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As large computing systems continue to grow  in ca- 
pacity  and to offer  improved pricelperformance, there 
is  an increasing  requirement to consolidate  systems 
onto  one  processor  complex.  This  paper  describes  the 
reasons why  users  need to run multiple  operating  sys- 
tems  today,  provides  a  brief  history of IBM’s  partition- 
ing  products,  and  introduces  the  Processor  Resource/ 
Systems Managerm, a  machine feature on the IBM 3090 
Model E and ES/3090m Model S processors  that  pro- 
vides  users  with  a  flexible  and  efficient  capability to 
run  multiple  operating  systems on a  single  processor 
complex. 

T he development of powerful,  high-availability 
computing systems  has  led to a  diversity of 

computer applications, from transaction processing 
to engineering  design simulation, each with its own 
unique set of requirements. These  diverse  require- 
ments have  resulted in the development of many 
different programming languages, application pro- 
grams, and even operating systems,  each  with its 
own strengths and weaknesses. 

One might think that a  single operating system  could 
be  designed to satisfy the requirements of all  envi- 
ronments. In practice, the system  design  trade-offs 
that must be  made, together with compatibility con- 
straints, imply that  no single  design could satisfy the 
full  range  of requirements. Instead, several  designs 
have  evolved,  each  addressing the needs of a  large 
segment of the marketplace. For example, on its 
high-end  processors, IBM offers a  variety of operat- 
ing  systems, including Multiple Virtual Stor- 

age/Enterprise  Systems Architecture (MVS/ESA~~),  
Multiple Virtual Storage/Extended  Architecture 
(MVSIXA~~) ,  M V S ~ ~ O ,  Virtual MachineIExtended Ar- 
chitecture (VMIXA), Virtual Machine/370 (VM/370), 
and Transaction Processing  Facility (TPF), each  with 
its own customer set. 

Following are some of the main reasons why multi- 
ple operating systems  may  need to coexist  even 
within  a  single  establishment: 

Diverse  workloads-Many  large establishments 
today must satisfy the computing requirements of 
several distinct groups of end users. For example, 
a  large airline might  need  a very responsive  reser- 
vation system, an aircraft maintenance and parts 
database system, and a  general-purpose interactive 
and batch system  for  payroll,  forecasting, plan- 
ning,  etc. It is not unusual to find that at least  two 
different operating systems  are required, with ap- 
propriate subsystems and software products, to 
provide the full  set of required functions. 

9 Test and development-Many companies are crit- 
ically dependent on the high  availability of their 
computing systems. As a  result, it is  necessary to 
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allow  for nondisruptive enhancements to the sys- 
tem  software  for  each production system. The 

new  release  of the operating system  itself, a new 
release of some key application, the addition of 
new products or functions, or simply the applica- 
tion of software maintenance. In any case, to 
minimize the possibility  of an outage in the pro- 
duction system, it is  essential that changes to 
critical  software be tested in a system context prior 
to being adopted in the production environment. 

I software  changes can take many forms, such as a 

I Many  large  businesses  also do a significant amount 
of  system  software development. By its very na- 
ture, system  software  debugging  implies  repeated 
system  failures, and  thus these  establishments 
need separate production and development sys- 
tems.  Moreover,  for  businesses that require 24- 
hour availability of their production systems, it is 
impossible to perform the software development 
on the production system on  an off-shift  basis. 

Migration-It  is sometimes necessary  for a busi- 
ness to convert from one operating system to 

need to migrate  from MVSWO to MVS/XA or MVS/ESA 
in order to obtain increased virtual storage  capac- 
ity. Another typical  migration  could  be a Disk 
Operating System/Virtual Storage  Extended 
(DOS/VSE) customer who  has  outgrown an IBM 
438 1 system and needs to migrate an application 
to  an IBM 3090  system running MVS. 

I another. For example, a company application may 

Constraints within a single operating system-As 
workloads grow, some applications may encounter 
growth constraints within a single operating sys- 
tem. A common example can be found with MVS 
applications and subsystems that were  designed 
for the 24-bit  addressing environment of MVS/370 
and are being  expanded to use the 3 1 -bit address- 
ing of MVSIESA. Even though the MVSIESA System 
provides the expanded  addressing  capability, it 
may  be  difficult and time-consuming to convert 
the applications to use more than 16  megabytes 
of virtual storage. The resulting virtual storage 
constraint may  force  some customers to run mul- 
tiple  systems,  each  with a separate database. 

1 

Backup and recovery-For applications that re- 
quire continuous availability, it may  be  necessary 
to recover  from  system-software, as well as hard- 
ware,  failures. This availability can be  had by 
running two  copies of the system, one in produc- 
tion mode and the other as a stand-by backup 
system. In the event that the production system 
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fails, the backup system  can take over the end- 
user  workload,  providing it is  properly connected 
to the terminal network and the system  database. 
This switchover can be done manually, or auto- 
matically by  using  software such as IBM’S Extended 
Recovery  Facility (XRF). 

Evolution of partitioning 

The ability to run multiple operating systems on a 
single  processor  complex  has  existed  for more than 
twenty  years. Traditionally, this partitioning capa- 
bility  has  been  provided in two  ways:  as  software- 
based partitioning, in which  system  software  (such 
as VM) creates multiple virtual machines, and as 
hardware-based partitioning, in  which the hardware 
itself can be  subdivided to form multiple, indepen- 
dent computing systems. This section briefly  de- 
scribes the IBM product evolution that has occurred 
for both types of partitioning. 

Software  partitioning. The first software product to 
provide a virtual machine capability was the Control 
Program/67 (cp/67)  operating system,Is2 which ran 
on the System/360  Model  67 and was  first  available 
in 1967. It gave each  user a virtual machine in which 
the single-user Conversational Monitor System (CMS) 
operating system could be run to provide command 
processing and information management functions. 
Since  each virtual machine was a replica of the base 
System/360  hardware architecture, it was also  pos- 
sible to  run multiple copies of Operating System/360 
(OS/360) in a virtual machine. In fact,  even c p / 6 7  itself 
was run “second-level” in a virtual machine for the 
purposes of  debugging and testing. 

cP/67  was  highly  successful, and  in 1972 IBM an- 
nounced V M / ~ ~ O ,  a successor product, for the entire 
System/370  processor  family. ~ ~ 1 3 7 0  soon became 
one of the most popular operating systems,  providing 
both excellent interactive computing facilities and 
the capability to operate “guest” operating systems 
in virtual machines. 

