MVS data services

The IBM Enterprise Systems Architecture/370™ vastly
increases the potential virtual addressability available
to both system and application programs. The 1/O
model and the application model of permanent data
are discussed to illustrate how large virtual addressa-
bility can be used to simplity application programs and
improve performance. New MVS services that exploit
the architecture are described. Also described are data
window services, which are callable from high-level
languages and provide the capability to manage very
large permanent and temporary objects in virtual stor-
age.

Certain operating system features allow applica-
tion programs to use the large quantities of
virtual storage made possible by the Enterprise Sys-
tems Architecture/370™. Before describing these fea-
tures, we review the history of virtual storage in large
IBM systems from the time it was included in the
System/370 architecture. The single virtual storage
(svs) oﬁperating system supports 16M bytes (where
M=10") of virtual addressability for the operating
system and the combined total of all the user regions.
The Multiple Virtual Storage (Mvs) operating system
allows each user region and the operating system to
have a total of 16M bytes of virtual addressability.
Mvs/Extended Architecture (Mvs/xA™) allows each
user region and the operating system to grow to a
total of 2G bytes (where G=IO9) of virtual address-
ability.

ESA/370™ is a new architecture that vastly expands
the base limits of data addressability. In addition,
the architecture allows program exploitation to fur-
ther extend addressing limits in ways never before
possible. ESA raises the architectural limits to allow
user’s addressability to be expanded in 2G-byte in-
crements so that with register manipulation, up to
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16T bytes (where T=1012) of data can be addressed.
Beyond that, application programs can invoke Sys-
tem services to manipulate tables used by the hard-
ware to extend the addressing capacity by many
times more.

New data window services are implemented using
concepts built on the architecture to define and
access very large temporary and permanent objects.
The window services are callable from many of the
high-level languages, including FORTRAN and COBOL.
Even though the capacity represented by limits on
the current hardware configurability will allow ap-
plications to increase greatly their present addressa-
ble data, those limits are still well below the address-
ing capability of the architecture and of the window
services exploitation of the architecture. This paper
provides a historical perspective and describes the
new system services that permit application exploi-
tation of the new architecture.

The 1/0 model vs the application model of data

The physical attributes of storage media have been a
very significant factor throughout the history of the
data processing industry. In fact, some storage media
attributes remain long after the medium itself has
become obsolete. It is likely that in aimost every data
processing installation in the world, one can find
direct-access storage device- (DASD) resident data-
sets with such block sizes as 1600, 3200, and so forth.
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These multiples of 80-character logical records are
vestiges of the 80-column card that was once one of
the mainstays of the data processing industry. The
card was more than a machine readable document,
It was also the means of storing data when there was
a need for editing or updating. This could be done
completely electromechanically by creating the new
card with a card punch, or manually with a machine
called a key punch in which the card was punched
as characters were entered by hand via a typewriter-
like keyboard. Card decks were maintained by man-
ually removing the old cards and inserting new ones.
The decks were stored in special files with card-size
drawers. The card-filled files stood in programmer
cubicles and the adjacent halls waiting for the next
trip to the machine room, where the cards would be
passed through the card reader and returned to the
file. Today the cards, the card punches, the card
readers, and the file drawers have largely disap-
peared, but the 80-character records remain.

Access methods were developed to shield applica-
tions from the need to build channel programs and
to reduce the degree of sensitivity to storage-device
characteristics. The access methods not only solve a
technical problem for applications, but they also
protect them from changes in device geometry that
occur when a new DASD is introduced. Naturally, in
order to provide this service, the access methods
must define some rules. Records can be of variable
length or fixed length; maximum record and block
sizes are specified. Rules for defining and using buff-
ers are laid out. These rules and the history of data
storage lead us to the 1/0 model of data. If one follows
the rules, a degree of device independence can be
achieved, which is satisfactory if the application can
work with the 170 model of the data. Demonstrably,
we are surrounded by examples of applications that
work successfully with the 170 model of their data.

There are, however, applications that would be easier
to write and extend if their data could be stored in a
usable format rather than broken into records and
blocks according to rules that are not really relevant
to the application programmer’s obje:ctive.1 The con-
cept of storing data on DASD in the form exactly as
it was created, and subsequently presenting the data
in the form the application requires, is called the
application model of data.

