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The  IBM Enterprise  Systems  ArchitectureJ370"  vastly 
increases the potential  virtual  addressability  available 
to both  system  and  application  programs.  The 110 
model  and  the  apptication  model of permanent data 
are  discussed to illustrate how large virtual  addressa- 
bility can be used to simplify  application  programs  and 
improve  performance.  New MVS services that exploit 
the architecture  are  described. Also described are data 
window  services,  which  are callable from  high-level 
languages  and  provide the capability to manage very 
large permanent  and  temporary  objects  in  virtual  stor- 
age. 

C ertain operating system  features  allow applica- 
tion programs to use the large quantities of 

virtual storage made possible by the Enterprise Sys- 
tems Architecture/370".  Before  describing  these fea- 
tures, we  review the history of virtual storage in large 
IBM systems from the time it was included in the 
System/370 architecture. The single virtual storage 
(svs)  Operating  system supports 16M  bytes  (where 
M= 10 ) of virtual addressability  for the operating 
system and the combined total of  all the user  regions. 
The Multiple  Virtual  Storage (MVS) operating system 
allows  each  user  region and the operating system to 
have a total of  16M  bytes  of virtual addressability. 
Mvs/Extended  Architecture (MVS/XA") allows  each 
user  region and the operating system to grow to a 
total of 2G bytes  (where G=109) of virtual address- 
ability. 

~ S ~ / 3 7 0 "  is a new architecture that vastly expands 
the base limits of data addressability. In addition, 
the architecture allows  program exploitation to fur- 
ther extend addressing limits in ways never  before 
possible. ESA raises the architectural limits to allow 
user's  addressability to be expanded in 2G-byte in- 
crements so that with  register manipulation, up to 

16T  bytes  (where T= 10l2) of data can be addressed. 
Beyond that, application programs can invoke sys- 
tem services to manipulate tables  used by the hard- 
ware to extend the addressing  capacity by many 
times more. 

New data window  services  are implemented using 
concepts built on the architecture to define and 
access  very  large temporary and permanent objects. 
The window  services are callable from many of the 
high-level  languages, including FORTRAN and COBOL. 
Even though the capacity  represented by limits on 
the current hardware  configurability will  allow ap- 
plications to increase  greatly their present  addressa- 
ble data, those limits are still well  below the address- 
ing  capability of the architecture and of the window 
services exploitation of the architecture. This paper 
provides a historical  perspective and describes the 
new  system  services that permit application exploi- 
tation of the new architecture. 

The 1/0 model vs the  application  model of data 

The physical attributes of storage media have  been a 
very significant factor throughout the history of the 
data processing industry. In fact,  some  storage  media 
attributes remain long  after the medium itself  has 
become  obsolete.  It is  likely that in almost every data 
processing installation in the world, one can find 
direct-access  storage  device- (DASD) resident data- 
sets  with such block  sizes  as 1600,3200, and so forth. 
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These  multiples of 80-character  logical  records are 
vestiges  of the 80-column card that was once one of 
the mainstays of the data processing industry. The 
card was more than a machine readable document. 
It was also the means of storing data when there was 
a need  for editing or updating. This could  be done 
completely  electromechanically by creating the new 
card with a card punch, or manually  with a machine 
called a key punch in which the card was punched 
as characters were entered by hand via a typewriter- 
like  keyboard. Card decks  were maintained by man- 
ually  removing the old  cards and inserting new  ones. 
The decks  were  stored in special  files  with  card-size 
drawers. The card-filled  files  stood in programmer 
cubicles and the adjacent halls  waiting  for the neit 
trip to the machine room, where the cards  would  be 
passed  through the card  reader and returned to the 
file.  Today the cards, the card punches, the card 
readers, and the file  drawers  have  largely  disap- 
peared, but the 80-character  records remain. 

Access methods were  developed to shield  applica- 
tions from the need to build channel programs and 
to reduce the degree  of  sensitivity to storage-device 
characteristics. The access methods not only  solve a 
technical  problem  for  applications, but they  also 
protect  them  from  changes in device  geometry that 
occur  when a new DASD is introduced. Naturally, in 
order to provide  this  service, the access  methods 
must  define  some  rules.  Records  can  be  of  variable 
length or fixed length; maximum record and block 
sizes are specified.  Rules  for  defining and using  buff- 
ers are laid out. These  rules and the history  of data 
storage  lead  us to the 110 model of data. If one follows 
the rules, a degree  of  device independence can  be 
achieved,  which  is  satisfactory  if the application can 
work  with the 110 model  of the data. Demonstrably, 
we are surrounded by examples of applications that 
work  successfully  with the 110 model  of their data. 

There  are,  however,  applications that would  be  easier 
to write and extend if their data could  be  stored in a 
usable format rather than broken into records and 
blocks  according to rules that are not reaUy relevant 
to the application programmer’s  objective. The con- 
cept of storing data on DASD in the form  exactly  as 
it was  created, and subsequently  presenting the data 
in the form the application requires,  is  called the 
application model of data. 