~ ~ 1 3 7 0  introduced the ability to  run a single  preferred 
guest in addition to numerous nonpreferred  guests. 
The preferred  guest was allocated a contiguous range 
of main storage  beginning at absolute storage  loca- 
tion zero, and therefore  avoided the performance 
overhead  associated  with  address  relocation and pag- 
ing. This capability  is commonly referred to as Vir- 
tual=Real, or V=R, storage allocation. 

VM/XA also  provided a V=R preferred  guest  when it 
was introduced in 1983. In 1987 IBM announced and 
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delivered the VM/XA SP Multiple Preferred Guests 
(MPG) facility  which  uses the new Processor  Re- 
source/Systems  Manager" ( P R / s M ~ ~ )  hardware fea- 
ture to provide up  to five Virtual=Fixed (V=F) 
preferred  guests in addition to the V=R guest. The 
design  of this product is described in more detail in 
the sections that follow. 

Hardware  partitioning. Since the introduction of the 
System/360  Model  67 and Model  65  multiprocessor 
(MP) systems in 1967, IBM has offered multiprocessor 
computing systems to provide  increased  system  ca- 
pacity and availability. To achieve the availability 
goals,  all  hardware components of the multiproces- 
sor  systems are duplexed so that single  hardware 
failures are unlikely to take down the entire system. 
In 1973,  with the introduction of the System/370 
158 MP and 168 MP systems, the duplexed MP hard- 
ware  design  was  used to provide an additional ca- 
pability:  physical partitioning. 

In a  physically partitioned MP system, the hardware 
facilities of the complex are divided into two  sides. 
Each  side  is  a separate machine that can be operated 
independently and even  powered-off without affect- 
ing the other side.  Physical partitioning has  been  a 
standard feature on all  multiprocessor  models on the 
IBM 303X,  308X, and 3090  processor  families. 

PR/SM. PR/SM is an optional feature on the IBM 
3090  Model  E and ES/3090"  Model S processor 
families that allows  a  single  processor  complex to 
support the concurrent execution of multiple oper- 
ating systems. It consists of  special  hardware and 
microcode that can be  invoked and controlled in 
either of  two  ways: directly through the machine 
console (hardware logical partitioning) or indirectly 
under software control by the VM/XA SP control 
program. The remainder of this paper  describes  these 
two methods of operation and provides  reasons why 
a  user  might  choose one method over the other. 

Logical  partitioning 

Overview. With the introduction of the PR/SM fea- 
ture, the 3090E and ES/3090S  processor  families 
now  offer  a  hardware partitioning capability that is 
significantly more flexible than hardware  physical 
partitioning. Logical partitioning (LPAR), a new 
mode of machine operation, offers  users the follow- 
ing  advantages  over  physical partitioning: 

1. LPAR is available on all  models of the 3090E and 
ES/3090S  processors.  Physical partitioning is only 
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available on some of the multiprocessor  models 
(e.g., it is available on the 280,400, 500, and 600 
models and is not available on the 120,  150,  180, 
200, and 300  models). 

2. LPAR provides up to six partitions on the 
ES/3090S (four on the 3090E),  whereas  physical 
partitioning allows  only  two partitions. 

3. Physical partitioning splits the processor  complex 
into two  equal  (except  for  processors on the 
model 500) partitions. LPAR gives the user the 
ability to define the granularity of the partitions. 

A logical partition is  a  collection of  processor com- 
plex resources that, when combined, are capable of 
running an operating system. The resources  which 

A logical  partition  is  a 
collection of processor  complex 

resources  that  can  run  an 
operating  system. 

comprise  a  logical partition include processors, main 
storage, expanded storage, channel paths,  vector  fa- 
cilities,  subchannels, and logical control units. A 
logical partition can be System/370 or Enterprise 
Systems  Architecture/370" ( E S A / ~ ~ O " )  mode (Sys- 
tem/370 Extended  Architecture, or 370-XA, mode 
for  those  models that do not provide E S A / ~ ~ O ) ,  inde- 
pendent of the mode of any other partition. Parti- 
tions operate independently and are isolated  from 
one another as if they were  loosely  coupled  processor 
complexes; i.e., the only interaction between parti- 
tions is  via I/O operations (shared  direct-access stor- 
age  device [DASD], channel-to-channel connection, 
or telecommunications control units). This isolation 
is  accomplished by dedicating  a portion of storage 
(main and expanded) and I/O elements (channel 
paths, subchannels, and logical control units) to a 
single  logical partition. Computational elements 
(processors and vector  facilities) can be either dedi- 
cated to a  single partition or shared among multiple 
partitions. Figure 1 shows  a conceptual view  of a 
physical  processor  complex (a Model 600) with four 
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logical partitions (MVSIMS, MVSPROD, MVSTEST, and 
VMHPO) defined.  Two of the physical  processors (0 
and 1) are dedicated to the MVSIMS partition; the 
remaining four physical  processors are shared among 
the other three partitions. A partition is  defined  as 
having one or more logical  processors.  Since the total 
number of  logical  processors  for  all  of the partitions 
can  exceed the number of  physical  processors, LPAR 
has  a  dispatcher  for  assigning  a  logical  processor to 
use  a  physical  processor at any point in time. 

Logical partitioning is a new mode (LPAR) for the 
IBM 3090E and ES/3090S  processor  families that is 
selected at power-on  reset (POR) of the processor 
complex.  With the PR/SM feature  installed,  3090E 
and ES/3090S  processors  have three basic  modes- 
System/370,  370-XA or ESA/370, and a new LPAR 
mode. 

In LPAR mode,  main  storage and expanded  storage 
are subdivided into contiguous  areas  with  l-mega- 
byte  granularity and allocated to each  of the parti- 
tions such that each partition appears to have  a 0- 
origin  for  its  storage. All storage  addresses  used in 
the instructions or channel program  addresses  of  a 
partition are relocated by the processors and chan- 
nels  and  checked to ensure that they are in the range 
of  physical  storage  allocated to the partition. Figure 
1 shows an example of the allocation of main  storage 
among  four  partitions. In this example,  all  storage 
addresses  used  by partition MVSPROD must  be in the 
range of 0 to 40  megabytes, and the central proces- 
sors  and channels will automatically  relocate the 
storage  accesses to use  physical  storage  locations in 
the range of  56 to 96  megabytes. 