The application model of data means that the appli-
cation programmer has the same flexibility in ma-
nipulating permanent data as when manipulating
control structures, pointers, and data in the address
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space. The application data can be defined with
whatever internal structure is needed to meet the
needs of the application. There are obvious simpli-
fications in writing an application in this environ-
ment.

In addition to contributing to the ease of application
development, this form of handling permanent data

The concept of virtual storage
has been joined with a
system-managed storage hierarchy.

also allows the operating system to maintain data in
processor storage to provide improved performance
and to reduce 1/0 operations. This is possible because
the concept of virtual storage has been joined with a
system-managed storage hierarchy, using consistent
units of storage at a time when large quantities of
affordable processor storage are available. These are
not all completely new concepts, but they have pre-
viously been inadequately brought together for the
handling of permanent data.

The application model of data is supported by data
in virtual (D1v), which was introduced in MVS/XA.
The introduction of the new architecture and the
accompanying high-level language support through
data window services combine to greatly increase the
potential value of data in virtual for the application
programmer. Because data in virtual provides the
primary 1/0 support for the new virtual addressing
facilities, it is important to understand the basic
functions provided. The next section describes data
in virtual, and following sections explain the way in
which it relates to the new architecture.

Data in virtual

Data in virtual is a system service that allows appli-
cations to work with the contents of permanent DASD
datasets as though the entire file actually resided in
virtual storage. Data in virtual was first made avail-
able in Mvs/xa sp 2.2. (See References 2 and 3.) The
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concept of implicitly accessing the contents of a
permanent dataset by referencing virtual storage has
had previous implementations. The 1BM time sharing
system (TSS) supported the concept on System/360
Model 67, and there are other examples in the data
processing industry. One of the new features is the
use of more than one level of storage hierarchy in an
addressability environment where large quantities of
virtual storage can be dedicated to a user. Virtual
addressability combined with large amounts of pro-
cessor storage managed at multiple levels makes
more practical the addressing of permanent data
directly through virtual storage than had been pos-
sible in the past.

Data in virtual is based on virtual storage and the
relocation functions in the processor that Mvs uses
to manage the resources required by the operating
system and application programs. At any given time,
a virtual storage page can reside in a main storage
frame, an expanded storage frame, or in a DASD
paging dataset siot. When a virtual page is referenced
but not backed by a main storage frame, a page fault
occurs. A page fault causes an address-translation
exception. Therefore, the operating system must find
and allocate a main-storage frame and retrieve the
contents of virtual storage from expanded storage or

paging DASD.

Data in virtual adds another dimension to the mean-
ing of virtual storage, because it permits the appli-
cation to relate a virtual-storage range directly to the
contents of a permanent DASD resident dataset. The
particular form of permanent dataset supported is a
new VSAM format, called a linear dataset. Ordinarily,
a virtual page is related to DASD storage only when
the contents of the virtual page have been paged out.
When ordinary virtual storage is freed, the paging
DASD space is freed also. A data-in-virtual object
remains on permanent DASD regardless of the state
of virtual storage. System services are provided to
establish the relationship of virtual storage to a per-
manent DASD-resident dataset, but no data are read
until an application reference causes a page fault.
The real storage manager (RSM) component of MvS
recognizes that the virtual storage is related to a
permanent DASD dataset and causes the appropriate
data to be read. At some later time, when the appli-
cation updates the dataset, a SAVE can be requested
that writes only the changed pages to the permanent
DASD. The reads and writes are managed with special
block-processing routines, instead of the vsaM rou-
tines used with normal GET/PUT processing.
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Note that the only pages read are those referenced,
and of those, only those that have changed have the
potential to be written. This is quite different from
what would occur if the same application capability
were attempted with the conventional 170 model.
The entire dataset would have to be read, causing it
ultimately to end up replicated in paging storage.
Unless the application keeps a record of the part of
the dataset that is changed, the entire dataset might
have to be written when the application does an
update.

