expectation
driven by the creation, confirmation, and re-
finement of hypothe~is.”~’

3. The “opportunistic” theory-The “opportunis-
tic” theory says that understanding is a mixture

302 CORBl

of “topdown” and “bottom-up” strategies.
Letovsky believes that understanding a pro-
gram involves a knowledge base (which repre-
sents the expertise and background knowledge
a programmer brings to the task), a mental
model (which is an encoding of the program-
mer’s current understanding of the program),
and an assimilation process:

“. . . to direct the understander to turn pages
and aim his eyeballs in certain directions, to
take in information from the program and
documentation text, and to construct the men-
tal model. If we assume that the complete
mental model resembles a procedural net, we
immediately have a space of possibilities for
how the assimilation process constructs it. It
could represent the bottom or implementation
layer first and build the annotation from the
bottom up by recognj&ing plans. Th&approach
is taken in Brotsky and Shrobe. Alterna-
tively, the understander could represent the
specification first and develop possible imple-
mentations top down using a planner or auto-
matic programmer, ultimately matching the
possible implementations against the cod??
This approa$ is used in Johnson-Soloway
and Brooks. Our position is that the human
understander is best viewed as an opportunistic
processor capable of exploiting both bottom-
up and top-down cues as they become avail-
able . . .”44

Which approach to program understanding is cor-
rect? As in most attempts to explain human prob-
lem-solving behavior, the answer is not clear. Differ-
ent programmers may be predisposed toward one
approach versus another on the basis of their level
of experience or familiarity with the code.

“. . . The data suggest the representation of the expert
is more abstract and contains more general infor-
mation about what a program does, whereas the
representation of the novice is more concrete and
contains information about how the program func-
tions . . .

“The results of these experiments do not suggest that
expert programmers lost the ability to attend to the
details of a program . . . Rather, they suggest that
experts have learned that, during comprehension of
this type of program, paying attention to the abstract
elements of the program is more important than
paying attention to low level details . . .’747

IBM SYSTEMS JOURNAL, VOL 28. NO 2, 1989

The same programmer may use different approaches,
depending on the kind of task which he or she has
been asked to accomplish with respect to under-

Some tasks require more complete
understanding; others may involve

only a cursory inspection
of the code.

standing the code. Some tasks require more complete
understanding, whereas others may involve only a
cursory inspection of the code. The understander’s
mental model will change as the process of investi-
gating a piece of code progresses. The result of any
investigation may result in a model which is incor-
rect or incomplete (with uninvestigated parts of the
system or vaguely understood pieces) or contains
ambiguities (such as multiple conjectures about what
the same piece of code might do).

Regardless of which approach is employed, good
evidence indicates that the more systematic a pro-
grammer is in investigating a program and the more
complete the information which is gathered, the
more likely the programmer will be successful in
performing modifications to that program:

“Understanding how a program is constructed and
how it functions are important parts of the task of
maintaining or enhancing a computer program. We
have analyzed videotaped protocols of experienced
programmers as they enhanced a personnel database
program. Our analysis suggests that there are two
strategies for program understanding, the svstemafic
strategy and the as-needed strategy. The programmer
using the systematic strategy traces data flow and
control flow through the program in order to under-
stand global program behavior. The programmer
using the as-needed strategy focuses on local program
behavior in order to localize study of the program.
Our empirical data show that there is a strong rela-
tionship between using the systematic approach to
acquire knowledge about the program and modifying
the program successfully. Programmers who used
the systematic approach to study the program con-

IBM SYSTEMS JOURNAL VOL 28. NO 2 1989

structed successful modifications. Programmers who
used the systematic strategy gathered knowledge
about the causal interaction of the program’3 func-
tional components. Programmers who used the as-
needed strategy did not gather such causal knowledge
and therefore failed to detect interactions among
components of the program.’’4x

Although the different theories can give us some
ideas as to the cognitive processes in action, the
difficulty of comprehending how large, aging pro-
grams work is illustrated in the work of Letovsky
and S~loway,~’ who identify the problems of recog-
nizing “delocalized plans-that is, programming
plans realized by lines scattered in different parts of
the program.” Their empirical studies show that
often a programmer will base a program repair or
enhancement on very localized knowledge and par-
tial understanding of the program, and this proves
to be error prone, especially when neither the pro-
gram nor the documentation reveals that specific
pieces of code interact with other pieces of code (or
data) some “distance” away.

