
Multiple operating systems
on one processor complex

by T. L. Borden
J. P. Hennessy
J. W. Rymarczyk

As large computing systems continue to grow in ca-
pacity and to offer improved pricelperformance, there
is an increasing requirement to consolidate systems
onto one processor complex. This paper describes the
reasons why users need to run multiple operating sys-
tems today, provides a brief history of IBM’s partition-
ing products, and introduces the Processor Resource/
Systems Managerm, a machine feature on the IBM 3090
Model E and ES/3090m Model S processors that pro-
vides users with a flexible and efficient capability to
run multiple operating systems on a single processor
complex.

T he development of powerful, high-availability
computing systems has led to a diversity of

computer applications, from transaction processing
to engineering design simulation, each with its own
unique set of requirements. These diverse require-
ments have resulted in the development of many
different programming languages, application pro-
grams, and even operating systems, each with its
own strengths and weaknesses.

One might think that a single operating system could
be designed to satisfy the requirements of all envi-
ronments. In practice, the system design trade-offs
that must be made, together with compatibility con-
straints, imply that no single design could satisfy the
full range of requirements. Instead, several designs
have evolved, each addressing the needs of a large
segment of the marketplace. For example, on its
high-end processors, IBM offers a variety of operat-
ing systems, including Multiple Virtual Stor-

age/Enterprise Systems Architecture (MVS/ESA~~),
Multiple Virtual Storage/Extended Architecture
(MVSIXA~~) , M V S ~ ~ O , Virtual MachineIExtended Ar-
chitecture (VMIXA), Virtual Machine/370 (VM/370),
and Transaction Processing Facility (TPF), each with
its own customer set.

Following are some of the main reasons why multi-
ple operating systems may need to coexist even
within a single establishment:

Diverse workloads-Many large establishments
today must satisfy the computing requirements of
several distinct groups of end users. For example,
a large airline might need a very responsive reser-
vation system, an aircraft maintenance and parts
database system, and a general-purpose interactive
and batch system for payroll, forecasting, plan-
ning, etc. It is not unusual to find that at least two
different operating systems are required, with ap-
propriate subsystems and software products, to
provide the full set of required functions.

9 Test and development-Many companies are crit-
ically dependent on the high availability of their
computing systems. As a result, it is necessary to

Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 28, NO 1. 1989

allow for nondisruptive enhancements to the sys-
tem software for each production system. The

new release of the operating system itself, a new
release of some key application, the addition of
new products or functions, or simply the applica-
tion of software maintenance. In any case, to
minimize the possibility of an outage in the pro-
duction system, it is essential that changes to
critical software be tested in a system context prior
to being adopted in the production environment.

I software changes can take many forms, such as a

I Many large businesses also do a significant amount
of system software development. By its very na-
ture, system software debugging implies repeated
system failures, and thus these establishments
need separate production and development sys-
tems. Moreover, for businesses that require 24-
hour availability of their production systems, it is
impossible to perform the software development
on the production system on an off-shift basis.

Migration-It is sometimes necessary for a busi-
ness to convert from one operating system to

need to migrate from MVSWO to MVS/XA or MVS/ESA
in order to obtain increased virtual storage capac-
ity. Another typical migration could be a Disk
Operating System/Virtual Storage Extended
(DOS/VSE) customer who has outgrown an IBM
438 1 system and needs to migrate an application
to an IBM 3090 system running MVS.

I another. For example, a company application may

Constraints within a single operating system-As
workloads grow, some applications may encounter
growth constraints within a single operating sys-
tem. A common example can be found with MVS
applications and subsystems that were designed
for the 24-bit addressing environment of MVS/370
and are being expanded to use the 3 1 -bit address-
ing of MVSIESA. Even though the MVSIESA System
provides the expanded addressing capability, it
may be difficult and time-consuming to convert
the applications to use more than 16 megabytes
of virtual storage. The resulting virtual storage
constraint may force some customers to run mul-
tiple systems, each with a separate database.

1

Backup and recovery-For applications that re-
quire continuous availability, it may be necessary
to recover from system-software, as well as hard-
ware, failures. This availability can be had by
running two copies of the system, one in produc-
tion mode and the other as a stand-by backup
system. In the event that the production system

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

I

fails, the backup system can take over the end-
user workload, providing it is properly connected
to the terminal network and the system database.
This switchover can be done manually, or auto-
matically by using software such as IBM’S Extended
Recovery Facility (XRF).