Data-in-virtual datasets are usually referred to as

data-in-virtual objects to distinguish them from con-
ventional datasets with an access-method-imposed

The application interface is
totally device-independent.

format. Data-in-virtual objects have only the format
defined by their creators and users. There is no
control information imbedded in the object by the
operating system. The application is permitted to
define whatever data structure suits its needs. The
only rule is that the maximum size for a single data-
in-virtual object is 4G bytes. Relative byte addressing
can be used to move from one location in the object
to another. Index structures of any size and shape
can be defined. The application interface is totally
device-independent so that data-in-virtual objects
are completely portable across DASD types. It makes
no difference whether the data in the object is sparse
or dense. Only the blocks corresponding to the pages
referenced by the application in the address space
are read from DASD, and only pages that have been
changed are written to DASD. The physical block size
used for the objects is 4K bytes, because of the
relationship with virtual storage paging. This block
size is visible to the application only in that the
virtual view must begin and end on 4K-byte bound-
aries. There are no restrictions on data structures
spanning physical blocks.

The user of data in virtual is able to work with the
application model of the data without the constraints
of trying to conform to the rules of an 170 model.
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The application can relate large virtual storage areas
to the dataset and cause a working set of the dataset
to be available in processor storage, thus avoiding
1/0 operations for rereferenced data. Efficiency is
achieved by reducing the amount of data read and
written to DASD. Using data in virtual for sequential
processing has been improved in ESA/370 by the ad-
dition of a read-ahead capability that reads multiple
pages optionally. This option is available for assem-

A data space is a capability
available to programs that use
the new architecture directly.

bler language programs that use data in virtual and
for high-level language programs that use data win-
dow services.

Applications that make repeated references to areas
within their data and that update scattered locations
run very efficiently with data in virtual. Many appli-
cations that try to keep large amounts of permanent
data in virtual storage, using conventional access
methods, see a substantial improvement when data
in virtual is used.” On the other hand, an application
that reads an entire dataset and inserts new records
to create a new dataset is not a good candidate,
unless the dataset is restructured to contain sufficient
voids to contain the insertions.

Data in virtual consists of the following services:

* IDENTIFY & ACCESS—OPEN the dataset.

» MAP—Define the virtual storage range and block
offset in the data-in-virtual object that are to be
related. No data are read at this time. Data are
read at the time the application references the
virtual storage and then only the referenced data
are read. MAPs may be for as little as a single page
and as large as all the available virtual storage in
the address space.

SAVE—Write the changed pages to the data-in-
virtual object. The real storage manager (RSM)
detects which virtual storage pages differ from the
version on DASD and causes only those pages to
be written.
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» RESET—Discard all changed pages. This causes the
view of the object to be restored to the state of the
last SAVE or last ACCESs, whichever is the more
recent. Unchanged pages that are in main or ex-
panded storage remain there.

e UNMAP—Ends the relationship between virtual
storage and the data-in-virtual object.

* UNACCESS & UNIDENTIFY—CLOSE the object.

When data in virtual was originally released, assem-
bler was the only user language supported by the
interface. It was envisioned that applications would
use data in virtual by invoking assembler language
subroutines that worked with the data-in-virtual in-
terfaces to set up mappings and save the changes.
The applications would continue to be written in the
high-level language of choice, and the applications
would reference virtual storage to obtain the data
and make the desired changes directly. Nevertheless,
it was recognized that data in virtual could be more
easily used by more applications if there were some
support for high-level languages. This support came
through vs FORTRAN, which allows calls to FORTRAN
library subroutines that interface with data in virtual.
VS FORTRAN was announced in November of 1987.

New addressing constructs

This section discusses new virtual addressing capa-
bilities in MvS/ESA™ and the way in which they are
supported in data-in-virtual services. ESA provides
new options and added flexibility for direct users of
the architecture. It also makes new functions and
capabilities available to applications that have not
been changed to run in the new addressing mode. A
data space is an example of capability available to
programs that use the new architecture directly.

Data spaces. A data space is a new addressing entity
introduced in Mvs sp 3.1.0 as part of ESA application
enablement.’ In contrast with an address space that
contains system programs and data in addition to
the user programs and data, a data space contains
only data. Programs may be stored in a data space
as data, but they cannot be executed in a data space.
Data spaces may be as large as 2G bytes and are
usable in their entirety by the application. The 1BM
3090E implementation restricts the use of the initial
4K bytes. This restriction is made largely transparent
by the data-space-create service, which returns a
data-space origin of 0 or 4K bytes depending on the
cPu. There is no storage reserved for common area
or any system control blocks. Even the segment and
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page tables needed to manage virtual storage reside
elsewhere in other storage controlled by the rsMm.