Many large software systems, which were originally
written before the software engineering techniques
of data encapsulation and information hiding and
before programming languages with type enforce-
ment, provide many such opportunities for intro-
ducing errors during enhancement because of
“widely” delocalized plans which work against large,
arbitrarily evolved “control block structures.” These
baroquely connected pieces of storage, which form
the backbone of many major software systems, typ-
ically have little or no access control. So, a program
provided with an anchor pointer can often traverse
areas of the structure that were never intended to be
part of the data scope of that program.

Directions for program understanding in the
1990s

At IBM’S Research Division, the Program Under-
standing Project began work in late 1986 on tools
that could help programmers in two key areas: static
analysis (reading the code) and dynamic analysis
(running the code). The work is reported in two
papers in this issue: “A program understcpding sup-
port environment” by Linore Cleveland- and “DS-
Viewer-An interactive graphical data structure
presentation facility” by Donald Pazel.5’

Cleveland’s work focuses on exploiting the worksta-
tion multiwindow presentation of static analysis data

to give programmers a new way of reading programs.
The assumption was a world where there were no
listings and that assemblers and compilers put all
their internally collected information (symbol table,
control flow, data flow, cross reference, etc.) into a
structured format which could be accessed from a
high-performance workstation.

Pazel’s work focuses on exploiting the workstation
multiwindow presentation of dynamic data to give
programmers a new way of viewing and navigating
the dynamic data structures of a program which has

Tools and training should encourage
development of different systematic

investigative approaches.

been stopped during execution. The approach was
to modify a host-based debugger to interface to a
workstation-based presentation tool through which
the programmer could explore dynamic data during
a debugging session.

We conjecture that combining these static and dy-
namic data views into a unified tool can provide an
experimental base which can be used to observe
programmers engaged in complex program under-
standing tasks. By studying programmers using such
a tool, we would hope to add functions which could
support systematic investigations that would assist
in the interactive rediscovery of design information.

Given the empirical studies elsewhere and what we
are beginning to learn from PUNS (Program UNder-
standing Support) and DS-Viewer to date, program-
mer training and tools to assist in understanding
existing systems should try to remain neutral in the
techniques or functions that are offered and should
not favor or force the use of only one way of gath-
ering information about programs. Training and
tools should be able to support “top-down,” “bot-
tom-up,” and “opportunistic” approaches and not
impose one theory of investigation on the program-
mer. The programmer should choose the process
and/or tool function which best fits his or her level
of expertise and the circumstances of the current
assigned task.

304 CORBI

Tools and training should show or teach the pro-
grammer how to develop strategies which make use
of various kinds of basic program information, e.g.,
control flow, data flow, data declarations and struc-
tures, dynamic executions (trace), cross reference,
module interface, call graphs, and even documenta-
tion. Both should show or assist the programmer in
combining these different kinds of information in
ways which can support his or her building or con-
firming hypotheses about the system being investi-
gated.

While remaining flexible, tools and training should
encourage development of different systematic in-
vestigative approaches so that the programmer can
judge the progress and completeness of his or her
inquiry on the basis of available data. Obtaining
information about the system under study should be
made as easy as possible so as not to require excessive
effort which might preclude investigating something
that could be important to understanding the system.

Tools that require complex query commands should
not be used for program understanding, since often
the programmer will be diverted from his or her
primary purpose and begin struggling with secondary
issues such as compound query formation and syn-
tax errors. A good deal of attention to the “human
factors” of program understanding tools is required.

