REXX on TSO/E

REXX is a programming language primarily designed
for ease of use. First implemented on the Conversa-
tional Monitor System (CMS), REXX has been imple-
mented on TSO Extensions (TSO/E) as a new com-
mand language, yet it contains all of the elements of a
full-function language. After a brief definition of the
main elements of the REXX language, the paper dis-
cusses why REXX was implemented on TSO/E, some
alternative designs which were considered, and how
the final design integrates the new language into the
existing TSO/E structure, yet allows REXX programs to
be interpreted in any Multiple Virtual Storage (MVS)
address space, even outside the TSO/E environment.
The paper also introduces the TSO/E “data stack,”
which is similar to the stack implemented in CMS, and
describes how the definition of the CMS stack had to
be extended to allow REXX programs executing con-
currently on different MVS tasks to either share or not
share the data stack. Throughout the paper, compati-
bility with other Systems Application Architecture envi-
ronments, particularly CMS, and performance consid-
erations are discussed.

he Restructured Extended Executor Language

(REXX), designated as the Systems Application
Architecture/Procedure Language, is a programming
language designed for ease of use. The author of the
language, Mike Cowlishaw, states that the one goal
of REXX was to try “to make programming easier
than it was before, in the belief that the best way to
encourage high quality programs is to make writing
them as simple and as enjoyable as possible.”" This
ease of use is achieved by using common English
words in the syntax, using syntax which appears
“natural” to a beginning programmer, and using
relatively few, but well-chosen, commonly used, gen-
eral-purpose functions.

274 +oernes

by G. E. Hoernes

For example, REXX variables are not declared, they
are considered to be varying-length character strings
allowed to hold any binary value of any length
between zero and an implementation maximum.’
Because there is no restriction on the values of the
characters in the string, some characters in a string
may be printable and some may not. If the characters
in a string form a valid number, optionally with
leading or trailing blanks, that string may participate
in arithmetic operations.

The REXX language defines a very rich set of string
operations; among them are parsing of a string by
words, by character patterns, or by position. Other
operations support counting of words, reversing of
the string, and indexing by a pattern of characters or
by a word. Representing all RExx variables as char-
acter strings allows two simplifications. First, the
entire set of operations can be used to operate on all
variables, thereby avoiding special rules that limit
some operations to one type of variable (say, nu-
meric), others to another type (say, character or bit).
Second, only one set of operations is required, not
one per type of data stored in the variable. Thus,
fewer operations need to be defined because no
conversion operations between representations have
to be defined, and there is no need to define similar
operations on different data types. Avoiding data

© Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL. VOL 28, NO 2, 1989

conversion also avoids the problem of having inac-
curacies introduced by that process and allows REXX
to operate on numbers with virtually unlimited ac-
curacy.

Another feature of the language is its extensibility.

The language supports extensive string operations;
many are implemented using built-in functions. That

REXX has few but very general and
powerful primitives.

set of functions supplied with the language can be
extended easily by the user, an installation, or a
product using external functions. The same syntax is
used to call built-in functions—the functions sup-
plied with the language-——and external functions—
the functions not part of the language added by a
user, installation, or product. Although the built-in
functions may be augmented by external functions
which support specialized requirements, the user
may, but need not, be aware of where the base
language leaves off and the extensions begin.

This extensibility of the language s even carried over
to improving performance by using packages. It will
be shown later how performance of external func-
tions in packages approaches the performance of the
built-in functions. Packages are not part of the base
language but are supported in the TSO Extensions
(150/E)* Release 2.1 implementation.

Two additional, but unrelated, features of the lan-
guage are the instructions that support debugging
and the ability to target commands to different com-
mand environments. Targeting a command to a
command environment allows an application exe-
cuting in TSO/E to issue a TSO/E command and target
it to the TSO/E command processor. That command
would have no meaning to any other command
processor. If the Interactive System Productivity Fa-
cility (1sPF) were active, for example, an ISPF com-
mand could be targeted to the 1SPF command proc-
essor within the same REXX program, known as a
REXX exec.’ REXX supports an instruction that defines

[BM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

the target for a command. The command processor
environments can be added or deleted dynamically,
again allowing for extensibility. The other additional
language feature in the REXX language supports de-
bugging. Debugging of a program written in REXX is
made easier than it is with most languages because
REXX contains an extensive set of tracing and debug-
ging features.

In short, RExX is a language with few but very general
and powerful primitives. It is a language that can be
extended and customized for special environments
by adding “functions” or commands and is a lan-
guage supporting many debugging options.

The syntax, history, and use of the language are
documented extensively.l‘s’6 In addition to defining
the syntax, the author of the language implemented
an interpreter for RExX and distributed it for exper-
imental use to 1BM internal users. The first generally
available product implementing REXX was the inter-
preter on the Virtual Machine/System Product
(vmysp). This interpreter, named the vM/SP System
Product Interpreter,7 was announced February I,
1983, and is based on the I1BM internal interpreter for
REXX. Because of the ease of use of the language, it
enjoyed rapid acceptance in the VM/SP community
as a command language for Conversational Monitor
System (CMS), as a general-purpose programming
language, and as a language for writing ISPF dialogs.
It was also “ported” to TSO/E as a prototype for
experimentation within 1BM. The REXX that is the
product described in this paper is a new design that
takes advantage of the cMs implementation and the
experience with that prototype.

TSO/E. Before presenting REXX on TSO/E, we briefly
discuss the Mvs/EsA™ (Multiple Virtual Stor-
age/lginterprise Systems Architecture) operating sys-
tem.” This operating system supports the simulta-
neous or nearly simultaneous execution of multiple
independent applications. The technique used to
achieve separation between these independent activ-
ities is called an address space. A program executing
in an address space is capable of addressing private
virtual storage in its own address space and virtual
storage common to it and to most other address
spaces, but the program in one address space cannot
address the private virtual storage of other address
spaces.

Some program products, such as TS0/E and the Vir-
tual Terminal Access Method (VTAM), operate in
their own address spaces and provide specialized

HOERNES 275

Figure 1 Address spaces in MVS/ESA

APPLICATIONS
AND OTHER
PRODUCTS

SPECIAL
SERVICES
PROVIDED BY
PROGRAM
PRODUCTS OR
APPLICATIONS
IN THEIR
ADDRESS
SPACES

BATCH
JoB 1.

SERVICES
PROVIDED
BY BASE

MVS/ESA

|
|
I Bas
|- sER
l
[

BATCH
JOB. 2

TERMINAL

FOR TSO/E
USER 1

TERMINAL

FOR TSO/E
USER 2

DATA
| SPACE 1

DATA
SPACE 2

services required by their own applications. When
an application (or user program) operates with an
address space, the services it has available depend on
the type of host address space.

Figure | represents multiple address spaces, some
sharing address ranges with others, some not. In this
figure, TSO/E and vTAM provide a platform of func-
tions above the MVS/EsA services. Programs executing
in such an address space may call on services in the
base or on services provided specifically within that
one address space. The figure also shows each batch
job in its own address space. Programs in these batch
address spaces do not have access to special services
beyond those of the base Mvs/ESA system. Two data
spaces are shown on the right side of the figure; they
are included to show that these address spaces have
no addressability in common with any other address
space.

