
VM/XA SP2 minidisk cache 
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Given the  growing  disparity  between CPU  power  and 
the speed of  secondary storage,  a data cache exploit- 
ing large  processor  storage  has  the  potential to i m  
prove  response  time  dramatically  in many  situations. 
The VM/XA SP2  minidisk cache facility, the result of 
research  activity  on  the  characteristics of interactive 
file-system  activity,  uses  expanded  storage to cache 
inputloutput to minidisks  on the Conversational  Moni- 
tor  System.  The  size of the cache is  dynamically ad- 
justed by an  arbitration  process to optimize system 
Performance.  Several  other  functions  Improve  the  per- 
formance of the  cache  during  periods of  unusual 110 
loads. 

C aching  is  a  widely  used technique to improve 
performance in the presence  of  a  memory  hier- 

archy.'"  A  cache  is  a  relatively  small,  high-speed 
memory  used to store the recently  (or  frequently) 
referenced contents of a  slower,  larger, and less- 
expensive  memory in anticipation that these con- 
tents will  be  rereferenced soon, with  a  consequently 
significant improvement in performance.  A  cache  is 
intended to provide  performance  approaching that 
of  high-speed  memory at a  cost  predominately that 
of the slower  memory.  Most contemporary high- 
performance computers contain a  processor  cache 
which  is  used  as  a  buffer  for  references to primary 
storage.  Some  operating  systems,  e.g., the U N I X ~  
~ystem,~ have data caches that are  used to buffer, in 
primary  storage,  references to secondary  storage. 
These data caches  typically  keep  a  set  of the most 
recently  referenced  disk  blocks. 

This paper  describes  a data cache that is  a component 
of Virtual  MachineIExtended  Architecture  2ystem 
Product" 2 (VM/XA S P ~ ) .  It is calltd a  minidisk  cache 
because  it  uses  expanded  storage to cache data from 
Conversational Monitor System (CMS) minidisks that 
are formatted into 4096-byte  blocks. This minidisk 
cache can provide  a  significant  performance im- 
provement in systems  where  response time is at least 
partially  influenced by 110 time. 

Being  able to dynamically  vary its size in response 
to contending demands for  expanded :torage is  a 
distinctive  aspect  of the minidisk  cache. An arbiter 
determines, in terms of  global  performance, the ap- 
propriate allocation of expanded  storage.  Therefore, 
the cache  is  self-tuning and automatically adjusts to 
a wide  variety  of  system  configurations and environ- 
ments. In addition, several other unusual facilities 
provide  high  performance during periods of transient 
110 stress. 

In this paper  a  file-system  activity study which  pro- 
vided the impetus for  developing the cache  is  first 
described. Then some  details are provided on a 
simulation study that was  used to design the minidisk 
cache.  Finally,  a  description  is  given of the initial 
prototype and how it evolved into the product ver- 
sion. 

CMS file-system study 

The minidisk  cache in VM/XA S P ~  has its origins in a 
study done at the IBM T. J. Watson  Research  Center 
facility in Hawthorne, New York, on the dynamic 
aspects of CMS file-system  activity. 

Data for  this  study were gathered  using CMON, a CMS 
monitor written by David N. Smith, that allows 
information to be  collected about activities  within 
CMS for  a particular user. It collects  trace information 
about specific  events  within the CMS machine being 
monitored. For this study, CMON was extended to 
provide information at each READ and WRITE call 
and other file-system operations such as ERASE, RE- 
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NAME, and STATE (which determines the existence of 
a file  with a given  identifier on a specified  minidisk). 
CMON was  selected  over a lower-level data-gathering 
facility  such as the control program (CP) monitor 
because we wanted to study the file-system  activity 
patterns at the logical, as opposed to physical,  level. 

CMON is invoked at log-on time, intercepts CMS in- 
terrupts and service-routine  calls, and gathers  perti- 
nent data from CMS control blocks and work  areas. 
A CP diagnose’ handler was added so that CMON 
could uniquely identify  each  minidisk by volume 
serial  identifier (VOLSER) and start cylinder. CMON 
collected raw activity data  in a print spool file  which 
was sent to a virtual machine and later reduced. One 
day’s  activity was collected  from  each  user. 