Isolation  of 110 activity  is  achieved  by  giving  each 
partition its own  logical I/O subsystem.  Channel 
paths,  subchannels, and logical control units are 
dedicated to a partition; in Figure 1, each of the four 
partitions has  its own channel path, CHP, (e.g., CHP 
14  for partition MVSPROD) to device  3C0, and each 
partition has  a unique subchannel and logical control 
for  device 3CO. Therefore, input/output to device 
3CO behaves  as if the four partitions were  loosely 
coupled  physical  processor  complexes. For example, 
if partition MVSPROD issues  a RESERVE instruction to 
device 3C0, the other partitions will  get a  “busy”  if 
they attempt to issue any I/O instructions to 3CO. 
Any 110 instruction issued  from MVSPROD for  device 
3CO can  only use channel path  14,  since its subchan- 
ne1 only  has  channel  path 14 available;  similarly, 
partition MVSIMS can  access  device 3CO only  via 
channel  path 10. 
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Each partition consists  of one or more logical  proc- 
essors  which the LPAR dispatcher  assigns to physical 
processors at different points in time; the total num- 
ber  of  logical  processors  defined  can  exceed the num- 
ber  of  physical  processors  installed.  However,  for 
any  individual partition the number of  logical  proc- 
essors  defined for the partition may not exceed the 
number of  available  physical  processors. Partitions 
may  be either dedicated or shared.  Dedicated parti- 
tions have  exclusive  use  of  physical  processors  as- 
signed to the partition; shared partitions share use  of 
physical  processors  assigned to shared partitions un- 
der the control of the LPAR dispatcher. For shared 
partitions, the LPAR dispatcher maintains general- 
purpose  registers, control registers,  vector  registers, 
and program status words (PSWS) for  each  of the 
logical partitions. In Figure  1, partition MVSIMS is 
dedicated and has  been  assigned  physical  processors 
0 and 1 for  its  use. The other partitions share  use  of 
physical  processors 2,3,4, and 5 .  It is  a  user’s  choice 
whether  a partition is  dedicated  or  shared.  A  parti- 
tion that exhibits  a  steady demand for  processing 
resources and that requires an integral number of 
processors  can  achieve the highest throughput when 
assigned  dedicated  physical  processors.  In  most  sit- 
uations,  however, the processing demands of a par- 
tition fluctuate  from moment to moment, and 
greater  system throughput can  be  achieved  through 
the sharing of physical  processors. 

In summary, an LPAR is  a  logical  machine  consisting 
of  a  subset  of the resources of the physical  processor 
complex and is  isolated  from  all other partitions by 
the PR/SM hardware and microcode. The only  com- 
munication available  between partitions is  via 110 
connectivity. 

Partition definition.  In the previous  section  a  logical 
partition was  defined  as  a  user-specified  collection of 
processor  complex  resources that, when  combined, 
are  capable of running an operating  system.  Creating 
and using  a partition involves  two  steps: 

1. Defining the resource  requirements of the parti- 

2. Allocating and initializing the resources  of the 
tion 

partition (activating the partition) 

In order to define the resources  of  a partition, a  user 
must  specify the following  items: 

The names  of the partitions to be  used 
The 110 configuration 
The storage  configuration 
The processor  configuration 





These  specifications  are done in two  stages. The 
names of the partition and most of the 110 configu- 
ration are defined  as input  to the Input/Output 
Configuration  Program (IOCP) and stored as part of 
the Input/Output Configuration Data Set (IOCDS) on 
the Service  Processor of the 3090E or the ES/3090S 
processor  complex. The user  provides the eight-char- 
acter names of each of the partitions to be  used  with 
this IOCDS in the IOCP input. These names will  be 
used later by the system operator to operate each of 
the partitions. The physical 110 configuration  is al- 
located to each of the partitions on a channel path 
basis  since channel paths are dedicated to a partition. 
On the channel path identification (CHPID) macroin- 
struction input  to IOCP, the user indicates which 
partition owns the channel path. The IOCP generates 
subchannels and logical control ufiits  for the parti- 
tion for the 110 equipment attached to the channel 
path. Channel paths can be  reconfigured  from one 
partition to another via commands from the system 
console or the system control program (SCP) operator 
console. 

The remaining resources  for the partition (the stor- 
age configuration, the processor  configuration, and 
the remaining 110 configuration) are  specified  with 
panels on the system  console of the processor com- 
plex. The storage  configuration  consists of the 
amount of main storage and expanded  storage in 1- 
megabyte increments that is required  for the parti- 
tion. The processor  configuration  for the partition 
consists of the number of logical  processors  required, 
the number of  logical  vector  facilities required, and 
the mode of the partition, and takes into account 
whether  dedicated or shared use  of these  elements  is 
required. Shared partitions share one or more phys- 
ical  processors;  therefore,  each partition is  given a 
weight (a relative priority) which is  used  by the LPAR 
dispatcher to allocate and control the access  of the 
partition to the physical  processors.  Each partition 
may operate in one of the following  modes: Sys- 
tem/370, 370-XA, or E S A ~ ~ I O .  If the partition is Sys- 
tem/370, the remaining 110 configuration  consists of 
associating  System/370 channel numbers with  spe- 
cific channel paths. For LPAR this is done with a 
system  console  panel rather than using IOCP. 

After a partition is  defined, no resources are allocated 
to it, except  for the 110 configuration, until the par- 
tition is activated. At activation the resource require- 
ments of the partition are compared with the avail- 
able  physical  resources to determine if the activation 
will  be  allowed.  Allocation  of the storage  configura- 
tion for the partition does not occur until activation 
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Figure 2 Partitioning operational overview 
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of the partition; therefore, more storage can be  de- 
fined than is installed, but the amount of storage in 
use  (activated) is limited to the amount installed. 
Both main and expanded  storage are allocated in 
contiguous 1-megabyte  blocks.  Dedicated  processors 
and vector  facilities are allocated at activation of the 
partition; the allocation can be completed only if the 
required number of processors and/or vector  facili- 
ties  are  available  for dedication. Partitions with 
shared  processors can only  be activated if the re- 
quired number is  less than  or equal to the number 
of  physically  installed  processors minus the number 
of dedicated  processors. The same test is  used  for 
partitions requesting shared vector  facilities. If re- 
sources are available  for the partition at activation, 
they  are  allocated to the partition and left in power- 
on reset state; main and expanded  storage are 
cleared, the channel paths are reset, and the logical 
processors are reset. The partition is  ready  for the 
IPL (initial program load) of an operating system. 
Activation  is the logical  power-on  reset of the re- 
sources of the partition. 