276 roeRNES

In the TSO/E address space, services tailored to inter-
active processing are provided. The TsO/E address
space is created by a user logging onto TSO/E, which
starts an initialization process for TSO/E services.
Once initialization is completed, the TSO/E address
space is controlled by the Terminal Monitor Pro-
gram (TMP), remaining active and in control until
LOGOFF. The TMP remains in a two-step loop of first
reading a command from the input, normally the
user terminal, and then executing that command.
After the command completes execution, the TMP
issues a READY message indicating completion and
starts the loop again by waiting for new input from
the user via the terminal. This T™MP is part of an
environment within the address space which allows
the execution of an extensive set of commands, a set
that can be augmented by users, installations, or
other program products. Examples of TSO/E com-
mands are listing allocated files (LISTA) and listing

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

information about data sets (LISTDS). An example of
a program product that is invoked as a TSO/E com-
mand is 1sPF. This command starts ISPF, which builds
its own TSO/E subenvironment and enables an addi-
tional set of commands and services for execs and
programs executing in that subenvironment.

Commands can be combined into lists of commands
and saved as members of partitioned data sets (PDS).
Once created, such a member can be executed as a
unit. Historically such command lists (CLISTs) were
limited to only one language, the TSO/E CLIST lan-
guage. Starting with the latest release of TSO/E, Re-
lease 2.1, such lists of commands can also be written
using REXX. RExx is a full-function language; thus
the commands can be embedded in programs con-
taining a great deal of logic in addition to the TSO/E
commands.

REXX lends itself well as a replacement for CLIST in
many applications, because of its characteristics dis-
cussed above. A REXX exec can make decisions, can
easily read from and write to the terminal, and can
issue commands. One reason why REXX is so well-
suited for this purpose is that commands and ter-
minal input and output are character strings. As was
pointed out earlier, strings can be stored directly into
REXX variables, and once stored, the REXX language
has a large number of string-oriented functions to
parse input and create new output.

REXX in TSO/E or non-TSO/E address spaces. In
addition to being well-suited as a command language
in TSO/E, REXX is also a good general-purpose lan-
guage to implement applications. In the TSO/E ad-
dress space, the interpreter of the RExX exec and
commands called from within the exec can take
advantage of TSO/E services as indicated by the TSO/E
User 1 Program in Figure 1. The figure also shows
how TSO/E is supported by Mvs, so all MvS services
are available in TSO/E as well. If ISPF is active (as it is
for the TSO/E User 2 Program in Figure 1) because
the REXX exec is called from within ISPF, the execs
can also use the ISPF services. If the editor is active
within ISPF, the exec can use the editor services in
addition to the ISPF services and the services of TSO/E.
This structure is hierarchical wherein each environ-
ment adds to the available services of the previous
one.

Interpretation of REXX execs is not limited to the
TSO/E address space. An exec may be used in any
MvVS address space supporting the base MVs services
(Figure 1) because inherently the REXX interpreter

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

does not require TSO/E services. However, if the exec
executes outside of the TSO/E address space, the TSO/E
services are not available to the exec and may not be

Interpretation of
REXX execs is not limited
to the TSO/E address space.

used. For example, Batch Job 1 in Figure 1 could be
the REXX interpreter interpreting a REXX exec outside
of the TS0/E address space.

Because of the availability of certain services in some
address spaces but not in others, an exec must be
written to use only those services available in the
address space it is intended to execute in. For ex-
ample, if an exec is to execute in both Mvs batch and
the TSO/E address space, it could use only the Mvs
services or, after determining which address space
and whether it is in TSO/E, optionally use TSO/E
services.

In the remainder of the paper, references will be
made to the operation of REXX in the TSO/E address
space and in the non-TSO/E address space. The reason
for that distinction is that if REXX executes in the
TSO/E address space, it is fully integrated with other
parts of TSO/E operating in that address space. Out-
side of TSO/E this interaction is not possible because
services depending on the TSO/E environment are not
available. The interaction with other parts of TSO/E
in the TSO/E address space greatly enhances the func-
tions supported by REXX. The function in TSO/E is a
proper superset of the function in non-TSO/E; details
will be shown later.

Design of the REXX component of TSO/E

The most significant requirements for REXX in TSO/E
were to implement the Systems Application Archi-
tecture/Procedure Language (SAA/PL), the customer
needs for an alternate command language in addi-
tion to CLIST, and the compatibility between TSO/E
and cMs. These points are now discussed in detail.

Hoernes 977

Figure 2 REXX interprets in both TSO/E and non-TSO/E

TSO/E

cLIST REXX

F Y

REXX

IN THE
TSO/E
ADDRESS
SPACE

BASE MVS

{NON-TSO/E) 4— REXX

IN THE
NON-TSO/E
ADDRESS
SPACE

SAA/PL. One of the primary functions of SAA is to
provide a platform on which applications can be
built.” One part of that platform is SAA/PL, an-
nounced by 1BM in March 1987." Applications writ-
ten in SAA/PL can be “ported” to all other SAA envi-
ronments, providing the potential for significant sav-
ings. SAA/PL is a portable language, but SAA does not
define commands. Nevertheless, because commands
are system-unique, and many execs contain them,
many execs are not portable. However, the language
provides information identifying the system at exe-
cution time and thus allows the inclusion of code
which can issue the commands differently for each
system. In many cases this code, which is sensitive
to one system, is a small percentage of the total code,
making the writing of portable execs only slightly
more difficult than the writing of an exec targeted
for only one system.

The distinction between SAA/PL and RExX derives
from the fact that not all parts of REXX are portable,
whereas SAA/PL is fully portable. The differences are
very minor and are limited to six built-in functions.
The capability of these functions is either not totally
general or is available in other built-in functions.
SAA/PL is a subset of REXX.

It will be seen later in this section that TSO/E imple-
mented many of the cMs commands as commands
of its own to provide additional portability between
these two saA environments, although these com-
mands are not available in any other saa environ-
ment.

278 Hoernes

Alternative TSO/E command language (CLIST).
Implementing REXX as an alternative command lan-
guage in TSO/E provides a language functionally
equivalent to cLIST and takes advantage of the ad-
vances made in languages over the last few years.

Prior to TSO/E Version 2, Release 1,'' the only com-
mand language available in TSO/E was CLIST. CLIST
was introduced in the early 1970s along with Tso
(Time Sharing Option), the predecessor of TSO/E. At
its introduction, CLIST allowed a user to group TSO
commands into a sequential data set or a member
of a partitioned data set (pDs). That group of com-
mands could then be executed one after another by
naming the sequential data set or member of the
PDS.

From that early definition, the CLIST language has
been expanded over the years to become a full in-
terpretive programming language in addition to
being the command language for Tso, and later,
TS0/E. The features that were added include variables
and repetitive variable substitution, decision-mak-
ing, some looping, error recovery, structured pro-
gramming primitives, and subroutines.’ As the lan-
guage grew, however, it became more difficult to
extend the syntax and keep it linguistically consis-
tent. Because of these historic developments, the
CLIST language contains certain ambiguities, partic-
ularly in the area of repeated substitution of variables
and scanning of statements.

General-purpose language. REXX is an effective lan-
guage for writing general applications in both TSO/E
address spaces and non-TSO/E address spaces. The
relationship of CLIST and REXX in TSO/E and MvVS is
shown in Figure 2. As can be seen, REXX can execute
within Ts0/E or outside of it, or stated more generally,
REXX can be interpreted in any address space at any
time. Although the language is not system- or ad-
dress-space dependent, some supporting services
such as terminal support, recovery, and tasking sup-
port are very dependent on the host address space.
In TSO/E, terminal support, for example, is provided,
and the interpreter must fit into the existing TSO/E
structure. Outside of TSO/E the equivalent service
must be provided.

General MVS command language. TSO/E is not the
only product in MVs requiring a command language.
Other products also require command languages
and, in some cases, already support command lan-
guages of their own. Because of the extensibility built
into the REXX language, it can be adopted by many
products as the command language without those

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

products having to add any special support other
than handling their own commands. One example
of a product using REXX as a command language is
NetView™. It operates in its own address space, a
non-TSO/E address space, and uses REXX as its com-
mand language.