Acknowledgments

I would like to thank several people who have con-
tributed to this work. First, Linore Cleveland and
Don Pazel, without whose excellent prototyping
work all this would have remained just “idea-ware.”
I would also like to thank Andy Heller and Dr.
Daniel Abensour for introducing me to the Research
Division; Dr. Bruce Shriver for introducing me
to the academic and professional community;
Dr. Abraham Peled for believing in the project;
Dr. Ashok Malhotra, Bill Hamson, and Vincent
Kruskal for their collegial support; George Radin for
his advice and counsel; Pat Goldberg for various
inspirations; and Dick Butler for understanding the
importance of this work.

Cited references

I . Gerald M. Weinberg, The P.yvchologJ! qf CompulcJr Program-
ming, Van Nostrand Reinhold, New York (1971).

2. Barry W. Boehm. Maria H. Penedo. E. Don Stuckle, Robert
D. Williams, and Arthur 9 . Pyster, “A software development
environment for improving productivity,” IEEE Computer
17, No. 6. 30-44 (June 1984).

IBM SYSTEMS JOURNAL, VOL 28, NO 2. 1989

3. L. A. Belady and M. M. Lehman. “A model of large program
development,” IBM S.vsiems Jownal 15, No. 3. 225-252
(1 976).

4. M. M. Lehman and F. H. Parr, “Program evolution and its
impact on software engineering,” Proceedings o f the 2nd In-
ternational Conference on Software Engineering, San Fran-
cisco, IEEE Society Press (October 1976), pp. 350-357.

5 . M. M. Lehman, “Laws of evolution dynamics-Rules and
tools for programming management,” Proceedings of the In-
fotech Conference on Why Sb/iuare Projeers Faif, London

6. M. J. Flaherty, “Programming process measurement for the
Systemf370,” IBM Systems Journal 24, No. 2. 172-1 73
(1985).

7. Paul B. Carroll, “Computer glitch: Patching up software oc-
cupies programmers and disables systems,” Wall Street Jour-
nal (January 22, l988), p. I .

8. Philip Kraft. Progrummers and Manugers: The Rolrrinization
of Computer Programming in the United Stales, Springer-
Verlag. New York (I 977).

9. Capers Jones, “How not to measure programming quality”
Computerworld XX, No. 3. 82 (January 20, 1986).

IO. Girish Parikh, “Making the immortal language work,” Inter-
national Computer Programs Business Sofiwwe Revicw I, No.
2, 33 (April 1987).

1 1 . Ronald A. Radice and Richard W. Phillips. Sofiwure Engi-
neering: A n Indusrrial Approach, Volume I, Prentice-Hall.
Inc., Englewood Cliffs, NJ (1988), pp. 14- 19.

12. 1. P. Goldstein. “Summary of MYCROFT: A system for

(April 1978), pp. I 1 / 1 - 1 1/25.

1

I

understanding simple picture programs,” Artijcial Intelligence

3. S. M. Katz and Z. Manna, “Toward automatic debugging of
programs.” SIGPLAN Notices 10, No. 6, 143-155 (June
1975).

4. G. R. Ruth, “Intelligent program analysis,” Artrfcral Intelli-
gence 7, No. 1, 65-87 (1976).

5. S. M. Katz and Z. Manna, “Logical analysis of programs,”
Communications ofrhe ACM 19, No. 4, 188-206 (April 1976).

6. F. J. Lukey, “Understanding and debugging programs,” Inter-
national Journal ofMan-Machine Studies 12, No. 2, 189-202
(1980).

7. W. L. Johnson and E. Soloway. “PROUST: Knowledge-based
program understanding.” Proceedings qfSevenlh Inrernarionaf
Conference on Sofiware Engineering, Orlando, FL (March

8. Robert S. Arnold, Editor, Tutorial on Sqfiuare Restrlrcruring,

6, NO. I , 249-288 (1975).

1984). pp. 369-380.

IEEE Comwter Societv Press. Washington. DC (1986).
1

-
19. Parallrl Tesl and E ~ a h ~ a t i o n of a Cohof Restructwing Tool,

U.S. General Accounting Office. Washington, DC (September
1987).

