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Applications universally require files to move from one 
location to another. Although different applications 
may use files differently, many  of the files are of the 
same type. The identifying, fetching, moving, and stor- 
ing functions are the same for all applications and can 
be most efficiently provided by a common process. 
Various applications can invoke the common process, 
which performs the required operations independently 
and notifies the appropriate applications when they 
are completed. In Systems Network Architecture (SNA) 
networks, the common process is an SNAIDistribution 
Services (SNAlDS) server defined by SNAlFiIe Services 
(SNAlFS).  The invoking applications are SNAlDS 
agents of various types. This  paper describes the  role 
of the agent in invoking the file transfer and the role of 
the SNAIFS server in fetching and storing the file. It 
also describes the SNAlFS architecture for uniquely 
naming files and data objects. One example of an 
SNAlDS agent that uses the SNAlFS  server is  the 
change management category of SNAIManagement 
Services, described in another paper in this issue. 

W hen an organization connects two or more of 
its computing systems together by means of 

communication links, the first  use  of the connection 
is typically to move copies of data files or programs 
between the systems. For small networks of homo- 
geneous systems, simple point-to-point transfer pro- 
grams administered by operators at both ends are 
adequate. The successful operation of a variety of 
file transfer products attests to  the practicality of this 
approach. 

For large networks of heterogeneous systems with 
heavy volumes of file movements, the situation is 
different. The techniques that work adequately in 
small homogeneous networks give  rise to difficulties 
when attempts are made to apply them  to large 
networks. Sy:tems Network ArchitectureIFile Serv- 
ices (SNA/FS), has  been  designed to overcome the 
difficulties: 

1. Limitations of point-to-point-Most file transfer 
products presume a point-to-point operation, per- 
mitting operators at both ends to be involved in 
the file movements. The operators can plan the 
transfer work and resolve problems by a tele- 
phone call. 

In large networks, file transfer operations may 
involve more than two locations. A requester at 
one node might wish to move files from a second 
node to  a  third node, and perhaps to  a fourth and 
fifth node. Sometimes copies of one file are sent 
to hundreds of nodes. It would be impractical to 
involve operators at every location and  to  attempt 
to resolve problems by telephone. 
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Increasingly,  large networks include personal sys- 
tems  and small departmental systems. These sys- 
tems are often unavailable simply because  they 
are  turned off. It would be impractical to wait 
until all the nodes required for a particular file 
transfer happen to be available. 

SNA/FS file transfers can involve many nodes in 
various roles. s N A / F s  defines extensive exception- 
detection and reporting mechanisms to facilitate 
unattended  and centralized operations for nodes 
in any role. It uses a store-and-forward commu- 
nication facility to  transport requests, files, and 
reports between locations so as to obviate the 
need for concurrent availability. 

2. Problems due to local  naming-Typically, data 
processing operating systems were developed on 
the assumption that each system  would operate 
independently, with total control over all of its 
resources. The effect  of this assumption particu- 
larly impacts the techniques used to identify the 
files that  are moved around  the network. Tradi- 
tionally, each system controlled the names of its 
files and would ensure that  the  names were 
unique. For example, at system A a  name such 
as FILE1 would refer to  one  and only one  data file. 
At system B, however, the  name FILE1 could refer 
to a completely different data file. This approach 
is termed local, or location-dependent, naming. 

Anyone wishing to send a file to  a particular 
system, called the target system, would be  re- 
quired to identify the file according to whatever 
resource-naming rules applied at  that system. In 
other words, no matter what name might have 
been used to identify the file at  the location it is 
to be sent from, called the source, the  name used 
at  the target would  have to conform to  the rules 
there. For example, if a user  wished to send the 
file known as FILE1 from system A to system B, 
the user  would  have to ensure that  another FILEI 
did not already exist on system B. If it did, the 
user  would have to assign the file a new name 
that did not conflict with any of the existing 
names at  the target. Typically, the names at  the 
target system  would conform to a naming con- 
vention established by the people responsible for 
operating that system. Therefore, the people at 
the source system would have to be aware of both 
the already assigned names  at  the target and  the 
conventions used for assigning new names there. 

When copies of  files  have  been sent to  other 
systems, there is often a need to  maintain records 
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of what files are  at which locations or, alterna- 
tively, to  enquire of a location what files  reside 
there. With purely local naming, most files  would 
have a different name  at every system. For net- 
works of even modest size, purely local naming 
results in unacceptable complexity. 

The alternative to local naming is global naming. 
SNA/FS formally defines a naming technique that 
supports global naming. 

3. Naming incompatibilities with heterogeneous 
systems-A further naming complication arises 
when networks contain  a mix of system types. 
Each  system type has its own rules for expressing 
file names. Usually, the  names are split into sev- 
eral tokens. The  number  and lengths of these 
tokens, the character sets allowed, method of 
delimiting tokens, and overall maximum lengths, 
all  differ from system type to system type. A 
lowest common denominator set of rules could 
produce names that would be  legal in all  systems, 
but such names would be too limited to  support 
global naming. 

SNAIFS defines rules for encoding its global names 
that  are independent of all system-specific naming 
rules and comprehensive enough to meet the 
requirements for enterprise-wide and industry- 
wide  global names. 

4. Informal and system-specific  version control- 
When files are updated, it becomes necessary to 
distinguish between  old and new versions without 
losing the basic identity of the file. There are 
various system-defined mechanisms for this, such 
as the generation data groups in Multiple Virtual 
Storage (MVS). Alternatively, some applications 
implement their own private method of identify- 
ing versions. When objects are moved from one 
system type to another and from one application 
area to another,  the incompatibilities between the 
various forms of version control are  a problem. 