The application  model of data means that the appli- 
cation programmer has the same  flexibility in ma- 
nipulating permanent data as  when manipulating 
control structures, pointers, and data in the address 

space. The application data can  be  defined  with 
whatever internal structure is  needed to meet the 
needs  of the application.  There are obvious  simpli- 
fications in writing an application in this environ- 
ment. 

In addition to contributing to the ease  of  application 
development,  this  form of handling permanent data 

The  concept of virtual  storage 
has  been  joined with a 

systemmanaged storage  hierarchy. 

also  allows the operating  system to maintain data in 
processor  storage to provide  improved  performance 
and to reduce I/O operations. This is  possible  because 
the concept of virtual  storage  has  been joined with a 
system-managed  storage  hierarchy,  using  consistent 
units of  storage at a time when  large quantities of 
affordable  processor  storage are available.  These are 
not all  completely new concepts, but they  have  pre- 
viously  been  inadequately  brought  together  for the 
handling of permanent data. 

The application  model of data is supported by data 
in virtual (DIV), which  was introduced in MVS/XA. 
The introduction of the new architecture and the 
accompanying  high-level  language support through 
data window  services combine to greatly  increase the 
potential value  of data in virtual  for the application 
programmer.  Because data in virtual provides the 
primary I/O support for the new virtual  addressing 
facilities, it is important to understand the basic 
functions provided. The next  section  describes data 
in virtual, and following  sections  explain the way in 
which  it  relates to the new architecture. 

Data in virtual 

Data in virtual  is a system  service that allows  appli- 
cations to work  with the contents of permanent DASD 
datasets as though the entire file actually  resided in 
virtual  storage. Data in virtual was first  made  avail- 
able  in MVS/XA SP 2.2. (See  References 2 and 3.) The 
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concept of implicitly  accessing the contents of a 
permanent dataset by referencing virtual storage  has 
had previous implementations. The IBM time sharing 
system (TSS) supported the concept on System/360 
Model  67, and there are other examples in the data 
processing industry. One of the new features is the 
use of more than one level  of storage  hierarchy in an 
addressability environment where  large quantities of 
virtual storage can be  dedicated to a user. Virtual 
addressability combined with  large amounts of pro- 
cessor  storage  managed at multiple levels  makes 
more practical the addressing of permanent data 
directly through virtual storage than had  been  pos- 
sible  in the past. 

Data in virtual is  based on virtual storage and the 
relocation functions in the processor that MVS uses 
to manage the resources required by the operating 
system and application programs. At any given time, 
a virtual storage page can reside in a main storage 
frame, an expanded  storage frame, or in a DASD 
paging dataset slot.  When a virtual page is  referenced 
but not backed by a main storage frame, a page fault 
occurs. A page fault  causes an address-translation 
exception.  Therefore, the operating system must find 
and allocate a main-storage frame and retrieve the 
contents of virtual storage from expanded storage or 
paging DASD. 

Data in virtual adds another dimension to the mean- 
ing of virtual storage,  because it permits the appli- 
cation to relate a virtual-storage  range  directly to the 
contents of a permanent DASD resident dataset. The 
particular form of permanent dataset supported is a 
new VSAM format, called a linear dataset. Ordinarily, 
a virtual page  is related to DASD storage  only  when 
the contents of the virtual page have  been  paged out. 
When ordinary virtual storage  is  freed, the paging 
DASD space is  freed  also. A data-in-virtual object 
remains on permanent DASD regardless of the state 
of virtual storage.  System  services are provided to 
establish the relationship of virtual storage to a per- 
manent DAsD-resident dataset, but no data are  read 
until an application reference  causes a page fault. 
The real  storage  manager (RSM) component of MVS 
recognizes that the virtual storage is related to a 
permanent DASD dataset and causes the appropriate 
data to be  read. At some later time, when the appli- 
cation updates the dataset, a SAVE can be  requested 
that writes  only the changed pages to the permanent 
DASD. The reads and writes are managed  with  special 
block-processing routines, instead of the VSAM rou- 
tines used  with normal GET/PUT processing. 
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Note that the only  pages  read are those referenced, 
and of those,  only  those that have  changed  have the 
potential to be written. This is quite different from 
what  would occur if the same application capability 
were attempted with the conventional 110 model. 
The entire dataset would  have to be read, causing it 
ultimately to end up replicated in paging  storage. 
Unless the application keeps a record of the part of 
the dataset that is  changed, the entire dataset might 
have to be  written  when the application does an 
update. 