20. Irv Wendel, “Software tools of the Pleistocene.” Sufiware
Maintenance News 4, No. IO, 20 (October 1986).

21. H. M. Sneed. “Software renewal: A case study,” IEEE Sufi-
ware 1, No. 3, 56-63 (July 1984).

22. H. M. Sneed and G. Jandrasics, “Software recycling,” IEEE
Conference on Sofiu.are Maintenance, Austin, TX (September

23. P. Antonini. P. Benedusi. G. Cantone, and A. Cimitile. “Main-
tenance and reverse engineering: Low-level design documents
production and improvement,” IEEE Conference o n SoJiwwe
Maintenance, Austin, TX (September 1987), pp. 9 I - 100.

24. Robert N. Britcher and James J. Craig, “Using modern design
practices to upgrade aging software systems,” IEEE Sofrwure
3, No. 3, 16-24 (May 1986).

25. A. B. Ferrentino and H. D. Mills, “State machines and their
semantics in software engineering,” Proceedings of COMP-

1987). pp. 82-90.

~

SAC ‘77 (1977). pp. 242-25 I .
26. R. C. Linger, H. D. Mills, and B. 1. Wilt. Stnrcilrred Progrum-

ming Theorv and Praciice. Addison-Wesley Publishing Co.,
Reading. MA (1979).

27. H. D. Mills. D. O’Neill. R. C. Linger. M . Dyer. and R. E.
Quinnan, “The management of software engineering.” //lM
Swiems Jownal 19. No. 4. 414-477 (1980).

28. Walt Scacchi. “Managing software engineering projects: A
social analysis.” IEEE Tran.saction.s o n So/iwrc’ Engrnccrinx
SE-10. No. I , 49-59 (January 1984).

29. Girish Parikh and Nicholas Zvegintzov. Editors. 7ftloriul o n
So/iwure Mainicvancc,. IEEE Computer Society Press, Silver
Spring, MD (1983). p. ix.

wjurL’ Mainrenance, NBS Special Publication 500-106. Com-
puter Science and Technology. U.S. Department of Com-
merce. National Bureau of Standards. Washington. DC (De-
cember 1983), p. 6.

3 I , E. B. Swanson, “The dimensions of maintenance.” Prowcd-
ings of the 2nd In/ernurional Con/iwncc on So/iwure Engi-
neering, San Francisco. IEEE Society Press (October 1976).
pp. 492-497.

32. Roger S. Pressman, So/iu’ure Enginwring: A Pruclilionc,r’.\
Approach. McGraw-Hill Book Company, Inc.. New York
(I982), pp. 322-34 I .

33. James Martin and Carma McClure, So/ru.urc, Muinlenanu,;

Cliffs, NJ (1983), p. 3ff.
The Problem and I t s So1rction.s. Prentice-Hall. Inc.. Englewood

34. E. B. Swanson and B. Lientz. Sofiwarc Mainlenancc Manage-
menl: A Stltdy of the Maintenance (?/ Complrrer Applic,ution
Sojiware in 487 Dura Procexsing Organr:aiion.s, Addison-
Wesley Publishing Co.. Reading. MA (1980).

35. R. K. Fjeldstad and W. T. Hamlen, “Application program
maintenance study: Report to our respondents,” Proccc,ding.\
(?/GUIDE 48, The Guide Corporation, Philadelphia (1979).

36. Federal Agencies’ Maintenance of Comp~rrrr Pr0grum.s: Ek-
pemive und Undcwrnanuged, AFMD-8 1-25. U.S. General Ac-
counting Office, Washington, DC (February 198 I) .

37. B. Shneiderman and R. Mayer, “Syntactic/semantic interac-
tions in programmer behavior: A model and experimental
results,’’ Inrrrnaiionul Jownal of Computer and In/i)rmulion
Screncc.s 8, No. 3, 2 19-238 (1979).

38. F. G. Halasz, T. P. Moran. and R. H. Trigg, “NoteCards in a
nutshell.” Conffrence o n Computer Human Interaction and
Graphic Inier/iace.s Proccwhng.s, Toronto (April 1987). pp. 45-
52.

