
System-independent
file management and
distribution services

I

by J. C. Ashfield
D. B. Cybrynski

Applications universally require files to move from one
location to another. Although different applications
may use files differently, many of the files are of the
same type. The identifying, fetching, moving, and stor-
ing functions are the same for all applications and can
be most efficiently provided by a common process.
Various applications can invoke the common process,
which performs the required operations independently
and notifies the appropriate applications when they
are completed. In Systems Network Architecture (SNA)
networks, the common process is an SNAIDistribution
Services (SNAlDS) server defined by SNAlFiIe Services
(SNAlFS). The invoking applications are SNAlDS
agents of various types. This paper describes the role
of the agent in invoking the file transfer and the role of
the SNAIFS server in fetching and storing the file. It
also describes the SNAlFS architecture for uniquely
naming files and data objects. One example of an
SNAlDS agent that uses the SNAlFS server is the
change management category of SNAIManagement
Services, described in another paper in this issue.

W hen an organization connects two or more of
its computing systems together by means of

communication links, the first use of the connection
is typically to move copies of data files or programs
between the systems. For small networks of homo-
geneous systems, simple point-to-point transfer pro-
grams administered by operators at both ends are
adequate. The successful operation of a variety of
file transfer products attests to the practicality of this
approach.

For large networks of heterogeneous systems with
heavy volumes of file movements, the situation is
different. The techniques that work adequately in
small homogeneous networks give rise to difficulties
when attempts are made to apply them to large
networks. Sy:tems Network ArchitectureIFile Serv-
ices (SNA/FS), has been designed to overcome the
difficulties:

1. Limitations of point-to-point-Most file transfer
products presume a point-to-point operation, per-
mitting operators at both ends to be involved in
the file movements. The operators can plan the
transfer work and resolve problems by a tele-
phone call.

In large networks, file transfer operations may
involve more than two locations. A requester at
one node might wish to move files from a second
node to a third node, and perhaps to a fourth and
fifth node. Sometimes copies of one file are sent
to hundreds of nodes. It would be impractical to
involve operators at every location and to attempt
to resolve problems by telephone.

0 Copyright 1989 by International Business MachinesCorporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989 ASHFIELD AND CYERYNSKI 241

Increasingly, large networks include personal sys-
tems and small departmental systems. These sys-
tems are often unavailable simply because they
are turned off. It would be impractical to wait
until all the nodes required for a particular file
transfer happen to be available.

SNA/FS file transfers can involve many nodes in
various roles. s N A / F s defines extensive exception-
detection and reporting mechanisms to facilitate
unattended and centralized operations for nodes
in any role. It uses a store-and-forward commu-
nication facility to transport requests, files, and
reports between locations so as to obviate the
need for concurrent availability.

2. Problems due to local naming-Typically, data
processing operating systems were developed on
the assumption that each system would operate
independently, with total control over all of its
resources. The effect of this assumption particu-
larly impacts the techniques used to identify the
files that are moved around the network. Tradi-
tionally, each system controlled the names of its
files and would ensure that the names were
unique. For example, at system A a name such
as FILE1 would refer to one and only one data file.
At system B, however, the name FILE1 could refer
to a completely different data file. This approach
is termed local, or location-dependent, naming.

Anyone wishing to send a file to a particular
system, called the target system, would be re-
quired to identify the file according to whatever
resource-naming rules applied at that system. In
other words, no matter what name might have
been used to identify the file at the location it is
to be sent from, called the source, the name used
at the target would have to conform to the rules
there. For example, if a user wished to send the
file known as FILE1 from system A to system B,
the user would have to ensure that another FILEI
did not already exist on system B. If it did, the
user would have to assign the file a new name
that did not conflict with any of the existing
names at the target. Typically, the names at the
target system would conform to a naming con-
vention established by the people responsible for
operating that system. Therefore, the people at
the source system would have to be aware of both
the already assigned names at the target and the
conventions used for assigning new names there.

When copies of files have been sent to other
systems, there is often a need to maintain records

242 ASHFIELD AND CYBRYNSKI

of what files are at which locations or, alterna-
tively, to enquire of a location what files reside
there. With purely local naming, most files would
have a different name at every system. For net-
works of even modest size, purely local naming
results in unacceptable complexity.

The alternative to local naming is global naming.
SNA/FS formally defines a naming technique that
supports global naming.

3. Naming incompatibilities with heterogeneous
systems-A further naming complication arises
when networks contain a mix of system types.
Each system type has its own rules for expressing
file names. Usually, the names are split into sev-
eral tokens. The number and lengths of these
tokens, the character sets allowed, method of
delimiting tokens, and overall maximum lengths,
all differ from system type to system type. A
lowest common denominator set of rules could
produce names that would be legal in all systems,
but such names would be too limited to support
global naming.

SNAIFS defines rules for encoding its global names
that are independent of all system-specific naming
rules and comprehensive enough to meet the
requirements for enterprise-wide and industry-
wide global names.

4. Informal and system-specific version control-
When files are updated, it becomes necessary to
distinguish between old and new versions without
losing the basic identity of the file. There are
various system-defined mechanisms for this, such
as the generation data groups in Multiple Virtual
Storage (MVS). Alternatively, some applications
implement their own private method of identify-
ing versions. When objects are moved from one
system type to another and from one application
area to another, the incompatibilities between the
various forms of version control are a problem.

SNA/FS defines a mechanism calledpartial naming
by which each application can specify which parts
of the global name are to be used for version
control; these parts need not be precisely specified
by the user.