Data spaces are created by means of a new rsm data-
space service macro that is invokable by problem

Data spaces can help eliminate
the requirement for the remappings
and the management of virtual
buffers.

state programs. Authority to access a data space is
controlled by hardware, so that, in addition to in-
creasing virtual storage addressability, data spaces
improve integrity by permitting data isolation. In a
multitasking environment within an address space,
an individual problem program subtask can create a
data space and all other tasks can be prevented from
altering or retrieving data in that data space. Any or
all of the subtasks could have their own data spaces.
Authorized tasks can selectively share access to data
spaces they own with other tasks in the same address
space and with tasks in other address spaces.

Within the system, there exist multiple address
spaces, and within each address space there can exist
multiple tasks. Each of the tasks can own multiple
data spaces. Overall, the virtual addressability avail-
able to an application is limited only by the bounds
imposed by the hardware configuration.

Applications written in assembler language and run-
ning in the new addressing mode can access data
spaces directly through the full set of System/370
instructions that access and manipulate storage.

Data in virtual has been enhanced to make it possible
to MAP data-in-virtual objects in data spaces. Users
who run in the new addressing mode can set up
relationships between data spaces and permanent
data-in-virtual objects using the same techniques as
they would for their address space private area. Data
in virtual provides the means for applications to
accomplish 1/0 between a data space and DASD di-
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rectly, without moving the data through an address
space. All the functions of data in virtual are avail-
able to the creator of the data space. Figure 1 shows
the relationship of the address space, the data space,
the data-in-virtual object, and the paging hierarchy.

Data-in-virtual objects can be as large as 4G bytes.
In Mvs/xA, the data-in-virtual user of large objects or
perhaps a number of smaller objects may have been
unable to keep in a MAP all of the active data. The
only remedy was to remap the virtual storage to be
able to access all the data. This necessitated manag-
ing the mapped storage much the same way buffers
are managed for conventional 1/0. Data spaces can
help eliminate the requirement for the remappings
and the management of virtual buffers. A single,
large data-in-virtual object can be mapped across
one or more data spaces or several smaller data-in-
virtual objects can be mapped within a single data
space. Data spaces thus provide the capability for
very large amounts of permanent data to be contin-
uously available for reference within the virtual stor-
age owned by the application.

Virtual lookaside facility. In addition to providing
application access to data spaces, MVS/ESA has added
services that use data spaces to provide improved
performance for users of the operating system. Vir-
tual lookaside facility (VLF) is an MvS component
that uses data spaces for storing and retrieving named
objects. Data are stored in the VLF data spaces on
byte boundaries and can be retrieved into the re-
quester’s address space on byte boundaries. The VLF
data spaces are managed as part of the Mvs paging
hierarchy, and the data-space pages may reside in
main storage, expanded storage, or auxiliary paging
storage. VLF provides a set of easy-to-use, high-per-
formance services that can be invoked by authorized
subsystems or major applications to provide a virtual
storage lookaside. Conceptually, a lookaside pro-
vides an alternate, higher-performance means of ac-
cessing data, by keeping it in a more readily available
type of storage.

The primary intent of VLF is to enable components
that repeatedly retrieve high-usage named data (such
as partitioned dataset [PDS] members) on behalf of
many users in the system to avoid 1/0 operations.
Response time can be improved by maintaining
frequently used objects in virtual storage without
requiring any change in the application. Each com-
ponent using VLF is responsible for obtaining the
individual named objects stored in VLF from DASD
by whatever means is appropriate for those objects.
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Figure 1 DIV object mapped to a data space
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The data to be stored in VLF are presented by the
requesting component in the form that the compo-
nent wishes to retrieve the data. Given this, it can be
seen that VLF can be used for a variety of types of
data stored in any form required, as long as a suitable
naming scheme for the objects exists. The data can
be derived from any source within the system, not
necessarily from DASD. However, when the named
VLF objects correspond to PDS members, VLF pro-
vides additional support to assist in the maintenance
of members.

VLF objects and naming structure. The data to be
stored in VLF are structured into groups known as
classes, each of which represents data managed by a
different component or authorized application.
Within each class, every object has two levels of
name associated with it. The major name specifies a
subgroup of objects within a class, and the minor
name specifies a specific object within a group.
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Within a class, each major name must be unique.
Within a major name, each minor name must be
unique. Thus, for a given class having several major
names, multiple objects may exist with the same
minor name.