Data-in-virtual datasets are usually  referred to as 
data-in-virtual objects to distinguish them from con- 
ventional datasets with an access-method-imposed 

The  application  interface  is 
totally  device4ndependent. 

format. Data-in-virtual objects  have  only the format 
defined by their creators and users. There is no 
control information imbedded in the object by the 
operating system. The application is permitted to 
define  whatever data structure suits its needs. The 
only rule is that the maximum size for a single data- 
in-virtual object is 4G bytes.  Relative  byte  addressing 
can be  used to move  from one location in the object 
to another. Index structures of any size and shape 
can be defined. The application interface is  totally 
device-independent so that data-in-virtual objects 
are completely portable across DASD types. It makes 
no difference  whether the data in the object  is  sparse 
or dense.  Only the blocks corresponding to the pages 
referenced by the application in the address  space 
are  read  from DASD, and only  pages that have  been 
changed are written to DASD. The physical  block  size 
used  for the objects  is  4K  bytes,  because of the 
relationship with virtual storage  paging. This block 
size  is  visible to the application only in that the 
virtual view must begin and end on 4K-byte bound- 
aries. There are no restrictions on  data structures 
spanning physical  blocks. 

The user of data in virtual is able to work  with the 
application model of the data without the constraints 
of trying to conform to the rules  of an 110 model. 



The application can relate large virtual storage  areas 
to the dataset and cause a working  set of the dataset 
to be available in processor  storage, thus avoiding 
I/O operations for  rereferenced data. Efficiency  is 
achieved by reducing the amount of data read and 
written to DASD. Using data in virtual for sequential 
processing  has  been improved in E S A I ~ ~  by the ad- 
dition of a read-ahead  capability that reads multiple 
pages optionally. This option is available  for  assem- 

A data  space  is  a  capability 
available to  programs  that use 
the new architecture  directly. 

bler  language programs that use data in virtual and 
for  high-level  language programs that use data win- 
dow  services. 

Applications that make repeated  references to areas 
within their data  and  that update scattered locations 
run very  efficiently  with data in virtual. Many appli- 
cations that try to keep  large amounts of permanent 
data in virtual storage,  using conventional access 
methods, see a sybstantial improvement when data 
in virtual is used. On the other hand, an application 
that reads an entire dataset and inserts new records 
to create a new dataset is not a good candidate, 
unless the dataset is restructured to contain sufficient 
voids to contain the insertions. 

Data in virtual consists of the following  services: 

IDENTIFY & ACCESS-OPEN the dataset. 
MAP-Define the virtual storage  range and block 
offset in the data-in-virtual object that are to be 
related. No data are read at this time. Data are 
read at the time the application references the 
virtual storage and then only the referenced data 
are read. MAPS may  be  for  as little as a single  page 
and as  large  as  all the available virtual storage in 
the address  space. 
SAVE-Write the changed pages to the data-in- 
virtual object. The real  storage manager (RSM) 
detects  which virtual storage pages  differ from the 
version on DASD and causes  only  those  pages to 
be written. 
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RESET-Discard all  changed pages. This causes the 
view  of the object to be  restored to the state of the 
last SAVE or  last  ACCESS,  whichever  is the more 
recent.  Unchanged pages that are in main or ex- 
panded storage remain there. 
UNMAP-Ends the relationship between virtual 
storage and the data-in-virtual object. 
UNACCESS & UNIDENTIFY-CLOSE the object. 

When data in virtual was originally  released,  assem- 
bler was the only  user  language supported by the 
interface. It was envisioned that applications would 
use data  in virtual by invoking assembler  language 
subroutines that worked  with the data-in-virtual in- 
terfaces to set up mappings and save the changes. 
The applications would continue to be  written in the 
high-level  language of choice, and the applications 
would  reference virtual storage to obtain the data 
and make the desired  changes  directly.  Nevertheless, 
it was  recognized that data in virtual could be more 
easily  used  by more applications if there were some 
support for  high-level  languages. This support came 
through vs FORTRAN, which  allows  calls to FORTRAN 
library subroutines that interface  with data in virtual. 
vs FORTRAN was announced in November of 1987. 

New  addressing  constructs 

This section  discusses  new virtual addressing  capa- 
bilities in MVS/ESA” and the way in which  they are 
supported in data-in-virtual services. ESA provides 
new options and added flexibility  for  direct  users of 
the architecture. It also  makes new functions and 
capabilities  available to applications that have not 
been  changed to run in the new addressing  mode. A 
data space  is an example of capability  available to 
programs that use the new architecture directly. 

Data spaces. A data space is a new addressing entity 
introduced in MVS SP 3.1 .O as part of ESA application 
enablement.5 In contrast with an address  space that 
contains system  programs and data in addition to 
the user programs and data, a data space contains 
only data. Programs may be stored in a data space 
as data, but they cannot be  executed in a data space. 
Data spaces  may be as  large as 2G bytes and are 
usable in their entirety by the application. The IBM 
3090E implementation restricts the use of the initial 
4K bytes. This restriction is made largely transparent 
by the data-space-create  service,  which returns a 
data-space  origin of 0 or 4K bytes depending on the 
CPU. There is no storage  reserved  for common area 
or any system control blocks.  Even the segment and 
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page tables  needed to manage virtual storage  reside 
elsewhere in other storage controlled by the RSM. 