Although CMON was normally transparent to the CMS 
user, it was  necessary  for  security and ethical  reasons 
to request  permission to monitor each of the ran- 
domly  selected  users.  Because of this necessity, a 
considerable amount of time was spent setting up 
each monitoring session, and it was practical to 
monitor only 20 to 50 users on a large virtual ma- 
chine (VM) system. 

The study at Hawthorne was later performed on 
other internal IBM VM systems at Kingston and 
Poughkeepsie. All  of the systems studied showed the 
following major CMS file-system  activity  characteris- 
tics: 

Activity  was  “bursty”-a  user’s command typi- 
cally  involved many file-system events and many 
files. 
There was a temporal locality of reference  within 
a “burst”-i.e.,  files  were often reaccessed within 
a very short time. 
Most  files  were  read in their entirety and sequen- 
tially. 
Most  file I/O events involved  small files, but the 
relatively infrequent I/O activity of  large  files  ac- 
counted for  most of the bytes transferred. 
A few users accounted for a disproportionate share 
of the file activity. (This characteristic was corrob- 
orated by a sample of daily accounting data which 
showed that 1.3 percent of users  performed 30 
percent of the I/O events.) 
Byte read/write ratios ranged from 4.6 to 8.9 on 
the three systems. 
Approximately 50 percent of the files read were 
read more than once, and about 90 percent of all 
read  requests were done to this set  of  files. 
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Cache simulation 

Since  several of the file-system  activity  characteristics 
suggested that a data cache  would improve CMS file- 
system  performance, a cache simulator was written 
to experiment with the activity  traces that had  been 

Private  virtual  caches  require 
significantly  more  space  than  a 

common  cache  to  achieve  the  same 
hit  ratio. 

derived from the CMON data. The traces for all of the 
users  were combined by sorting them in order of 
event start time. Since there were a limited number 
of traces, we  were concerned that they might not 
intersperse well and that there would be a long run 
of just one user’s activity  followed by a long run of 
another user’s  activity, etc.’ Such noninterspersed 
activity  would tend to impair the synergic  cache 
effect that results  when many users share files and 
get  cache hits because  some other user  recently  read 
the same file. This synergic effect would be expected 
on a large mainframe with many users.  However, 
investigation  showed that there was a high  degree of 
interspersion of the activity. For example, at Haw- 
thorne the average  size  of a trace  for a single  user 
was 2643  events, and after the combination of all 
traces, the average  single-user run was  16 events, 
which  was in the range of a typical “burst.” There- 
fore, although the total number of  users studied was 
more typical of a small VM/CMS system, the results 
of this study suggested that having a data cache on a 
large mainframe was beneficial. 

All of the cache simulation experiments had the 
following in common: 

Each simulation run started with an empty cache. 
The initial cache  size was  64 kilobytes and was 

A 4096-byte  minidisk  block size  was  used  for all 

Cache  blocks were replaced by a global  least  re- 

incremented for each simulation run. 

runs. 

cently  used (LRU) strategy. 

IBM SYSTEMS JOURNAL  VOL 28. NO 1, 1989 



Figure 1 Hit  block  ratio as a  function of cache  size 
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Since the cache was empty at the start of each run 
and there were a limited number of  user  traces, the 
simulation results tend to understate the hit ratios 
obtainable on a  large mainframe with expanded 
storage. 

Figure 1 shows the block hit ratio as a function of 
the cache size for 24 Hawthorne users sharing a 
common data cache. The block hit ratio is the num- 
ber  of  (4096-byte)  blocks found in the cache  divided 
by the total number of blocks  read.  Even  a  relatively 
small  cache  provides  a  significant  benefit; for exam- 
ple,  with  a 5 12-kilobyte  cache the hit ratio is 0.4 1. 