5. System-specific file classification-Many of the
system-specific naming conventions are designed
both to identify an individual file and to indicate
particular file attributes. For example, in one
system the name FILE1 SCRIPT A identifies FILE1
and indicates that it is appropriate input for pro-

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

grams that process SCRIPT. In another system
DIRS\PROG~.EXE identifies P R O G ~ in directory
DIRS, and the EXE indicates that it is executable.
The tokens SCRIPT and EXE classify the file. Proc-
esses that operate on only certain classes of files
test these tokens and depend upon their presence
and correctness; other processes ignore them.
Their significance depends upon the intention of
the process. For example, a copy utility might
handle files of any class, whereas a loader might
refuse to load any files that are not of the class
EXE because the intention of the loader is to
initiate execution. Unfortunately, different sys-
tems use different approaches to classify files. The
variety of systems in a mixed network further
complicates the problem, because what is execut-
able in one system is probably not executable in
another, although it should be able to be stored
there.

In SNA/FS, file classifications are explicitly speci-
fied in canonical classification codes that are in-
dependent of the global name. In addition, SNA/FS
defines an intention code so that the file classifi-
cation and intended use can be related to the
capabilities of the target.

Problems not addressed by SNA/FS. The following
three items are areas in which problems occur that
are not addressed by SNAIFS:

1. Record-level processing-sNA/Fs is designed to
work with whole files. It does not identify individ-
ual records within a file. Accessing individual
records within a file on a remote system is best
done using implementations of Ptr ibuted Data
Management (DDM) architecture.

2. Contents conversion-Although it would be con-
venient for the transport facility to resolve minor
incompatibilities between files from different sys-
tems, such as ASCII versus EBCDIC codepoints for
text, SNAIFS does not attempt to do so. Although
ASCII versus EBCDIC is an example of a character-
istic that can apply to the file as a whole, it is an
exception. Most differences between files are not
properties of the file as a whole. Usually the
differences are at the level of fields within a record;
some fields are characters, others are various sorts
of arithmetic variables. Detailed definitions of
each field are needed to convert such files. SNAIFS
neither identifies records nor defines fields within
records.

3. Communications-sNA/Fs defines the fetching
and storing of files at their origin and destination.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

The queuing, scheduling, and managing of the
communications is performed by SNA/Distribu-
tion Services (S N A J D S) . ~ . ~ The actual transfer of
data is performed by Logical Unit Type 6.2 (LU
6.2)5’6 and the lower layers of SNA.

Locations and roles. SNA/FS has a rich concept of
locations and the various roles that each location

SNA/FS is designed to work
with whole files.

can play. This characteristic contrasts strongly with
single-system image architectures which provide
transparency. In other words, they completely shield
the user from having to be aware of locations. DDM’
is designed to operate with that kind of transparency.
SNA/FS would have a limited purpose in such an
environment. Not only are SNA/FS requesters usually
aware of other locations, they know when those
locations need to have files transferred to them.

SNA/FS location concepts are also richer than the
pair-oriented architectures used to describe point-to-
point/terminal-to-host connections, for example, LU
6.2 and LU 2. Point-to-point situations have an ad-
vantage in that problems of capabilities and com-
patibilities are readily resolved by immediate nego-
tiation. SNAIFS cannot presume a point-to-point, con-
current-availability situation. Therefore, the most
likely problems must be anticipated, and their pre-
ferred solution must be indicated or implied in the
request.

SNA/FS defines four roles. All of them can be involved
in a single request, and there can be multiple nodes
in the target role. For example, as shown in Figure
1, a user at node A might request node B to send a
file to nodes C and D. SNAIFS identifies node A as
the requester location, node B as the source location
(meaning the location that contains a copy of the file
to be distributed), and nodes C and D as target
locations (meaning the locations to which a copy of
the distributed file is sent).

ASHFIELD AND CYBRYNSKI 243

Figure 1 SNAlFS roles and locations

SNA/DS
NETWORK

FLOWS: REQUESTING -"-----
TRANSFERRING
REPORTING

SNA/FS also has the notion of a report-to location.
SNAIFS reports can be sent to whatever location the
requester chooses. Figure 1 depicts a typical unit of
work for SNA/FS. The requester is located at node A
and the source at node B. C and D are two target
nodes, and E is a report-to node. The cloud-like
shape represents a general-purpose distributed sys-
tem (DS) network, consisting of an indefinite number
of intermediate DS nodes, none of which needs to
have any SNAIFS capability. The various lines through
the cloud depict the request, transfer, and report
flows required to perform an SNA/FS operation.

Not all SNA/FS requests involve this many locations.
Sometimes there is only one target, and one location
can serve multiple roles. In the case of a file fetch,
the requester and target are the same location. In the
point-to-point transfer case, the requester and source
are the same. Often, the report-to and the requester
location are also the same.

244 ASHFIELD AND CYERYNSKI

SNA/FS global naming

SNA/FS introduces a formally-defined global name for
files and data objects. In distributed networks, those
files that are of interest beyond their local system are
assigned a name that is unique within the wider area
of interest. The term global is used to distinguish
this type of name from the traditional local name.

Global naming itself is not a new concept. The
notion of global LU names was introduced to SNA
some years ago. The global naming of files has been
practiced within organizations on an informal basis
since the impracticality of local-only naming became
apparent. SNA/FS formally defines a structure for a
global name and extends the area within which a
global name must be unique to encompass all orga-
nizations using SNA. In other words, SNA/FS defines
a cross-enterprise global name. It also formally de-
fines an encoding of the name token string that is
independent of operating system specifics.

The simplest technique for assigning global names is
to concatenate the location name (assuming that it
is known to be unique) with its local file names. This
is called location-dependent naming. It is appropri-
ate for files whose identity is naturally tied to a
particular location and in which interest is limited
to a small area. However, it is inappropriate for files
in which there is enterprise-wide, or cross-enterprise,
interest. It is especially inappropriate for files that
are moved from one location to another or that have
copies at multiple locations.

The best global name assignments are location in-
dependent. The identity of every file can be tied to
some higher-level grouping-if not location, perhaps
organization, or country. The technique used by
SNA/FS is to allow any higher-level grouping to be
used. Location is just one of many higher-level
groupings possible in SNA/FS global names.

SNAIFS global names consist of a string of tokens,
arranged in hierarchical order, with the leftmost the
highest, or root, token. The values for each token
position are qualified by the higher-order token on
its left and, therefore, need be unique only within
that token.