The naming structure mimics the existing structure
used to access members of partitioned datasets. The
major name is functionally analogous to a concaten-
ation of the volume serial and partitioned dataset
name, i.€., it uniquely identifies a group of objects.
The minor name is functionally analogous to a PDS
member name in that it uniquely identifies a specific
data object by name.

Applications that can benefit by using VLF are those
for which there are multiple users of the data or the
data have a high frequency of reuse. Data stored in
VLF are subject to page stealing, just as data stored
in a user’s address space or data space. Therefore,
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appropriate data must have a high enough rate of
usage that they are likely to stay in real or expanded
storage. VLF is better suited to relatively small objects,
because less virtual storage is expended to save the
1/0. Very large objects when not used frequently
enough to remain in real or expanded storage may
take longer to retrieve from VLF than by doing tra-
ditional 1/0 to DASD.

The component or authorized application that re-
quires VLF need interface with only a few macros to
share large storage capacity among all users of a
class. Within the system, the users of the class have
fast retrieval of named objects while being assured
of the integrity of the data.

VLF enables authorized installation programs as well
as IBM subsystems and system components to main-
tain named objects in virtual storage and retrieve
them rapidly on behalf of many end users. Objects
can be deleted and replaced by new versions, but the
copy in VLF storage cannot be modified.

Library lookaside. Library lookaside (LLA) dynami-
cally selects and stages load modules into a virtual
lookaside facility (vLF) data space to avoid program
fetch 1/0. LLA also keeps copies of the directories of
installation-designated libraries in its address space
to eliminate library directory search 170. The LLA
copies of library directories can be selectively re-
freshed to activate new versions of library members
in a controlled manner. LLA can be used to improve
library performance, system usability, and system
availability.

In order to use LLA, the installation must define the
LLA class in the VLF parameter library (parmlib)
member and list the libraries in LLA’s parmlib mem-
ber(s) that LLA is to manage or must not manage.
LLA manages the linkage list (LNKLST) libraries by
default. The installation can also dynamically add
and remove any cataloged libraries for LLA. VLF and
LLA are both started tasks. If LLA is not defined to
VLF or VLF is not started, LLA will not cache-load
modules.

While LLA is managing a library, the LLA directory
eliminates search 1/0 for that library and conceals all
updates to that library’s directory on DAsSD. Copies
of the directory entries in the LLA directory can be
selectively refreshed at any convenient time to acti-
vate new versions of the corresponding library mem-
bers. LLA can be used to coordinate library updates
that span multiple libraries, updates consisting of
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one or more parts within a single library, and mul-
tiple independent updates of both types. With LLA,
it is not necessary to quiesce users before updating a
library. If for some reason an update cannot be
completed, LLA shields the system from the partial
update and the changes can be removed without
disrupting users. Users may still need to be quiesced
for the short interval while LLA is being refreshed.

Data spaces provide virtual storage
that can be used to avoid explicit
requests that require /0.

Another way to use LLA to control versions of library
members is to update the libraries on prime shift
and refresh LLA on third shift when users will not be
disrupted.

For load libraries, LLA dynamically adjusts the con-
tents of LLA’s VLF storage to minimize the overhead
associated with program fetch. Adjustment of con-
tent works both to add and delete modules. Load
modules that become active are staged to the VLF
data space, and modules that become inactive are
deleted from the vLF data space. Installations can
optionally redirect LLA’s staging decisions by provid-
ing installation exits for LLA.

Hiperspaces. Data spaces provide virtual storage that
can be used to avoid explicit requests that require
1/0. Large buffer areas for data that have been read
from DASD and are expected to be reused in a rela-
tively short time can be defined in data spaces.
Another alternative to DASD 1/0 is to use a data space
for temporary work files. For these examples, where
the data are stored—but not actually manipulated
in the data space—there is a special form of data
space which can offer greater efficiency in the use of
system resources for some applications. This is par-
ticularly true if 4K-byte granularity for data storage
and retrieval is workable for the application. This
form of data space is called a hiperspace—for High
PERformance data access when compared to 1/0
operations from DASD. A hiperspace is created with
the same RrSM services used to create a data space.
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The intended purpose of hiperspaces is to provide
applications with the opportunity to use expanded
storage as a substitute for 1/0 operations and thus
gain very significant performance improvements. It
is expected that the use of hiperspaces by applica-
tions would be encouraged where there is underutil-
ized expanded storage capacity or where extra capac-
ity could be installed in order to use expanded stor-
age to avoid 1/0 operations.