To show the benefit  of  having  a common data cache 
as opposed to a  private data cache in each virtual 
machine, each  user trace was run independently, and 
the results  were compared with  a common cache by 

taking the mean hit ratio of  all  of the private  caches 
and the sum of their sizes.  Each private cache was 
incremented in size until it became  large  enough to 
contain all of the data referenced in the user's trace 
(i.e., became an infinite cache for that session). The 
curylative size of private caches of  size  k  for n users 
is Cmin(k, infinite  cache sizei). The corresponding 

mLa'n block hit ratio is (bi/s)hi where bi is the total 

number of blocks  read by  user i, s is, the total number 
ofblocks read by all  users  (i.e., s = x bj), and hi is the 

block hit ratio for user i at that cache size. 

Figure 2 shows the results of this analysis.  Clearly, 
private virtual caches require significantly more 
space than a common cache to achieve the same hit 
ratio. For example,  with  a  3-megabyte common 
cache the hit ratio is 0.67, but it requires 20 mega- 

i= 1 

j -1  
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bytes  of  private  cache to achieve similar results. 
Other research  has demonstrated the space  efficiency 
of a common centralized  cache  over distributed 
(nonprivate) caches such as  those available2 in direct- 
access  storage  device (DASD) control units. Also, the 
centralized  cache  may  have a significant time advan- 
tage, depending on where the distributed cache is 
located. For example, a cache  using  expanded  storage 
is significantly  faster than a cache in a DASD control 
unit. 

One reason a common cache  performs so much 
better is illustrated in  Figure 3. This simulation 
experiment cached  only the data from the set  of 
minidisks that were shared among two or more of 
the users. In addition to the hit ratio, this figure 
shows the fraction of the blocks hit because of data 
having  been brought into the cache by another user. 
This synergic  effect  of a common cache  is absent in 
a private virtual cache. 

Finally,  aside  from the greater  space consumption 
and absence of  synergic  effect, a hit on a virtual 
cache  may require a page-in operation from a device 
of the same performance characteristics  as the device 
on which the file is stored. In this event, the cache 
hit will not have improved performance because an 
equivalent 110 operation must still  be  performed. 

Since the subset of shared minidisks yielded a higher 
hit ratio than the subset of private minidisks, and 
since the files in the shared  subset were  of potential 
benefit to multiple users, it seemed  like a good idea 
to “protect” the shared  subset from the private  one. 
Experiments were run with the cache partitioned 
such that all of the data from the shared subset were 
placed in one partition and all of the data from the 
private  subset into  the other. Each partition had its 
own LRU replacement stack, so they were disjoint. 
Different  relative partition sizes  were  used, but the 
results  were  always inferior to a common unparti- 

Figure 2 Size of common cache versus sum of individual sizes 
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Figure 3 Block hit  ratio and fraction of blocks hit because of reference by another user 
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tioned2cache. This finding corroborates the results in 
Smith since partitioning is equivalent to a  distrib- 
uted  cache. 

We also found that it was  generally  beneficial to 
cache  all  minidisks rather than to ;elect those that 
have the highest  degree  of  sharing. This benefit  is 
due to the temporal locality of  reference  within  a 
“burst.” Many  of  these  rereferenced  files are on 
private  minidisks.  Even  a  relatively  small  cache  is 
able to contain the “burst” file  references  of the active 
set  of  users and consequently  yield  significant  bene- 
fits. 

The CMON study  showed that most of the files  read 
in CMS were  small. For example, at Hawthorne,  45 
percent of the files that were read were  2048  bytes 

or less in size.  Storing  these  sparse  4096-byte  file 
blocks  in  4096-byte  cache  blocks  results in a  consid- 
erable amount of “wasted”  cache  space. The density 
of  usable data in the cache  could be increased by 
using  a  smaller  granule  of  storage  (i.e.,  cache  line) in 
the cache.  Using  a  cache line that was smaller than 
the file  block  size  would  increase the overhead and 
complexity of a  cache but might  be  worthwhile if 
the space  savings  were  significant. 