Operational  controls. Operation of the LPAR envi- 
ronment involves the following  activities: 

Controlling the physical  processor  complex 
Managing the LPAR controls 
Controlling the logical  processor  complex of the 

Controlling the operating system running in each 
partition 

partition 

The first three of these operations are performed at 
the system  console; the last item is done at the 
operator’s  console  for  each operating system.  Figure 
2 shows an overview of the operational controls of 
LPAR. 

The physical  processor  complex  is operated from the 
system  console. In general, the functions used to 
control the physical  processor  complex  for LPAR are 
the same as the functions used  when the processor 
complex is operating in one of the basic  modes 
(System/370,  370-XA, or ~ ~ ~ 1 3 7 0 ) .  These functions 
include: 

Releasing the configuration 
Initiating power-on  reset 
Selecting and controlling the IOCDS 
Handling problem reporting with the Remote 
Service  Facility  or the Problem  Analysis  Facility 
Defining and activating the System  Activity  Dis- 
play (SAD) 
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Figure 3 Console  control of partitions 
~~ 

Defining the storage and processors of the physical 
configuration 

Control of the LPAR environment is done from the 
system  console.  Activities  involved in control of 
LPAR include defining  resources  for the partitions, 
activation and deactivation of the partitions, estab- 
lishing partition dispatching weights, identifying  ded- 
icated and shared partitions, establishing  a  corre- 
spondence between  System/370 channel numbers 
and channel paths, and displaying  storage maps for 
main and expanded storage. 

The logical  processor  complex (the partition) is also 
operated from the system  console.  Since the 3090E 

BORMN, HENNESSY. AND RYMARCZYK 111 



and ES/3090S  processors  have  a  single  system con- 
sole, the system  console  is shared among all of the 
active partitions. Sharing is done by a  windowing 
technique where the system  console  is controlling 
one partition at a time. Figure  3  shows that the 
system  console  can  be used to control the four par- 
titions by presenting  console  frames  for one of the 
partitions. The partition that is currently being con- 
trolled by the system  console  is the target partition 
designated by the system operator. The target parti- 
tion can be changed  dynamically.  Figure  3  also 
shows that the current target partition is MvSTEST; 
therefore, any controlling functions entered from the 
system  console will act on partition MVSTEST. The 
functions available  for controlling a partition include 
IPL, all forms of reset, alter/display of storage, and 
stop/start. 

Each of the operating systems running in a partition 
is  controlled by an operator’s  console that is attached 
to one of the channel paths for that partition. 

Workload  management. Since  all of the resources for 
a  dedicated partition are used  exclusively by that 
partition, there is no dynamic workload  manage- 
ment for LPAR to perform  for dedicated partitions. 
For this reason this section on workload  manage- 
ment will focus  exclusively on shared partitions. 

Workload management consists of allocating the 
logical  processors  of  each partition to the available 
physical  processors  in  a way that provides  good I/O 
response  while  maximizing the use  of the physical 
processors  in accordance with  a  user-defined  policy. 
This concept is illustrated in Figure 4 where four 
partitions (North, South, East,  West) are being run 
on a  processor  with four physical CPS (processors). 
North, South, East, and West  have one, two, three, 
and four logical  processors  respectively. 

The LPAR workload  manager  is an event-driven  dis- 
patcher which  dispatches  logical  processors (e.g.,  NO, 
S1, EO, W2, etc. in Figure 4) to physical  processors 
(CPO, . . . , CP3 in Figure 4). 

The LPAR dispatcher was  designed  with the objective 
of allocating  all  available  physical  processor cycles 
to logical  processors that are ready to execute instruc- 
tions while maintaining good 110 response. In order 
to achieve this objective, LPAR makes  each individual 
logical  processor of every nondedicated partition a 
separately  dispatchable unit of  work. This means 
that partitions do not have to have the same number 
of logical  processors  as the available  physical  proces- 
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sors and that logical  processors  from  several  different 
partitions may  be  active  concurrently. Further, it  is 
not  necessary  for  all of the logical  processors of a 
single partition to be  active  concurrently. This is 
shown  in  Figure 5 ,  which  represents  a  snapshot of 
the execution of logical  processors on the physical 
processors at an arbitrary point in time. 

The LPAR dispatcher  utilizes  a number of  classical 
dispatching/scheduling  techniques to achieve its ob- 
jective: 

1. Weights: Each partition has  a  user-defined weight 
(priority)  which  is  used by the dispatcher to de- 
termine scheduling  priority. 

2. Wait Detection: When  a  logical  processor  enters 
a  wait, the dispatcher will detect the wait and 
select another logical  processor to run. 

3. 110 Preemption: When an 110 interruption is  pend- 
ing  for  a  logical  processor of a partition that is of 
higher  priority than the currently  executing  logi- 
cal  processor, the dispatcher will preempt the 
lower-priority  logical  processor and dispatch  the 
higher-priority  logical  processor. 

4. Dispatch  Interval: The LPAR dispatcher maintains 
a  maximum  time  interval  in  which  a  logical  proc- 
essor  may run for  any  single  dispatch of the logical 
processor. If a  logical  processor  is  still  active at 
the end of the dispatch  interval, the dispatcher 
will preempt the logical  processor and dispatch 
the highest-priority  logical  processor that is  ready. 

5.  SCP Indicated  End: An SCP (operating  system) 
may  recognize that it is doing  work  which  may 
be productive  when  it  is the only SCP using the 
processor  complex, but which  is  unproductive  in 
the LPAR environment (e.g., VM is in active  wait 
state  looking  for  ready  work, and MVS is  spinning 
for  locks). LPAR provides an interface  for an SCP 
that is  recognizing  these situations so it can vol- 
untarily give up its dispatch  interval and permit 
the dispatcher to dispatch the highest-priority  log- 
ical  processor that is  ready. 

As is true with  many  dispatchers, the amount of 
overhead of the dispatcher  varies  inversely  with the 
utilization of the physical  processors.  When the par- 
titions require  all  of  the  processor  cycles, the dis- 
patcher  overhead  is  extremely  low; as the utilization 
falls, the dispatcher  becomes  more  active in looking 
for  work. 