Evolution of partitioning

The ability to run multiple operating systems on a
single processor complex has existed for more than
twenty years. Traditionally, this partitioning capa-
bility has been provided in two ways: as software-
based partitioning, in which system software (such
as VM) creates multiple virtual machines, and as
hardware-based partitioning, in which the hardware
itself can be subdivided to form multiple, indepen-
dent computing systems. This section briefly de-
scribes the IBM product evolution that has occurred
for both types of partitioning.

Software partitioning. The first software product to
provide a virtual machine capability was the Control
Program/67 (cp/67) operating system,Is2 which ran
on the System/360 Model 67 and was first available
in 1967. It gave each user a virtual machine in which
the single-user Conversational Monitor System (CMS)
operating system could be run to provide command
processing and information management functions.
Since each virtual machine was a replica of the base
System/360 hardware architecture, it was also pos-
sible to run multiple copies of Operating System/360
(OS/360) in a virtual machine. In fact, even c p / 6 7 itself
was run “second-level” in a virtual machine for the
purposes of debugging and testing.

cP/67 was highly successful, and in 1972 IBM an-
nounced V M / ~ ~ O , a successor product, for the entire
System/370 processor family. ~ ~ 1 3 7 0 soon became
one of the most popular operating systems, providing
both excellent interactive computing facilities and
the capability to operate “guest” operating systems
in virtual machines.

~ ~ 1 3 7 0 introduced the ability to run a single preferred
guest in addition to numerous nonpreferred guests.
The preferred guest was allocated a contiguous range
of main storage beginning at absolute storage loca-
tion zero, and therefore avoided the performance
overhead associated with address relocation and pag-
ing. This capability is commonly referred to as Vir-
tual=Real, or V=R, storage allocation.

VM/XA also provided a V=R preferred guest when it
was introduced in 1983. In 1987 IBM announced and

BORDEN. HENNESSY, AND RYMARCZYK 105

delivered the VM/XA SP Multiple Preferred Guests
(MPG) facility which uses the new Processor Re-
source/Systems Manager" (P R / s M ~ ~) hardware fea-
ture to provide up to five Virtual=Fixed (V=F)
preferred guests in addition to the V=R guest. The
design of this product is described in more detail in
the sections that follow.

Hardware partitioning. Since the introduction of the
System/360 Model 67 and Model 65 multiprocessor
(MP) systems in 1967, IBM has offered multiprocessor
computing systems to provide increased system ca-
pacity and availability. To achieve the availability
goals, all hardware components of the multiproces-
sor systems are duplexed so that single hardware
failures are unlikely to take down the entire system.
In 1973, with the introduction of the System/370
158 MP and 168 MP systems, the duplexed MP hard-
ware design was used to provide an additional ca-
pability: physical partitioning.

In a physically partitioned MP system, the hardware
facilities of the complex are divided into two sides.
Each side is a separate machine that can be operated
independently and even powered-off without affect-
ing the other side. Physical partitioning has been a
standard feature on all multiprocessor models on the
IBM 303X, 308X, and 3090 processor families.

PR/SM. PR/SM is an optional feature on the IBM
3090 Model E and ES/3090" Model S processor
families that allows a single processor complex to
support the concurrent execution of multiple oper-
ating systems. It consists of special hardware and
microcode that can be invoked and controlled in
either of two ways: directly through the machine
console (hardware logical partitioning) or indirectly
under software control by the VM/XA SP control
program. The remainder of this paper describes these
two methods of operation and provides reasons why
a user might choose one method over the other.

Logical partitioning

Overview. With the introduction of the PR/SM fea-
ture, the 3090E and ES/3090S processor families
now offer a hardware partitioning capability that is
significantly more flexible than hardware physical
partitioning. Logical partitioning (LPAR), a new
mode of machine operation, offers users the follow-
ing advantages over physical partitioning:

1. LPAR is available on all models of the 3090E and
ES/3090S processors. Physical partitioning is only

106 BORDEN. HENNESSY, AND RYMARCZYK

available on some of the multiprocessor models
(e.g., it is available on the 280,400, 500, and 600
models and is not available on the 120, 150, 180,
200, and 300 models).

2. LPAR provides up to six partitions on the
ES/3090S (four on the 3090E), whereas physical
partitioning allows only two partitions.

3. Physical partitioning splits the processor complex
into two equal (except for processors on the
model 500) partitions. LPAR gives the user the
ability to define the granularity of the partitions.