Experiments were run with  a  cache line of 5 12 bytes, 
and the results  were  compared  with  a  cache line of 
4096  bytes  (i.e., the file  block  size). The data density 
increased  significantly (up to 50  percent at small 
cache  sizes),  but the improvement in hit ratio was 
much  less than would  have  been  expected  by the 
increase in useful  space. Further experiments  showed 
that this disparity  occurred  because  large  files were 
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dominating the performance of the cache.  A simu- 
lation was run excluding  all files that were greater 
than 32 kilobytes in size.  At Hawthorne 95 percent 
of the files  were  less than or equal to 32 kilobytes, 
but 60 percent of the bytes  read  were from files 
greater than this size. The hit-ratio difference in- 
creased  significantly without the large  files. For ex- 
ample, when  all  files  were  cached, the hit ratio for 
the 4096-byte  cache line was only 5 percent less than 
the hit ratio for the 5 12-byte  cache line with  a  256- 
kilobyte  cache, but when the large  files  were  ex- 
cluded, the difference  was 18 percent. 

Since  all three systems on which we had taken C M O ~  
traces  showed this domitagce of  large  files, and since 
studies of other systems  suggested that this was a 
consistent characteristic of interactive file-system  ac- 
tivity, it was decided that using  a  cache line smaller 
than the minidisk block  size  was not worth the 
increased  overhead and complexity. 

Prototype 

A prototype minidisk  cache was built and  run  in the 
Advanced Data Systems Laboratory in Hawthorne. 
This prototype was a centralized cache  using  global 
LRU replacement. The cache  was  a part of the control 
program (CP) of VM/SP HPO 4.2, and data were  cached 
from minidisks that had a  blocking factor of 4096 
bytes. The  data were cached in either expanded or 
primary storage (but not both). The time to copy  a 
page  from one page  of primary storage to another is 
approximately the same as the time to  page in a page 
from expanded to primary storage, so a  hierarchical 
cache is not justified. There was  significantly more 
performance leverage  using expanded storage be- 
cause of its greater  availability and because there is 
less contention for it than primary storage. 

The CP modules that service the CMS file  system 110 
activity  (diagnose  handlers)  were  modified to inter- 
rogate the cache manager on a  read. If all of the 
blocks were in the cache, the blocks were copied to 
the CMS user’s  buffer, and the diagnose was synchron- 
ous.  Cache  misses  went through the normal asyn- 
chronous I/O path. After  cache  misses completed, the 
blocks  associated  with them were  inserted into the 
cache.  Likewise, on  the completion of output, the 
associated  blocks were either inserted into the cache, 
or, if already present, updated. The option of a write- 
in cacheI3 (as opposed to the write-through  design 
used)  was  not  practical  because it would undermine 
the integrity of the CMS file system. 

170 ~o-t.! 

source was the key characteristic of this prototype. 
A new module was added to CP which  was an arbiter 
between demands for  pages to back virtual memory 
and pages  for  use in the cache. The arbiter ran 
periodically and, based on  an analysis of  user  wait- 

A fair-share  algorithm  restricted  the 
number  of cache  pages  that any 

user  could  displace. 

state samples, either adjusted the size  of the cache, 
via an interaction with the cache manager, or left it 
unchanged. Heuristics were included in the arbiter 
to slow down or stop the incrementing of the cache 
when the performance benefit  was  slight or nil.  Var- 
ious tuning parameters in the arbiter allowed  exper- 
imentation with  trade-offs  between  responsiveness 
and dampening cache size  oscillations. 

The arbiter approach was chosen  over the alternative 
of letting the existing  storage  manager@)  select  which 
pages should be  cast out of  processor  storage. The 
reasons  for this decision were: 

The arbiter allowed greater flexibility in managing 
processor  storage. For example, the arbiter made 
it simple to bias in favor  of either virtual memory 
pages or cache pages should this prove to be ben- 
eficial. 
Since  most files are read  sequentially and in their 
entirety, it is  beneficial to “steal” cache  blocks in 
file sequence. The global LRU replacement policy 
used by the minidisk cache  has this attribute and 
consequently minimizespartial hits  (i.e., some but 
not all of a  list  of  blocks are in the cache). T$ 
LRU approximation algorithms such as CLOCK, 
which are used  by many storage  managers, do not 
have this attribute. 