39. Carolyn Van Dyke. “Taking ‘computer literacy’ literally,”
Comnrunicurtons o f theACM30, No. 5, 366-374 (May 1987).

40. Barry W. Boehm, Sqfiware Engineering Economic.s, Prentice-
Hall, Inc., Englewood Cliffs, NJ (1981), p. 671.

41. Bill Curtis. Editor, Human Fac1or.s in SoJiwarc~ Developmen/,
IEEE Computer Society Press, Washington, DC (1985), p. 7.

42. M. E. Atwood and H. R. Ramsey, Cognitive Siructlrrec. in the
Comprehension and Memory OJ Compuier program.^: An In-
vesrrgatron of Computer Program Debugging, U.S. Army Re-
search Institute of Behavioral and Social Sciences, Technical
Report TR-78-A21, Alexandria, VA (1978).

43. R. Brooks, ‘Toward a theory of comprehension of computer
programs,” International Journal ofMan-Mmhrne S!udie.s 18,

44. Stanley Letovsky, “Cognitive processes in program compre-
hension,” in E. Soloway and S. Iyengar, Editors, Empirical
Studies ofprogramrners, Ablex Publishing Corporation, Nor-

45. Daniel C. Brotsky, An Algorithm for Parsing Flow Graphs,
Master’s thesis, Massachusetts Institute of Technology, Cam-

30. Roger J. Martin and Wilma M. Osborne. Guidancc o n

NO. 6, 542-554 (1983).

wood, NJ (1986), pp. 58-79.

IBM SYSTEMS JOURNAL, VOL 28. NO 2. 1989

bridge. MA (March 1984).
46. H. Shrobe. Dcpc,ndwq. Dirc,c?cd Rcwronin,q,/iw c‘omp/cv Pro-

grurn L’ndmrundtng AI-TR-503. Massachusetts Institute of
Technology Artificial Intelligence Lab. Cambridge. MA
(1979).

47. B. Adelson. “When novices surpass experts: The difficulty of
a task may increase with expertise.” Jorrrnul [!/.t‘\~Prir)lc.nru/
P . s y c ~ / ~ o / o g ~ ~ . Learning u r d Co,qtti/Io)~ 10, No. 3. 483-495
(1984).

48. D. C. Littman. J. Pinto. S. Letovsky. and E. Soloway. “Mental
models and software maintenance.” in E. Soloway and S.
Iyengar. Editors. Etnpirkul S/rrdic.\ q / ’ Prcyqumrncrs. Ablex
Publishing Corporation. Nonvood. NJ (1986). pp. 80-98.

49. S. Letovsky and E. Soloway. “Delocalized plans and program
comprehension.” 1EEE Sqftw,ure3, No. 3-41-49 (May 1986).

50. L. Cleveland. “A program understanding support environ-
ment.” IB,W S!.s/cw.s Jotrrfld 28, No. 2. 324-344 (1989. this
issue).

5 I . D. Pazel. “DS-Viewer-An interactive graphical data structure
presentation facility.” IBM Sjsrems Jotrrnul 28. No. 2. 307-
323 (1989. this issue).

Thomas A. Corbi IB,W Duru S!..s(cvn.s Dirrsron. P.O. Bo.\- 3YU.
Porrghkwpsic. Ne,$, York 12602. Mr. Corbi joined the IBM Palo
Alto Development Center as a programmer in 1974 after gradu-
ating from Yale University. He worked in the General Products
Division on text-processing. data management, and database sys-
tems. He was a development manager for IMS/VS Fast Path at
the IBM Santa Teresa Laboratory in San Jose. California. He
joined the Research Division at the Thomas J. Watson Research
Center ir. !982 and managed the Program Understanding Project
from 1986 to 1988. He was also co-program chair of the 1988
IEEE Conference on Software Maintenance (CSM-88). Mr. Corbi
is now on assignment to the Data Systems Division. focusing on
improving programmer productivity.

Reprint Order No. (3321-5360.

306 CORBI IBM SYSTEMS JOURNAL VOL 28 NO E 1989