A logical partition is a collection of processor com-
plex resources that, when combined, are capable of
running an operating system. The resources which

A logical partition is a
collection of processor complex

resources that can run an
operating system.

comprise a logical partition include processors, main
storage, expanded storage, channel paths, vector fa-
cilities, subchannels, and logical control units. A
logical partition can be System/370 or Enterprise
Systems Architecture/370" (E S A / ~ ~ O ") mode (Sys-
tem/370 Extended Architecture, or 370-XA, mode
for those models that do not provide E S A / ~ ~ O) , inde-
pendent of the mode of any other partition. Parti-
tions operate independently and are isolated from
one another as if they were loosely coupled processor
complexes; i.e., the only interaction between parti-
tions is via I/O operations (shared direct-access stor-
age device [DASD], channel-to-channel connection,
or telecommunications control units). This isolation
is accomplished by dedicating a portion of storage
(main and expanded) and I/O elements (channel
paths, subchannels, and logical control units) to a
single logical partition. Computational elements
(processors and vector facilities) can be either dedi-
cated to a single partition or shared among multiple
partitions. Figure 1 shows a conceptual view of a
physical processor complex (a Model 600) with four

IBM SYSTEMS JOURNAL, VOL 28. NO 1. 1989

logical partitions (MVSIMS, MVSPROD, MVSTEST, and
VMHPO) defined. Two of the physical processors (0
and 1) are dedicated to the MVSIMS partition; the
remaining four physical processors are shared among
the other three partitions. A partition is defined as
having one or more logical processors. Since the total
number of logical processors for all of the partitions
can exceed the number of physical processors, LPAR
has a dispatcher for assigning a logical processor to
use a physical processor at any point in time.

Logical partitioning is a new mode (LPAR) for the
IBM 3090E and ES/3090S processor families that is
selected at power-on reset (POR) of the processor
complex. With the PR/SM feature installed, 3090E
and ES/3090S processors have three basic modes-
System/370, 370-XA or ESA/370, and a new LPAR
mode.

In LPAR mode, main storage and expanded storage
are subdivided into contiguous areas with l-mega-
byte granularity and allocated to each of the parti-
tions such that each partition appears to have a 0-
origin for its storage. All storage addresses used in
the instructions or channel program addresses of a
partition are relocated by the processors and chan-
nels and checked to ensure that they are in the range
of physical storage allocated to the partition. Figure
1 shows an example of the allocation of main storage
among four partitions. In this example, all storage
addresses used by partition MVSPROD must be in the
range of 0 to 40 megabytes, and the central proces-
sors and channels will automatically relocate the
storage accesses to use physical storage locations in
the range of 56 to 96 megabytes.

Isolation of 110 activity is achieved by giving each
partition its own logical I/O subsystem. Channel
paths, subchannels, and logical control units are
dedicated to a partition; in Figure 1, each of the four
partitions has its own channel path, CHP, (e.g., CHP
14 for partition MVSPROD) to device 3C0, and each
partition has a unique subchannel and logical control
for device 3CO. Therefore, input/output to device
3CO behaves as if the four partitions were loosely
coupled physical processor complexes. For example,
if partition MVSPROD issues a RESERVE instruction to
device 3C0, the other partitions will get a “busy” if
they attempt to issue any I/O instructions to 3CO.
Any 110 instruction issued from MVSPROD for device
3CO can only use channel path 14, since its subchan-
ne1 only has channel path 14 available; similarly,
partition MVSIMS can access device 3CO only via
channel path 10.

IBM SYSTEMS JOURNAL, VOL 28. NO 1, 1989

Each partition consists of one or more logical proc-
essors which the LPAR dispatcher assigns to physical
processors at different points in time; the total num-
ber of logical processors defined can exceed the num-
ber of physical processors installed. However, for
any individual partition the number of logical proc-
essors defined for the partition may not exceed the
number of available physical processors. Partitions
may be either dedicated or shared. Dedicated parti-
tions have exclusive use of physical processors as-
signed to the partition; shared partitions share use of
physical processors assigned to shared partitions un-
der the control of the LPAR dispatcher. For shared
partitions, the LPAR dispatcher maintains general-
purpose registers, control registers, vector registers,
and program status words (PSWS) for each of the
logical partitions. In Figure 1, partition MVSIMS is
dedicated and has been assigned physical processors
0 and 1 for its use. The other partitions share use of
physical processors 2,3,4, and 5 . It is a user’s choice
whether a partition is dedicated or shared. A parti-
tion that exhibits a steady demand for processing
resources and that requires an integral number of
processors can achieve the highest throughput when
assigned dedicated physical processors. In most sit-
uations, however, the processing demands of a par-
tition fluctuate from moment to moment, and
greater system throughput can be achieved through
the sharing of physical processors.