SNA/FS defines a mechanism calledpartial  naming 
by which each application can specify  which parts 
of the global name  are  to be  used for version 
control; these parts need not be  precisely  specified 
by the user. 

5. System-specific file classification-Many  of the 
system-specific naming conventions are designed 
both to identify an individual file and  to indicate 
particular file attributes. For example, in one 
system the  name FILE1 SCRIPT A identifies FILE1 
and indicates that it  is appropriate  input for pro- 
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grams that process SCRIPT. In another system 
DIRS\PROG~.EXE identifies P R O G ~  in directory 
DIRS, and  the EXE indicates that it is executable. 
The tokens SCRIPT and EXE classify the file. Proc- 
esses that operate on only certain classes  of  files 
test these tokens and depend upon  their presence 
and correctness; other processes ignore them. 
Their significance depends upon the  intention of 
the process. For example, a copy utility might 
handle files  of any class,  whereas a loader might 
refuse to load any files that  are  not of the class 
EXE because the  intention of the loader is to 
initiate execution. Unfortunately, different sys- 
tems use different approaches to classify  files. The 
variety of systems in a mixed network further 
complicates the problem, because what is execut- 
able in one system  is probably not executable in 
another, although it should be able to be stored 
there. 

In SNA/FS, file  classifications are explicitly  speci- 
fied in canonical classification codes that  are  in- 
dependent of the global name. In addition, SNA/FS 
defines an  intention code so that  the file  classifi- 
cation and intended use can be related to  the 
capabilities of the target. 

Problems not addressed by SNA/FS.  The following 
three items are areas in which problems occur that 
are not addressed by SNAIFS: 

1. Record-level processing-sNA/Fs is  designed to 
work with whole  files. It does not identify individ- 
ual records within a file.  Accessing individual 
records within a file on a remote system is  best 
done using implementations of Ptr ibuted Data 
Management (DDM) architecture. 

2. Contents conversion-Although it would  be con- 
venient for the transport facility to resolve minor 
incompatibilities between  files from different sys- 
tems, such as ASCII versus EBCDIC codepoints for 
text, SNAIFS does not  attempt  to do so. Although 
ASCII versus EBCDIC is an example of a character- 
istic that  can apply to  the file as a whole, it is an 
exception. Most differences  between  files are not 
properties of the file as a whole.  Usually the 
differences are  at  the level  of  fields within a record; 
some fields are characters, others are various sorts 
of arithmetic variables. Detailed definitions of 
each field are needed to convert such files. SNAIFS 
neither identifies records nor defines  fields within 
records. 

3. Communications-sNA/Fs  defines the fetching 
and storing of files at their origin and destination. 
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The queuing, scheduling, and managing of the 
communications is performed by SNA/Distribu- 
tion Services ( S N A J D S ) . ~ . ~  The  actual transfer of 
data is performed by Logical Unit Type 6.2 (LU 
6.2)5’6 and  the lower layers of SNA. 

Locations and  roles. SNA/FS has a rich concept of 
locations and  the various roles that each location 

SNA/FS is  designed to work 
with  whole  files. 

can play. This characteristic contrasts strongly with 
single-system  image architectures which provide 
transparency. In other words, they completely shield 
the user from having to be aware of locations. DDM’ 
is  designed to operate with that kind of transparency. 
SNA/FS would have a limited purpose in such an 
environment. Not only are SNA/FS requesters usually 
aware of other locations, they know when those 
locations need to have  files transferred to  them. 

SNA/FS location concepts are also richer than  the 
pair-oriented architectures used to describe point-to- 
point/terminal-to-host connections, for example, LU 
6.2 and LU 2. Point-to-point situations have an ad- 
vantage in that problems of capabilities and  com- 
patibilities are readily  resolved by immediate nego- 
tiation. SNAIFS cannot presume a point-to-point, con- 
current-availability situation. Therefore, the most 
likely problems must be anticipated, and their pre- 
ferred solution must be indicated or implied in  the 
request. 

SNA/FS defines four roles. All  of them  can be involved 
in a single request, and there can be multiple nodes 
in the target role. For example, as shown in Figure 
1, a user at node A might request node B to send a 
file to nodes C and D. SNAIFS identifies node A as 
the requester location, node B as the source location 
(meaning the location that  contains a copy of the file 
to be distributed), and nodes C and D as target 
locations (meaning the locations to which a copy of 
the distributed file is sent). 
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Figure 1 SNAlFS roles and locations 

SNA/DS 
NETWORK 

FLOWS: REQUESTING -"----- 
TRANSFERRING 
REPORTING 

SNA/FS also has the  notion of a report-to location. 
SNAIFS reports can be sent to whatever location the 
requester chooses.  Figure 1 depicts a typical unit of 
work for SNA/FS. The requester is located at node A 
and  the source at node B. C and D are two target 
nodes, and E is a report-to node. The cloud-like 
shape represents a general-purpose distributed sys- 
tem (DS) network, consisting of an indefinite number 
of intermediate DS nodes, none of which needs to 
have any SNAIFS capability. The various lines through 
the cloud depict the request, transfer, and report 
flows required to perform an SNA/FS operation. 

Not all SNA/FS requests involve this many locations. 
Sometimes there is only one target, and  one location 
can serve multiple roles.  In the case  of a file fetch, 
the requester and target are the same location. In  the 
point-to-point transfer case, the requester and source 
are  the same. Often, the report-to and  the requester 
location are also the same. 
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SNA/FS global  naming 

SNA/FS introduces a formally-defined global name for 
files and  data objects. In distributed networks, those 
files that  are of interest beyond their local  system are 
assigned a  name  that is unique within the wider area 
of interest. The  term global is  used to distinguish 
this type  of name from the traditional local name. 

