VM/XA SP2 minidisk cache

Given the growing disparity between CPU power and
the speed of secondary storage, a data cache exploit-
ing large processor storage has the potential to im-
prove response time dramatically in many situations.
The VM/XA SP2 minidisk cache facility, the result of
research activity on the characteristics of interactive
file-system activity, uses expanded storage to cache
input/output to minidisks on the Conversational Moni-
tor System. The size of the cache is dynamically ad-
justed by an arbitration process to optimize system
performance. Several other functions improve the per-
formance of the cache during periods of unusual 1/0
loads.

Caching is a widely used technique to improve
performance in the presence of a memory hier-
archy.l‘2 A cache is a relatively small, high-speed
memory used to store the recently (or frequently)
referenced contents of a slower, larger, and less-
expensive memory in anticipation that these con-
tents will be rereferenced soon, with a consequently
significant improvement in performance. A cache is
intended to provide performance approaching that
of high-speed memory at a cost predominately that
of the slower memory. Most contemporary high-
performance computers contain a processor cache
which is used as a buffer for references to primary
storage.3 Some operating systems, e.g.,, the UNIX®
system,” have data caches that are used to buffer, in
primary storage, references to secondary storage.
These data caches typically keep a set of the most
recently referenced disk blocks.

This paper describes a data cache that is a component
of Virtual Machine/Extended Architecture System
Product™ 2 (vM/xa sP2). It is called a minidisk® cache
because it uses expanded storage5 to cache data from
Conversational Monitor System (cMs) minidisks that
are formatted into 4096-byte blocks. This minidisk
cache can provide a significant performance im-
provement in systems where response time is at least
partially influenced by 1/0 time.
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Being able to dynamically vary its size in response
to contending demands for expanded storage is a
distinctive aspect of the minidisk cache.” An arbiter
determines, in terms of global performance, the ap-
propriate allocation of expanded storage. Therefore,
the cache is self-tuning and automatically adjusts to
a wide variety of system configurations and environ-
ments. In addition, several other unusual facilities
provide high performance during periods of transient
1/0 stress.

In this paper a file-system activity study which pro-
vided the impetus for developing the cache is first
described. Then some details are provided on a
simulation study that was used to design the minidisk
cache. Finally, a description is given of the initial
prototype and how it evolved into the product ver-
sion.

CMS file-system study

The minidisk cache in vM/XA sP2 has its origins in a
study done at the 1BM T. J. Watson Research Center
facility in Hawthorne, New York, on the dynamic
aspects of cMs file-system activity.

Data for this study were gathered using CMON, a CMS
monitor written by David N. Smith, that allows
information to be collected about activities within
cMs for a particular user. It collects trace information
about specific events within the cMs machine being
monitored. For this study, CcMON was extended to
provide information at each READ and WRITE call
and other file-system operations such as ERASE, RE-
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NAME, and STATE (which determines the existence of
a file with a given identifier on a specified minidisk).
CMON was selected over a lower-level data-gathering
facility such as the control program (CP) monitor
because we wanted to study the file-system activity
patterns at the logical, as opposed to physical, level.

CMON is invoked at log-on time, intercepts CMS in-
terrupts and service-routine calls, and gathers perti-
nent data from cms control blocks and work areas.
A cp diagnose’ handler was added so that CMON
could uniquely identify each minidisk by volume
serial identifier (VOLSER) and start cylinder. CMON
collected raw activity data in a print spool file which
was sent to a virtual machine and later reduced. One
day’s activity was collected from each user.

Although CMON was normally transparent to the cMs
user, it was necessary for security and ethical reasons
to request permission to monitor each of the ran-
domly selected users. Because of this necessity, a
considerable amount of time was spent setting up
each monitoring session, and it was practical to
monitor only 20 to 50 users on a large virtual ma-
chine (VM) system.

The study at Hawthorne was later performed on
other internal IBM vM systems at Kingston and
Poughkeepsie. All of the systems studied showed the
following major cMs file-system activity characteris-
tics:

s Activity was “bursty”—a user’s command typi-
cally involved many file-system events and many
files.

» There was a temporal locality of reference within
a “burst”—i.e., files were often reaccessed within
a very short time.

* Most files were read in their entirety and sequen-
tially.

« Most file 1/0 events involved small files, but the
relatively infrequent 1/0 activity of large files ac-
counted for most of the bytes transferred.