In summary, an LPAR is a logical machine consisting
of a subset of the resources of the physical processor
complex and is isolated from all other partitions by
the PR/SM hardware and microcode. The only com-
munication available between partitions is via 110
connectivity.

Partition definition. In the previous section a logical
partition was defined as a user-specified collection of
processor complex resources that, when combined,
are capable of running an operating system. Creating
and using a partition involves two steps:

1. Defining the resource requirements of the parti-

2. Allocating and initializing the resources of the
tion

partition (activating the partition)

In order to define the resources of a partition, a user
must specify the following items:

The names of the partitions to be used
The 110 configuration
The storage configuration
The processor configuration

These specifications are done in two stages. The
names of the partition and most of the 110 configu-
ration are defined as input to the Input/Output
Configuration Program (IOCP) and stored as part of
the Input/Output Configuration Data Set (IOCDS) on
the Service Processor of the 3090E or the ES/3090S
processor complex. The user provides the eight-char-
acter names of each of the partitions to be used with
this IOCDS in the IOCP input. These names will be
used later by the system operator to operate each of
the partitions. The physical 110 configuration is al-
located to each of the partitions on a channel path
basis since channel paths are dedicated to a partition.
On the channel path identification (CHPID) macroin-
struction input to IOCP, the user indicates which
partition owns the channel path. The IOCP generates
subchannels and logical control ufiits for the parti-
tion for the 110 equipment attached to the channel
path. Channel paths can be reconfigured from one
partition to another via commands from the system
console or the system control program (SCP) operator
console.

The remaining resources for the partition (the stor-
age configuration, the processor configuration, and
the remaining 110 configuration) are specified with
panels on the system console of the processor com-
plex. The storage configuration consists of the
amount of main storage and expanded storage in 1-
megabyte increments that is required for the parti-
tion. The processor configuration for the partition
consists of the number of logical processors required,
the number of logical vector facilities required, and
the mode of the partition, and takes into account
whether dedicated or shared use of these elements is
required. Shared partitions share one or more phys-
ical processors; therefore, each partition is given a
weight (a relative priority) which is used by the LPAR
dispatcher to allocate and control the access of the
partition to the physical processors. Each partition
may operate in one of the following modes: Sys-
tem/370, 370-XA, or E S A ~ ~ I O . If the partition is Sys-
tem/370, the remaining 110 configuration consists of
associating System/370 channel numbers with spe-
cific channel paths. For LPAR this is done with a
system console panel rather than using IOCP.

After a partition is defined, no resources are allocated
to it, except for the 110 configuration, until the par-
tition is activated. At activation the resource require-
ments of the partition are compared with the avail-
able physical resources to determine if the activation
will be allowed. Allocation of the storage configura-
tion for the partition does not occur until activation

BORMN, HENNESSY, AND RYMARCZYK 109

I
Figure 2 Partitioning operational overview

110 W R E N , HENNESSY, AND RYMARCZYK BM SYSTEMS JOURNAL. VOC 28. NO 1, 1989

of the partition; therefore, more storage can be de-
fined than is installed, but the amount of storage in
use (activated) is limited to the amount installed.
Both main and expanded storage are allocated in
contiguous 1-megabyte blocks. Dedicated processors
and vector facilities are allocated at activation of the
partition; the allocation can be completed only if the
required number of processors and/or vector facili-
ties are available for dedication. Partitions with
shared processors can only be activated if the re-
quired number is less than or equal to the number
of physically installed processors minus the number
of dedicated processors. The same test is used for
partitions requesting shared vector facilities. If re-
sources are available for the partition at activation,
they are allocated to the partition and left in power-
on reset state; main and expanded storage are
cleared, the channel paths are reset, and the logical
processors are reset. The partition is ready for the
IPL (initial program load) of an operating system.
Activation is the logical power-on reset of the re-
sources of the partition.

Operational controls. Operation of the LPAR envi-
ronment involves the following activities:

Controlling the physical processor complex
Managing the LPAR controls
Controlling the logical processor complex of the

Controlling the operating system running in each
partition

partition

The first three of these operations are performed at
the system console; the last item is done at the
operator’s console for each operating system. Figure
2 shows an overview of the operational controls of
LPAR.