Values for the leftmost tokens are assigned by SNA.
Assignment ensures the value is unique and registers
the value and the identity of its owner. For example,
MCODE has been, assigned to SNA/Management
Services (SNAIMS). Since SNA/MS owns that value,

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

when the leftmost token is MCODE, SNA/MS is respon-
sible for assigning the values for the token immedi-
ately to the right. For the tokens further to the right,
SNA/MS can either assign values or delegate the re-
sponsibility to some appropriate authority.

Appropriately designed name strings can make the
delegation of responsibility reasonably straight-
forward. For example, in the name string
MCODE.9135.MOD2.MAINTEC.12345 the second token
position contains the IBM machine number, and the
fifth contains the maintenance EC numbers for the
9 135 machine. Both of these numbers are adminis-
tered by an assigning authority, in this case certain
departments within IBM, whose responsibilities in-
clude the administration of those numbers. The fact
that their numbers are incorporated into SNA/MS
object names adds nothing to their already existing
responsibilities. Similarly, many other kinds of ob-
jects will be found to already have some sort of
distinguishing serial number that can be incorpo-
rated into the name string.

The notions of structuring a name into a string of
hierarchical tokens and using that structured name
to achieve location independence are becoming
more commonly accepted throughout the industry.
It is hoped that standards organizations will take on
the responsibility for managing more token spaces
with the eventual result that the same object names
could be used in a variety of network types.

The catalog

The advantages of globally unique, system-inde-
pendent names for all files and data objects in a
network, or any collection of interconnected net-
works, are very important. For existing systems,
global naming is achieved at the price of an extra
level of catalog. A catalog is a listing of the names of
files and data objects at a location. The traditional
catalog contains local names and supports references
to the files by local names. The additional level of
catalog contains the mapping of global to local
names and supports references to those files by global
name. Existing systems will continue to support their
own local names. Every source node must convert
its local name to the global name before sending a
file; every target node must do the reverse before
storing it. For new systems with few locally created
files, local naming can be completely avoided. All
references are by global name, and a single level of
catalog containing only global names is all that is
needed.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Figure 2 depicts the situation in a network just as
file M C O D E . ~ ~ ~ ~ . M O D ~ . F I X . ~ ~ ~ ~ S leaves the source node.
The source node in this example keeps a variety of
different files in a large holding area. Its catalog maps

A data object cannot be updated
or changed in any way.

the data-object names to a local member name
within the holding area. The target node, in contrast,
keeps each file as a separate entity. Its catalog con-
tains individual local addresses for each file.

The SNA/DS distribution is depicted by the large
arrow flowing from the source to the target. It con-
tains, among other things, the global name and the
data-object contents. It does not contain any local
names, source, or target. Only the global name flows
in the distribution. The distribution also contains an
instruction for the target node to create and load a
“new” file. The file will be new to the target node.
From the perspective of the enterprise, however, an
existing file is being replicated at the target location.

The target catalog, shown before the distribution
arrives, does not contain a copy of the file it is about
to receive. After the file has been received, a new
entry is inserted into the target catalog, as shown
after the transfer is complete. The local addresses are
assigned by the target system, ensuring no duplica-
tion with existing local files. The copy of a file and
its catalog entry at the source remain unchanged
throughout the process.

Partial name processing

The SNA/FS mechanism for identifying and control-
ling different versions of updated files is called partial
name processing. It depends upon the SNA/FS notion
of a data object, identified by the complete global
name, and the traditional notion of a file, identified
by part of the global name.

In SNA/FS, a data object is a named entity that cannot
be updated or changed in any way. If the smallest

ASHFIELD AND CYBRYNSKI 245

Figure 2 Example of catalog changes when transferring a file

kd GLOBAL NAME . . .
MCODE.9135.MOD2.FiX.12345
MCODE.9135.MOD2.MAINTEC.23456
MCODE.9135.MOD2.PATCH.12345

IIII . . I LOCAL NAME 8 STORAGE ADDRESS I
HOLDING.AREA(memberl47)
HOLDING.AREA(memberl49)
HOLDING.AREA(memberl48) .

I

SNA/DS NETWORK . r-
/

SOURCE
LOCATION

instruction=Create&Load
data-object name-MCODE.9135.MOD2.FIX.12345
data-object contents='xxxxxxxxxxxxxxxxxxxxxx

TRANSFERRING FLOW

TARGET
LOCATION

TRANSFER
BEFORE

GLOBAL NAME

. .
MCODE.9135.MOD2.MAINTEC.23456
MCODE.Ql35.MODZ.PATCH.12345 .

I I

LOCAL NAME 8 STORAGE ADDRESS

. . .
local.file.address27
local.file.addressl2 .

246 ASHFIELD AND CYBRYNSKI IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

change is made to the bytestream constituting a data
object, it is no longer the same data object and
cannot be identified by the same name. In other
words, the slightest change to what was one data
object creates a new and different data object that
requires a new and different name. However, the
difference in names may be very small. For example,
in most systems when a file is edited and then saved,
the date and time at which the file was saved are
captured and kept with the file. In SNA/FS, the date

Partial naming allows users
to express their concept

of a file when they design
their global names.

and time would be considered to be part of the data-
object name, and the freshly stored version of the
file would be a different data object with a different
name, because the date and time values would not
be the same. This precise definition of a data object
allows SNA/FS to ensure that all copies of the object
identified by a global name are absolutely identical.

However, users often tend to think of their files as
ongoing entities that are essentially the same thing
even though they may be frequently updated. In the
example of the time-stamped file, the user would
wish to use the same name every time he or she
edited it. In fact, it would be extremely inconvenient
for the user to have to key in the precise date and
time of the last update. SNA/FS resolves this conflict
between the needs for naming ever-changing files
and unchangeable data objects by the notion of
partial naming. S N A ~ F S does not precisely define the
concept of a file. Different systems and different
applications define their files differently. Partial nam-
ing copes with these differences by allowing the part
of the global name that identifies whatever the user
thinks of as a file to be defined by that user. In other
words, partial naming allows users to express their
concept of a file in terms of SNA/FS data objects when
they design their global names. In practice, one
systems administrator would design data-object
naming conventions for collections of files for groups

IBM SYSTEMS JOURNAL, VOL 28, NO 2. 1989

of users where both users and files were spread over
many locations.