CMS compatibility. Many customer installations
support both TSO/E and cMS on different machines
in the same computer complex, and many users and
system programmers use or support both TSO/E and
CMs alternately in their daily work. Both TSO/E and

Extensive customization
was needed to handle
differences in MVS
address spaces.

CMS are SAA environments, so compatibility between
these two systems is guaranteed for functions defined
by SAA. As stated earlier, SAA/PL being part of SAA
and REXX and SAA/PL being virtually identical ensure
that the syntax of the language is compatible with
1sO/E and cMs. One set of commands used very
frequently in cMms are the stack commands. In addi-
tion to the stack commands, some programming
interfaces supported in TSO/E were modeled after
CMS, even to the point of providing duplicate inter-
faces in TSO/E, one TSO/E-like, the other cms-like.
These new interfaces and the inclusion of stack
commands in TSO/E reduce the effort required to
convert REXX applications between TSO/E and CMS.
ISPF commands are also compatible with TSO/E and
CcMs, allowing a large percentage of 1SPF dialogs to be
ported without changes.

Customized execution environment. A very general
requirement was the ability to customize the execu-
tion environment for a REXX exec. Extensive custom-
ization was needed to handle differences in Mvs
address spaces such as conventions for obtaining and
freeing storage, reading and writing to the terminal,
and other system-related services. The design for
REXX support had to include the convention of each

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

of these address spaces. There had to be a focal point
for such customization, and this need led to the
concept of the language processor environment.

Need for a language processor environment. It has
been shown that the RExX interpreter can be called
in different address spaces and that the implemen-
tation of these services in these address spaces differs
greatly. To accommodate these differences, either
the interpreter must be sensitive to the differences or
the interpreter must run within a newly created
environment which hides the differences.

In the first design, customization parameters were
passed to the interpreter when an exec was to be
interpreted, and the interpreter handled the differ-
ences between services in different address spaces.
After some analysis and after the number of custom-
ization parameters had increased significantly, it was
found that performance could be improved by proc-
essing the customization parameters once, retaining
the result in a data structure representing the new
environment, and passing that data structure to the
interpreter. The environment created for the inter-
pretation of a REXX exec is called a language proces-
sor environment, and this environment is required
before an exec can be interpreted.

The interpreter can only interpret an exec within an
environment. That environment established for the
interpreter is address-space independent and shields
the interpreter from having to be sensitive to differ-
ences in the underlying system. It allows the execu-
tion environment to be customized and to handle
all differences between services provided in different
address spaces. For example, in TSO/E the input from
the user is expected to come from the terminal, and
output to the user again is sent to the terminal. In a
non-TSO/E situation, this 1/0 activity may need to be
read from or written to a file or may be handled by
the terminal-handling routine of another product.
The language processor environment handles the
routing to and from the different places and presents
the interpreter with a consistent interface in all cases.

Because of the tasking structure of mvs, it was de-
cided early in the design cycle that one language
processor environment should be associated with
one task. But if one task could be associated with
multiple language processor environments, tying a
language processor environment to an Mvs task al-
lows additional, task-related, information to be as-
sociated with an environment. This type of infor-
mation includes routines which have been loaded

Hoernes 279

into storage, addresses of control blocks related to
open data sets, locks for multitasking, anchors for
variable pools, and the data stack (see the subsection,
“Stack design”). As discussed later, other language-
related information is also associated with the lan-
guage processor environment, Bringing all these an-
chors together under the language processor environ-
ment made it the concept around which the design
solidified.

Design alternatives. Several alternatives were consid-
ered in establishing a language processor environ-
ment. In one alternative, small customized interface
programs for each service and each type of address
space were to be created. When a service was re-
quired, the interpreter could determine the type of
host address space and call the appropriate custom-
izing routine for that service. The disadvantage of
this alternative was the implementation cost and the
need to maintain many customized routines, one
per service and type of address space. It would also
be difficult to maintain absolute compatibility
among these different routines in the different types
of address spaces. On the positive side, it would
perform better and require less customization than
other alternatives. On the negative side, it could
prevent an installation from overriding system de-
faults of an application or prevent an installation
from adding new routines to support additional types
of address spaces. It was felt that this alternative was
not sufficiently general for the non-TSO/E address
spaces but was adopted for the TSO/E address space.
In the TSO/E address space, special interfaces to the
TSO/E input stack and 1o authorized commands were
needed, which could not be generalized. Also the
sharing of storage across all Mvs tasks in TSO/E al-
lowed certain performance optimizations not appli-
cable to other address spaces.

Another alternative was to build the environment
just prior to interpreting an exec and to take it down
when the exec completes. The advantage of this
approach is complete flexibility but at the cost of
significantly degrading performance to a point which
could not be tolerated.

Yet another alternative considered was the creation
of a service or services to establish and/or delete a
language processor environment. The language proc-
essor environment would have a long life and thereby
ensure better performance. The initialization pro-
gram could be table-driven, permitting the user,
installation, and product to tailor the execution en-
vironment.

280 roemnes

This direction was taken in the design for environ-
ments built outside of a TSO/E address space. This
alternative does not have the advantage of each exec
customizing its own environment, but it was felt that
such a degree of flexibility was not needed. Its main

The language processor
environment is the key
to connect REXX
to the system.

advantages are (1) the path length is significantly
shorter than the previous alternatives when starting
the interpretation of an exec, and (2) it allows for a
single, general-purpose implementation for all ad-
dress spaces.

The last alternative was the basis for the design in
non-TSO/E situations. The first was chosen for the
TSO/E address space, and a few parameters are al-
lowed when calling for the execution of an exec,
which is somewhat similar to the second alternative.
Thus, the final design contains parts of each of the
alternatives.

It has been shown before that whenever an exec is
interpreted, an environment must exist. If none has
been initialized when an exec is to be interpreted, an
environment is built “automatically.” The values
required to establish a language processor environ-
ment could not be fixed by the design because of the
differences among customer installations and ad-
dress spaces. Instead, parameters are obtained from
a module with a fixed name. That module is loaded
at the time the environment is built and, because of
the flexibility in the mvs loading process, is not
limited to one set of values per installation. Many
modules with the same name may reside on one
system in different data sets; the module to be loaded
depends on data set allocation in the link list. Each
of these modules may define a different set of param-
eters, creating a different type of environment. If an
environment was created automatically to run an
exec, the environment is automatically deleted when

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Figure 3 Parameters stored in language processor environment block

Names of replaceabie routine

User field passed when environment was created
Parameter reiating to currently executing exec

Name of exec

Arguments passed to exec

User field passed on call to interpret exec

Parameter originally passed when environment was created

Names of command environments and routines to be calied for each
Names of packages and functions contained with each package

the exec terminates. The result of this design is that
a user can call for the execution of an exec, totally
unaware of the existence of a language processor
environment.

As part of TSO/E, three such parameter modules,
containing different sets of parameters for three dif-
ferent types of language processor environments in
different types of address spaces are provided. One
module contains the default parameters for the TSO/E
session. It is used by the LOGON command. A differ-
ent module provides parameters when a user enters
ISPF, and a third is for language processor environ-
ments created outside of the TSO/E address space.

The makeup of a language processor environment.
The language processor environment holds many
parameters. Among them are the following: the an-
chor for the data stack, pointers to storage control
blocks, and input/output-related control blocks (for
example, the Data Control Block, or DCB). The
language processor environment is also the focal
point for other operating-system-related constructs
such as loaded modules. It contains the addresses
and names of all routines handling the system serv-
ices and pointers to execs that might have been
preloaded. Because of its importance to TSO as an-
chor, it was felt that a language processor environ-
ment would be of equal importance as anchor for
application-related information. This led to the user
token in the language processor environment. For
example, an application program may pass REXX a
user token, which another part of the application
may retrieve at a later time.