Global naming itself  is not  a new concept. The 
notion of global LU names was introduced  to SNA 
some years  ago. The global naming of  files has been 
practiced within organizations on an informal basis 
since the impracticality of local-only naming became 
apparent. SNA/FS formally defines a  structure for a 
global name  and extends the area within which a 
global name must be unique to encompass all  orga- 
nizations using SNA. In other words, SNA/FS defines 
a cross-enterprise global name.  It also formally de- 
fines an encoding of the  name token string that is 
independent of operating system  specifics. 

The simplest technique for assigning  global names is 
to concatenate the location name (assuming that  it 
is known to be unique) with its local file names. This 
is  called location-dependent naming. It is appropri- 
ate for files  whose identity is naturally tied to a 
particular location and  in which interest is limited 
to a small area. However, it is inappropriate for files 
in which there is enterprise-wide, or cross-enterprise, 
interest. It is  especially inappropriate for files that 
are moved from one location to another  or  that have 
copies at multiple locations. 

The best  global name assignments are location in- 
dependent. The identity of every  file can be tied to 
some higher-level  grouping-if not location, perhaps 
organization, or country. The technique used  by 
SNA/FS is to allow any higher-level grouping to be 
used. Location is just  one of many higher-level 
groupings possible in SNA/FS global names. 

SNAIFS global names consist of a string of tokens, 
arranged in hierarchical order, with the leftmost the 
highest, or root, token. The values for each token 
position are qualified by the higher-order token on 
its left and, therefore, need be unique only within 
that token. 

Values for the leftmost tokens are assigned by SNA. 
Assignment ensures the value is unique  and registers 
the value and  the identity of its owner. For example, 
MCODE has been, assigned to SNA/Management 
Services (SNAIMS). Since SNA/MS owns that value, 
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when the leftmost token is MCODE, SNA/MS is respon- 
sible for assigning the values for the token immedi- 
ately to  the right. For the tokens further  to  the right, 
SNA/MS can either assign values or delegate the re- 
sponsibility to some appropriate  authority. 

Appropriately designed name strings can make the 
delegation of responsibility reasonably straight- 
forward. For example, in the  name string 
MCODE.9135.MOD2.MAINTEC.12345 the second token 
position contains  the IBM machine number,  and  the 
fifth contains the maintenance EC numbers for the 
9 135 machine. Both  of these numbers  are adminis- 
tered by an assigning authority,  in this case certain 
departments within IBM, whose responsibilities in- 
clude the  administration of those numbers. The fact 
that their numbers are incorporated into SNA/MS 
object names adds nothing to their already existing 
responsibilities. Similarly, many  other kinds of ob- 
jects will  be found to already have some sort of 
distinguishing serial number  that can be incorpo- 
rated into  the name string. 

The notions of structuring a  name  into  a string of 
hierarchical tokens and using that structured name 
to achieve location independence are becoming 
more commonly accepted throughout  the industry. 
It is hoped that standards organizations will take on 
the responsibility for managing more token spaces 
with the eventual result that  the same object names 
could be  used in  a variety  of network types. 

The catalog 

The advantages of globally unique, system-inde- 
pendent names for all  files and  data objects in  a 
network, or any collection of interconnected net- 
works, are very important. For existing  systems, 
global naming is  achieved at  the price of an extra 
level  of catalog. A catalog  is a listing of the names of 
files and  data objects at  a location. The traditional 
catalog contains local names and supports references 
to  the files  by  local names. The additional level  of 
catalog contains  the mapping of global to local 
names and supports references to those files  by  global 
name. Existing systems will continue  to  support their 
own  local names. Every source node must convert 
its local name  to  the global name before sending a 
file;  every target node must do the reverse  before 
storing it. For new systems with few locally created 
files, local naming can be completely avoided. All 
references are by global name, and  a single  level of 
catalog containing only global names is all that is 
needed. 
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Figure 2 depicts the situation in a network just as 
file M C O D E . ~ ~ ~ ~ . M O D ~ . F I X . ~ ~ ~ ~ S  leaves the source node. 
The source node in this example keeps a variety  of 
different  files in  a large holding area. Its catalog maps 

A data object  cannot be updated 
or changed  in  any  way. 

the data-object names to a local member name 
within the holding area. The target node, in contrast, 
keeps each file as a separate entity. Its catalog con- 
tains individual local  addresses for each file. 

The SNA/DS distribution is depicted by the large 
arrow flowing from the source to  the target. It con- 
tains, among  other things, the global name and  the 
data-object contents. It does not  contain any local 
names, source, or target. Only the global name flows 
in the distribution. The distribution also contains an 
instruction for the target node to create and load a 
“new” file. The file  will be new to the target node. 
From  the perspective of the enterprise, however, an 
existing file is being replicated at  the target location. 

The target catalog, shown before the distribution 
arrives, does not  contain  a copy  of the file it is about 
to receive.  After the file has been received, a new 
entry is inserted into  the target catalog, as shown 
after the transfer is complete. The local addresses are 
assigned by the target system, ensuring no duplica- 
tion with existing local files. The copy of a file and 
its catalog entry at  the source remain unchanged 
throughout  the process. 