The physical processor complex is operated from the
system console. In general, the functions used to
control the physical processor complex for LPAR are
the same as the functions used when the processor
complex is operating in one of the basic modes
(System/370, 370-XA, or ~ ~ ~ 1 3 7 0) . These functions
include:

Releasing the configuration
Initiating power-on reset
Selecting and controlling the IOCDS
Handling problem reporting with the Remote
Service Facility or the Problem Analysis Facility
Defining and activating the System Activity Dis-
play (SAD)

IBM SYSTEMS JWRNAL. VOL 28, NO 1, 1989

Figure 3 Console control of partitions
~~

Defining the storage and processors of the physical
configuration

Control of the LPAR environment is done from the
system console. Activities involved in control of
LPAR include defining resources for the partitions,
activation and deactivation of the partitions, estab-
lishing partition dispatching weights, identifying ded-
icated and shared partitions, establishing a corre-
spondence between System/370 channel numbers
and channel paths, and displaying storage maps for
main and expanded storage.

The logical processor complex (the partition) is also
operated from the system console. Since the 3090E

BORMN, HENNESSY. AND RYMARCZYK 111

and ES/3090S processors have a single system con-
sole, the system console is shared among all of the
active partitions. Sharing is done by a windowing
technique where the system console is controlling
one partition at a time. Figure 3 shows that the
system console can be used to control the four par-
titions by presenting console frames for one of the
partitions. The partition that is currently being con-
trolled by the system console is the target partition
designated by the system operator. The target parti-
tion can be changed dynamically. Figure 3 also
shows that the current target partition is MvSTEST;
therefore, any controlling functions entered from the
system console will act on partition MVSTEST. The
functions available for controlling a partition include
IPL, all forms of reset, alter/display of storage, and
stop/start.

Each of the operating systems running in a partition
is controlled by an operator’s console that is attached
to one of the channel paths for that partition.

Workload management. Since all of the resources for
a dedicated partition are used exclusively by that
partition, there is no dynamic workload manage-
ment for LPAR to perform for dedicated partitions.
For this reason this section on workload manage-
ment will focus exclusively on shared partitions.

Workload management consists of allocating the
logical processors of each partition to the available
physical processors in a way that provides good I/O
response while maximizing the use of the physical
processors in accordance with a user-defined policy.
This concept is illustrated in Figure 4 where four
partitions (North, South, East, West) are being run
on a processor with four physical CPS (processors).
North, South, East, and West have one, two, three,
and four logical processors respectively.

The LPAR workload manager is an event-driven dis-
patcher which dispatches logical processors (e.g., NO,
S1, EO, W2, etc. in Figure 4) to physical processors
(CPO, . . . , CP3 in Figure 4).

The LPAR dispatcher was designed with the objective
of allocating all available physical processor cycles
to logical processors that are ready to execute instruc-
tions while maintaining good 110 response. In order
to achieve this objective, LPAR makes each individual
logical processor of every nondedicated partition a
separately dispatchable unit of work. This means
that partitions do not have to have the same number
of logical processors as the available physical proces-

112 BORDEN, HENNESSY, AND RYMARCZYK

I IBM SYSTEMS JOURNAL, VOL 28, NO 1. 1989 BORDEN, HENNESSY, AND RYMARCZYK 113

sors and that logical processors from several different
partitions may be active concurrently. Further, it is
not necessary for all of the logical processors of a
single partition to be active concurrently. This is
shown in Figure 5 , which represents a snapshot of
the execution of logical processors on the physical
processors at an arbitrary point in time.

The LPAR dispatcher utilizes a number of classical
dispatching/scheduling techniques to achieve its ob-
jective:

1. Weights: Each partition has a user-defined weight
(priority) which is used by the dispatcher to de-
termine scheduling priority.

2. Wait Detection: When a logical processor enters
a wait, the dispatcher will detect the wait and
select another logical processor to run.

3. 110 Preemption: When an 110 interruption is pend-
ing for a logical processor of a partition that is of
higher priority than the currently executing logi-
cal processor, the dispatcher will preempt the
lower-priority logical processor and dispatch the
higher-priority logical processor.

4. Dispatch Interval: The LPAR dispatcher maintains
a maximum time interval in which a logical proc-
essor may run for any single dispatch of the logical
processor. If a logical processor is still active at
the end of the dispatch interval, the dispatcher
will preempt the logical processor and dispatch
the highest-priority logical processor that is ready.

5. SCP Indicated End: An SCP (operating system)
may recognize that it is doing work which may
be productive when it is the only SCP using the
processor complex, but which is unproductive in
the LPAR environment (e.g., VM is in active wait
state looking for ready work, and MVS is spinning
for locks). LPAR provides an interface for an SCP
that is recognizing these situations so it can vol-
untarily give up its dispatch interval and permit
the dispatcher to dispatch the highest-priority log-
ical processor that is ready.