The values used in establishing the language proces-
sor environment are fetched from a parameter mod-

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

ule, the name of which is optionally specified when
the environment is created. These values are saved
in a control block representing the language proces-
sor environment called the ENVB (environment
block). The ENVB is made available as a parameter
to every routine called from the REXX interpreter.

Because the language processor environment is the
key to connecting RExX and the system, it was made
available to every program called by the interpreter.
Through the environment block, these programs can
examine all parameters passed in the parameter
module. Also stored in the environment block and
therefore accessible to these programs are parameters
passed to the interpreter when interpretation of the
current exec started. A sampling of the parameters
available in the ENVB are shown in Figure 3.

Although the language processor environment is im-
portant to the design and must always be present,
the author of an exec need not be aware of its
existence. The view of the exec programmer is that
the exec executes in an environment and he/she is
not or need not be sensitive to how that environment
had been established or how it could be changed.

Chains of language processor environments. The pre-
vious subsection shows that many system-related
properties are tied to a language processor environ-
ment. At times some of these properties need to be
replaced or changed. This means either allowing an
existing language processor environment to be mod-
ified or a new one to be created. It was decided that
modifying existing values of a language processor
environment would be error prone, so the design
only allows the creation of new language processor
environments.

Hoernes 281

Figure 4 Chains of language processor environments

New environments can be created at any time. At
the time the creation service is called, an extensive
set of parameters is passed, which defines all values
for the new environment. Environments are related
hierarchically in what is known as a chain of lan-
guage processor environments. Unless specifically
changed at initialization time, the dependent envi-
ronment inherits the properties and resources of the
parent. If more than one dependent environment is
created from a given environment, the resulting
structure is, strictly speaking, a hierarchy. However,
the structure is referred to as a chain, because in
most cases the structure of related language processor
environments is linear as is a chain.

Another reason for different language processor en-
vironments is the Mvs tasking structure. Storage,
open data sets, and other Mvs resources are tracked
on an Mvs task level. If execs operate on different
Mvs tasks, they must operate in different language
processor environments. The dependent environ-
ment may have the same characteristics as the par-
ent, but it is associated with a different task and so
allows resource management and recovery. The only
exception is the TSO/E environment. In TSO/E an exec
may attach a command, which calls a second exec.
The second exec operates on a lower-level task than
did the original exec, but because of the internal
design of TsO/E and the sharing of virtual storage
subpool 78 in TSO/E, both execs can operate in one
language processor environment.

Note that such special cases made the implementa-
tion in the TSO/E address space different from the
implementations in other address spaces. However,
none of these differences are visible to the user of
REXX or the user of any of the interfaces. They are
contained internally.

282 HoerNes

Different chains are completely independent from
one another. Figure 4 shows one chain. Env 1 was
the original environment, then two additional envi-
ronments Env 11 and Env 12 were created under it.
This structure is present for ISPF, for example, where
the top environment represents the TSO/E READY
mode, and the dependent environments correspond
to the two applications executing in split screen
mode. In the READY mode, only one environment is
present, such as Env 1, which would represent a
degenerate case of a chain.

Typically only one chain exists in one address space
at any one point in time. However, an arbitrary
number of independent chains may be created in an
address space. (It is even possible, using a special
technique called reentrant language processor envi-
ronments, to support an arbitrary number of chains
of environments on a single task. This topic will not
be expanded here.) In the figure, chains are identified
by pointers from each language processor environ-
ment to its parent. A language processor environ-
ment with no parent is the head of a chain. When a
head-of-a-chain environment is created and values
are not explicitly specified on the call at initialization
time or in the parameter module that may be speci-
fied, the values default to system default values.
When a language processor environment that is not
the head of a chain is created, parameters for the
new environment are taken from the parent environ-
ment, unless a new value is specified either on the
call to the initialization routine or in the parameter
module passed on that call to the initialization rou-
tine.

REXX in any address space. The design implements
three basic types of calls supporting RExX functions:
initialization and termination of language processor
environment, interpretation of an exec, and services.
They are shown in Figure 5.

The initialization routine establishes a new language
processor environment by creating a number of con-
trol blocks, among them the environment block
(ENVB). Execs can now be interpreted in this newly
created environment. As stated earlier, the environ-
ment determines which routines are to handle sys-
tem services and commands. These service routines
replace default system services and are therefore
called replaceable routines, described later. Their
names are saved in the environment block. The
termination routine reverses the action of the initial-
1zation routine by deleting the current language proc-
essor environment.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1988

Figure 5 Main components of REXX

CALL TO
INITIALIZE / TERMINATE
REXX LANGUAGE
PROCESSOR ENVIRONMENT

i
¥

CALL TO INTERPRET
A REXX EXEC

CALL TO REXX SERVICES

LANGUAGE
PROCESSOR
ENVIRONMENT
BLOCK

Tt

MODULES HANDLING
SERVICES CALLABLE

FROM PROGRAMS

(ENVB)
SERVICE ROUTINE

NAMES OF

REPLACEABLE

ROUTINES — = ———————————— -»
REPLACEABLE
ROUTINES

Two different services support interpretation of an
exec. They differ primarily in the format of the
parameters on the call. One is a general service
supporting many parameters and arguments to be
specified, and the other permits only the name of
the exec and one argument. The latter service is
tailored to be called from the EXEC statement of the
MVS job control language (JcL). The EXEC statement
is used to identify the first program to be executed
in a batch address space; in this case it is the inter-
preter. The parameter sent to the interpreter is the
PARM on the EXEC statement. It defines the RExX
exec to be interpreted and the arguments for that
exec.

When an interpretation service is called, some minor
setup steps are performed. For example, the current
language processor environment is located, and if
none exists, a default environment is created. If the
exec has not already been loaded, it is loaded. (This
condition exists when the interpreter is called from
the JCL EXEC statement.) After the setup the inter-

1BM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

preter is called. It is the heart of the product. The
interpreter is the code that interprets each instruction
of the language, maintains variables, and issues the
language-related error messages. The code for the
interpreter is the same code used by cMs, thereby
saving the cost of implementation and ensuring total
compatibility between the TSo/E and cMS implemen-
tations of REXX.

Whenever this common code requires services from
the operating system, service routines are called.
Service routines are different for Tso/E and cMs. The
design defines a number of REXX service routines.
Examples of such services are fetching or setting
variables, requesting stack services, performing 1/0
functions from programs, or loading execs.

Replaceable routines or exit routines. It was shown
earlier in this paper that a main emphasis of the
design was the ability to tailor the language processor
environment to the host address space. This is ac-
complished by allowing every system service to be

Hoernes 283

funneled through a routine appropriate for the host
address space.

One approach to tailoring is to use exit routines.
When an exit routine is called, control goes to the
exit routine, along with certain parameters. Depend-
ing on the design of the interface to the exit routine,

The replaceable routine is
a more general approach
than exit routines.

the capability of that routine may intentionally or
unintentionally be limited. When the exit routine
returns control, the system may either continue or
terminate the requested service.

Early in the formulation of the design, exit routines
were considered but were abandoned because the
underlying assumption of an exit routine is that it
modifies an exiting function and does not replace it.
The degree of customization needed for this design
was such that any of the system services were not to
be modified but totally replaced. Thus it was neces-
sary for a language processor environment to replace
the routine performing the system service. This rea-
soning lead to the concept of the replaceable routine.

The replaceable routine is a more general approach
than exit routines because it ensures that all param-
eters needed to provide the service are passed to the
routine. This replaceable routine may check, change,
or ignore input parameters, provide either full service
or partial service, refuse to give the service at all, call
another routine to perform the requested service for
all or some cases, and either accept the result of that
called routine or ignore it. In short, it has complete
control.