Partial  name  processing 

The SNA/FS mechanism for identifying and control- 
ling different versions of updated files  is  called partial 
name processing. It depends upon the SNA/FS notion 
of a  data object, identified by the complete global 
name, and  the traditional notion of a file, identified 
by part of the global name. 

In SNA/FS, a  data object is a named entity that  cannot 
be updated or changed in any way.  If the smallest 
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Figure 2 Example of catalog changes when transferring a file 

kd GLOBAL NAME . . . 
MCODE.9135.MOD2.FiX.12345 
MCODE.9135.MOD2.MAINTEC.23456 
MCODE.9135.MOD2.PATCH.12345 

IIII . . I LOCAL NAME 8 STORAGE  ADDRESS I . . . . 
HOLDING.AREA(memberl47) 
HOLDING.AREA(memberl49) 
HOLDING.AREA(memberl48) . 

I 

SNA/DS NETWORK . r- 
/ 

SOURCE 
LOCATION 

instruction=Create&Load 
data-object name-MCODE.9135.MOD2.FIX.12345 
data-object contents='xxxxxxxxxxxxxxxxxxxxxx 

TRANSFERRING  FLOW 

TARGET 
LOCATION 

TRANSFER 
BEFORE 

GLOBAL NAME 

. . 
MCODE.9135.MOD2.MAINTEC.23456 
MCODE.Ql35.MODZ.PATCH.12345 . 

I I 

LOCAL NAME 8 STORAGE  ADDRESS 

. . . 
local.file.address27 
local.file.addressl2 . 
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change is made to the bytestream constituting  a  data 
object, it is no longer the  same  data object and 
cannot be identified by the  same  name.  In  other 
words, the slightest change to what was one  data 
object creates a new and different data object that 
requires a new and different name. However, the 
difference in  names may be  very small. For example, 
in most systems when a file is edited and  then saved, 
the  date and  time  at which the file  was saved are 
captured and kept with the file. In SNA/FS, the  date 

Partial naming  allows  users 
to  express  their  concept 

of a  file when  they  design 
their  global  names. 

and  time would be considered to be part of the  data- 
object name, and  the freshly stored version of the 
file would be a different data object with a different 
name, because the  date and  time values would not 
be the  same.  This precise definition of a  data object 
allows SNA/FS to ensure  that all copies of the object 
identified by a global name  are absolutely identical. 

However, users often tend  to think of their files as 
ongoing entities  that  are essentially the same  thing 
even though they may be frequently updated. In the 
example of the  time-stamped file, the user would 
wish to use the  same  name every time he or she 
edited it. In fact, it would be extremely inconvenient 
for the user to have to key in  the precise date  and 
time of the last update. SNA/FS resolves this conflict 
between the needs for naming ever-changing files 
and unchangeable data objects by the  notion of 
partial naming. S N A ~ F S  does not precisely define the 
concept of a file. Different systems and different 
applications define their files differently. Partial nam- 
ing copes with these differences by allowing the part 
of the global name  that identifies whatever the user 
thinks of as  a file to be defined by that user. In other 
words, partial  naming allows users to express their 
concept of a file in  terms of SNA/FS data objects when 
they design their global names. In practice, one 
systems administrator would design data-object 
naming  conventions for collections of  files for groups 
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of users where both users and files were spread  over 
many locations. 

Designing a  data-object  naming  convention requires 
that each token position be designated as Must 
Match or Need Not  Match. Typically, tokens such 
as  date  and  time  or version number would be des- 
ignated Need Not  Match,  and  tokens  that  the user 
wished to identify the file with would be Must  Match. 
If only one version of a file existed, the  Must  Match 
tokens  alone would suffice to identify it. If two 
versions of the  same file existed, the Must Match 
tokens  alone would match with both.  When SNA/FS 
discovers that  multiple  names  match on Must  Match 
tokens, it uses additional  matching  information and 
the Need Not  Match  tokens to identify the  particular 
file. In a properly designed naming  convention,  one 
or  more of the Need Not  Match  tokens  contain  a 
tie-breaking value, such as  date  or version number, 
that always increases with time.  A tie-breaking value 
allows the user to request the oldest (or newest) 
version without having to know its precise Need Not 
Match token value. Instead of specifying a  token 
value, the user supplies a  matching  indicator,  either 
Select  Low (the oldest) or Select High (the newest) 
for whichever token position contains  the tie-break- 
ing version number. 

When  a file has been changed and  the user wishes to 
save it, it  must be assigned a partially different name 
because the changed file  is a different data object. 
When  a  replacement is made, SNA/FS requires that 
the new data-object  name  match all of the  Must 
Match  tokens  in  the old name. Therefore, the  name 
must  contain at least one Need Not  Match  token, 
and  the different data object must have a different 
value for that  token. Although users may  think  that 
one version of their file is replacing another,  in  terms 
of the  data objects constituting  that file, one  data 
object is deleted and  another is created. From an 
SNA/FS perspective, the two data objects are  unrelated 
except for their common Must  Match  tokens.  There- 
fore, when replacing is being done,  a requester must 
identify both  the new data object and  the  data object 
to be deleted. Since the  names  must be at least 
partially identical, the requester needs to supply one 
string of the  common, Must Match,  tokens  plus 
enough additional  information  about the objects 
individually for SNA/FS to make  the  distinction be- 
tween them. 