Designing a data-object naming convention requires
that each token position be designated as Must
Match or Need Not Match. Typically, tokens such
as date and time or version number would be des-
ignated Need Not Match, and tokens that the user
wished to identify the file with would be Must Match.
If only one version of a file existed, the Must Match
tokens alone would suffice to identify it. If two
versions of the same file existed, the Must Match
tokens alone would match with both. When SNA/FS
discovers that multiple names match on Must Match
tokens, it uses additional matching information and
the Need Not Match tokens to identify the particular
file. In a properly designed naming convention, one
or more of the Need Not Match tokens contain a
tie-breaking value, such as date or version number,
that always increases with time. A tie-breaking value
allows the user to request the oldest (or newest)
version without having to know its precise Need Not
Match token value. Instead of specifying a token
value, the user supplies a matching indicator, either
Select Low (the oldest) or Select High (the newest)
for whichever token position contains the tie-break-
ing version number.

When a file has been changed and the user wishes to
save it, it must be assigned a partially different name
because the changed file is a different data object.
When a replacement is made, SNA/FS requires that
the new data-object name match all of the Must
Match tokens in the old name. Therefore, the name
must contain at least one Need Not Match token,
and the different data object must have a different
value for that token. Although users may think that
one version of their file is replacing another, in terms
of the data objects constituting that file, one data
object is deleted and another is created. From an
SNA/FS perspective, the two data objects are unrelated
except for their common Must Match tokens. There-
fore, when replacing is being done, a requester must
identify both the new data object and the data object
to be deleted. Since the names must be at least
partially identical, the requester needs to supply one
string of the common, Must Match, tokens plus
enough additional information about the objects
individually for SNA/FS to make the distinction be-
tween them.

In the example illustrated in Figure 3, all of the data-
object names have one token (the sixth) that contains

ASHFIELD AND CYBRYNSKI 247

Figure 3 Example of catalog changes when replacing a file

GLOBAL NAME

b

MCODE.6270.MOD1.PATCH.132.871103
MCODE.6270.MODl.PATCH.132.880223
MCODE.627D.MODl.PATCH.132.880311

ATTRIBUTES

MMnMMn
MMnMMn
MMnMMn
MMnMMn

L

LOCAL NAME 8 STORAGE ADDRESS I . . 1
HOLDING.AREA(member247)
HOLDING.AREA(member248)
HOLDING.AREA(member249)
HOLDING.AREA(member250) . .

b 1 I I

x x x x x x x x x x x x x x x x x

ATTRIBUTES

MMnMMn. ...
MMnMMn....

b . .
MCODE.6270.MOD1.PATCH.132.871103
MCODE.6270.MODl.PATCH.132.880223 . .

0

LOCAL NAME 8 STORAGE ADDRESS . . .
local.flle.addressl4
local.flle.addressl8 .

b .

248 ASHFIELD AND CYBRYNSKI IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

a version date. In both the source and target direc-
tories, all of the data-object names within that name
collection have token attributes of MMnMMn. This
means that the first and second tokens are Must
Match, the third is Need Not Match, and so on. The
attributes of each name are stored in the catalog
along with the name itself. The diagram includes the
SNA/DS message unit that would flow from the source
to the target. In this case, the SNA/FS Server instruc-
tion is Replace. The Replace instruction contains
the complete name of the new data object plus a set
of To Be Deleted indicators that, when combined
with the name of the new object, will suffice to
identify the old object to be deleted. The target
catalog is shown both before the message unit arrives,
when 871 103 and 880223 are in storage, and after
the replacing operation is completed, when only two
versions of this file are still at the target, but now
they are 880223 and 88031 1. In other words, the
Replace instruction and the information to be de-
leted have resulted in 8803 l l replacing 87 l 103.

Need Not Match tokens are not limited to arithmetic
values. For example, users could control their own
versions with names such as MYPROGOLDEST, MY-
PROGLESSOLD, and MYPROG.NEW, where the token
on the right was designated Need Not Match. As
another example, global names could include tokens
that are meaningful to a human reader when the
names are displayed but are not essential to the
SNA/FS name-matching process. For example, the
first five tokens in the strings M C O D E . ~ ~ ~ ~ . M O D ~ -

.ADAPTER serve to uniquely identify the data objects.
The sixth token is designated Need Not Match. It is
not required to make the name unique. However, it
conveys attribute information that is useful to the
planner, and having it routinely displayed as part of
the object name is convenient.

When creating a data object at a target, a complete
global name must be placed in the catalog entry.
However, it may be inconvenient for the requester
to specify all of the Need Not Match token values
precisely. In this case, the requester can specify the
name partially and cause the target SNA/FS server to
generate and insert the appropriate value for the
other tokens. For example, sequential numbers can
be automatically incremented, and date and time
values can be obtained from the clock of the target.

Classifying files

The tokens used in local names on most systems
today often are a mix of instance identifiers, such as

.FIX.12345.PRINTER and MCODE.9135.MOD2.FIX.23456-

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

serial numbers, and file classification identifiers, such
as SCRIPT or TXT. Applications will often define their
SNA/FS global names with similar mixtures.
For example, the SNA/MS name MCODE.9135.MOD3-
.PATCH. 12345 contains classification information,
such as PATCH, that change-management appli-
cation; need. However, classifications imbedded in
the MCODE global name are only available to appli-
cations that understand the MCODE name tree. Ap-
plications conforming to a cross-system architecture
such as SNA/MS do not find this difficult.