Figure 5 illustrates the behavior of the LPAR dis- 
patcher.  In this example,  there  are  three partitions 
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processor  resources on a  two-processor  system  with 
two partitions, each  having  two  logical  processors, 
where VMPROFS had a weight of 400 and MVSBATCH 
had a weight of 100. 

The other control over  processor  resource consump- 
tion is the number of  logical  processors in the parti- 
tion. A logical  processor cannot consume more re- 
sources than the worth of a  single  physical  processor. 
By “varying”  a  logical  processor “off line” or  “on 
line” to the operating system running in the parti- 
tion, the user can change the ability of a partition to 
compete for  processor  resources. 

Reliability, availability, and serviceability. A key 
design  philosophy of LPAR is that all  hardware or 
software  failures  associated  with  a  specific  logical 
partition should not affect other partitions. Hard- 
ware  failures that are localized to a functional unit 
(e.g., a  processor) are passed to the logical partition 
that was in control when the failure  occurred. The 
appropriate error information is  presented to the 
logical partition, and the running operating system 
is  responsible  for its own  recovery. 

There are, of course, shared hardware elements 
whose failure could bring  down the entire complex, 
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Figure 6 Processor  utilization 

Table 1 Partition  weights  on  a 3090-400E with  four  physical  CPs 

Partition 
Name 

Partition Number  of 
Weight Logical 
(PW) CPS 

Logical 
CP 

Logical 
CP 

Target 

LP 
Target 

Example 1 

DICK 300 3 
FRANCK 100 1 
MXA 400 4 
ROAR 200 2 

100 
100 
100 
100 

0.40 1.20 
0.40 0.40 
0.40 1.60 
0.40 0.80 

Example 2 

DICK 200 1 200 0.32 0.32 
FRANCK 600 2 300 0.48 0.96 
MXA 900 3 300 0.48 1.44 
ROAR 800 4 200 0.32 1.28 
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including all partitions. In this respect  physical  par- 
titioning continues to provide an availability advan- 
tage due to the complete duplexing of hardware 
elements, and  it may  be combined with  logical  par- 
titioning to satisfy  user-specific  configuration  re- 
quirements. 

Storage  failures  within the storage area assigned to a 
logical partition are localized to  that partition and 
handled normally by the operating system  of the 
partition. Similarly,  since channels are dedicated to 
partitions, most I/O errors (including hot I/O inter- 
rupts) are localized to a partition. Software  failures 
within  a partition (e.g.,  loops or abnormal endings) 
do not affect other partitions. 

A high-availability  system  configuration requires at 
least  two paths from  each  logical partition to any 
critical  device. To address this requirement, PR/SM 
permits each  logical partition to have up  to four 
paths to a  device. 

Instrumentation. When operated in LPAR mode, a 
3090E or ES/3090S  system  has  two  new  perform- 
ance instrumentation capabilities  associated  with 
logical partitioning: 

1. MVS/XA and MVSIESA Resource Measurement Fa- 
cility (RMF) reports on CPU usage  by partition 

2. System  Activity  Display  by partition 

The MVS/XA RMF product now produces an optional 
Partition Data Report as part of its Monitor I output 
on the basis of performance data collected through 
the PRISM feature. This report indicates CPU usage 
per  logical partition and is intended for  capacity 
planning. The generation of the RMF Monitor I1 and 
I11 reports has  also  been updated to reflect the pos- 
sibility that a  logical partition may not have  dedi- 
cated CPU resources. 

The 3090E and ES/3090S  System  Activity  Display 
(SAD) has  also  been extended with PRISM LPAR mode 
to reflect  logical partitions. For each  logical partition, 
the user  may  display the current level  of  supervisor, 
problem, or total busy time, with the display nor- 
malized to show 100 percent busy time when the full 
share of  assigned CPU resource is  used. The display 
of channel path usage is  also annotated by  logical 
partition name. All standard SAD capabilities con- 
tinue to be  provided on a  physical  processor  basis. 
Figure  7  shows an example of an LPAR mode SAD 
frame. 
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VM/XA MPG 

In 1987 IBM announced an enhancement to VM/XA 
that allows it to logically partition a  3090E  or 
ES/3090S  for  use by several production operating 
systems.  When the machine is in basic (non-LPAR) 
mode, the VM/XA System Product with  Multiple- 
Preferred-Guests support (hereafter  called VMIXA 
MPG) can make use  of the PR/SM machine feature to 
support multiple preferred guests, as well as many 
nonpreferred  guests.  Along  with the existing support 
for a Virtual=Real ‘(V=R) guest, VM/XA MPG now 
supports up  to five Virtual=Fixed (V=F) guests,  for 
a total of  six preferred  guests. 

Overview.  As described  earlier, the original  purpose 
of VM was to create “virtual machines.” That is, 
using  a  single  real machine, VM can create the illusion 
of multiple machines.  Using VM/XA, these virtual 
machines do not even  have to be the same architec- 
tural mode as the real machine: Some  could  be  using 
the System/370 architecture, and others 370-XA. If 
VM/XA is running on  an Enterprise Systems  Archi- 
tecture/370 ( E S A ~ O )  machine, guests  may  also  ex- 
ploit the powerful  new  addressing  capabilities that 
this architecture provides. 

Storage management. Virtual machines also  have 
their own  storage,  which  need not be the same size 
as  what  exists on the real  machine. To make more 
efficient use of the real machine, they often have less, 
but it is  possible to define virtual machines that have 
even more storage than the real machine has.  Spe- 
cifically, VM/XA MPG manages  storage in one of three 
ways for  a  guest: 

1. A predefined amount of contiguous real  storage, 
starting at absolute address  zero,  is  set  aside  for 
exclusive  use  by that guest.  Since  every  guest- 
absolute address maps directly to the same host- 
absolute address, this type of guest  is  classified as 
a V=R guest.  Since  only one area of  real  storage 
can start at absolute address  zero,  only one V=R 
guest can ever  be  logged on  at a time. 

2. A predefined amount of contiguous real  storage, 
but not starting at absolute address  zero,  is  set 
aside  for  exclusive  use by that guest.  Since  every 
guest-absolute  address is at a fixed displacement 
from the corresponding  host-absolute  address, 
this type of guest is called  a V=F guest. 