Data spaces are created by means of a new RSM data- 
space  service macro that is invokable by problem 

Data  spaces  can  help  eliminate 
the  requirement for the  remappings 

and  the  management of virtual 
buffers. 

state programs. Authority to access a data space  is 
controlled by hardware, so that, in addition to in- 
creasing virtual storage  addressability, data spaces 
improve integrity by permitting data isolation. In a 
multitasking environment within an address  space, 
an individual problem  program  subtask can create a 
data space and all other tasks can be  prevented from 
altering or retrieving data in that data space.  Any or 
all of the subtasks could have their own data spaces. 
Authorized tasks can selectively share access to data 
spaces  they  own  with other tasks in the same address 
space and with  tasks in other address  spaces. 

Within the system, there exist multiple address 
spaces, and within each  address  space there can exist 
multiple tasks.  Each of the tasks can own multiple 
data spaces.  Overall, the virtual addressability  avail- 
able to  an application is limited only by the bounds 
imposed by the hardware configuration. 

Applications  written in assembler  language and run- 
ning in the new  addressing mode can access data 
spaces  directly through the full  set  of  System/370 
instructions that access and manipulate storage. 

Data in virtual has  been enhanced to make it possible 
to MAP data-in-virtual objects in data spaces.  Users 
who run in the new addressing mode can set up 
relationships between data spaces and permanent 
data-in-virtual objects  using the same techniques as 
they would for their address space private area. Data 
in virtual provides the means for applications to 
accomplish I/O between a data space and DASD di- 
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rectly, without moving the data through an address 
space. All the functions of data in virtual are  avail- 
able to the creator of the data space.  Figure 1 shows 
the relationship of the address  space, the data space, 
the data-in-virtual object, and the paging  hierarchy. 

Data-in-virtual objects can be as large as 4G bytes. 
In MVS/XA, the data-in-virtual user of  large  objects or 
perhaps a number of smaller objects  may  have  been 
unable to keep in a MAP all  of the active data. The 
only  remedy was to remap the virtual storage to be 
able to access  all the data. This necessitated  manag- 
ing the mapped storage much the same way  buffers 
are managed  for conventional I/O. Data spaces can 
help eliminate the requirement for the remappings 
and the management of virtual buffers. A single, 
large data-in-virtual object can  be mapped across 
one or more data spaces or several smaller data-in- 
virtual objects can be mapped within a single data 
space. Data spaces thus provide the capability  for 
very  large amounts of permanent data to be contin- 
uously  available  for  reference  within the virtual stor- 
age  owned  by the application. 

Virtual lookaside  facility. In addition to providing 
application access to data spaces, MVS/ESA has added 
services that use data spaces to provide improved 
performance for  users  of the operating system.  Vir- 
tual lookaside  facility (VLF) is an MVS component 
that uses data spaces  for storing and retrieving named 
objects. Data are stored in the VLF data spaces on 
byte boundaries and can be  retrieved into the re- 
quester’s  address  space on byte boundaries. The VLF 
data spaces are managed  as part of the MVS paging 
hierarchy, and the data-space pages  may  reside in 
main storage, expanded storage, or auxiliary  paging 
storage. VLF provides a set of easy-to-use,  high-per- 
formance services that can be  invoked by authorized 
subsystems or major applications to provide a virtual 
storage lookaside. Conceptually, a lookaside  pro- 
vides an alternate, higher-performance means of  ac- 
cessing data, by keeping it in a more readily  available 
type of storage. 

The primary intent of VLF is to enable components 
that repeatedly  retrieve  high-usage named data (such 
as partitioned dataset [PDS] members) on behalf of 
many users in the system to avoid 110 operations. 
Response time can be improved by maintaining 
frequently used  objects in virtual storage without 
requiring any change in the application. Each com- 
ponent using VLF is  responsible for obtaining the 
individual named objects stored in VLF from DASD 
by whatever means is appropriate for  those  objects. 



Figure 1 DIV object mapped to a data space 
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The data to be  stored in VLF are presented by the 
requesting component in the form that the compo- 
nent wishes to retrieve the data. Given  this, it can be 
seen that VLF can  be  used  for  a  variety of types of 
data stored in any form  required,  as  long  as  a  suitable 
naming scheme  for the objects  exists. The data can 
be  derived  from any source  within the system, not 
necessarily  from DASD. However,  when the named 
VLF objects  correspond to PDS members, VLF pro- 
vides additional support to assist in the maintenance 
of members. 

VLF objects and naming structure. The data to be 
stored in VLF are structured into groups  known  as 
classes, each of which  represents data managed by a 
different component or authorized application. 
Within  each  class,  every object has  two  levels  of 
name associated  with it. The major name specifies  a 
subgroup of objects  within  a  class, and the minor 
name specifies  a  specific  object  within  a  group. 

Within  a  class,  each  major name must  be  unique. 
Within  a major name, each minor name must be 
unique. Thus, for  a  given  class  having  several major 
names,  multiple  objects  may  exist  with the same 
minor name. 