» A few users accounted for a disproportionate share
of the file activity. (This characteristic was corrob-
orated by a sample of daily accounting data which
showed that 1.3 percent of users performed 30
percent of the 1/0 events.)

* Byte read/write ratios ranged from 4.6 to 8.9 on
the three systems.

* Approximately 50 percent of the files read were
read more than once, and about 90 percent of all
read requests were done to this set of files.
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Cache simulation

Since several of the file-system activity characteristics
suggested that a data cache would improve CMs file-
system performance, a cache simulator was written
to experiment with the activity traces that had been

Private virtual caches require
significantly more space than a
common cache to achieve the same
hit ratio.

derived from the CMON data. The traces for all of the
users were combined by sorting them in order of
event start time. Since there were a limited number
of traces, we were concerned that they might not
intersperse well and that there would be a long run
of just one user’s activity followed by a long run of
another user’s activity, etc.” Such noninterspersed
activity would tend to impair the synergic cache
effect that results when many users share files and
get cache hits because some other user recently read
the same file. This synergic effect would be expected
on a large mainframe with many users. However,
investigation showed that there was a high degree of
interspersion of the activity. For example, at Haw-
thorne the average size of a trace for a single user
was 2643 events, and after the combination of all
traces, the average single-user run was 16 events,
which was in the range of a typical “burst.” There-
fore, although the total number of users studied was
more typical of a small vM/cMs system, the results
of this study suggested that having a data cache ona
large mainframe was beneficial.

All of the cache simulation experiments had the
following in common:

o Each simulation run started with an empty cache.

» The initial cache size was 64 kilobytes and was
incremented for each simulation run.

o A 4096-byte minidisk block size was used for all
runs.

» Cache blocks were replaced by a global least re-
cently used (LRU) strategy.
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Figure 1 Hit block ratio as a function of cache size
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Since the cache was empty at the start of each run
and there were a limited number of user traces, the
simulation results tend to understate the hit ratios
obtainable on a large mainframe with expanded
storage.

Figure 1 shows the block hit ratio as a function of
the cache size for 24 Hawthorne users sharing a
common data cache. The block hit ratio is the num-
ber of (4096-byte) blocks found in the cache divided
by the total number of blocks read. Even a relatively
small cache provides a significant benefit; for exam-
ple, with a 512-kilobyte cache the hit ratio is 0.41.

To show the benefit of having a common data cache
as opposed to a private data cache in each virtual
machine, each user trace was run independently, and
the results were compared with a common cache by
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taking the mean hit ratio of all of the private caches
and the sum of their sizes. Each private cache was
incremented in size until it became large enough to
contain all of the data referenced in the user’s trace
(i.e., became an infinite cache for that session). The
cumulatlve size of private caches of size k for n users
is Zmln(k infinite cache size)). The corresponding

mean block hit ratio is 2 (b/s)h, where b, is the total

number of blocks read by useri, s 1s the total number
of blocks read by all users (i.e., s = 2 b),and h;is the

j=1
block hit ratio for user / at that cache size.

Figure 2 shows the results of this analysis. Clearly,
private virtual caches require significantly more
space than a common cache to achieve the same hit
ratio. For example, with a 3-megabyte common
cache the hit ratio is 0.67, but it requires 20 mega-
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bytes of private cache to achieve similar results.
Other research has demonstrated the space efficiency
of a common centralized cache over distributed
(nonprivate) caches such as those available in direct-
access storage device (DASD) control units.” Also, the
centralized cache may have a significant time advan-
tage, depending on where the distributed cache is
located. For example, a cache using expanded storage
is significantly faster than a cache in a DASD control
unit.

One reason a common cache performs so much
better is illustrated in Figure 3. This simulation
experiment cached only the data from the set of
minidisks that were shared among two or more of
the users. In addition to the hit ratio, this figure
shows the fraction of the blocks hit because of data
having been brought into the cache by another user.
This synergic effect of a common cache is absent in
a private virtual cache.

Finally, aside from the greater space consumption
and absence of synergic effect, a hit on a virtual
cache may require a page-in operation from a device
of the same performance characteristics as the device
on which the file is stored. In this event, the cache
hit will not have improved performance because an
equivalent 1/0 operation must still be performed.