In contrast, programs, such as editors, each of which
conforms to its particular operating system, rather
than a cross-system architecture, have no global
naming convention in common. Furthermore, the
classification imbedded in the local name of one
system is incompatible with that of other systems.
For example, SCRIPT and TXT are values imbedded
in two different local name strings. Obviously, the
values are different, but more confusingly, some TXT
files can be processed by a SCRIPT-capable program,
others cannot, and vice versa. If such programs are
to exchange the kind of classification information
that they need, a common canonical form of classi-
fication must be used. SNA/FS defines a classification
code for this purpose.

SNA/FS avoids any dependency upon classifications
imbedded in data-object names, thereby relieving
the global name designers of any requirement to
include operating-system-specific name tokens.
Users are free to include type application classifica-
tions as part of their global name. In fact, it would
be difficult to preclude all connotation of classifica-
tion in a naming convention. However, any such
imbedded classifications cannot be recognized by
system or SNA/FS facilities.

SNA/FS formally provides file classifications for all
files that can appear in FS catalogs, from card images
to print fonts to memory dumps. When files are
introduced to the SNA/FS world, their classification is
supplied to, and subsequently maintained in, the
global catalog. Just as the catalog serves to map the
global names to local names, it can also support
mapping or cross-checking global classification codes
to classifications imbedded in the local name, at least
for those file classes pertinent to the particular sys-
tem.

SNAIFS classification codes are particularly useful in
identifying classes of files that are common to many
systems. Examples of such generic files are process-

ASHFIELD AND CYBRYNSKI 249

Figure 4 Fragments of the data-object classification table

I SNA/FS OATA-OBJECT CLASSlFlCATlONS

LEVEL 1

Executable

LEVEL 2

System
microcode

-“--l

LEVEL 3 LEVEL 4 1 2

Patch Canonical 10 10
System 9135 10 10

Fix Canonical 10 10

System 9136 10 10
System 5780 10 10

Malnt-EC Canonical 10 1 0

L

software

“-----

Application System
software 290 Interpretable source 10 40 4

Pseudo code
Unlinked object 10 40 40 40
Relocatable object 10 40 40 50

10 40 40 60
-40 40 70

Keyed Canonical Fixed 20 20 00 10
Variable 20 20 00 20

able flat files and printable documents. One can
imagine a file known locally at the source as SCRIPT
being converted to the generic SNA/FS classification
code, shipped to multiple targets, and being recon-
verted to TXT at one target and to DOC at another.

Other file classes are specific to a particular system-
an executable load module, for example. The hier-
archical structure of the classification codes allows
for system-, product-, and customer-specific classifi-
cation as well.

The classification code is permanently associated
with a data object. The classification of a data object
cannot be changed, just as its global name cannot

250 ASHFIELD AND CYBRYNSKI

be changed, without creating a new data object with
a new name. However, just as a file is deemed to be
the same file even when a new data-object version
of it replaces the current one, a file would also be
deemed to be the same file even if a new data object
of a different name and classification replaces the
current one. When copies of the data object are
transported to other locations, the classification code
accompanies them.

The classification is encoded in a series of registered
code points arranged in a hierarchy of four levels.
Each level allows 256 codes, i o the complete code is
mathematically limited to 2 possible values. Reg-
istered codepoints save space in message formats and
internal tables and facilitate national language sup-
port.

The first, or highest-level, byte identifies the major
category, which could be executable, processable,
presentable, or maintenance information. The
meaning of the second, third, and fourth bytes de-
pends upon the value(s) of the higher-level bytes.
The table containing all of the assigned code points
is large. Figure 4 illustrates some fragments of that
table.

Intention. The requester’s intention can be useful to
the SNAIFS server when it decides whether or not to
accept the file. Accordingly, the intention accompa-
nies files to the target as a parameter of the server
instruction. The target can determine whether or not
to proceed with the receiving and storing operation
on the basis of whether the intention is storing,
processing, or executing.

Determining file acceptability

The target server can compare the requester’s inten-
tion, the file classification, and the capabilities of the
target system to determine whether or not the file
should be accepted. The capabilities of the target
system are expressed in a data-object acceptance
table. Each system type would have a differently
defined table. The fragment of a table shown in
Figure 5 illustrates how the capabilities of a fictitious
System/290 would be defined for the data-object
classes shown in Figure 4.

For example, imagine that a data object classified as
10,30,40,50 was amving at this fictitious System/290
target location. The acceptance table is scanned from
the top down and the “**” entries mean none of the
above, so 10,30,40,50 finds a match at 10 ** ** **

IBM SYSTEMS JOURNAL, VOL 28, NO 2. 1989

If the incoming instruction had an intention of stor-
ing, the target would accept the data object because
of the “yes” in the storing column of the table. In
contrast, the same data-object classification would
be rejected if the accompanying intention was exe-
cuting. Referring back to the classifications in Figure
4, we can see that 10,30,40,50 means System/9135
object code. The only class 10s that the System/290
will accept for executing must begin with 10,40”its
own system-specific executable classes.

Use of SNA/Distribution Services

SNA/DS defines the connectionless transport that sup-
ports the SNA/FS requirements described above.
SNA/DS is a general-purpose communications service
that transports application-defined data, known to
SNA/DS as “objects,” to one or more specified desti-
nations. SNA/DS is completely insensitive to the ob-
ject contents, which it encapsulates in a distribution.
A distribution may be stored and forwarded by “in-
termediate” nodes (i.e., neither the origin nor the
destination of the request). A multiple destination
distribution will be distributed, that is, copies will be
“fanned-out” as it is transported across the network.

At the origin and destination of a distribution,
SNA/DS may interact with two application-defined
entities-the server and the agent. The distinction
between these two entities is made for two reasons:

SNA/DS interacts with them at different times. The
originating agent interacts with SNA/DS at request
time. Sometime later, at on-the-fly send time the
server fetches the server object and feeds it piece
by piece to SNA/DS as it is sent out over the
connection. At the destination, the receiving
server stores the server object piece by piece at on-
the-fly receive time. Sometime later yet, the desti-
nation accepts the distribution at delivery time.