The naming structure mimics the existing structure 
used to access  members  of partitioned datasets. The 
major name is  functionally  analogous to a concaten- 
ation of the volume  serial and partitioned dataset 
name, i.e., it uniquely  identifies  a group of objects. 
The minor name is  functionally  analogous to a PDS 
member name in that it uniquely  identifies  a  specific 
data object by name. 

Applications that can  benefit  by  using VLF are those 
for  which there are  multiple  users  of the data or the 
data have a high  frequency  of  reuse. Data stored in 
VLF are subject to page  stealing, just as data stored 
in a  user’s  address  space or data space.  Therefore, 

IBM SYSTEMS XJURNAL VOL 28. NO 1. 1989 



appropriate data must  have a high enough rate of 
usage that they are likely to stay  in  real or expanded 
storage. VLF is better suited to relatively  small  objects, 
because  less virtual storage  is  expended to save the 
I/O. Very  large  objects  when not used frequently 
enough to remain in  real or expanded storage  may 
take longer to retrieve  from VLF than by doing tra- 
ditional I/O to DASD. 

The component or authorized application that re- 
quires VLF need interface with  only a few macros to 
share large  storage  capacity among all  users of a 
class. Within the system, the users of the class  have 
fast  retrieval of named objects  while  being  assured 
of the integrity of the data. 

VLF enables authorized installation programs as well 
as IBM subsystems and system components to main- 
tain named objects in virtual storage and retrieve 
them rapidly on behalf  of many end users.  Objects 
can be deleted and replaced by  new versions, but the 
copy  in VLF storage cannot be  modified. 

Library lookaside. Library  lookaside (LLA) dynami- 
cally  selects and stages load modules into a virtual 
lookaside  facility (VLF) data space to avoid  program 
fetch 110. LLA also  keeps  copies of the directories of 
installation-designated  libraries in its address  space 
to eliminate library directory search I/O. The LLA 
copies of library  directories can be  selectively  re- 
freshed to activate new versions of library members 
in a controlled manner. LLA can be  used to improve 
library performance, system  usability, and system 
availability. 

In order to use LLA, the installation must define the 
LLA class in the VLF parameter library (parmlib) 
member and list the libraries in LLA’S parmlib mem- 
ber(s) that LLA is to manage or must not manage. 
LLA manages the linkage  list (LNKLST) libraries by 
default. The installation can also  dynamically add 
and remove any cataloged libraries for LLA. VLF and 
LLA are both started tasks.  If LLA is not defined to 
VLF or VLF is not started, LLA will not cache-load 
modules. 

While LLA is  managing a library, the LLA directory 
eliminates search I/O for that library and conceals  all 
updates to that library’s directory on DASD. Copies 
of the directory entries in the LLA directory can  be 
selectively  refreshed at any convenient time to acti- 
vate new versions of the corresponding library mem- 
bers. LLA can be  used to coordinate library updates 
that span multiple libraries, updates consisting of 
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one or more parts within a single  library, and mul- 
tiple independent updates of both types.  With LLA, 
it is not necessary to quiesce  users  before updating a 
library. If for  some  reason an update cannot be 
completed, LLA shields the system  from the partial 
update and the changes can be  removed without 
disrupting users.  Users  may  still  need to be  quiesced 
for the short interval while LLA is being  refreshed. 

Data  spaces  provide  virtual  storage 
that  can be used  to  avoid  explicit 

requests  that  require I/O. 

Another way to use LLA to control versions of library 
members is to update the libraries on prime shift 
and refresh LLA on third shift  when  users will not be 
disrupted. 

For load libraries, LLA dynamically adjusts the con- 
tents of LLA’S VLF storage to minimize the overhead 
associated  with  program  fetch. Adjustment of con- 
tent works both to add and delete  modules.  Load 
modules that become  active are staged to the VLF 
data space, and modules that become  inactive are 
deleted  from the VLF data space. Installations can 
optionally redirect LLA’S staging  decisions by provid- 
ing installation exits  for LLA. 

Hiperspaces. Data spaces  provide virtual storage that 
can be  used to avoid  explicit  requests that require 
110. Large  buffer areas for data that have  been  read 
from DASD and are expected to be  reused  in a rela- 
tively short time can be  defined in data spaces. 
Another alternative to DASD I/O is to use a data space 
for temporary work  files. For these  examples,  where 
the data are stored-but not actually manipulated 
in the data space-there  is a special  form  of data 
space  which can offer greater efficiency in the use  of 
system  resources  for  some applications. This is par- 
ticularly true if 4K-byte granularity for data storage 
and retrieval  is  workable  for the application. This 
form of data space  is  called a hiperspace-for  HIgh 
PERformance data access  when compared to 110 
operations from DASD. A hiperspace  is  created  with 
the same RSM services  used to create a data space. 