As is true with many dispatchers, the amount of
overhead of the dispatcher varies inversely with the
utilization of the physical processors. When the par-
titions require all of the processor cycles, the dis-
patcher overhead is extremely low; as the utilization
falls, the dispatcher becomes more active in looking
for work.

Figure 5 illustrates the behavior of the LPAR dis-
patcher. In this example, there are three partitions

114 BOADEN, HENNESSY, AND RYMARCZYK

processor resources on a two-processor system with
two partitions, each having two logical processors,
where VMPROFS had a weight of 400 and MVSBATCH
had a weight of 100.

The other control over processor resource consump-
tion is the number of logical processors in the parti-
tion. A logical processor cannot consume more re-
sources than the worth of a single physical processor.
By “varying” a logical processor “off line” or “on
line” to the operating system running in the parti-
tion, the user can change the ability of a partition to
compete for processor resources.

Reliability, availability, and serviceability. A key
design philosophy of LPAR is that all hardware or
software failures associated with a specific logical
partition should not affect other partitions. Hard-
ware failures that are localized to a functional unit
(e.g., a processor) are passed to the logical partition
that was in control when the failure occurred. The
appropriate error information is presented to the
logical partition, and the running operating system
is responsible for its own recovery.

There are, of course, shared hardware elements
whose failure could bring down the entire complex,

IBM SYSTEMS JOURNAL, VOL 28. NO 1. 1989

Figure 6 Processor utilization

Table 1 Partition weights on a 3090-400E with four physical CPs

Partition
Name

Partition Number of
Weight Logical
(PW) CPS

Logical
CP

Logical
CP

Target

LP
Target

Example 1

DICK 300 3
FRANCK 100 1
MXA 400 4
ROAR 200 2

100
100
100
100

0.40 1.20
0.40 0.40
0.40 1.60
0.40 0.80

Example 2

DICK 200 1 200 0.32 0.32
FRANCK 600 2 300 0.48 0.96
MXA 900 3 300 0.48 1.44
ROAR 800 4 200 0.32 1.28

116 BORDEN. HENNESSY, AND RYMARCZYK IBM SYSTEMS JWRNAL. VOL 28, NO 1. 1989

including all partitions. In this respect physical par-
titioning continues to provide an availability advan-
tage due to the complete duplexing of hardware
elements, and it may be combined with logical par-
titioning to satisfy user-specific configuration re-
quirements.

Storage failures within the storage area assigned to a
logical partition are localized to that partition and
handled normally by the operating system of the
partition. Similarly, since channels are dedicated to
partitions, most I/O errors (including hot I/O inter-
rupts) are localized to a partition. Software failures
within a partition (e.g., loops or abnormal endings)
do not affect other partitions.

A high-availability system configuration requires at
least two paths from each logical partition to any
critical device. To address this requirement, PR/SM
permits each logical partition to have up to four
paths to a device.

Instrumentation. When operated in LPAR mode, a
3090E or ES/3090S system has two new perform-
ance instrumentation capabilities associated with
logical partitioning:

1. MVS/XA and MVSIESA Resource Measurement Fa-
cility (RMF) reports on CPU usage by partition

2. System Activity Display by partition

The MVS/XA RMF product now produces an optional
Partition Data Report as part of its Monitor I output
on the basis of performance data collected through
the PRISM feature. This report indicates CPU usage
per logical partition and is intended for capacity
planning. The generation of the RMF Monitor I1 and
I11 reports has also been updated to reflect the pos-
sibility that a logical partition may not have dedi-
cated CPU resources.

The 3090E and ES/3090S System Activity Display
(SAD) has also been extended with PRISM LPAR mode
to reflect logical partitions. For each logical partition,
the user may display the current level of supervisor,
problem, or total busy time, with the display nor-
malized to show 100 percent busy time when the full
share of assigned CPU resource is used. The display
of channel path usage is also annotated by logical
partition name. All standard SAD capabilities con-
tinue to be provided on a physical processor basis.
Figure 7 shows an example of an LPAR mode SAD
frame.

IBM SYSTEMS JOURNAL. VOL 28, NO 1, 1989

VM/XA MPG

In 1987 IBM announced an enhancement to VM/XA
that allows it to logically partition a 3090E or
ES/3090S for use by several production operating
systems. When the machine is in basic (non-LPAR)
mode, the VM/XA System Product with Multiple-
Preferred-Guests support (hereafter called VMIXA
MPG) can make use of the PR/SM machine feature to
support multiple preferred guests, as well as many
nonpreferred guests. Along with the existing support
for a Virtual=Real ‘(V=R) guest, VM/XA MPG now
supports up to five Virtual=Fixed (V=F) guests, for
a total of six preferred guests.