Hiperspaces differ from regular data spaces in that
main storage is never used to back the virtual pages
in the hiperspace. Another difference is that data can
be stored and retrieved between an address space
and a hiperspace only by invoking MVS system serv-
ices. The data are addressed and transferred on 4K
boundaries and in 4K blocks. Because the services
are part of the real storage manager, page faults are
avoided and in some cases the data transfer is accom-
plished simply by manipulating control blocks and
transferring ownership of the storage entity contain-
ing the data. The hiperspace services are available to
assembler language programs, but the user of the
hiperspace does not have to be in the new addressing
mode required for access to data spaces, because the
system services run in the addressing mode necessary
to accomplish the data transfer.

Hiperspaces are used for storage and retrieval of
pieces of objects, in contrast to VLF which stores and
retrieves entire named objects. The hiperspace user
directs precisely where the data are stored in the
hiperspace, and that user must remember that loca-
tion in order to retrieve the data. The VLF user does
not know where the object is stored and need supply
only the object name to retrieve it.

Two types of hiperspaces are supported, the standard
data-space type for unauthorized programs and ex-
panded-storage-only data-space type for authorized
callers. The virtual storage in the standard type is
backed by expanded storage and can migrate to
auxiliary paging DASD. Just as the name implies, the
expanded-storage-only type never migrates to auxil-
iary storage. Figure 2 illustrates how the paging
hierarchy applies to data spaces and the two types of
hiperspaces.

One purpose for the standard hiperspaces is as an
alternative to a temporary DASD work file, When
used in this way, standard hiperspaces function
much as VIO to expanded storage does, except they
avoid all the cpPU overhead resulting from the vio
device simulation. vi0 has the advantage that any
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application written to use one of the data manage-
ment access methods that use EXCP can elect to use
vIO by a simple change in the job control language.

Data window services facilitate
programs written in high-level
languages.

Hiperspaces require change in existing applications
or the development of new applications to use the
new services. Data window services, which are de-
scribed in the next section of this paper, facilitate
this use, particularly for programs written in high-
level languages. The advantage of hiperspaces is sub-
stantially less CPU overhead because the vio device
simulation and data movement required by the sim-
ulation are avoided. Hiperspaces also have greater
capacity as each one can contain up to 2G bytes of
data. vio datasets are presently bounded by the size
of the simulated device, which is an 1BM 3380 with
the capacity of 630M bytes.

Expanded-storage-only hiperspaces are expected to
serve as buffers for data where there is a permanent
copy on DASD. Mvs can elect to steal expanded
storage from the expanded-storage-only hiperspace,
which means the data are no longer retrievable from
the hiperspace and, therefore, must be read from
DASD. Two options are available to the authorized
program that must keep data in a hiperspace. One is
to use the CASTOUT=NO option, which does not allow
the expanded storage to be stolen. The other option
is to use a storage isolation feature to guarantee that
the working set for the owning address space does
not fall below the value needed to assure backing for
the hiperspace. The second option is preferred be-
cause it provides the system with more flexibility for
managing system resources and facilitates such func-
tions as dynamic reconfiguration.

The read and write services provided by RsM have
attributes that facilitate efficient storage use by hip-
erspaces. Data written to standard hiperspaces de-
stroy the contents of the address space pages from
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Figure 2 DIV mapping and hiperspaces
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which the data are written. The address space page
content should be treated as unpredictable after a
request to write. Given that standard hiperspaces are
used for temporary storage, the design assumes that
when data are written from the address space to the
hiperspace the application reuses the address space
pages for different data. In all likelihood, the next set
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of data written to the hiperspace will be built in those
same pages. This allows the RsM to choose the most
efficient means of doing the write operating regard-
less of the state of the address space virtual storage
at the time of the write. In the case where an address
space page is not currently backed by main storage,
but instead is backed by expanded storage or auxil-
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iary DASD, the expanded storage or auxiliary DASD
slot is taken from the address space and given to the
hiperspace. The data are in effect moved to the
hiperspace by simply manipulating pointers in con-
trol blocks rather than physically relocating the data.
This transfer function is also available as an option
for expanded-storage-only hiperspaces when the ad-
dress space page is backed by expanded storage.