The intended purpose of hiperspaces is to provide 
applications  with the opportunity to use  expanded 
storage as a substitute for I/O operations and thus 
gain  very  significant  performance improvements. It 
is  expected that the use  of hiperspaces by applica- 
tions would  be  encouraged  where  there  is underutil- 
ized  expanded  storage  capacity or where  extra  capac- 
ity  could  be  installed in order to use expanded  stor- 
age to avoid 110 operations. 

Hiperspaces  differ  from  regular data spaces in that 
main storage  is  never  used to back the virtual  pages 
in the hiperspace. Another difference  is that data can 
be  stored and retrieved  between an address  space 
and a  hiperspace  only by invoking MVS system  serv- 
ices. The data are addressed and transferred on 4K 
boundaries and in 4K blocks.  Because the services 
are part of the real  storage  manager,  page  faults are 
avoided and  in some  cases the data transfer is accom- 
plished  simply  by manipulating control blocks and 
transferring  ownership of the storage entity contain- 
ing the data. The hiperspace  services are available to 
assembler  language  programs, but the user  of the 
hiperspace  does not have to be in the new  addressing 
mode  required  for  access to data spaces,  because the 
system  services run in the addressing mode necessary 
to accomplish the data transfer. 

Hiperspaces are used  for  storage and retrieval of 
pieces  of objects, in contrast to VLF which  stores and 
retrieves entire named objects. The hiperspace  user 
directs  precisely  where the data are stored in the 
hiperspace, and  that user  must  remember that loca- 
tion in order to retrieve the data. The VLF user  does 
not know  where the object  is  stored and need  supply 
only the object name to retrieve it. 

Two  types  of  hiperspaces are supported, the standard 
data-space  type  for unauthorized programs and ex- 
panded-storage-only data-space  type for authorized 
callers. The virtual  storage in the standard type  is 
backed  by  expanded  storage and can  migrate to 
auxiliary  paging DASD. Just as the name implies, the 
expanded-storage-only  type  never  migrates to auxil- 
iary  storage.  Figure 2 illustrates  how the paging 
hierarchy  applies to data spaces and the two  types  of 
hiperspaces. 

One purpose  for the standard hiperspaces  is  as an 
alternative to a temporary DASD work  file.  When 
used in this way, standard hiperspaces function 
much  as VIO to expanded  storage  does,  except  they 
avoid  all the CPU overhead  resulting  from the VIO 
device simulation. VIO has the advantage that any 
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application written to use one of the  data manage- 
ment access methods that use EXCP can  elect to use 
VIO by a  simple  change in the job control language. 

Data  window  services  facilitate 
programs  written  in  high-level 

languages. 

Hiperspaces  require  change in existing  applications 
or the development of  new applications to use the 
new services. Data window  services,  which are de- 
scribed in the next  section of this paper, facilitate 
this use,  particularly  for  programs  written in high- 
level  languages. The advantage of hiperspaces  is  sub- 
stantially  less CPU overhead  because the VIO device 
simulation and data movement required by the sim- 
ulation are avoided.  Hiperspaces  also  have  greater 
capacity as each one can contain up  to 2G bytes  of 
data. VIO datasets are presently bounded by the size 
of the simulated  device,  which  is an IBM 3380 with 
the'capacity of 630M bytes. 

Expanded-storage-only  hiperspaces are expected to 
serve  as  buffers  for data where there is  a permanent 
copy on DASD. MVS can elect to steal  expanded 
storage  from the expanded-storage-only  hiperspace, 
which  means the data are no longer  retrievable  from 
the hiperspace and, therefore, must be  read  from 
DASD. Two options are available to the authorized 
program that must  keep data in a hiperspace. One is 
to use the CASTOUT=NO option, which  does not allow 
the expanded  storage to be  stolen. The other option 
is to use a storage isoZation feature to guarantee that 
the working  set  for the owning  address  space  does 
not fall  below the value  needed to assure  backing for 
the hiperspace. The second option is  preferred  be- 
cause it provides the system  with more flexibility  for 
managing  system  resources and facilitates  such func- 
tions as dynamic reconfiguration. 

The read and write  services  provided  by RSM have 
attributes that facilitate  efficient  storage  use  by  hip- 
erspaces. Data written to standard hiperspaces  de- 
stroy the contents of the address  space  pages from 
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Figure 2 DIV mapping  and  hiperspaces 
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which the data are written. The address  space page of data written to the hiperspace will  be built in those 
content should be treated as unpredictable after a same pages. This allows the RSM to choose the most 
request to write.  Given that standard hiperspaces are efficient means of doing the write operating regard- 
used  for temporary storage, the design  assumes that less  of the state of the address  space virtual storage 
when data are written from the address  space to the at the time of the write. In the case  where an address 
hiperspace the application reuses the address  space space  page  is not currently backed by main storage, 
pages  for  different data. In all  likelihood, the next  set but instead is  backed by expanded storage or auxil- 
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iary DASD, the expanded storage or auxiliary DASD 
slot  is taken from the address  space and given to the 
hiperspace. The data are in effect moved to the 
hiperspace by simply manipulating pointers in con- 
trol blocks rather than physically  relocating the data. 
This transfer function is also  available  as an option 
for  expanded-storage-only  hiperspaces  when the ad- 
dress  space  page  is  backed  by  expanded  storage. 