In the  example illustrated in Figure 3, all of the data- 
object names have one  token  (the sixth) that  contains 
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Figure 3 Example of catalog  changes  when  replacing a file 

GLOBAL NAME 

b 

MCODE.6270.MOD1.PATCH.132.871103 
MCODE.6270.MODl.PATCH.132.880223 
MCODE.627D.MODl.PATCH.132.880311 

ATTRIBUTES 

MMnMMn 
MMnMMn 
MMnMMn 
MMnMMn 

L 

LOCAL NAME 8 STORAGE  ADDRESS I . . 1 
HOLDING.AREA(member247) 
HOLDING.AREA(member248) 
HOLDING.AREA(member249) 
HOLDING.AREA(member250) . . 

b 1 I I 

x x x x x x x x x x x x x x x x x  

ATTRIBUTES 

MMnMMn. ... 
MMnMMn.... 

b . . 
MCODE.6270.MOD1.PATCH.132.871103 
MCODE.6270.MODl.PATCH.132.880223 . . 

0 

LOCAL NAME 8 STORAGE  ADDRESS . . . 
local.flle.addressl4 
local.flle.addressl8 . 

b . 
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a version date. In both the source and target direc- 
tories, all of the data-object names within that  name 
collection have token attributes of MMnMMn. This 
means that  the first and second tokens are Must 
Match, the  third is  Need Not Match, and so on. The 
attributes of each name are stored in  the catalog 
along with the  name itself. The diagram includes the 
SNA/DS message unit  that would flow from the source 
to  the target. In this case, the SNA/FS Server instruc- 
tion is Replace. The Replace instruction  contains 
the complete name of the new data object plus a set 
of To Be Deleted indicators that, when combined 
with the  name of the new object, will  suffice to 
identify the old object to be deleted. The target 
catalog is  shown both before the message unit arrives, 
when 871 103 and 880223 are in storage, and after 
the replacing operation is completed, when only two 
versions of this file are still at  the target, but now 
they are 880223 and 88031 1. In other words, the 
Replace instruction and  the  information  to be de- 
leted have resulted in 8803 l l replacing 87  l  103. 

Need Not Match tokens are  not limited to  arithmetic 
values. For example, users could control their own 
versions with names such as MYPROGOLDEST, MY- 
PROGLESSOLD, and MYPROG.NEW, where the token 
on the right  was designated Need Not Match. As 
another example, global names could include tokens 
that  are meaningful to a human reader when the 
names are displayed but  are  not essential to  the 
SNA/FS name-matching process. For example, the 
first five tokens in the strings M C O D E . ~ ~ ~ ~ . M O D ~ -  

.ADAPTER serve to uniquely identify the  data objects. 
The sixth token is designated Need Not Match. It is 
not required to make the  name unique. However, it 
conveys attribute information that is  useful to  the 
planner, and having it routinely displayed as part of 
the object name is convenient. 

When creating a data object at a target, a complete 
global name must be placed in  the catalog entry. 
However, it may be inconvenient for the requester 
to specify all of the Need Not Match token values 
precisely. In this case, the requester can specify the 
name partially and cause the target SNA/FS server to 
generate and insert the  appropriate value for the 
other tokens. For example, sequential numbers can 
be automatically incremented, and  date  and  time 
values can be obtained from the clock of the target. 

Classifying  files 

The tokens used in local names  on most systems 
today often are a mix  of instance identifiers, such as 

.FIX.12345.PRINTER and MCODE.9135.MOD2.FIX.23456- 
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serial numbers, and file classification identifiers, such 
as SCRIPT or TXT. Applications will often define their 
SNA/FS global names with similar mixtures. 
For example, the SNA/MS name MCODE.9135.MOD3- 
.PATCH. 12345 contains classification information, 
such as PATCH, that change-management appli- 
cation; need. However, classifications imbedded in 
the MCODE global name are only available to appli- 
cations that  understand  the MCODE name tree. Ap- 
plications conforming to a cross-system architecture 
such as SNA/MS do not find this difficult. 

In contrast, programs, such as editors, each of which 
conforms to its particular operating system, rather 
than a cross-system architecture, have no global 
naming convention in  common.  Furthermore,  the 
classification imbedded in the local name of one 
system  is incompatible with that of other systems. 
For example, SCRIPT and TXT are values imbedded 
in two different local name strings. Obviously, the 
values are different, but more confusingly, some TXT 
files can be processed by a SCRIPT-capable program, 
others cannot,  and vice  versa. If such programs are 
to exchange the kind of classification information 
that they need, a common canonical form of  classi- 
fication must be used. SNA/FS defines a classification 
code for this purpose. 

SNA/FS avoids any dependency upon classifications 
imbedded in data-object names, thereby relieving 
the global name designers of any requirement to 
include operating-system-specific name tokens. 
Users are free to include type application classifica- 
tions as part of their global name. In fact, it would 
be difficult to preclude all connotation of  classifica- 
tion in a naming convention. However, any such 
imbedded classifications cannot be  recognized by 
system or SNA/FS facilities. 

SNA/FS formally provides file classifications for all 
files that can appear in FS catalogs, from card images 
to print fonts to memory dumps. When files are 
introduced to  the SNA/FS world, their classification is 
supplied to, and subsequently maintained  in,  the 
global catalog. Just as the catalog serves to  map  the 
global names to local names, it can also support 
mapping or cross-checking  global  classification codes 
to classifications imbedded in the local name, at least 
for those file classes pertinent  to  the particular sys- 
tem. 

SNAIFS classification codes are particularly useful in 
identifying classes  of  files that  are  common  to  many 
systems. Examples of such generic files are process- 
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Figure 4 Fragments of the data-object classification table 
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able flat  files and printable documents.  One can 
imagine a file known locally at  the source as SCRIPT 
being converted to  the generic SNA/FS classification 
code, shipped to multiple targets, and being recon- 
verted to TXT at one target and  to DOC at another. 