3. No specific amount of real  storage  is  set  aside; 
real  storage is allocated as needed to hold  recently 
referenced  guest pages. Other guest pages are 
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Figure 7 Example of LPAR mode System Activity Display (SAD) 

saved in ancillary  storage, such as expanded stor- 
age or  disk  space  reserved  specifically  for this 
purpose. This technique of managing  real  storage 
is  called paging and allows an operating system 
to create a vastly greater number of virtual pages 
than there are real storage  frames to contain 
them. 

When a guest’s  storage  is  managed in this manner, 
there is no direct relationship between a guest 
address and the host  address of the frame that 
contains the page. VM/XA uses dynamic address 
translation (DAT) tables to  map guest  storage. 
Such a guest is referred to as a Virtual=Virtual 
(V=V) guest. 

Since  storage pages owned by the first  two  categories 
of  guests are always  available immediately when 
needed, and since it is  easier  for the machine (and 
VMIXA) to translate the storage  addresses, V=R and 
V=F guests are considered to be preferred guests. 
Because V=R and V=F guests  generally  execute 
faster and more efficiently than V=V guests, they 
are the usual  vehicle  by  which to run production 
operating systems under VM/XA. The flexibility  avail- 
able from V=V  guests is  useful,  however,  when 
testing and debugging and for nonproduction guest 
environments. 

CPU management. Just as a real machine might  have 
multiple CPUS sharing storage, so VM/XA permits a 
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guest to define multiple virtual CPUS which can each 
execute instructions on behalf of a  guest. In a pro- 
duction guest environment, multiple virtual CPUS 
provide  a means by which to exploit the processing 
power  of the real  machine.  Each virtual CPU repre- 
sents a  single  guest instruction stream, and can thus 
only  be dispatched on  one real CPU at a time. If only 
virtual uniprocessors  were supported, even  a virtual 
CPU dispatched 100 percent of the time  on one of 
the real CPUS would  only  be  capable  of consuming 

Processor  power  is  managed by 
VM/XA through  dedication  and 

scheduler  shares. 

the processing  power  of  a  single  real CPU. In contrast, 
a virtual multiprocessing  guest can consume more 
processing  power  because its virtual CPUS may  be 
concurrently dispatched by VM/XA on multiple real 
CPUS. However,  since the processing  power  available 
from the system  is limited by the number of  real 
CPUS available, it does not make sense  for  a produc- 
tion guest to define more virtual CPUS than there are 
real CPUS. Also,  since there is  some VM/XA overhead 
in managing more virtual CPUS, defining excess vir- 
tual CPUS actually reduces the  amount of  processing 
power  available to the guest. A production guest, 
therefore, should define  only  as many virtual CPUS 
as needed to consume the amount of  processing 
power required by the guest. 

Processor  resource  allocation. Processor  power  is 
managed by VMIXA through two  mechanisms: dedi- 
cation and scheduler  shares. Through dedication, a 
real CPU is  reserved  for  exclusive  use by a  specified 
virtual CPU. That real CPU will  select  only that virtual 
CPU for  dispatching, and  no others. Dedication al- 
lows the virtual CPU to run a bit faster  for the 
following  reasons: 

Fewer  processor cache misses and cross-interro- 
gates: Since that virtual CPU is the only one run- 
ning on the real CPU, the cache  of that CPU con- 
tains only lines referenced by the virtual CPU (and 
a  small amount  due  to CP overhead). 
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Fewer translation-lookaside buffer (TLB) misses: 
The translation-lookaside buffer  of the processor 
is  used  by the dynamic address translation process 
to “remember” the results of previous translations. 
Since it has  a limited capacity,  giving the TLB of 
the processor to this guest  exclusively improves 
the chances of finding the desired data in the TLB. 
Fewer  exits f:om and entries to interpretive-exe- 
cution mode:  A dedicated real CPU is not enabled 
for the same set of 110 interruption subclasses (ISCS) 
as a nondedicated CPU and, therefore,  is inter- 
rupted to handle 110 interruptions less frequently. 
It also  receives  fewer external interruptions due to 
various timers. Clock comparator requests to serv- 
ice nondedicated guests  get queued on nondedi- 
cated CPUS, and CPU timer interruptions occur less 
often  because  a dedicated guest  gets  a much larger 
minor time-slice than a nondedicated guest. 
More efficient instruction simulation: There is  a 
software  fast path for simulation of Diagnose 
x’44’ instructions (the “voluntary time-slice end” 
function) when  issued  by  a  guest running on a 
dedicated CPU. Diagnose x’44’ instructions are a 
frequent cause of exits  from interpretive-execution 
mode for  a  multiprocessing MVS guest. 
Less time spent waiting  for  a CPU to become 
available:  When  a nondedicated virtual CPU leaves 
enabled-wait state (or otherwise  becomes “ready”), 
it must compete with other guests in the system 
for  a turn  on a CPU. The length of time it must 
wait  is  based on system  load and other scheduling 
considerations, but there are some situations in 
which VM/XA will not preempt a currently running 
guest in order to  run a  higher-priority  guest. The 
virtual CPU is therefore forced to wait until the 
currently running guest  gives up control of the 
CPU (or encounters time-slice  end). This algorithm 
gives better total system throughput, but it reduces 
the responsiveness of the production guest. 
VM/XA MPG will enable the Wait-State Interpreta- 
tion Capability on behalf of a dedicated virtual 
CPU. This machine feature prevents an exit  from 
interpretive-execution mode when the guest enters 
enabled-wait  state.  Since  most  “waits” of this na- 
ture are of a very short duration for  a production 
guest, it is more efficient to leave the machine in 
interpretive-execution mode than to go through 
the host overhead of  processing the change in 
dispatching  status. 

The primary disadvantage of dedication is that when 
the real CPU is not needed by the virtual CPU to 
which it is dedicated, it sits idle,  accomplishing ab- 
solutely no useful  work.  Overall throughput of the 
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system  is therefore reduced if other work could be 
processed.  Unless the virtual CPU can consume very 
close to what the processing  power  of a real CPU is 
worth, this disadvantage  usually  overshadows the 
advantages, so an installation should  choose to ded- 
icate a real CPU only with caution. 

When a virtual CPU does not have a real CPU dedi- 
cated to it, it is  managed by the scheduler on the 

A virtual  device  may or may  not 
have  a  corresponding real device. 