When there are no expanded storage frames available 
at the time of a write  request to a standard hiper- 

When data are being read from a 
standard  hiperspace, it is 

possible to release the  storage 
that  is  backing  the  hiperspace 

pages being  read. 

space, RSM directs the write  request to auxiliary 
storage rather than cause additional migration from 
expanded  storage to auxiliary  storage.  When this 
occurs, the real  frames are taken from the address 
space  while the 110 operation proceeds and com- 
pletes. In the meantime, the caller  is  resumed and 
can begin to move the next  set of data into the 
virtual storage,  because it now  looks  like  freshly 
acquired storage. The pages  will  be  backed  with  new 
real  frames. 

When data are being  read from a standard hiper- 
space, it is  possible to release the storage that is 
backing the hiperspace pages  being read. This is 
recommended when an application knows that the 
data are not going to be  reread,  which is frequently 
the case  with  work  files. This saves the overhead of 
managing  unnecessary migration to auxiliary  paging 
storage. 

Data-in-virtual objects can be  mapped to standard 
hiperspaces just as  they can for  address  spaces and 
data spaces. The difference  is that instead of  refer- 
encing the mapped page directly, the application 
invokes the RSM service to retrieve or update the 
desired page or pages in the mapped area in the 
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hiperspace. In such a case, RSM notes that the hiper- 
space  pages are mapped to a data-in-virtual object 
and reads them directly from DASD to the address 
space  pages.  When the application is ready to work 
with  some  different data, the current data can be 
captured in expanded storage  baclung the hiper- 
space.  When the data are needed  again,  they  need 
not be  read  from DASD. By this means, data-in- 
virtual users  who are not using the new  addressing 
mode can buffer data in expanded  storage  even  when 
their address  space is exhausted. Data in virtual in a 
hiperspace is also  used internally by MVS in the 
implementation of scrolling support in data window 
services as discussed later in this paper. 

VSAM use of hiperspaces. Users of VSAM local shared 
resources  have the option of electing a second  level 
of buffering, in addition to the VSAM virtual buffer 
pool in the address  space. The VSAM buffer  definition 
function is expanded to specify the number of hi- 
perspace  buffers to be obtained, in addition to the 
conventional address  space  buffers. The buffer  size 
must be a multiple of 4K bytes. The number of 
hiperspace  buffers  are  expected to be much greater 
than the number of address  space virtual buffers 
because  hiperspaces use a less expensive  resource, 
both in terms of dollar cost and virtual storage 
constraint. 

When the user of VSAM requests a record, the VSAM 
buffer management routine checks both the virtual 
buffer  pool in the address  space and the hiperspace 
to determine whether the request can be  satisfied 
without requiring an 110 operation. If the record  is 
found in the virtual buffer  pool, it is  given to the 
requester. If the record is found in the hiperspace, a 
virtual buffer  is made available by writing to the 
hiperspace the contents of the virtual buffer that has 
been  unreferenced  for the longest time. The hiper- 
space  buffer  is then read into the newly available 
virtual buffer in the address  space. The hiperspace 
buffer just read is  now  available to be  written to by 
the next  request.  When the record  is not found in 
either the virtual buffer or the hiperspace  buffer, a 
virtual buffer  is  needed  for the 110 operation. The 
VSAM buffer manager selects the virtual buffer that 
has  gone  unreferenced the longest and writes it to 
the hiperspace  buffer. The hiperspace  buffer  selected 
is either the last  buffer  read, or, when  those are all 
used, the hiperspace  buffer that has  been  longest 
unreferenced  is  selected. 

In summary, hiperspaces  provide  services  for au- 
thorized and unauthorized assembler  language  pro- 
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grams to direct data to expanded storage as an alter- 
native to 1/0 operations to DASD. Because MVS Serv- 
ices are used to explicitly  define the application 
request, RSM can achieve efficiency in resource man- 
agement that is not possible in the normal manage- 
ment of virtual storage. 

Data window services 

As noted in the discussion on data in virtual, new 
system  services  must  be made accessible to programs 
written  in  high-level  languages. New  system  services, 
all  callable  from a broad array of high-level lan- 
guages,  have  been  defined to facilitate application 
exploitation of the vast  expansion of addressability 
realized by ESA. Data window  services combine the 
facilities of data in virtual with  hiperspaces to provide 
new capabilities  for applications working  with tem- 
porary and permanent datasets. Data window  serv- 
ices are callable  from  user applications written in 
FORTRAN, COBOL, PL/I, PASCAL, and assembler lan- 
guage,  using standard linkage conventions. Data 
window  services  give the programmer working  with 
a high-level  language  access to new  ways  of dealing 
with data that can simplify the application and im- 
prove  performance,  largely by reducing the number 
of I/O operations. 