This relationship is illustrated in Figure 6. The
interaction between the agent and SNA/DS takes
place within the node across the SNAIDS request
protocol boundary (PB). The interaction between
the server and SNA/DS takes place across the SNA/DS
server PB.

One server can provide common function for a
variety of agents. Equally, one agent may make
use of different servers to assist in the movement
of different kinds of objects. Distinguishing be-
tween agent and servers permits efficient packag-
ing of function.

IBM SYSTEMS JOURNAL, V O L 28, NO 2, 1989

Figure 5 Sample data-object acceptance table

DATA-OBJECT ACCEPTANCE TABLE

CLASS CODE ifj
20 20

INTENTION

t 4 EXEC

** YES

** NO

YES

YES

YES

A distribution can carry two objects, an agent object
and a server object. The agent object is limited in
size and is accepted directly from the originating
agent and delivered directly to the destination agent.
The server object is unlimited in size and resides on
a nonvolatile storage medium. The requester iden-
tifies the server object at request time, and it is
fetched by the originating server at on-the-fly time.

SNA/DS transports the agent object from the originat-
ing agent to the destination agent and the server
object from the originating server to the destination
server. SNAIDS does not transport anything from the
originating agent to the destination server or from
the originating server to the destination agent. Any
interaction between servers and agents takes place
within a node.

Figure 6 shows an SNA/MS agent communicating with
another SNA/MS agent via the agent object and caus-
ing the source SNAIFS server to communicate with
the target SNAIFS server. It would be equally possible
for other sNA/Fs-capable agents to cause the origi-
nating SNA/FS server to communicate with the target
SNA/FS server. It is the differentiation of agent and
server function that allows different applications,
which act as agents, to share the common SNAIFS
function, which is provided by the one server.

Figure 6 SNAlFS use of SNAlDS

SNA/FS SOURCE LOCATION

SNA/DS REQUEST PB """""_

""""""_
SNA/DS TRANSPORT

SNA/DS NETWORK
--".

- AGENT OBJECT

SNA/FS
CATALOG

OBJECTS

\ 1

TRANSFERRING
FLOWS

I SNA/FS TARGET LOCATION

' SNA/DS REQUEST PB

SNA/DS ROUTING
AND QUEUING

DELIVER Qs t
"""""""""Fa

SNA/DS TRANSPORT

1 J

At the origin, the agent includes server instruction
information in its request to SNA/DS, which passes it
to the server when the time comes to send the
distribution. The server needs that information to
identify the file or files to be fetched. In certain SNA/FS
roles, there are no files to fetch, but some SNAIFS
server instruction information is involved in all
SNAIFS roles. The agent includes it, expressed in verb
operand form, in its request to SNA/DS. At sending
time, SNA/DS passes it on to the server, which creates
a server object by encoding the information into the
SNA/FS-StructURd format that can be understood by
the SNA/FS server at the destination. If files are iden-
tified, they are also fetched and encoded into the
server object.

At the target, an SNA/FS server receives the server
object bytestream and decodes it. If data objects are
included, they are stored as specified in the SNAIFS
server instructions. The server reports its actions and
identifies any files it may have stored by creating a
server report, in verb operand form, and passing it
to SNA/DS for delivery to the destination agent.

Function and roles of the SNA/FS server

Since each SNA/FS operation involves two or more
servers, the requesting agent must be able to explic-
itly instruct each server, both defining its role and
specifying what must be done in that role. At the
requester location, the server will simply encode the
SNAIFS control information. The instruction for this
role is Encode Only. At the source location, the
receiving server decodes the SNA/FS control infor-
mation, as directed by the Decode Only instruction,
and then the sending server fetches the data object
and encodes it into SNA/FS formats, as directed by
the Fetch instruction. Finally, at the target location,
the receiving server stores the data object, as directed
by one of several possible storing instructions.

TWO of the storing instructions, Create&Load and
Replace, were illustrated in the examples in Figure
2 and Figure 3. Other server instructions include
Delete and Create&Load Or Replace.

SNAIFS-defined server objects. SNA/FS servers gen-
erate and understand sNA/Fs-defined server objects,
which contain the following:

Instructions-sNA/Fs server instructions specify
the action requested of the server (e.g., fetch, cre-
ate, delete). Since an agent request may involve
servers at several locations, a server object may
contain several server instructions. The first server

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

instruction in the string is performed and then
taken off the string. By the time the object arrives
at a target location, only one instruction remains.
Data-object names and attributes-All requests
involve one or more global names. In addition,
these names are often accompanied by various
attribute information, such as data-object classifi-
cation.
Data-object contents-These contents occur only
in flows between source and target locations.
SNA/FS does not define the format of the contents.
They may be implementation-specific, such as
load modules or memory dumps, or their structure
may be specified by an appropriate contents ar-
chitecture.

A Delete operation. A simple Delete involves only
two locations, two server roles, and one distribution
flow. In Figure 7 an agent at the requester location
specifies data-object “x” is to be deleted at the target
location.

Agent roles at source, target, and report-to locations.
In the cases in Figure 7, the only agent involvement
was at the requester location. However, in each of
those cases there was just one flow. The target agent
was not expected to take any action, and no agent
object was required to convey agent-to-agent com-
munications.

In many cases the requester will need to have func-
tion performed by an SNA/FS source or target agent
at another location. The requesting agent specifies
the services required with an agent command. Source
locations are commanded to Transfer To Dest List
or Transfer To Requester. Target locations are com-
manded to Report FS Action. For example, if a
requester at location A wishes a file to be transferred
from location B to locations C and D (see Figure l),
an SNA/FS command Transfer To Dest List flows
from A to B. The agent at location B understands
the command and accepts responsibility for trigger-
ing the requested object transfers. Two SNA/DS dis-
tributions are required. In the first distribution, the

destination is the SNA/FS source. In the second, the

destinations are the SNA/FS targets. The example in
Figure 1 also illustrates SNAIFS reporting to a fifth
location (node E). Two more SNAIDS distributions
are needed for the SNA/FS targets to make their
reports. A common unit-of-work correlator, assigned
by the requesting agent, identifies each of these
SNA/DS distributions as belonging to the same SNAIFS-
defined task.