The prototype had a fair-share algorithm which  re- 
stricted the number of cache  pages that any user 
could displace  over  a short interval. This algorithm 
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was  designed not to constrain normal I/O activity but 
rather to limit the cache disturbance caused  by path- 
ological  activities  such  as  searching the contents of a 
minidisk  for a specific  string by reading  every  file in 
its entirety. 

The fair-share  algorithm  worked  as  follows. For each 
interval of a minute, the cache  manager counted the 
number of  different  users that had  inserted  blocks 
into the cache.  Users  who  had  only  read data from 
the cache  were not counted. When the minute inter- 
val expired, the fair-share limit for the next  interval 
was calculated  as the larger  of (cache-size)/ 
(number-of-inserting-users) or a lower bound. The 
lower bound was a heuristic  value that always  al- 
lowed a “reasonable” amount of cache insertion 
activity to occur  per  user. This lower bound adjusted 
the simple  fair-share  calculation to accommodate 
the known CMS file-system  activity  characteristics of 
strong temporal locality  of  reference and most I/O 
activities attributable to a small  fraction of the users. 
The cache  manager  enforced the limit by counting 
the pages  inserted by each  user, and when the count 
exceeded the fair-share limit, no further pages  were 
inserted.  These counts were  reset  each minute. This 
trailing fair-share  policy was not intended to impose 
a true fair  share  but rather to prevent unusual I/O 
activities  from  displacing a large  fraction of the cache 
over a short interval of time. 

The cache  directory was ,implemented with a coa- 
lesced  hashing  algorithm. This implementation al- 
lowed the directory to be  fully  loaded and still  pro- 
vide excelffnt performance.  An adaptation of  Bays’ 
algorithm was  used to “rehash” the cache  directory 
when  required  for either increasing the size  of the 
cache or after a limit of empty directory  space  had 
been  reached. 

Product 

The prototype was converted to VM/XA in conjunc- 
tion with the Advanced  Technology Department of 
the IBM Kingston  Programming  Center. The product 
version  uses expanded  storage  exclusively. The pro- 
totype structure was preserved, but several enhance- 
ments were  introduced: 

8 The arbiter was modified to interface  with the 
expanded  storage  migration routine so that a de- 
cision to decrease the size  of the cache  is  made 
only upon invocation of the page  migrator. The 
arbiter continues to dynamically  make  decisions 
to increment the size  of the cache. 
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Cache  misses are inserted in the cache  directory 
at the time of the miss.  These  directory entries are 
marked  as in transit. Subsequent  requests for the 
same  block queue the user(s) on the cache  direc- 
tory entry until the block  is  inserted in the cache. 
Then all  queued  users  are  restarted at a point 
where  they  get a cache hit on the newly inserted 
block.  Although this method is  of limited  value 
during normal operation, it  greatly  improves the 
VM recovery situation where hundreds of users are 
logging on after a system  failure and reading the 
same  blocks  (e.g.,  accessing  shared  minidisks). 
I/O activity to CMS 4096-byte  blocks that transfer 
less than the full  block  is  cached. This allows the 
caching of CMS minidisk  label 110 operations (80 
bytes), the file directory  root  (64  bytes), and the 
pointer blocks  of CMS transient modules (8 bytes). 
It is  especially  beneficial during VM recovery  when 
CMS users  are  all  reading the labels and file direc- 
tory roots on the shared  minidisks. 
When the cache  has not yet  reached its size  ceiling 
(set  by the arbiter), fair-share  exclusions are in- 
serted,Ft the least  recently  used end of the LRU 
stack. This action results in fewer  fair-share  ex- 
clusions during cache growth situations. For the 
typical condition where the cache  has  reached  its 
size  ceiling, the fair-share  policy remains the same 
as in the prototype. 
A command was added to optionally  set a mini- 
mum and/or maximum cache  size. This com- 
mand is intended for use  in  unforeseen situations 
where human intervention might  beneficially limit 
cache-size  oscillation. It might be useful,  for  ex- 
ample, when there is  insufficient  expanded  storage 
to efficiently  meet contending demands. When not 
specified  by command, the minimum is  zero and 
the maximum is the size  of on-line  expanded 
storage. 
Minidisks  can be excluded  from  caching  by in- 
cluding the minidisk option (MINIOPT) NOMDC on 
the MDISK record in the virtual machine directory. 