~ 

basis  of the “share” of the resources of the system 
assigned to it. A scheduler share is  essentially a 
resource-consumption goal  designating how much 
of the resources of the system are to be apportioned 
to that particular guest.  Processing  power,  as a system 
resource,  is thus allocated by the scheduler  primarily 
on the basis  of the share values  assigned to each 
guest. A share value  may be  specified  as either an 
absolute share or a relative share.  An absolute share 
specifies a percentage of the resource to allot to that 
guest. On a real  processor  with four CPUS, therefore, 
an absolute share of 50 percent would denote that 
processing  power equivalent to that of two CPUS 
should be  reserved  for that guest. A relative share is 
a number from 1 to 10 000 which  is compared 
against the relative  shares of o!her guests to deter- 
mine their relative importance. For example, if  two 
guests  have  relative  shares of 100 and 200, the sched- 
uler will devote twice  as much CPU power to the 
second  guest  as to the first  (because the second 
number is  twice  as  big  as the first number). If these 
are the only  two  guests that are active, the second 
guest  should  be given  two thirds of the system, and 
the first  guest should be  given one third of the system. 

1 / 0  device  management. When  executing under 
VMIXA, a guest  has virtual devices  which are managed 
by VM/XA such that they appear real to the guest. A 
virtual device  may or may not have a corresponding 
real  device, and if it does, that real  device  may  be 
dedicated or nondedicated. Much like a dedicated 
CPU, a dedicated device  is one reserved  exclusively 
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for the support of a particular virtual device. A 
nondedicated device  may  be  used to support several 
virtual devices,  which  may  even  be shared by  differ- 
ent guests. A virtual device that does not have a 
corresponding  real  device  is  called a simulated de- 
vice. A simulated device  may be used,  for  example, 
to provide printer, card  reader, or card-punch capa- 
bilities without needing a real printer, reader, or 
punch. Output from simulated printers and punches 
is kept in “spool files’’ and may  be  dynamically 
assigned to real printers and punches as desired. 
Another type of  device that can be completely sim- 
ulated by VM/XA is a channel-to-channel adapter. 
Such a device can allow communication between 
two  guest operating systems. 

When  devices are dedicated, the basic allocation unit 
is a device; VM/XA manages channel paths. With the 
introduction of Start Interpretive Execution (SIE) 
Assist in 1985,  devices  dedicated to the V=R guest 
benefitted from special treatment by the channel 
subsystem. For a guest running M V S ~ O  or MVS/XA, 
the channel subsystem  began to take advantage of 
the guest’s  fixed-storage layout by “interpreting” 
most  guest I/O instructions without host intervention, 
thus  no longer requiring the machine to exit interpre- 
tive-execution  mode.  Similarly, many arriving 110 
interruptions belonging to the V=R guest  could  be 
“interpreted” by the machine without host interven- 
tion and without leaving interpretive-execution 
mode.  Since the handling of  every  exit from interpre- 
tive-execution mode requires host  processing,  signif- 
icantly improved performance was  realized  from the 
reduced  frequency and from  avoiding the VM/XA 
overhead of simulating the 110 instructions and in- 
terruptions. 

VM/XA MPG uses the PRISM machine feature to make 
this dramatic performance improvement available 
to V=F guests  as  well as V=R guests. The resulting 
performance is nearly that of a V=R guest, thus 
making V=F guests a practical  mechanism to run 
production operating systems. On the 3090E and the 
ES/3090S, VM/XA supports five V=F guests and a 
V=R  guest  for a total of  six preferred  guests that 
may  exploit the PR/SM machine feature. 

Though nondedicated devices cannot achieve the 
high  level  of performance that dedicated  devices can, 
they do permit the sharing of real  devices by multiple 
guests. For example, a real  disk  may  be  divided into 
several minidisks. As  viewed  by a guest, a minidisk 
generally  has the same characteristics  as a real  disk, 
except  for its size.  Minidisks  allow  different areas of 
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a  real  disk to be  allocated to different  guests and also 
allow the sharing of the same disk by different  guests. 
VM/XA allows  a  real  disk to be mapped by a  single 
“full pack” minidisk, and this minidisk may then be 
“linked” to multiple virtual machines. The virtual 
machines control such  sharing, if  necessary, through 
the I/O protocols of  Reserve and Release. 

Defining  a  virtual  machine. Each virtual machine 
that is permitted to log on  to a VM/XA system  is 
described in a file called the user directory. The 
directory describes the attributes of  each virtual ma- 
chine, including the identification (userid),  privilege 
class,  storage  size, CPU configuration, device  config- 
uration, scheduler share allocation, and additional 
information of the virtual machine that is  used to 
define or limit its capabilities. This information pro- 
vides  a starting point for the virtual machine defini- 
tion. Later changes  may  be made through VM/XA 
commands issued  dynamically from authorized 
userids. Commands are available to add or delete I/O 
devices, create new virtual CPUS, change  scheduler 
shares, etc. Many such  changes to the virtual config- 
uration can even  be done without disturbing an 
executing production guest,  which  may  allow an 
operator to reconfigure  a  guest  dynamically in re- 
sponse to changing  resource requirements. 

Comparison of LPAR and VM/XA MPG 

With PRISM, IBM offers  users  a  choice  between  two 
methods for the logical partitioning of a 3090E or 
ES/3090S: LPAR-mode operation and VMIXA with 
MPG support. LPAR and VM/XA MPG are complemen- 
tary offerings,  each  satisfying  a unique set of user 
requirements. This section  is  a comparison of LPAR 
and VM/XA MPG, evaluating such areas as  user  expe- 
rience,  flexibility, performance, and reliability. 

User  experience. Users  with no VM experience  may 
find that LPAR mode is the easier  way to partition 
their systems. In LPAR mode, the familiar hardware 
console  screens of the base machine are extended to 
support multiple partitions, as is the IOCP process  for 
defining the system 110 configuration. 

In order to use VM/XA MPG, one must configure, 
generate, and build  a VM/XA system.  Like any large 
operating system, VM/XA requires  a certain amount 
of expertise to set up. Non-vM users  who wish to 
logically partition their machines generally do not 
have  system programmers with VM skills, and  do not 
want to incur that staffing  expense, nor the software 
license  fee  for VM. For these  users,  therefore, LPAR is 
a more attractive alternative. 
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In contrast, VM users  may  find that VM/XA MPG 
provides  a more natural and flexible partitioning 
alternative. These  users are generally  using VM for 
reasons  beyond its guest-machine  capability,  as  de- 
scribed  below, and they  already  have the required 
VM skills.  These  users  would consequently base their 
decision on some of the remaining differences. 