Data window  services extend the capability to  do 
basic data-in-virtual functions in the address  space 
to all the supported high-level  languages. In addition, 
functions are added that are available to data-in- 
virtual users  only on MVSIESA. Dynamic allocation 
and creation of permanent and temporary data-in- 
virtual objects is supported along  with the capability 
to  do scrolling and deferred  writes. ScroZZing is the 
capability to use virtual storage  in an address  space 
to view a portion of a data-in-virtual object and to 
capture the referenced and changed pages in  ex- 
panded storage  when  moving that view to a different 
part of the object.  When the application works  with 
a previously viewed part of the dataset, the data are 
available in processor  storage and can be  retrieved 
without requiring DASD 1/0 operations. Data window 
services  accomplishes this by writing the scrolled-out 
data  to a hiperspace  created by the service  for this 
purpose. The mapping of the entire data-in-virtual 
object to a hiperspace and the relating of a portion 
of the hiperspace to the address  space  is  shown in 
Figure 3. 

Deferred  write is a data window  service function that 
permits an application to work  with a data-in-virtual 
object  over an extended  period of time, without 
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causing the dataset to be in a transient state of partial 
physical  modification until the process  has com- 
pleted  successfully. This is accomplished by  using 
scrolling to accumulate and review the changes and 
then using a new  save capability. The new  save 

Scrolling is also  useful for  testing 
new  applications  without  requiring 
replication of the  data in a  test  file. 

capability  writes at one time all the changed pages 
accumulated previously by scrolling to the perma- 
nent data-in-virtual object. Just as  with direct use  of 
the data-in-virtual interface,  only the pages that are 
changed  from the original  copy on DASD are written. 
Pages containing data  that are subject to multiple 
updates are written to DASD only once when  using 
this technique. The scrolling technique is also  useful 
for  testing new applications against on-line data 
without requiring replication of the data in a test 
file. 

Temporary objects are created by requesting the 
TEMPSPACE (temporary space) option in data window 
services and specifying the size in 4K  blocks. Inter- 
nally, data window  services  create  hiperspaces  as 
needed to contain the temporary object.  When more 
than one hiperspace is needed, data window  services 
manages the concatenation of the hiperspaces,  al- 
though the user is unaware when the current view  of 
the object spans hiperspace boundaries. The appli- 
cation is unaware of the hiperspaces and simply  sets 
up views in the address  space and scrolls out and 
resets the view whenever the view is to be moved to 
another portion of the object. The theoretical limit 
of a temporary object  is 16T bytes,  which is beyond 
the paging  capacity of the operating system at this 
time. Figure 4 illustrates how multiple hiperspaces 
are used to contain very  large temporary objects in 
virtual storage. 

The data window  services that can be  called are 
summarized as  follows,  where CSR stands for  callable 
service  requests: 



Figure 3 Window services view for scrolling of DIV object 
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CSRIDAC-Identify and access  a linear object.  Op- 
tionally  create  a new permanent or temporary 
linear  object. This service  is  also  used at the end 
of  processing to remove  access and release an 
identification. 
csRvrEw-Establish a view  of the linear object in 
virtual  storage or review  a  scrolled-out  version of 
a view. This service is also used to end the rela- 
tionship between  virtual  storage and a  range of 
data in a  linear  object. 
CsRscoT-This scroll-out function captures the 
current view in the window  with  all  changed  pages 
and any unchanged  pages currently occupying 
main  storage and expanded  storage for subsequent 
SCROLLINS or SAVES. The scroll-out function does 
not update the permanent linear object. 
CSRSAVE-A~~ changed  pages in the current view 
and also any that have  been  previously  scrolled 
out are written to the permanent linear  object. 

CSRREFR-RefreSh all  changed  pages in the current 
view and also  any that have  been  previously 
scrolled out back to the values contained in the 
linear  object, and discard  any  changes. 

Concluding remarks 

The Enterprise  Systems  Architecture has vastly  ex- 
panded the virtual  addressability  available to system 
and application programs. New and enhanced sys- 
tem services  have  been made available to take  ad- 
vantage  of the new architecture.  Some of the func- 
tions will provide  benefits to data processing  users 
with little or no effort on their part.  Some  examples 
are library  lookaside to reduce 110 required  for  pro- 
gram  loading and VSAM hiperspaces  for  improved hit 
ratios  from the buffer  pool.  Finally,  new  facilities are 
available for high-level  language applications to pro- 
vide  access to new function and achieve  improved 
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Figure 4 Window services view for temporary DIV object 

f JQ$;xg %,.*. 

HIPER- 
SPACE 

:***X*** 

RANGE OF 
VIEW 
MAPPING 

MS = MAIN STORAGE 
ES = EXPANDED STORAGE 

AUX DASD = PAGING STORAGE 

performance in some circumstances through I/O re- 
duction and efficient  use  of  processor  resources. ESA 
makes it possible to look at problems with  perspec- 
tives that were  never  before  achievable. 
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