The types of services handled by replaceable routines
are loading of execs, generalized 1/0 functions, stor-
age management, and data stack. The name of each
of the replaceable routines is stored in each language
processor environment and, once specified, may not

284 Hoernes

be changed. When any part of the REXX component
of TSO/E requires one of these services, the appropri-
ate routine is called; when control returns to the
caller, the service has been performed. For each of
these services at least one routine is supplied; at
times one is supplied for the TSO/E address space,
and another is supplied outside of the TSO/E address
space.

Products or subsystems frequently implement an
independent layer of service routines for their own
internal use. A unique feature of TSO/E is that this
independent layer is externalized, because the service
routines can be called by any program wherever a
language processor environment has been estab-
lished.

Replaceable routines are only used for those services
mentioned above. For other functions to be tailored,
the design used exit routines. For example, exit
routines were used for preinitialization and post-
initialization and during termination of a language
processor environment.

Stack design. Several different stacks are now dis-
cussed. To distinguish them, the existing stack in
Ts0/E will be referred to as the TSO/E input stack, the
existing stack in cMs will be referred to as the cms
stack, and the new stack created for this design will
be called either the data stack or simply the stack if
there is no confusion about which stack is being
referred to.

The language defines a number of instructions that
apply to a stack or queue. The PULL instruction
removes the top element from the stack and returns
it to the caller. The PUSH instruction adds a new
element above the old top; the new element supplied
by the caller becomes the new top. The QUEUE
instruction adds an element below the old bottom
element, and the new element becomes the new
bottom. A built-in function, QUEUED, returns the
number of elements on the stack.

This construct, which we call a stack, has a fop, a
bottom, and an arbitrary number of elements be-
tween those extremes. It has a length, is read from
the top to the bottom, and, when an element is read,
is removed from the stack.

Neither Mvs nor TSO/E supported such a stack func-
tion prior to the implementation of REXx, although
TSO/E uses a construct called the TSO/E input stack.
This stack is very different from the data stack re-

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

quired by REXX, which meant a new stacking func-
tion had to be implemented.

As stated earlier, RExX was designed to execute in
both the TSO/E and non-T1s0/E address spaces, so this
new stacking function needed to be implemented in
all address spaces. Outside of a TSO/E address space,
any stack model could have been used, but rather
than choose a new model, the cMs model was chosen
because it ensures added compatibility between REXX
in any Mvs address space and cMs. This degree of
compatibility is beyond the sAA requirement but was
deemed to be important. Whatever stack model was
to be used in the non-TSO/E address space had to be
consistent with the new stack in the 1so/E address
space, which in turn had to be compatible with the
existing TSO/E input stack.

The starting point for the new data stack in a non-
TSO/E address space was the cMs stack. Before de-

scribing this new data stack, the cMs model is de-
scribed.

The CMS data stack. The cMs stack is a part of the
CMs system, not the RExX language, and holds data
placed on it by REXX execs or programs. In addition
to data, an exec or program may place markers on
the stack, allowing an exec or program to remove all
elements above, and including, a given marker.
These markers define parts of the stack called buffers.
saA does not define a stack or buffers, which means
the Tso/E usage of the cms stack provides cross-
system compatibility beyond the SAA base.

In the example of a CMS stack shown in Figure 6, m
elements were placed on the stack, followed by a
marker and by additional elements. Each element is
a character string with arbitrary length, up to the
implementation limit, which in TSO/E is almost 16
megabytes. A null string—a string with zero length—

Figure 6 Example of CMS stack

ELEMENT PLACED ON
STACK WITH PUSH GOES
ABOVE CURRENT TOP

PULL REMOVED
TOP ELEMENT

ELEMENT PLAGED ON
STACK WITH QUEUE GOES
JUST ABOVE MARKER
CLOSEST TO TOP

MARKER CLOSEST
TO TOP

SEVERAL ELEMENTS
PUSHED AND/OR QUEUED

LAST ELEMENT TO BE
PULLED

IMPLIED MARKER

>
— ggagfrg TOP
» | DATA ELEMENT m + n ACK
DATA . ..
.. . ELEMENTS y
A
BUFFER 1
DATA ELEMENT m + 1
» | MARKER 1
—
b
DATA ELEMENT m
F DATA . ..
/- ELEMENTS % | Burrer 0
;L DATA ELEMENT 1
— < BOTTOM OF
» | MARKER 0 STACK

HOERNES 285

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

is a valid element. If the stack is in the state shown
in the figure and an exec PUSHes an element, the
element would be placed above the top data element,
element m + n. If an exec QUEUEs an element, the
element would be placed just above the marker
closest to the top, which means that in the case of
the figure, the new element would be added between
element 7 + 1 and marker 1. One can think of a
marker 0 being on the bottom of the stack.

Elements between two markers and between the top
marker and the top of the stack are frequently re-
ferred to as buffers. This term gives rise to the com-
mands MAKEBUF and DROPBUF which add and re-
move markers. A PULL instruction returns the top
data element on the stack, removing any markers
which may be present between the top of the stack
and the top data element.

Thus, in terms of buffers, the PUSH instruction adds
an element to the top of the top buffer, the QUEUE
instruction adds an element to the bottom of the top
buffer, and the PULL instruction removes and dis-
cards any markers above the top element, then re-
moves the top element and returns the element to
its caller.

If the stack were in the state shown in Figure 6 and
the REXX built-in function QUEUED is called, the
number of elements, in this case m + n, is returned.
QUEUED does not count markers on the stack.

In cMms the stack also participates in reading input
from the terminal. A REXX exec may request input
from the terminal directly, but the terminal can also
be thought of as an extension of the stack. If a RExx
exec executes a PULL instruction, the element is
taken off the top of the stack. If, however, the stack
is empty, the process continues, and data are read
from the terminal. PULL is a two-step process and
will always return an element. It should be noted
again, a null element is a valid element.

Basic design of the TSO/E data stack. As stated
earlier, the starting point for the design of the TSO/E
data stack was the cMms stack. From this stack, a cMs-
like data stack was developed that satisfied all re-
quirements placed on it by the REXX language. How-
ever, several extensions had to be made to that model
of the stack.

It was shown earlier that the design of REXX in the
non-TsO/E address space allows for multiple language
processor environments to be created in a hierarchi-

286 roemnes

cal relationship. One of the services associated with
such an environment is the data stack. If two lan-
guage processor environments are created on the
same MVS task, there cannot be a synchronization

No general rule can be made
on sharing of data stacks
among execs on different tasks.

problem for the simultaneous update of the data
stack, because only one program can execute at any
one time on one task. Therefore, execs in the lower
language processor environment must complete be-
fore the ones in the upper language processor envi-
ronment continue. Because no general rule can be
made about the sharing of stacks for execs executing
on these two levels, the design allowed the sharing
of the stack to be specified at the time the lower-
level language processor environment is created. If
the data stacks are to be shared, the lower language
processor environment does not contain a stack, but
any stack-oriented command issued by an exec exe-
cuting on the lower environment is directed to the
data stack associated with the higher-level language
processor environment. The left side of Figure 7
shows how three environments, Env 1, its dependent
Env 2, and Env 3, share one data stack. All environ-
ments share the stack and execute under one task,
Task 1.

If the stack is not to be shared, a new stack is
initialized. Then the lower-level language processor
environment is built. This isolates the stack associ-
ated with the higher-level language processor envi-
ronment from an exec or program executing in the
lower one. (See right side of Figure 7.) Note that the
word primary data stack implies secondary data
stacks in Figure 7. These secondary stacks will be
discussed later.