Since the subset of shared minidisks yielded a higher
hit ratio than the subset of private minidisks, and
since the files in the shared subset were of potential
benefit to multiple users, it seemed like a good idea
to “protect” the shared subset from the private one.
Experiments were run with the cache partitioned
such that all of the data from the shared subset were
placed in one partition and all of the data from the
private subset into the other. Each partition had its
own LRU replacement stack, so they were disjoint.
Different relative partition sizes were used, but the
results were always inferior to a common unparti-

Figure 2 Size of common cache versus sum of individual sizes
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Figure 3 Block hit ratio and fraction of blocks hit because of reference by another user
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tionedzcache. This finding corroborates the results in
Smith” since partitioning is equivalent to a distrib-
uted cache.

We also found that it was generally beneficial to
cache all minidisks rather than to select those that
have the highest degree of sharing.10 This benefit is
due to the temporal locality of reference within a
“burst.” Many of these rereferenced files are on
private minidisks. Even a relatively small cache is
able to contain the “burst” file references of the active
set of users and consequently yield significant bene-
fits.

The cMON study showed that most of the files read
in cms were small. For example, at Hawthorne, 45
percent of the files that were read were 2048 bytes
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or less in size. Storing these sparse 4096-byte file
blocks in 4096-byte cache blocks results in a consid-
erable amount of “wasted” cache space. The density
of usable data in the cache could be increased by
using a smaller granule of storage (i.e., cache line) in
the cache. Using a cache line that was smaller than
the file block size would increase the overhead and
complexity of a cache but might be worthwhile if
the space savings were significant.

Experiments were run with a cache line of 512 bytes,
and the results were compared with a cache line of
4096 bytes (i.e., the file block size). The data density
increased significantly (up to 50 percent at small
cache sizes), but the improvement in hit ratio was
much less than would have been expected by the
increase in useful space. Further experiments showed
that this disparity occurred because large files were
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dominating the performance of the cache. A simu-
lation was run excluding all files that were greater
than 32 kilobytes in size. At Hawthorne 95 percent
of the files were less than or equal to 32 kilobytes,
but 60 percent of the bytes read were from files
greater than this size. The hit-ratio difference in-
creased significantly without the large files. For ex-
ample, when all files were cached, the hit ratio for
the 4096-byte cache line was only 5 percent less than
the hit ratio for the 512-byte cache line with a 256-
kilobyte cache, but when the large files were ex-
cluded, the difference was 18 percent.

Since all three systems on which we had taken cMON®
traces showed this dominance of large files, and since
studies of other systems' "> suggested that this was a
consistent characteristic of interactive file-system ac-
tivity, it was decided that using a cache line smaller
than the minidisk block size was not worth the
increased overhead and complexity.

Prototype

A prototype minidisk cache was built and run in the
Advanced Data Systems Laboratory in Hawthorne.
This prototype was a centralized cache using global
LRU replacement, The cache was a part of the control
program (CP) of vM/sP HPO 4.2, and data were cached
from minidisks that had a blocking factor of 4096
bytes. The data were cached in either expanded or
primary storage (but not both). The time to copy a
page from one page of primary storage to another is
approximately the same as the time to page in a page
from expanded to primary storage, so a hierarchical
cache is not justified. There was significantly more
performance leverage using expanded storage be-
cause of its greater availability and because there is
less contention for it than primary storage.

The cp modules that service the cMs file system 1/0
activity (diagnose handlers) were modified to inter-
rogate the cache manager on a read. If all of the
blocks were in the cache, the blocks were copied to
the cMs user’s buffer, and the diagnose was synchron-
ous. Cache misses went through the normal asyn-
chronous 1/0 path. After cache misses completed, the
blocks associated with them were inserted into the
cache. Likewise, on the completion of output, the
associated blocks were either inserted into the cache,
or, if already present, updated. The option of a write-
in cache' (as opposed to the write-through design
used) was not practical because it would undermine
the integrity of the CMs file system.

170 sozman

Dynamically adjusting the size of the cache in re-
sponse to contending demands for the storage re-
source was the key characteristic of this prototype.
A new module was added to cP which was an arbiter
between demands for pages to back virtual memory
and pages for use in the cache. The arbiter ran
periodically and, based on an analysis of user wait-

A fair-share algorithm restricted the
number of cache pages that any
user could displace.

state samples, either adjusted the size of the cache,
via an interaction with the cache manager, or left it
unchanged. Heuristics were included in the arbiter
to slow down or stop the incrementing of the cache
when the performance benefit was slight or nil. Var-
ious tuning parameters in the arbiter allowed exper-
imentation with trade-offs between responsiveness
and dampening cache size oscillations.