SNA/DS Origin iS the SNA/FS RqUeSter, and the SNA/DS

SNAIDS Origin is the SNA/FS source, and the SNA/DS

ASHFIELD AND CYBRYNSKI 253

Figure 7 A delete operation

REQUESTER LOCATION

REQUESTER
AGENT

I

. SNA/DS
i

REQUEST PB +
I

SNA/DS I
TRANSPORT "=

1
""_"" I4

LU 6.2 AND LOWER LAYERS OF SNA I I
I
I

inst-Delete
name-FILE'x'

I

I

I
I v
! -
I I r " - - - l

? I
I

I
I TARGET LOCATION

I
I
I
I
I

I
I

I
I

i I
I
I
I
I

I
I

I
I
I
I
I
I

I
I

i

I I DESTINATION I
AGENT

I - I I

- SNA/DS
REQUEST PB

ROUTING AND
QUEUING

RN' "*
",....,, , -

e l -
- - - - - - - ~ - - L ~ F R v F R PR A

I

LU 8.2 AND LOWER LAYERS OF SNA I I

254 ASHFIELD AND CYBRYNSK~

Agents that send and receive SNA/FS agent commands
must be SNAIFS-Capabk agents. All sNA/Fs-capable
agents support a common, minimum required set of
sNA/Fs-defined commands. SNA/FS capability is usu-
ally just a minor part of the function of an applica-
tion agent. Most SNA/FS-Capabk agents can do more
than just these basic SNA/FS functions and are named
for the additional function that they do. For exam-
ple, the SNA/Management Services agent supports
several sNA/Ms-specific commands such as Install
and Remove.

SNA/FS-defined agent objects. sNA/Fs-capable
agents generate and understand SNA/FS-defined agent
objects, each of which contains an SNA/FS command
and its parameters. In some cases, it will also contain
a summary report. At the SNA/DS origin, the SNA/FS-
capable agent encodes the command as part of the
agent object. SNA/DS treats the agent object as a
bytestream, ignoring its internal structure. At the
destination, SNAIDS delivers it to the destination
agent in its encoded form. The destination agent
decodes the agent object, extracts the command, and
performs the specified function.

Not all SNA/FS operations use SNA/FS commands. As
shown in Figure 7, SNA/FS operations sometimes
have no need for an agent object at all. In those cases
the agent might use the agent object entirely for its
own purposes.

When the agents need to use the agent object for the
purposes of both their own application and SNAIFS,
the requesting agent encodes the agent object con-
tents according to its own application definition,
which either implies the relevant SNAIFS command
or explicitly includes it as a part of the encodings,
thereby ensuring that the agent object serves both
purposes.

A Retrieve operation. In retrieval operations, the
requester and target roles are performed in one lo-
cation and the source in another. An SNA/FS-Capabk
agent is required at the source location. Four server
roles and two distribution flows are needed. The first
distribution flow is shown in Figure 8.

Given that the first distribution was successfully
received by SNA/DS and its server object was success-
fully decoded by the SNA/FS server, SNAIDS then
delivers it to the source agent. The agent decodes the
agent object, extracts the Transfer To Requester
command, accepts the decoder server report, and
generates the actual transfer request containing the

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

two remaining server instructions for the source and
target as well as the file identifier. These are all placed
in the second distribution flow, which is shown in
Figure 9.

A Transfer To List operation. This example is a
compound of the earlier examples and serves to
illustrate all the locations, roles, and flows identified
at the beginning of this paper in Figure 1. The SNA/FS-
capable agent at the requester location, node A,
wants to send copies of file “x” at node B to nodes
C and D with completion reports to be sent to node
E. The flow is shown in Figure 10.

Given that the process has been correct up to this
point, the source agent decodes the agent object,
extracts the Transfer To Destination List command,
accepts the decoder server report, and generates the
actual transfer request, which contains the two re-
maining server instructions for the source and targets
as well as the file identifier. These are all placed in
the second distribution flow, shown in Figure 1 1.

Whether or not the operation is successful, each
target agent is responsible for reporting the S N A I F S
action to the designated report-to location. The flow
from the target 1 location, node C, is shown in Figure
13.

Exception actions. SNA/FS operations will sometimes
complete in a manner that is neither clearly success-
ful nor clearly unsuccessful. For example, if 99 out
of 100 objects are stored correctly, only the requester
can evaluate whether or not this partial success
should be preserved. Unfortunately, the requester
and the storing operation might be widely separated
in time and space. Therefore, in anticipation of
possible failure, SNAIFS requires that the requester
specify what action the target server should take if
an exception occurs.

In the example of 100 objects to be stored, the
requester might judge that even if some failed it
would still be desirable to have the remainder stored
because subsequent recovery procedures would be
simpler. If so, the exception action specified would
be Continue.

In contrast, the requester might know that unless all
100 objects were successfully stored, the recovery
procedures might involve all of the objects. If so, the
exception action would be Backout.

IBM SYSTEMS JOURNAL VOL 28, NO 2, 1989

Figure 8 A retrieve operation: requester to source flow

I REQUESTER/TARGET LOCATION 1

REQUESTING ‘.c,
FLOW *a

f I I I ’

m v
I

ASHFIELD AND CYBRYNSKI 255

Figure 9 A retrieve operation: source to requesterltarget flow

REQUESTER/TARGET LOCATION

"""

ROUTING AND

TRANSPORT

LU 6.2 AND LOWER LAYERS OF SNA w
TRANSFERRING

/ FLOW

I SOURCE LOCATION I

. SNA/DS
REQUEST PB

SNA/DS
ROUTING AND
QUEUING

""_

LU 6.2 AND LOWER LAYERS OF SNA

J

Reporting. First of all, the requester specifies whether reports are delivered to the report-to agent at the
or not reports are to flow. If they are to flow, the report-to location.
requester specifies where. The report-to agent can be
different from that making the request, and the Only agents can send distributions. When an agent
report-to location can be other than the one where determines that a report is needed, as for example,
the requester resides. If anything occurs that merits when a target agent honors the Report FS Action
reporting, at either the SNA/FS or SNAIDS level, the command, it sends a distribution with an agent

256 ASHFIELD AND CYBRYNSKI IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

object identified by the Reporting FS Action com-
mand. Depending on the amount of detail being
reported, the distribution may also contain a server
object. A server cannot send distributions. An SNA~FS
server delivers reporting information to its local
agent. The agent includes the server-supplied infor-
mation in its Reporting FS Action distribution.