The sharing of the data stack between a language
processor environment and its parent is established
at the time the dependent language processor envi-
ronment is created. A language processor environ-

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Figure 7 Sharing primary data stack under one task

PRIMARY DATA
STACK SHARED
AMONG THREE
ENVIRONMENTS
ON ONE TASK

ﬂ

] ENV 2
TASK 1

ENV 3
TASK 1 =

PRIMARY DATA
STACK NOT
SHARED AMONG
ENVIRONMENT
ON ONE TASK

ENV 2
e TASK 1

ment can only share its data stack with that of the
immediate parent. Only if that parent shares a stack
with its parent will all three environments share a
stack.

Stack and multitasking. The cMs-like data stack was
sufficient for the non-TsO/E address space if multi-
tasking was not present. However, the model had to
be extended because REXX execs could execute con-
currently on multiple tasks, yet needed to share the
data stack. It was shown earlier that the environment
blocks and the associated language processor envi-
ronments contain task-related data such as anchors
to store, open data sets, and the like. So, if execs are
to be interpreted on different tasks, they need to be
interpreted in different environments, at least one
per task.

Such parallel processing is a fundamental concept in
Mvs and had to be fully supported. If execs execute
in different environments on the same task, only one
exec can be active at one time, and all execution is
done synchronously. If, however, different language
processor environments sharing one data stack are
associated with different tasks, the stack becomes a

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

resource shared among execs executing on different
tasks, and execs executing in these environments
operate asynchronously.

Sharing the stack among asynchronously executing
execs has several implications. The first one is that
two execs executing on different tasks may execute
at the same time and access the shared data stack at
the same time. The sharing of the data stack allows
two execs to communicate via the stack by PUSHing
and PULLing elements on the stack. In contrast, shar-
ing the data stack implied a lack of its privacy. An
exec on one language processor environment PUSHing
a series of entries on the stack has no guarantee that
another exec may not PUSH entries at the same time,
which results in the entries from the two execs being
intermixed and the content of the stack being unpre-
dictable. When the original entries are PULLed, un-
wanted and possibly unrecognized entries would be
returned from the stack.

An example of where such mixing would result in
errors is the case in which an exec stacked entries
via an 1/0 command called EXECIO, which reads a
number of records and places them on the stack. If

HOERNES 287

one exec had issued the EXECIO command and had
processed some, but not all, entries on the stack, and
another exec were to either place entries on the stack
or pull some off, errors would occur.

Another side effect of multitasking is the need to
lock the data stacks. Locking of stacks had to be
considered in the design. To simplify the design and
to optimize performance, locking was done on the
basis of chains of environments. Although it is not

The CMS model of the
stack is a proper subset
of the TSO/E model.

the smallest possible scope for a lock, this level was
chosen because two chains are guaranteed to be
independent. It was also felt that there would be a
minimum of interference on the lock, that it would
reduce implementation cost, and that performance
would be improved because extensive tests for the
scope of locking would be avoided.

The privacy issue was more difficult to resolve. One
solution was to create new environments when the
state of sharing a stack was to change. This approach
was considered to be not sufficiently dynamic, be-
cause one exec may at times wish to share its stack
and at other times wish not to share the data stack
with another exec. The decision of sharing had to be
made at execution time, which led to the introduc-
tion of secondary stacks.

A secondary stack is created by the NEWSTACK com-
mand, which deactivates but does not change the
currently active stack after NEWSTACK is issued. This
secondary stack is the only active stack for any exec
in that language processor environment, and a sec-
ondary stack is never shared among language proc-
essor environments but is shared among all execs in
the environment in which it was created. Multiple
secondary stacks can be created, but at any one time
only the last stack created is active and accessible to
an exec. The primary stack and all secondary stacks
can be thought of as a stack of stacks, the last stack
created being the only stack accessible to the execs.

288 HoeRnEes

A secondary stack has the same properties as the
primary stack. Entries can be PUSHed on the stack
and PULLed from the stack, and when the stack is
empty, the input is read from the input file (or
terminal). Markers have the same meaning on a
secondary stack as they do on a primary stack.

Another command, DELSTACK, deletes the last sec-
ondary stack and reactivates the previous stack.
Should a DELSTACK command be issued while the
primary stack is active, the command is ignored,
because the primary stack may be shared with execs
executing in other language processor environments,
and deleting the shared stack could cause the failure
of execs associated with another language processor
environment.

To summarize, the cMs stack model has been gen-
eralized in two directions for Ts0/E. First, data stacks
can be shared among different language processor
environments, a concept with no parallel in CMS,
and second, new stacks can be created to ensure
privacy in multiprocessing, again a concept not sup-
ported by cms. But to an exec being interpreted in
an environment, only one stack is visible, and that
stack appears identical to the cMs stack. This means
that the cMs model of the stack is a proper subset of
this design of the TsO/E model, and when seen from
the viewpoint of the exec, the data stack is identical
to the cMs stack. The two stacks have an identical
appearance to the exec because at any one time, one
exec can access only one data stack.

Figure 8 shows an example of a chain of three
language processor environments. Env 1, associated
with Task 1, owns a stack P1. That stack is the only
stack for Env 1 and therefore is a primary stack and
the active stack for Env 1. When Env 2 was created,
no new primary stack was created, but the environ-
ment was 1o share the primary stack with Env 1.
However, some exec or program created a private,
or secondary, stack S2, which is the currently active
stack for Env 2. After S2 is deleted, P1 will become
the active stack for Env 2. Env 3 has its own primary
stack P3. Env 3 could create a secondary stack, but
regardless of any actions in any environment, Env 3
cannot share a stack with either of the other two
environments.

The TSO/E input stack

Before discussing how the data stack was integrated
into TSO/E, we need to describe the function of the
TSO/E input stack prior to the incorporation of REXX.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Figure 8 Sharing data stacks among different tasks

ENV 1 .
TASK 1 P1

ENV 2

PRIMARY STACK OF ENV 1,
SHARED WITH ENV 2

TASK 2 [

82 SECONDARY STACK FOR

ENV 3
TASK 3 - P3

PRIMARY STACK
SHARED WITH ENV 1

ENV 2, NOT SHARED

PRIMARY STACK FOR ENV 3,
NOT SHARED AT THIS TIME

The input stack is created when a user first logs on;
it is initially empty. It is continuously examined by
a program, called the terminal monitor program, or
TMP. The T™MP, the main controlling program in
TSO/E, is implemented as a two-step loop:

1. Read input
a. If the input stack is not empty, execute all
CLIST statements up to the first command,
return that command, and continue with step
2.
b. If the input stack is empty, read a command
or CLIST name from the terminal and continue
with step 2.
2. Process the command
a. Ifthe command is LOGOFF, terminate the TSO/E
session and exit.
b. Ifthe inputis a program (a command), execute
it and continue with step 1.
c. If the input is the name of a CLIST, load it,
place a pointer to the loaded CLIST on the input
stack, and continue with step 1.

We now present an example. Initially after logon,
the input stack is empty, and the T™MP looks for
terminal input. When the user enters a command,
the T™P first tries to locate an executable module. If
a command is found, it is executed. When the com-

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

mand completes, the terminal again calls for another
command from the terminal. If the command was
not an executable module, it must be a CLIST, so the
T™P calls for the loading of the cLIST and places a
pointer on the input stack. Once the CLIST is stacked
on the input stack, it is processed one statement at a
time.

On the assumption that one of the statements in that
CLIST is the name of another CLIST in our example,
the second cLIST is again loaded and a pointer
stacked above the first pointer on the input stack.
After the stacking, the TMP again executes step 1 by
processing the first statement of the second CLIST,
followed by the second statement of the second CLIST,
and so on. This condition is shown in Figure 9.