The arbiter approach was chosen over the alternative
of letting the existing storage manager(s) select which
pages should be cast out of processor storage. The
reasons for this decision were:

o The arbiter allowed greater flexibility in managing
processor storage. For example, the arbiter made
it simple to bias in favor of either virtual memory
pages or cache pages should this prove to be ben-
eficial.

 Since most files are read sequentially and in their
entirety, it is beneficial to “steal” cache blocks in
file sequence. The global LRU replacement policy
used by the minidisk cache has this attribute and
consequently minimizes partial hits (i.e., some but
not all of a list of blocks are in the cache). The
LRU approximation algorithms such as CLOCK,14
which are used by many storage managers, do not
have this attribute.

The prototype had a fair-share algorithm which re-

stricted the number of cache pages that any user
could displace over a short interval. This algorithm
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was designed not to constrain normal 1/0 activity but
rather to limit the cache disturbance caused by path-
ological activities such as searching the contents of a
minidisk for a specific string by reading every file in
its entirety.

The fair-share algorithm worked as follows. For each
interval of a minute, the cache manager counted the
number of different users that had inserted blocks
into the cache. Users who had only read data from
the cache were not counted. When the minute inter-
val expired, the fair-share limit for the next interval
was calculated as the larger of (cache_size)/
(number_of_inserting_users) or a lower bound. The
lower bound was a heunstic value that always al-
lowed a “reasonable” amount of cache insertion
activity to occur per user. This lower bound adjusted
the simple fair-share calculation to accommodate
the known cMs file-system activity characteristics of
strong temporal locality of reference and most 1/0
activities attributable to a small fraction of the users.
The cache manager enforced the limit by counting
the pages inserted by each user, and when the count
exceeded the fair-share limit, no further pages were
inserted. These counts were reset each minute. This
trailing fair-share policy was not intended to impose
a true fair share but rather to prevent unusual 170
activities from displacing a large fraction of the cache
over a short interval of time.

The cache directory was implemented with a coa-
lesced hashing algorithm."® This implementation al-
lowed the directory to be fully loaded and still pro-
vide excellent performance. An adaptation of Bays’
algorlthm was used to “rehash” the cache directory
when required for either increasing the size of the
cache or after a limit of empty directory space had
been reached.

Product

The prototype was converted to vM/XA in conjunc-
tion with the Advanced Technology Department of
the 1BM Kingston Programming Center. The product
version uses expanded storage exclusively. The pro-
totype structure was preserved, but several enhance-
ments were introduced:

» The arbiter was modified to interface with the
expanded storage migration routine so that a de-
cision to decrease the size of the cache is made
only upon invocation of the page migrator. The
arbiter continues to dynamically make decisions
to increment the size of the cache.
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» Cache misses are inserted in the cache directory
at the time of the miss. These directory entries are
marked as in transit. Subsequent requests for the
same block queue the user(s) on the cache direc-
tory entry until the block is inserted in the cache.
Then all queued users are restarted at a point
where they get a cache hit on the newly inserted
block. Although this method is of limited value
during normal operation, it greatly improves the
VM recovery situation where hundreds of users are
logging on after a system failure and reading the
same blocks (e.g., accessing shared minidisks).

* 1/0 activity to cMs 4096-byte blocks that transfer
less than the full block is cached. This allows the
caching of cMs minidisk label 1/0 operations (80
bytes), the file directory root (64 bytes), and the
pointer blocks of cMS transient modules (8 bytes).
It is especially beneficial during vM recovery when
cMs users are all reading the labels and file direc-
tory roots on the shared minidisks.

*+ When the cache has not yet reached its size ceiling
(set by the arbiter), fair-share exclusions are in-
serted at the least recently used end of the LRU
stack.”” This action results in fewer fair-share ex-
clusions during cache growth situations. For the
typical condition where the cache has reached its
size ceiling, the fair-share policy remains the same
as in the prototype.