Other file classes are specific to  a particular system- 
an executable load module, for example. The hier- 
archical structure of the classification codes allows 
for system-, product-, and customer-specific classifi- 
cation as well. 

The classification code is permanently associated 
with a  data object. The classification  of a  data object 
cannot be changed, just as its global name  cannot 
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be changed, without creating a new data object with 
a new name. However, just as a file is deemed to be 
the same file even when a new data-object version 
of it replaces the  current one, a file would also be 
deemed to be the same file even if a new data object 
of a different name  and classification  replaces the 
current  one. When copies of the  data object are 
transported to  other locations, the classification code 
accompanies them. 

The classification  is encoded in a series of registered 
code points arranged in  a hierarchy of four levels. 
Each  level  allows  256  codes, i o  the complete code is 
mathematically limited to  2 possible  values.  Reg- 
istered codepoints save space in message formats and 
internal tables and facilitate national language sup- 
port. 

The first, or highest-level,  byte identifies the major 
category,  which could be executable, processable, 
presentable, or  maintenance  information.  The 
meaning of the second, third,  and fourth bytes de- 
pends upon the value(s) of the higher-level  bytes. 
The table containing all of the assigned code points 
is  large.  Figure 4 illustrates some fragments of that 
table. 

Intention. The requester’s intention can be useful to 
the SNAIFS server  when  it decides whether or not  to 
accept the file.  Accordingly, the  intention accompa- 
nies  files to  the target as a parameter of the server 
instruction. The target can determine whether or not 
to proceed with the receiving and storing operation 
on the basis  of whether the  intention is storing, 
processing, or executing. 

Determining file acceptability 

The target server can compare the requester’s inten- 
tion,  the file  classification, and the capabilities of the 
target system to determine whether or  not  the file 
should be accepted. The capabilities of the target 
system are expressed in  a data-object acceptance 
table. Each system type would have a differently 
defined table. The fragment of a table shown in 
Figure 5 illustrates how the capabilities of a fictitious 
System/290 would  be defined for the data-object 
classes  shown in Figure 4. 

For example, imagine that  a  data object classified as 
10,30,40,50 was amving at this fictitious System/290 
target location. The acceptance table is scanned from 
the  top down and  the “**” entries mean none of the 
above, so 10,30,40,50 finds a match at 10 **  ** ** 
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If the incoming instruction had an  intention of stor- 
ing, the target would accept the  data object because 
of the “yes” in  the storing column of the table. In 
contrast, the same data-object classification would 
be rejected  if the accompanying intention was exe- 
cuting. Referring back to  the classifications in Figure 
4, we can see that 10,30,40,50 means System/9135 
object code. The only  class 10s that  the System/290 
will accept for executing must begin with 10,40”its 
own  system-specific executable classes. 

Use of SNA/Distribution  Services 

SNA/DS defines the connectionless transport  that sup- 
ports the  SNA/FS requirements described above. 
SNA/DS is a general-purpose communications service 
that transports application-defined data, known to 
SNA/DS as “objects,” to one or more specified desti- 
nations. SNA/DS is completely insensitive to  the ob- 
ject contents, which it encapsulates in  a distribution. 
A distribution may  be stored and forwarded by “in- 
termediate” nodes (i.e., neither the origin nor the 
destination of the request). A multiple destination 
distribution will  be distributed, that is, copies will be 
“fanned-out” as it  is transported across the network. 

At the origin and destination of a distribution, 
SNA/DS may interact with two application-defined 
entities-the  server and  the agent. The distinction 
between these two entities is made  for two reasons: 

SNA/DS interacts with them  at different times. The 
originating agent interacts with SNA/DS at request 
time. Sometime later, at on-the-fly send time the 
server fetches the server object and feeds  it  piece 
by piece to SNA/DS as it is sent out over the 
connection. At the destination, the receiving 
server stores the server object piece by piece at on- 
the-fly receive time. Sometime later yet, the desti- 
nation accepts the distribution at delivery time. 

This relationship is illustrated in Figure 6. The 
interaction between the agent and SNA/DS takes 
place within the node across the SNAIDS request 
protocol boundary (PB). The interaction between 
the server and SNA/DS takes place across the SNA/DS 
server PB. 

One server can provide common function for a 
variety of agents.  Equally, one agent may make 
use  of different servers to assist in the movement 
of different kinds of objects. Distinguishing be- 
tween agent and servers permits efficient  packag- 
ing of function. 
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Figure 5 Sample data-object acceptance table 
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A distribution can carry two objects, an agent object 
and  a server object. The agent object is limited in 
size and is accepted directly from the originating 
agent and delivered directly to the destination agent. 
The server object is unlimited in size and resides on 
a nonvolatile storage medium.  The requester iden- 
tifies the server object at request time, and it is 
fetched by the originating server at on-the-fly time. 

SNA/DS transports  the agent object from the originat- 
ing agent to the destination agent and  the server 
object from the originating server to  the destination 
server. SNAIDS does not transport anything from the 
originating agent to  the destination server or from 
the originating server to the destination agent. Any 
interaction between servers and agents takes place 
within a node. 

Figure 6 shows an SNA/MS agent communicating with 
another SNA/MS agent via the agent object and caus- 
ing the source SNAIFS server to  communicate with 
the target SNAIFS server. It would be equally possible 
for other sNA/Fs-capable agents to cause the origi- 
nating SNA/FS server to  communicate with the target 
SNA/FS server. It is the differentiation of agent and 
server function that allows different applications, 
which act as agents, to share the  common SNAIFS 
function, which  is provided by the  one server. 