Overview. As described earlier, the original purpose
of VM was to create “virtual machines.” That is,
using a single real machine, VM can create the illusion
of multiple machines. Using VM/XA, these virtual
machines do not even have to be the same architec-
tural mode as the real machine: Some could be using
the System/370 architecture, and others 370-XA. If
VM/XA is running on an Enterprise Systems Archi-
tecture/370 (E S A ~ O) machine, guests may also ex-
ploit the powerful new addressing capabilities that
this architecture provides.

Storage management. Virtual machines also have
their own storage, which need not be the same size
as what exists on the real machine. To make more
efficient use of the real machine, they often have less,
but it is possible to define virtual machines that have
even more storage than the real machine has. Spe-
cifically, VM/XA MPG manages storage in one of three
ways for a guest:

1. A predefined amount of contiguous real storage,
starting at absolute address zero, is set aside for
exclusive use by that guest. Since every guest-
absolute address maps directly to the same host-
absolute address, this type of guest is classified as
a V=R guest. Since only one area of real storage
can start at absolute address zero, only one V=R
guest can ever be logged on at a time.

2. A predefined amount of contiguous real storage,
but not starting at absolute address zero, is set
aside for exclusive use by that guest. Since every
guest-absolute address is at a fixed displacement
from the corresponding host-absolute address,
this type of guest is called a V=F guest.

3. No specific amount of real storage is set aside;
real storage is allocated as needed to hold recently
referenced guest pages. Other guest pages are

m D E N . HENwSSY. AND RYMARCZYK 117

Figure 7 Example of LPAR mode System Activity Display (SAD)

saved in ancillary storage, such as expanded stor-
age or disk space reserved specifically for this
purpose. This technique of managing real storage
is called paging and allows an operating system
to create a vastly greater number of virtual pages
than there are real storage frames to contain
them.

When a guest’s storage is managed in this manner,
there is no direct relationship between a guest
address and the host address of the frame that
contains the page. VM/XA uses dynamic address
translation (DAT) tables to map guest storage.
Such a guest is referred to as a Virtual=Virtual
(V=V) guest.

Since storage pages owned by the first two categories
of guests are always available immediately when
needed, and since it is easier for the machine (and
VMIXA) to translate the storage addresses, V=R and
V=F guests are considered to be preferred guests.
Because V=R and V=F guests generally execute
faster and more efficiently than V=V guests, they
are the usual vehicle by which to run production
operating systems under VM/XA. The flexibility avail-
able from V=V guests is useful, however, when
testing and debugging and for nonproduction guest
environments.

CPU management. Just as a real machine might have
multiple CPUS sharing storage, so VM/XA permits a

118 BORDEN. HENNESSY, AND RYMARCZYK IBM SYSTEMS JOURNAL. VOL 28, NO 1, 1989

guest to define multiple virtual CPUS which can each
execute instructions on behalf of a guest. In a pro-
duction guest environment, multiple virtual CPUS
provide a means by which to exploit the processing
power of the real machine. Each virtual CPU repre-
sents a single guest instruction stream, and can thus
only be dispatched on one real CPU at a time. If only
virtual uniprocessors were supported, even a virtual
CPU dispatched 100 percent of the time on one of
the real CPUS would only be capable of consuming

Processor power is managed by
VM/XA through dedication and

scheduler shares.

the processing power of a single real CPU. In contrast,
a virtual multiprocessing guest can consume more
processing power because its virtual CPUS may be
concurrently dispatched by VM/XA on multiple real
CPUS. However, since the processing power available
from the system is limited by the number of real
CPUS available, it does not make sense for a produc-
tion guest to define more virtual CPUS than there are
real CPUS. Also, since there is some VM/XA overhead
in managing more virtual CPUS, defining excess vir-
tual CPUS actually reduces the amount of processing
power available to the guest. A production guest,
therefore, should define only as many virtual CPUS
as needed to consume the amount of processing
power required by the guest.

Processor resource allocation. Processor power is
managed by VMIXA through two mechanisms: dedi-
cation and scheduler shares. Through dedication, a
real CPU is reserved for exclusive use by a specified
virtual CPU. That real CPU will select only that virtual
CPU for dispatching, and no others. Dedication al-
lows the virtual CPU to run a bit faster for the
following reasons:

Fewer processor cache misses and cross-interro-
gates: Since that virtual CPU is the only one run-
ning on the real CPU, the cache of that CPU con-
tains only lines referenced by the virtual CPU (and
a small amount due to CP overhead).