* A command was added to optionally set a mini-
mum and/or maximum cache size. This com-
mand is intended for use in unforeseen situations
where human intervention might beneficiaily limit
cache-size oscillation. It might be useful, for ex-
ample, when there is insufficient expanded storage
to efficiently meet contending demands. When not
specified by command, the minimum is zero and
the maximum is the size of on-line expanded
storage.

» Minidisks can be excluded from caching by in-
cluding the minidisk option (MINIOPT) NOMDC on
the MDISK record in the virtual machine directory.

The minidisk cache manager, HCPMDC, is called by
the cMs 1/0 diagnose handlers for the new bimodal
CMS (HCPDGB, HCPDGG'") and the traditional non-xA
cMS (HCPDGD), and also by the module that services
IUCV BLOCKIO (HCPBIO) which is used by sSQL/DS
(Structured Query Language/Data System).

Blocks within a minidisk are invalidated from the
cache when there is a virtual Start I/O/Start System
Channel (s10/SSCH) instruction to the minidisk (if it
is writeable) or a cMs format of the minidisk. All
blocks on a device are invalidated when the device
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Figure 4 Relationship of page migration, arbiter, and minidisk cache manager
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is detached from the system. Before a partition of
expanded storage is attached to a guest virtual ma-
chine, all cached blocks within the partition are
deleted from the cache.

As depicted in Figure 4, the arbiter, HCPARB, was
modified to interface with the vM/XA page migration
module, HCPMIG. The maximum size of the minidisk
cache and its initial ceiling are set during CP initial-
ization to be the size of on-line expanded storage
and 16 megabytes, respectively. The maximum size
and, if necessary, the ceiling are adjusted downward
if a subset of expanded storage is attached to a guest
virtual machine, or if the maximum has been set
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lower by command. At any time after the initial
setting, HCPARB may raise the cache ceiling (up to its
maximum value), if, during one of its cyclical invo-
cations, its analysis of wait-state samples deems it to
be beneficial. Until the page migration threshold is
reached, both HCPMDC and HCPMIG compete for
expanded storage pages via calls to HCPPGX, the
expanded storage manager, When the migration
threshold is reached, HCPMIG calls HCPARB before
migrating pages from expanded storage to DASD.
Based on its analysis of wait-state samples, the arbiter
will either meet all, one half, or none of the migration
goal. To meet all or part of the migration goal,
HCPARB calls HCPMDC, specifying a cache ceiling that
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is less than the current number of expanded storage
pages in use for the cache. To conform to this lower
ceiling, HCPMDC returns expanded storage pages to
HCPPGX. After HCPARB returns to HCPMIG, a page
migration occurs, if necessary, to acquire that por-
tion of the migration goal not attained.

Minidisks are not cached if (1) the NOMDC option is
specified on the MINIOPT directory statement, (2) the
device on which the minidisk resides is dedicated to
a virtual machine,” or (3) the device on which the
minidisk resides is defined (in the 1/0 configuration
module, HCPRIO) as being physically shared between
processors. Otherwise all minidisks that have a
blocking factor of 4096 bytes and have 1/0 operations
done through the HCPDGB or HCPDGD diagnose han-
dlers or the HCPBIO asynchronous block 1/0 handler
are eligible for caching. Installations wishing to re-
strict caching should not rely on the blocking factor
as it can be easily changed by the cMs user.

Minidisk cache statistics are included in vM/XA SP2
monitor output. The INDICATE LOAD command has
been extended to include the minidisk cache hit
ratio, minidisk cache blocks read per second from
expanded storage, and minidisk cache blocks written
per second to expanded storage. The QUERY XSTORE
command displays the minimum, maximum, and
current size of the minidisk cache.

Concluding remarks

Given the growing disparity between cPU power and
the speed of secondary storage, a data cache exploit-
ing large processor storage has the potential to dra-
matically improve response time in many situations.
The self-tuning nature of the vM/xA sP2 minidisk
cache allows it to respond robustly to a wide range
of system configurations and environments. Also,
the fair-share heuristic and cache directory queuing
prevent otherwise pathological conditions from hav-
ing a significant performance impact.
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do asynchronous block input/output to minidisks.

20. Nondedicated minidisks that occupy an entire volume are
cached. Minidisks can be exclusively accessed by a virtual
machine without the use of the DEDICATE statement in the
CP directory.
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