When there are no expanded storage frames available
at the time of a write request to a standard hiper-

When data are being read from a
standard hiperspace, it is
possible to release the storage
that is backing the hiperspace
pages being read.

space, RSM directs the write request to auxiliary
storage rather than cause additional migration from
expanded storage to auxiliary storage. When this
occurs, the real frames are taken from the address
space while the 1/0 operation proceeds and com-
pletes. In the meantime, the caller is resumed and
can begin to move the next set of data into the
virtual storage, because it now looks like freshly
acquired storage. The pages will be backed with new
real frames.

When data are being read from a standard hiper-
space, it is possible to release the storage that is
backing the hiperspace pages being read. This is
recommended when an application knows that the
data are not going to be reread, which is frequently
the case with work files. This saves the overhead of
managing unnecessary migration to auxiliary paging
storage.

Data-in-virtual objects can be mapped to standard
hiperspaces just as they can for address spaces and
data spaces. The difference is that instead of refer-
encing the mapped page directly, the application
invokes the RSM service to retrieve or update the
desired page or pages in the mapped area in the
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hiperspace. In such a case, RSM notes that the hiper-
space pages are mapped to a data-in-virtual object
and reads them directly from DAsSD to the address
space pages. When the application is ready to work
with some different data, the current data can be
captured in expanded storage backing the hiper-
space. When the data are needed again, they need
not be read from DASD. By this means, data-in-
virtual users who are not using the new addressing
mode can buffer data in expanded storage even when
their address space is exhausted. Data in virtual in a
hiperspace is also used internally by Mvs in the
implementation of scrolling support in data window
services as discussed later in this paper.

VSAM use of hiperspaces. Users of vsam local shared
resources have the option of electing a second level
of buffering, in addition to the vsaMm virtual buffer
pool in the address space. The vsam buffer definition
function is expanded to specify the number of hi-
perspace buffers to be obtained, in addition to the
conventional address space buffers. The buffer size
must be a multiple of 4K bytes. The number of
hiperspace buffers are expected to be much greater
than the number of address space virtual buffers
because hiperspaces use a less expensive resource,
both in terms of dollar cost and virtual storage
constraint.

When the user of VSAM requests a record, the vsam
buffer management routine checks both the virtual
buffer pool in the address space and the hiperspace
to determine whether the request can be satisfied
without requiring an 1/0 operation. If the record is
found in the virtual buffer pool, it is given to the
requester. If the record is found in the hiperspace, a
virtual buffer is made available by writing to the
hiperspace the contents of the virtual buffer that has
been unreferenced for the longest time. The hiper-
space buffer is then read into the newly available
virtual buffer in the address space. The hiperspace
buffer just read is now available to be written to by
the next request. When the record is not found in
either the virtual buffer or the hiperspace buffer, a
virtual buffer is needed for the 1/0 operation. The
vsaM buffer manager selects the virtual buffer that
has gone unreferenced the longest and writes it to
the hiperspace buffer. The hiperspace buffer selected
is either the last buffer read, or, when those are all
used, the hiperspace buffer that has been longest
unreferenced is selected.

In summary, hiperspaces provide services for au-
thorized and unauthorized assembler language pro-
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grams to direct data to expanded storage as an alter-
native to 1/0 operations to DASD. Because MVS serv-
ices are used to explicitly define the application
request, RSM can achieve efficiency in resource man-
agement that is not possible in the normal manage-
ment of virtual storage.

Data window services

As noted in the discussion on data in virtual, new
system services must be made accessible to programs
written in high-level languages. New system services,
all callable from a broad array of high-level lan-
guages, have been defined to facilitate application
exploitation of the vast expansion of addressability
realized by ESA. Data window services combine the
facilities of data in virtual with hiperspaces to provide
new capabilities for applications working with tem-
porary and permanent datasets. Data window serv-
ices are callable from user applications written in
FORTRAN, COBOL, PL/I, PASCAL, and assembler lan-
guage, using standard linkage conventions. Data
window services give the programmer working with
a high-level language access to new ways of dealing
with data that can simplify the application and im-
prove performance, largely by reducing the number
of 170 operations.