External  interfaces. As a machine feature, LPAR pro- 
vides its external interface through the system con- 
sole. That is,  console menus are provided to activate 
and control partitions, and the operator for  a parti- 
tion uses  a  panel that is  very similar to the operator 
panel on the base, unpartitioned machine. It is there- 
fore an easier  migration in terms of human factors. 
However, in most installations, the system  console 
is  placed in a  secure area and may  therefore  be 
inconvenient to access, although the IBM Net- 
View’”/rscF (Inter-System Control Facility) product 
may  be  used to control the console from a remote 
terminal. 

The VM/XA operational interface is  via  existing vM/XA 
commands, which are well known to experienced 
VM operators. These commands can be entered from 
any authorized terminal (any number are permitted), 
without requiring NetView. 

Types of guests. LPAR supports up  to six  high-per- 
formance partitions (on the ES/3090S). VM/XA MPG 
supports up  to six preferred  guests and a  large num- 
ber of nonpreferred (V=V) guests.  These additional 
nonpreferred guests can be  very  useful  for  test,  de- 
velopment, and  ws-intensive applications that do 
not require much processing  resource. 

Debugging tools. While LPAR provides rudimentary 
debugging tools appropriate to a machine feature, 
VM/XA offers a robust set of  debugging tools appro- 
priate to  an operating system.  These tools include, 
for  example, commands to trace the execution  of 
instructions in the guest operating system. This fa- 
cility is  very  flexible and allows quite a  rich  set of 
debugging “traps” to be  created. A facility such as 
this one can be invaluable in tracking down subtle 
bugs. 

Monitoring tools. VM/XA offers standard monitoring 
facilities, such as would  be found in any operating 
system, that can be  used to measure and  tune the 
system to produce optimum overall  performance. 
LPAR provides  processor and channel utilization in- 
formation which must be  recorded and reduced by 
the operating systems running in the partitions. 
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Channel path configuration. With LPAR, channel 
paths must be dedicated to partitions. This dedica- 
tion ensures that all 110 operations on a channel path 
are associated  with  a  single partition, avoiding any 
need  for the machine to be  involved in 110 authority- 
checking or error recovery, both of  which  may be 
device-dependent.  However, if multiple partitions 
need to share an 110 device,  each must have at least 
one dedicated channel path to the device. 

In contrast, VM/XA allows its guests to share channel 
paths and devices  by  assigning  resources at the device 
level. That is, an installation may  specify  what de- 
vices are to be  dedicated to the preferred  guest  with- 
out consideration for the rest  of the devices on the 
channel path. VMIXA is thus more flexible as it per- 
mits an installation to give a  preferred  guest  access 
to some  devices on a control unit without giving the 
guest  access to all  devices on the control unit. 

Virtual devices. LPAR, a machine feature, does not 
have the ability to “simulate” devices as does VMIXA. 
VMIXA uses  software to create “virtual” devices,  de- 
vices that appear like  real ones to a  guest but which 
do not in  fact  have  a  real equivalent. For instance, 
by  using VMIXA one can define  a virtual printer. 
Output sent to that virtual printer will be collected 
(“spooled”) by VM/XA and can subsequently  be di- 
rected to a  variety of destinations using appropriate 
VMIXA commands. It can be printed on a  real printer, 
put  on tape, or even treated as input for  a virtual 
“card-reader’’  device. 

Another kind of virtual device that is often useful in 
a production guest environment is  a virtual channel- 
to-channel adapter. This virtual device can be used 
to connect two  guest operating systems, thus allow- 
ing them to communicate. If LPAR is  used,  physical 
hardware is required to perform the equivalent func- 
tion. 

Performance.  Since LPAR is  a machine feature, it 
offers  high performance, comparable to  that of an 
unpartitioned machine. VM/XA  MPG, through the use 
of the PRISM hardware, can also  provide comparable 
performance if dedicated 110 resources are allocated 
to the guest  machine. If the VM guest  exploits the VM 
capability to share devices, it will incur some addi- 
tional overhead  necessary to implement the con- 
trolled sharing of the physical  resources. For similar 
dedicated 110 configurations,  with no shared devices, 
the performance of VMIXA is  typically  within 1 or 2 
percent of that of the LPAR mode. 
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Reliability  and  availability. The implementation of 
LPAR mode, in hardware and microcode,  is much 
smaller and simpler than that of VM/XA, and the 
reliability of LPAR mode is comparable to that of an 
unpartitioned machine. VMIXA provides  a  software 
recovery  capability,  called  Preferred-Guest  Recov- 
ery, through which VM/XA can usually sustain the 
V=R  guest machine despite  a  failure in VM itself. 

Conclusion 

The Processor  Resource/Systems  Manager  provides 
an efficient and flexible  capability to run multiple 
operating systems on a  single IBM 3090E or ES/3090S 
processor  complex. Through special  hardware and 
microcode, it virtualizes the base machine to create 
multiple partitions, each of  which  is  a  logical ma- 
chine with its own set of resources. 

PRISM may be used in either of two ways: directly 
from the system  console (LPAR mode) or indirectly 
through the VM/XA SP operating system.  Via LPAR 
mode, the PRISM feature expands the base machine 
functions to include logical machine definition and 
control and physical  resource management (e.g., par- 
tition dispatching). 

Each PRISM partition is an image of the underlying 
3090E or ES/3090S machine, but each  may  be con- 
figured  differently and operated independently. 
Thus, today, one partition might  be  a  System/370- 
mode logical machine with no expanded storage, 
whereas another could be an EsA-mode machine with 
expanded  storage and hiperspaces. As further archi- 
tectural enhancements are made, PRISM can readily 
serve as a means of migration and/or coexistence. 

Processor  Resource/Systems  Manager, ES/3090, MVS/ESA, 
MVS/XA, PRISM,  Enterprise  Systems  Architecture/370, 
ESA/370,  and NetView are  trademarks of International  Business 
Machines  Corporation. 
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3. The  machine is put in interpretive-execution  mode  when 
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execution mode when  a Start Interpretive  Execution  (SIE) 
instruction is issued  and  exits  when  host  intervention is required 
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4. In this  regard,  relative  shares  work much the  same as the  LPAR 
“partition  weights”  described  earlier. 
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