The minidisk  cache  manager, HCPMDC, is  called  by 
the CMS 110 diagnose hzndlers for the new bimodal 
CMS (HCPDGB, HCPDGG ) and the traditional non-xA 
CMS (HcPDGD)l$nd also  by the module that services 
IUCV BLOCKIO (HCPBIO) which  is  used  by SQLIDS 
(Structured  Query  Language/Data  System). 

Blocks  within a minidisk  are  invalidated  from the 
cache  when there is a virtual Start I/O/Start System 
Channel (SIO/SSCH) instruction to the minidisk  (if  it 
is  writeable) or a CMS format of the minidisk. All 
blocks on a device  are  invalidated  when the device 
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Figure 4 Relationship of page  migration,  arbiter,  and  minidisk  cache  manager 
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is detached from the system.  Before  a partition of 
expanded storage  is attached to a  guest virtual ma- 
chine, all  cached  blocks  within the partition are 
deleted  from the cache. 

As depicted in Figure 4, the arbiter, HCPARB, was 
modified to interface with the VM/XA page migration 
module, HCPMIG. The maximum size  of the minidisk 
cache and its initial ceiling are set during CP initial- 
ization to be the size of on-line expanded storage 
and 16 megabytes,  respectively. The maximum size 
and, if  necessary, the ceiling are adjusted downward 
if a  subset of expanded storage  is attached to a  guest 
virtual machine, or if the maximum has  been  set 

lower by command. At any time after the initial 
setting, HCPARB may  raise the cache  ceiling (up to its 
maximum value),  if, during one of its cyclical  invo- 
cations, its analysis of wait-state  samples deems it to 
be beneficial. Until the page migration threshold is 
reached, both HCPMDC and HCPMIG compete for 
expanded  storage  pages via calls to HCPPGX, the 
expanded storage  manager.  When the migration 
threshold is  reached, HCPMIG calls HCPARB before 
migrating  pages from expanded storage to DASD. 
Based on its analysis of wait-state  samples, the arbiter 
will either meet all, one half, or none of the migration 
goal. To meet  all or part of the migration  goal, 
HCPARB calls HCPMDC, specifying  a  cache  ceiling that 
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is less than the current number of expanded storage 
pages in use for the cache. To conform to this lower 
ceiling, HCPMDC returns expanded storage pages to 
HCPPGX. After HCPARB returns to HCPMIG, a  page 
migration  occurs, if necessary, to acquire that por- 
tion of the migration  goal not attained. 

Minidisks are not cached if (1) the NOMDC option is 
specified on the MINIOPT directory statement, (2) the 
device on which th,eo minidisk resides  is dedicated to 
a virtual machine, or (3) the device on which the 
minidisk  resides is defined (in the 110 configuration 
module, HCPRIO) as being  physically shared between 
processors.  Otherwise  all minidisks that have  a 
blocking factor of 4096 bytes and have 110 operations 

dlers or the HCPBIO asynchronous block I/O handler 
are eligible  for  caching. Installations wishing to re- 
strict caching should not rely on the blocking factor 
as it can be  easily  changed by the CMS user. 

Minidisk  cache  statistics are included in VM/XA Sp2 
monitor Output. The INDICATE LOAD command has 
been  extended to include the minidisk  cache hit 
ratio, minidisk cache  blocks  read per second from 
expanded  storage, and minidisk cache  blocks  written 
per second to expanded  storage. The QUERY xSTORE 
command displays the minimum, maximum, and 
current size  of the minidisk cache. 

done through the HCPDGB or HCPDGD diagnose han- 

Concluding  remarks 

Given the growing disparity between CPU power and 
the speed of secondary  storage,  a data cache  exploit- 
ing large  processor  storage  has the potential to dra- 
matically improve response time in many situations. 
The self-tuning nature of the VM/XA sp2 minidisk 
cache allows it to respond robustly to a  wide  range 
of  system configurations and environments. Also, 
the fair-share  heuristic and cache directory queuing 
prevent  otherwise  pathological conditions from hav- 
ing  a  significant performance impact. 
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