The first element on every input stack is a different
type of element, called a terminal element, or TE,
which, when read by the T™MP, indicates that the
bottom of the input stack has been reached and the
input is to be obtained from the terminal.

Data stack in the TSO/E address space

Reconciling two totally different stack models—the
stack model based in cMs and extended for the non-

Hoernes 289

Figure 9 Example of CLIST elements on TSO/E input stack

_EXECUTED IN CLIST B

| NEXT STATEMENT TO BE

 STAOK ELEMENT -
FOR'CLIST B -

TSQ CONTROL 8LOCK
FOR CLIST B

STACK ELEMENT
FOR CLIST A

TERMINAL EXECUTED IN CLIST A

ELEMENT

NEXT STATEMENT TO BE

TSO INPUT STACK TSO CONTROL BLOCK
FOR CLIST A

TSO/E address space and the TSO/E input stack
model—presented the biggest challenge in the inte-
gration of REXX into TSO/E.

The first change was to make the TMP sensitive to
the data stack. It was necessary because if an exec
PUSHed a command on the data stack and termi-
nated, that command had to be executed by the TMP
before calling for input from the terminal. The
change was accomplished by modifying step 1 of the
TMP to add a step to pull data from the data stack
before reading terminal input.

The design had to allow REXX execs to call CLISTs
and cLisTs to call RExx execs. This arrangement
meant that in step 2 a pointer to a REXX exec had to
be stacked on the input stack, much like pointers
pointing to a CLIST. The REXX interpreter does not
interpret one REXX instruction at a time, but an
entire exec, so it was necessary to call the interpreter
at this point in step 2. The structure of the phases
could not be changed because CLIST processing could
not be changed, so step 2 performs the normal
loading process for both CLISTs and execs, although
the internal formats are different. At the end of
loading, if the top element on the TSO/E input stack
corresponds to an exec, the interpreter is called from
within one pointer through the TMP. CLIST is a two-
phase process; REXX is a one-phase process.

290 Hoemnes

When the REXX interpreter encounters a command
within an exec, it calls the appropriate routine based
on the currently active address command environ-
ment. The name of that routine is found in a field
located in the language processor environment. If
the address environment is TSO/E, the TSO/E service
facility is called. In past releases, the TSO/E service
facility was only intended for authorized commands,
but for this release of TSO/E it has been expanded to
process CLISTs, execs, or commands and return only
after the CLIST, exec, or command completed. The
TSO/E service facility thus has been expanded to be
an unauthorized TMP which can be called by any
program in TSO/E.

Calling this new TMP from within the interpreter
creates a totally different call structure for REXX than
for CLIST, because in CLIST the same invocation of
the TMP interprets all statements of all CLISTs,
whereas the RExX interpreter is invoked for each
exec. Because of the call chain created by the REXX
interpreters, a new TMP had to be written. This new
T™MP is called whenever a TSO/E command is detected
In a REXX exec. It has the exact same function as the
original TMP, although in the implementation it is
new code.

The modifications above resulted in the following
changes in the two-step loop of the T™P:

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

1. Read input

a. If the input stack is not empty, execute all
CLIST statements up to the first command,
return that command, and continue with step
2.

b. If the input stack is empty and the data stack
not empty, pull the top entry off the data stack
and continue with step 2.

c¢. If both stacks are empty, read a command or
name of a CLIST or REXX exec from the termi-
nal and continue with step 2.

2. Process the command

a. Ifthe command is LOGOFF, terminate the TSO/E
session and exit.

b. Ifthe input is a program (a command), execute
it and continue with step 1.

c. If the input is the name of a CLIST or exec, load
it, place a pointer to the loaded CLIST or exec
on the input stack, and, if a CLIST, continue
with step 1.

d. Call the interpreter, and when interpretation
is completed, continue with step 1.

One more change had to be made to TSO/E to allow
program commands to be sensitive to the data stack.
In the cMs stack model and in the definition of the
REXX language, the data stack is examined before the
terminal is read. This change was made by inter-
cepting all calls for input to the terminal, and if
elements were on the data stack, pulling the top
element off the data stack and returning it to the
caller. In TSO/E, the routine that is called by com-
mands to read data from the terminal is GETLINE.
This routine was modified to examine the data stack
before reading the terminal. If the data stack was not
empty, the top element would be returned to the
caller. If the data stack was empty, the terminal
would be read and the terminal data returned to the
caller. With these changes, an exec can place input
for a command on the stack and call a command,
and the command reads the data as though they
came from the terminal. The command can be an
old command which now takes advantage of the new
REXX data stack without having to be changed.

This design also assured one other mandate, namely
that the new design with old cLIsTs and old com-
mands would be totally compatible to previous re-
leases of TSO/E.

Performance considerations

Performance of REXX on TSO/E was a major consid-
eration during the design process. It was shown
earlier that the concept of a language processor en-

1BM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

vironment was created in part to improve perform-
ance on the critical path of interpreting an exec.
Several functions were added to allow a user to tune
performance, but in each case, defaults were chosen
for the most common cases. The defaults allow the
typical user to ignore tuning.

One of the basic tradeoffs in any design is to choose
between the size of the code and performance. In
this product, better performance was traded at the
cost of larger code size (number of bytes required by
the code).

In addition to the externally available functions, code
was written to optimize internal performance. For
example, storage management code was included,
which is called by all internal routines and which is
capable of handling the allocation and freeing storage
in arbitrary sizes from an arbitrary number of Mvs
subpools either above or below 16 megabytes. The
storage was associated with a language processor
environment. This storage management code was
needed because storage management is one of the
replaceable routines, and if that replaceable module
were called for each individual storage request, per-
formance would suffer. This internal storage man-
agement code acquires storage in multiple pages and
doles it out to internal requests, frequently eight and
twelve bytes at a time. The path length for the
internal get and free main storage routines is very
short. These internal storage management routines
are based on the “Radix Partitioned Tree Algo-
rithm.”"?

External functions supporting performance. Per-
formance of an application can be optimized by
managing the loading and freeing frequently used
functions and subroutines. An application has three
options. For one, it can load an exec and pass the
address of the exec to the interpreter. Another option
is that the application call the replaceable routine for
loading of execs directly and request the loading and
at a later time call for its interpretation, passing the
address of the preloaded exec. Yet another option is
for the application not to preload or to call any other
service, but to simply call for the execution of the
exec.

In the first case, the interpreter performs no input or
output operations. The caller is responsible for cre-
ating an image of the exec in storage and passing it
to the interpreter. The caller is also responsible for
freeing the storage the exec resides in. From the
point of view of the interpreter, this option is the

Hoernes 291

best performing because the load process is totally
omitted.

In the second case, the interpreter is instructed to
LOAD an exec and retain it for later use. Whenever
that exec is to be interpreted, the interpreter will
scan the list of execs that have been loaded and, if
found, will interpret the exec without reloading it.

Function packages are an additional
method of improving performance
of applications.

The program that called for the loading of the exec
may call a service to FREE (unload) the exec. Loaded
execs are associated with the language processor
environment, and when the environment is deleted,
the execs associated with the environment are auto-
matically freed.

In the third case, the interpreter will again scan the
list of loaded execs and, if found, use the exec without
reloading it. If the exec cannot be found, it is loaded
and internally retained as in the previous case. The
execs are freed when the language processor environ-
ment is deleted or if the data set from which they
are fetched is closed.