Figure 6 SNAlFS use of SNAlDS 
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At the origin, the agent  includes  server instruction 
information in its request to SNA/DS, which  passes  it 
to the server  when the time comes to send the 
distribution. The server  needs that information to 
identify the file or files to be  fetched. In certain SNA/FS 
roles, there are no files to fetch, but some SNAIFS 
server instruction information is  involved in all 
SNAIFS roles. The agent  includes it, expressed in verb 
operand form, in its  request to SNA/DS. At sending 
time, SNA/DS passes  it on to the server,  which  creates 
a server  object  by  encoding the information into the 
SNA/FS-StructURd format that can be understood by 
the SNA/FS server  at the destination. If  files are  iden- 
tified,  they are also  fetched and encoded into the 
server  object. 

At the target, an SNA/FS server  receives the server 
object  bytestream  and  decodes it. If data objects are 
included,  they are stored  as  specified in the SNAIFS 
server instructions. The server  reports  its actions and 
identifies  any files it  may  have  stored  by  creating a 
server report, in verb  operand  form, and passing it 
to SNA/DS for  delivery to the destination agent. 

Function  and  roles of the  SNA/FS  server 

Since  each SNA/FS operation involves  two or more 
servers, the requesting  agent  must  be  able to explic- 
itly instruct each  server, both defining its role and 
specifying  what  must  be done in that role.  At the 
requester location, the server  will  simply  encode the 
SNAIFS control information. The instruction for  this 
role is Encode  Only. At the source  location, the 
receiving  server  decodes the SNA/FS control infor- 
mation, as  directed by the Decode  Only instruction, 
and then the sending  server  fetches the data object 
and encodes  it into SNA/FS formats,  as  directed by 
the Fetch instruction. Finally, at the target location, 
the receiving  server  stores the data object,  as  directed 
by one of several  possible  storing instructions. 

TWO of the storing instructions, Create&Load and 
Replace, were illustrated in the examples in Figure 
2 and Figure 3. Other server instructions include 
Delete and Create&Load Or Replace. 

SNAIFS-defined server  objects. SNA/FS servers  gen- 
erate and understand sNA/Fs-defined server  objects, 
which contain the following: 

Instructions-sNA/Fs  server instructions specify 
the action  requested of the server  (e.g.,  fetch,  cre- 
ate, delete).  Since an agent  request  may  involve 
servers at several  locations, a server  object  may 
contain several  server instructions. The first  server 
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instruction in the string  is  performed and then 
taken off the string. By the time the object  arrives 
at a target location, only  one instruction remains. 
Data-object  names and attributes-All  requests 
involve one or more global  names. In addition, 
these  names are often  accompanied by various 
attribute information, such  as  data-object  classifi- 
cation. 
Data-object  contents-These contents occur  only 
in  flows  between  source and target  locations. 
SNA/FS does not define the format of the contents. 
They  may be implementation-specific,  such  as 
load  modules or memory dumps, or their structure 
may  be  specified  by an appropriate contents ar- 
chitecture. 

A Delete  operation. A simple  Delete  involves  only 
two  locations,  two  server  roles, and one distribution 
flow.  In  Figure 7 an agent at the requester  location 
specifies  data-object “x” is to be  deleted at the target 
location. 

Agent  roles  at  source,  target,  and  report-to  locations. 
In the cases in Figure 7, the only  agent  involvement 
was at the requester  location.  However, in each of 
those  cases there was just one flow. The target  agent 
was not expected to take  any action, and no agent 
object  was  required to convey  agent-to-agent  com- 
munications. 

In  many  cases the requester will  need to have  func- 
tion  performed by an SNA/FS source or target  agent 
at another location. The requesting  agent  specifies 
the  services  required  with an agent command. Source 
locations are commanded to Transfer To Dest  List 
or Transfer To Requester.  Target  locations are com- 
manded to Report FS Action.  For  example, if a 
requester at location A wishes a file to be transferred 
from  location B to locations C and D (see  Figure l), 
an SNA/FS command Transfer To Dest  List  flows 
from A to B. The agent at location B understands 
the command and accepts  responsibility  for  trigger- 
ing the requested  object  transfers.  Two SNA/DS dis- 
tributions are  required.  In the first distribution, the 

destination is the SNA/FS source.  In the second, the 

destinations are the SNA/FS targets. The example in 
Figure 1 also  illustrates SNAIFS reporting to a fifth 
location (node E). Two  more SNAIDS distributions 
are needed  for the SNA/FS targets to make their 
reports. A common unit-of-work correlator, assigned 
by the requesting  agent,  identifies  each of these 
SNA/DS distributions as  belonging to the same SNAIFS- 
defined  task. 

SNA/DS Origin  iS the SNA/FS RqUeSter, and the SNA/DS 

SNAIDS Origin  is the SNA/FS source, and the SNA/DS 
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Figure 7 A delete operation 
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Agents that send and receive SNA/FS agent commands 
must be SNAIFS-Capabk agents. All  sNA/Fs-capable 
agents support  a  common,  minimum required set of 
sNA/Fs-defined commands.  SNA/FS capability is usu- 
ally just  a  minor part of the function of an applica- 
tion agent. Most SNA/FS-Capabk agents can do more 
than  just these basic SNA/FS functions and are named 
for the additional function that they do. For exam- 
ple, the SNA/Management Services agent supports 
several sNA/Ms-specific commands such as Install 
and Remove. 