Data window services extend the capability to do
basic data-in-virtual functions in the address space
to all the supported high-level languages. In addition,
functions are added that are available to data-in-
virtual users only on MvS/ESA. Dynamic allocation
and creation of permanent and temporary data-in-
virtual objects is supported along with the capability
to do scrolling and deferred writes. Scrolling is the
capability to use virtual storage in an address space
to view a portion of a data-in-virtual object and to
capture the referenced and changed pages in ex-
panded storage when moving that view to a different
part of the object. When the application works with
a previously viewed part of the dataset, the data are
available in processor storage and can be retrieved
without requiring DASD I/0 operations. Data window
services accomplishes this by writing the scrolled-out
data to a hiperspace created by the service for this
purpose. The mapping of the entire data-in-virtual
object to a hiperspace and the relating of a portion
of the hiperspace to the address space is shown in
Figure 3.

Deferred write is a data window service function that
permits an application to work with a data-in-virtual
object over an extended period of time, without
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causing the dataset to be in a transient state of partial
physical modification until the process has com-
pleted successfully. This is accomplished by using
scrolling to accumulate and review the changes and
then using a new save capability. The new save

Scrolling is also useful for testing
new applications without requiring
replication of the data in a test file.

capability writes at one time all the changed pages
accumulated previously by scrolling to the perma-
nent data-in-virtual object. Just as with direct use of
the data-in-virtual interface, only the pages that are
changed from the original copy on DASD are written.
Pages containing data that are subject to multiple
updates are written to DASD only once when using
this technique. The scrolling technique is also useful
for testing new applications against on-line data
without requiring replication of the data in a test
file.

Temporary objects are created by requesting the
TEMPSPACE (temporary space) option in data window
services and specifying the size in 4K blocks. Inter-
nally, data window services create hiperspaces as
needed to contain the temporary object. When more
than one hiperspace is needed, data window services
manages the concatenation of the hiperspaces, al-
though the user is unaware when the current view of
the object spans hiperspace boundaries. The appli-
cation is unaware of the hiperspaces and simply sets
up views in the address space and scrolls out and
resets the view whenever the view is to be moved to
another portion of the object. The theoretical limit
of a temporary object is 16T bytes, which is beyond
the paging capacity of the operating system at this
time. Figure 4 illustrates how multiple hiperspaces
are used to contain very large temporary objects in
virtual storage.

The data window services that can be called are
summarized as follows, where CsR stands for callable
service requests:
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Figure 3 Window services view for scrolling of DIV object
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¢ csrRIDAC—Identify and access a linear object. Op-

tionally create a new permanent or temporary
linear object. This service is also used at the end
of processing to remove access and release an
identification.

¢ csrVIEW—Establish a view of the linear object in
virtual storage or review a scrolled-out version of
a view. This service is also used to end the rela-
tionship between virtual storage and a range of
data in a linear object.

* CSRSCOT—This scroll-out function captures the

current view in the window with all changed pages
and any unchanged pages currently occupying
main storage and expanded storage for subsequent
SCROLLINs or SAVEs. The scroll-out function does
not update the permanent linear object.

* CsRSAVE—AII changed pages in the current view

and also any that have been previously scrolled
out are written to the permanent linear object.

RUBSAM

e CSRREFR—Refresh all changed pages in the current
view and also any that have been previously
scrolled out back to the values contained in the
linear object, and discard any changes.

Concluding remarks

The Enterprise Systems Architecture has vastly ex-
panded the virtual addressability available to system
and application programs. New and enhanced sys-
tem services have been made available to take ad-
vantage of the new architecture. Some of the func-
tions will provide benefits to data processing users
with little or no effort on their part. Some examples
are library lookaside to reduce 10 required for pro-
gram loading and vsAM hiperspaces for improved hit
ratios from the buffer pool. Finally, new facilities are
available for high-level language applications to pro-
vide access to new function and achieve improved
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Figure 4 Window services view for temporary DIV object
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performance in some circumstances through 1/0 re-
duction and efficient use of processor resources. ESA
makes it possible to look at problems with perspec-
tives that were never before achievable.
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