The requester can control what level of detail is to
be reported by specifying Detailed,Summary Or Ex-
ceptions, or Only If Exceptions.

Concluding remarks

This paper has presented SNA/File Services, a com-
ponent of Systems Network Architecture. SNA~FS and
other components of the SNA application layer, in-
cluding SNA/Management Services and SNA/Dis-
tribution Services, work together to provide a variety
of application layer function.

SNA/FS defines a global, canonical approach to iden-
tifying and moving files in enterprise-wide and in-
dustry-wide environments in place of the local, sys-
tem-specific, techniques historically used by stand-
alone Systems. Most SNAIFS function is performed by
a file server that can be invoked by SNAIDS or any
other application layer component. This arrange-
ment facilitates sharing of the SNAfFs-defined files,
data objects, and function by a wide variety of ap-
plications.

Acknowledgments

The authors gratefully acknowledge the help of the
many designers, developers, and architects involved
in this project. Special thanks go to Christopher P.
Ballard, David H. Clark, Livio Farfara, Armando
Ferrauto, Barbara J. Heldke, Florian K. Kandefer,
George M. McMullen, Joseph K. Parks, and Frank
J. Petsche for significant design and development
contributions, and to Pasquale Autru, James P. Frey,
and Matthew L. Hess for welcome management
guidance and support.

Cited references

I . SNAfFile Services Reference, SC3 1-6807, IBM Corporation

2. R. A. Demers, "Distributed files for SAA," IBM Systems Jour-

3. B. C. House1 and C. J. Scopinich, "SNA Distribution Services,"

4. SNAfDistribution Services Reference, SC30-3098, IBM Corpo-

(1989); available through IBM branch offices.

nal 27, No. 3, 348-361 (1988).

IBMSysterns Juurnal22, No. 4, 319-343 (1983).

ration (1989); available through IBM branch offices.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Figure 10 Transfer-to-list operation: requester to source flow

 REQUESTER LOCATION (NODE A) I

ROUTING AND

I
I

REQUESTING I,
FLOW 1

i
I
I
I
I
I
I
I
I
I

i I
I
I
I
I
I
I
I
I
I
I
I

i I
I
I
I
I
I
I
I
I
I
I
t

SOURCE LOCATION (NODE B) I I pq

ROUTING AN

TRANSPORT

LU 6.2 AND LOWER LAYERS OF SNA
I
I

ASHFIELC AND CYBRYNSKI 257

Figure 11 A transfer-to-list operation: source to target flows

I SOURCE LOCATION (NODE B) I

. SNA/DS
REQUEST PB

SNA/DS
ROUTING AND
QUEUING

1-1

"""

I FPWISFERRING

SNA/DS NETWORK

TARGET LOCATION (NODE C)

REQUEST PB
""_

I

258 ASHFIELD AND CYBRYNSKI IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Figure 12 A transfer-to-list operation: target reporting flow

- - - - - - ”
SNA/DS
TRANSPORT

SERVER PB -

REPORTING
FLOW

REPORT-TO LOCATION (NODE E)

t REQUEST PB
SNA/DS 1-
SNA/DS
ROUTING AND
QUEUING

SNA/DS
TRANSPORT

I LU 8.2 AND LOWER LAYERS OF SNA k/

5. R. J. Sundstrom and G. D. Schultz, “SNA’s first six years:
1974- 1980,” F#h International Conference on Computer Com-
mzmication, Atlanta, GA, North-Holland Publishing Co.. Am-
sterdam (September 1980), pp. 578-585.

6. R. J. Sundstrom, J. B. Staton 111. G. D. Schultz, M. L. Hess.
G. A Deaton, Jr., L. J. Cole, and R. M. Amy, “SNA: Current
requirements and direction,” IBM Systems Journal 26, No. I ,
13-36 (1987).

7. SNA/Management Services Reference, SC30-3346, IBM Cor-
poration (1989); available through IBM branch offices.

8. C. P. Ballard. L. Farfara, and B. J. Heldke. “Managing changes
in SNA networks,” IBM Systems Journal 28, No. 2, 260-273
(1989. this issue).

James C. Ashfield IBM Communication Systems, P.O. Box
12195, Research Triangle Park, North Carolina 27709. Mr. Ash-
field is a senior scientist/engineer. He joined IBM in 1961 and
held a variety of positions in marketing for IBM Canada, Ameri-
cas/Far East, and World Trade. In 1981 he transferred to SNA
development. Mr. Ashfield holds a B.Eng. (electrical) from McGill
University and an M.B.A. from the University of Western Ontario.

Donna B. Cybrynski IBM Comm~rnication Systems. P.O. Box
12195, Research Triangle Park, North Carolina 27709. Ms. Cy-
brynski is currently a staff programmer managing a department
responsible for VTAM testing. Ms. Cybrynski joined IBM in 1982
in Management Information Services as a systems analyst. In 1983
she transferred to SNA development, working first on
SNA/Distribution Services, then assuming responsibility for the
SNA/FS project. She holds a BSc. in computer science from the
University of Vermont, and an M.Sc. in electrical and computer
engineering from North Carolina State University.

Reprint Order No. G321-5357.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989 ASHFIELD AND CYBRYNSKI 259