SNA/FS-defined agent objects. sNA/Fs-capable 
agents generate and understand SNA/FS-defined agent 
objects,  each of which contains  an SNA/FS command 
and its parameters. In some cases, it will also contain 
a  summary report. At the SNA/DS origin, the SNA/FS- 
capable agent encodes the  command as part of the 
agent object. SNA/DS treats the agent object as a 
bytestream, ignoring its internal structure. At the 
destination, SNAIDS delivers it to  the destination 
agent in its encoded form.  The destination agent 
decodes the agent object, extracts the  command,  and 
performs the specified function. 

Not all SNA/FS operations use SNA/FS commands. As 
shown in Figure 7, SNA/FS operations sometimes 
have no need for an agent object at all. In those cases 
the agent might use the agent object entirely for its 
own purposes. 

When the agents need to use the agent object for the 
purposes of both their own application and SNAIFS, 
the requesting agent encodes the agent object con- 
tents according to its own application definition, 
which either implies the relevant SNAIFS command 
or explicitly includes it as a part of the encodings, 
thereby ensuring that  the agent object serves both 
purposes. 

A Retrieve  operation. In retrieval operations, the 
requester and target roles are performed in one lo- 
cation and  the source in  another. An SNA/FS-Capabk 
agent is required at  the source location. Four server 
roles and two distribution flows are needed. The first 
distribution flow is shown in Figure 8. 

Given that  the first distribution was  successfully 
received by SNA/DS and its server object was success- 
fully decoded by the SNA/FS server, SNAIDS then 
delivers it to  the source agent. The agent decodes the 
agent object, extracts the Transfer To Requester 
command, accepts the decoder server report, and 
generates the actual transfer request containing the 

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989 



two remaining server instructions for the source and 
target as well as the file identifier. These are all  placed 
in the second distribution flow, which  is  shown in 
Figure 9. 

A Transfer To List operation. This example is a 
compound of the earlier examples and serves to 
illustrate all the locations, roles, and flows identified 
at the beginning of this paper in Figure 1. The SNA/FS- 
capable agent at the requester location, node A, 
wants to send copies of file “x” at node B to nodes 
C and D with completion reports to be sent to node 
E. The flow is shown in Figure 10. 

Given that  the process has been correct up  to this 
point, the source agent decodes the agent object, 
extracts the Transfer To Destination List command, 
accepts the decoder server report, and generates the 
actual transfer request, which contains  the two  re- 
maining server instructions for the source and targets 
as well as the file identifier. These are all placed in 
the second distribution flow,  shown in Figure 1 1. 

Whether or not  the operation is  successful, each 
target agent is responsible for reporting the S N A I F S  
action to  the designated report-to location. The flow 
from the target 1 location, node C, is  shown in Figure 
13. 

Exception actions. SNA/FS operations will sometimes 
complete in a  manner  that is neither clearly  success- 
ful nor clearly  unsuccessful. For example, if 99 out 
of 100 objects are stored correctly, only the requester 
can evaluate whether or not this partial success 
should be preserved. Unfortunately, the requester 
and  the storing operation might be  widely separated 
in time and space. Therefore, in anticipation of 
possible failure, SNAIFS requires that  the requester 
specify what action the target server should take if 
an exception occurs. 

In the example of 100 objects to be stored, the 
requester might judge that even if some failed it 
would  still  be desirable to have the remainder stored 
because subsequent recovery procedures would  be 
simpler. If so, the exception action specified  would 
be Continue. 

In contrast, the requester might know that unless all 
100 objects were  successfully stored, the recovery 
procedures might involve all  of the objects. If so, the 
exception action would  be Backout. 
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Figure 8 A retrieve operation: requester to source flow 
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Figure 9 A retrieve operation: source to requesterltarget flow 
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Reporting. First of all, the requester specifies whether reports are delivered to the report-to agent at  the 
or not reports are to flow. If they are to flow, the report-to location. 
requester specifies  where. The report-to agent can be 
different from that making the request, and  the Only agents can send distributions. When an agent 
report-to location can be other  than  the  one where determines that  a report is needed, as for example, 
the requester resides. If anything occurs that merits when a target agent honors the  Report FS Action 
reporting, at either the SNA/FS or SNAIDS level, the  command, it sends a distribution with an agent 
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object identified by the Reporting FS Action com- 
mand. Depending on  the  amount of detail being 
reported, the distribution may also contain  a server 
object. A server cannot send distributions. An SNA~FS 
server delivers reporting information  to its local 
agent. The agent includes the server-supplied infor- 
mation in  its Reporting FS Action distribution. 

The requester can control what level  of detail is to 
be reported by  specifying Detailed,Summary Or Ex- 
ceptions, or Only If Exceptions. 

Concluding  remarks 

This paper has presented SNA/File Services, a com- 
ponent of Systems Network Architecture. SNA~FS and 
other  components of the SNA application layer, in- 
cluding SNA/Management Services and SNA/Dis- 
tribution Services,  work together to provide a variety 
of application layer function. 

SNA/FS defines a global, canonical approach  to iden- 
tifying and moving files in enterprise-wide and  in- 
dustry-wide environments  in place  of the local, sys- 
tem-specific, techniques historically used by stand- 
alone Systems. Most SNAIFS function is performed by 
a file server that can be invoked by SNAIDS or any 
other application layer component. This arrange- 
ment facilitates sharing of the SNAfFs-defined files, 
data objects, and function by a wide  variety of ap- 
plications. 
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Figure 10 Transfer-to-list  operation:  requester to source flow 
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Figure 11 A transfer-to-list operation: source to target flows 
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Figure 12 A transfer-to-list operation:  target  reporting  flow 
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