Performance of interpretation in a TSO/E address
space. The design of the REXX interpreter was made
distinctly different from the CLIST interpreter partly
to improve performance of the REXX interpreter, and
partly because the REXX interpreter cannot suspend
operations when it encounters a command as does
the CLIST interpreter (see earlier section, “Data stack
in the TSO/E address space”). As shown in that sec-
tion, when the TMP executes a CLIST, it executes it in
two passes though the TMP code. The first step is to
execute the command calling for the interpretation
of the cLisT (for example, the TSO/E EXEC command).
This command loads the CLIST into storage, places a
CLIST entry on the TSO/E input stack, and returns to
the T™P. This pass is called phase 1. After phase 1
completes, the second pass, phase 2, executes the

292 roemnes

CLIST. Executing a REXX exec is a one-phase process,
thereby improving the overhead associated with cy-
cling through the T™MP a second time.

Execs can be stored in data sets allocated to either
SYSEXEC Or SYSPROC. SYSEXEC is searched first, fol-
lowed by sysproc. The searching of the additional
files degrades performance but is necessary to distin-
guish the difference between some execs and CLISTs.
To prevent degradation of performance, searching
SYSEXEC is optional, allowing the user to bypass a
search of that file. Bypassing the search is also the
most efficient method of using the virtual lookaside
facility, a method of retaining CLISTs or execs in
storage. It assures the shortest path by avoiding the
input operation needed for loading. Yet if mostly
execs are used, they can be stored in SYSEXEC, which
remains open, avoiding the OPEN/CLOSE forced by
CLIST.

Function packages. Function packages are an addi-
tional method of improving performance of appli-
cations written in REXX. The packages are not part
of the REXX language or SAA/PL; however, they are
implemented in cMS. CMs allows one or more func-
tions or subroutines commonly called by execs to be
packaged and made quickly accessible, which im-
proves performance. The performance gain is
achieved by preloading the entire package once and
retaining it in storage, thereby preventing the need
for multiple loads, one per function, and repeated
loads, one per invocation. Additional performance
is gained because these packages are first in the search
sequence for functions or subroutines. Usually serv-
ice routines are placed into packages, but the package
capability is sufficiently general to allow any program
called as a function or subroutine to be placed in a
package. (Execs cannot be placed into packages.)
The design of packages and the interfaces to the
package are generalizations of the CMS implementa-
tion, again providing a great deal of compatibility
between these two systems.

A package is associated with a language processor
environment and is inherited from the parent lan-
guage processor environment. The design allows for
three types, or levels, of packages. Each level can
hold multiple packages. Each package may contain
multiple functions or subroutines. It is expected that
products will provide special RExx functions or sub-
routines to create their own packages. On the basis
of this assumption, it is necessary to allow a given
user to run with those packages supporting the prod-
ucts he or she plans to use.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Packages can be placed on one of three levels: the
user level, the local level, or the system level. As the
name implies, the first of those levels is intended for
private packages written by the user. Functions in
these packages are searched before either of the other
levels is searched. If a function or subroutine is found
on this level, the search is terminated and use of that
function or subroutine is given precedence over func-
tions or subroutines in packages on other levels. The
local level is for packages supporting local applica-
tions, and again, functions and subroutines on this
level have precedence over those on the system level.
The system level is for packages supporting products.
There is no mechanism to enforce the placement of
packages on any given level; it is only a convention.

Concluding remarks

An interpreter for the RExX language (the SAA/
Procedure Language) has been added to TSO/E. This
interpreter is not only capable of interpreting execs
(programs written in RExX) in the TSO/E address
space, but in any Mvs address space.

In a non-TsO address space, execs can serve as com-
mand languages for any product or application or
can be used as a general-purpose programming lan-
guage particularly well-suited for high productivity
in creating prototypes.

If execs are interpreted in the TSO/E address space,
they have all of the capabilities of CLIST (the TSO/E
command language supported in previous TSO/E re-
leases) but a much richer set of functions. They can
call cLISTs, CLISTs can call execs, and the same com-
mands can be invoked from execs as from CLISTs.
For applications written in CLIST, CLISTs can be trans-
lated into execs one at a time, because externally the
two cannot be distinguished.

A data stack facility has been added which is a
superset of the cMs stack and which is available in
any address space. This stack can, but need not be,
shared among execs interpreting on different mvs
tasks in the same address space and can be used as
an additional method of sharing data among many
programs and/or execs.

Execs are interpreted within their own execution
environment, called the language processor environ-
ment, that allows a high degree of customization
when it is first established. With this environment
the creator of the environment can specify defaults
and routines which intercept and/or modify virtually
all system-oriented calls that optimize performance.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

In both TSO/E and non-Tso/E address spaces the ad-
dition of the interpreter provides another platform
upon which applications can be built for execution
on Mvs, for porting to or from cMms, or for porting to
other SAA environments.

MVS/ESA, NetView, and MVS/XA are trademarks of Interna-
tional Business Machines Corporation.

Cited references and notes

1. M. F. Cowlishaw, The REXX Language, Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1985), p. ix.

2. The TSO/E limit is just under 16 megabytes.

3. TSO/E Release 2.1 of MVS (TSO/Extensions of Multiple
Virtual Storage), will be discussed in the next subsection.
Release 2.1 of TSO/E is supported both as an MVS/XA™
(Multiple Virtual Storage/Extended Architecture) feature and
as an MVS/ESA™ (Multiple Virtual Storage/Enterprise Sys-
tems Architecture) feature. The REXX function described in
this paper applies equally to both features. See 7SO Extensions
Version 2, REXX Reference, SC28-1883, and TSO Extensions
Version 2, REXX User’s Guide, SC28-1882, IBM Corporation;
available through IBM branch offices.

4. A program written using the SAA/PL or REXX language is
normally referred to as a REXX exec or simply an exec. An
exec is interpreted by a program called the REXX interpreter
or simply the interpreter. In the CMS implementation, the
interpreter is called the System Product Interpreter.

5. M. F. Cowlishaw, “The design of the REXX language,” IBM
Systems Journal 23, No. 4, 326-335 (1984).

6. TSO Extensions Command Language Reference SC28-1307,
and 7SO Extensions Command Language Implementation
and Reference, SC28-1304, IBM Corporation; available
through IBM branch offices.

7. VM/SP System Product Interpreter Reference, SC24-5239, and
VM/SP System Product Interpreter User’s Guide, SC24-5238,
IBM Corporation; available through IBM branch offices.

8. C. E. Clark, “The facilities and evolution of MVS/ESA,” IBM
Systems Journal 28, No. 1, 124-150 (1989).

9. Systems Application Architecture, Common Programming In-
terface—Procedure Language Reference, SC26-4358, 1IBM
Corporation; available through IBM branch offices.

10. Announcement of SAA/PL, Announcement Letter 287-088,
IBM Corporation; available through IBM branch offices.

11. IBM TSO Extensions Version 2, Announcement, April 19,
1988, IBM Corporation; available through IBM branch offices.

12. L. Woodrum, Indirect Indexed Searching and Sorting, IBM
Corporation, U.S. Patent Number 3,611,316 (October 5,
1971); L. Woodrum, Directory Generation System Having
Efficiency Increase with Sorted Input, IBM Corporation, U.S.
Patent number 4,086,628 (April 25, 1978).

Gerhard E. Hoernes /BM Data Systems Division, P.O. Box 390,
Poughkeepsie, NY 12602. Dr. Hoernes is a senior programmer
and was responsible for the design of REXX in TSO/E. He has
published papers on logic design, microprogramming, and data-
base, is the author of a book on logic design, and is a contributor
to the first edition of the Handbook of Electronics. He holds several
patents and has received IBM awards for patent activity and his
outstanding contributions. Dr. Hoernes has also taught extensively
both in and outside of IBM, and has been associated with the
computer science department of Vassar College.

Reprint Order No. G321-5359.

Hoernes 293