IBM SYSTEMS JCURNAL. VOL 28, NO 1, 1989

Fewer translation-lookaside buffer (TLB) misses:
The translation-lookaside buffer of the processor
is used by the dynamic address translation process
to “remember” the results of previous translations.
Since it has a limited capacity, giving the TLB of
the processor to this guest exclusively improves
the chances of finding the desired data in the TLB.
Fewer exits f:om and entries to interpretive-exe-
cution mode: A dedicated real CPU is not enabled
for the same set of 110 interruption subclasses (ISCS)
as a nondedicated CPU and, therefore, is inter-
rupted to handle 110 interruptions less frequently.
It also receives fewer external interruptions due to
various timers. Clock comparator requests to serv-
ice nondedicated guests get queued on nondedi-
cated CPUS, and CPU timer interruptions occur less
often because a dedicated guest gets a much larger
minor time-slice than a nondedicated guest.
More efficient instruction simulation: There is a
software fast path for simulation of Diagnose
x’44’ instructions (the “voluntary time-slice end”
function) when issued by a guest running on a
dedicated CPU. Diagnose x’44’ instructions are a
frequent cause of exits from interpretive-execution
mode for a multiprocessing MVS guest.
Less time spent waiting for a CPU to become
available: When a nondedicated virtual CPU leaves
enabled-wait state (or otherwise becomes “ready”),
it must compete with other guests in the system
for a turn on a CPU. The length of time it must
wait is based on system load and other scheduling
considerations, but there are some situations in
which VM/XA will not preempt a currently running
guest in order to run a higher-priority guest. The
virtual CPU is therefore forced to wait until the
currently running guest gives up control of the
CPU (or encounters time-slice end). This algorithm
gives better total system throughput, but it reduces
the responsiveness of the production guest.
VM/XA MPG will enable the Wait-State Interpreta-
tion Capability on behalf of a dedicated virtual
CPU. This machine feature prevents an exit from
interpretive-execution mode when the guest enters
enabled-wait state. Since most “waits” of this na-
ture are of a very short duration for a production
guest, it is more efficient to leave the machine in
interpretive-execution mode than to go through
the host overhead of processing the change in
dispatching status.

The primary disadvantage of dedication is that when
the real CPU is not needed by the virtual CPU to
which it is dedicated, it sits idle, accomplishing ab-
solutely no useful work. Overall throughput of the

BORDEN. HENNESSY, AND RYMARCNK 119

system is therefore reduced if other work could be
processed. Unless the virtual CPU can consume very
close to what the processing power of a real CPU is
worth, this disadvantage usually overshadows the
advantages, so an installation should choose to ded-
icate a real CPU only with caution.

When a virtual CPU does not have a real CPU dedi-
cated to it, it is managed by the scheduler on the

A virtual device may or may not
have a corresponding real device.

~

basis of the “share” of the resources of the system
assigned to it. A scheduler share is essentially a
resource-consumption goal designating how much
of the resources of the system are to be apportioned
to that particular guest. Processing power, as a system
resource, is thus allocated by the scheduler primarily
on the basis of the share values assigned to each
guest. A share value may be specified as either an
absolute share or a relative share. An absolute share
specifies a percentage of the resource to allot to that
guest. On a real processor with four CPUS, therefore,
an absolute share of 50 percent would denote that
processing power equivalent to that of two CPUS
should be reserved for that guest. A relative share is
a number from 1 to 10 000 which is compared
against the relative shares of o!her guests to deter-
mine their relative importance. For example, if two
guests have relative shares of 100 and 200, the sched-
uler will devote twice as much CPU power to the
second guest as to the first (because the second
number is twice as big as the first number). If these
are the only two guests that are active, the second
guest should be given two thirds of the system, and
the first guest should be given one third of the system.

1 / 0 device management. When executing under
VMIXA, a guest has virtual devices which are managed
by VM/XA such that they appear real to the guest. A
virtual device may or may not have a corresponding
real device, and if it does, that real device may be
dedicated or nondedicated. Much like a dedicated
CPU, a dedicated device is one reserved exclusively

120 BORDEN. HENNESSY, AND RYMARCZYK

for the support of a particular virtual device. A
nondedicated device may be used to support several
virtual devices, which may even be shared by differ-
ent guests. A virtual device that does not have a
corresponding real device is called a simulated de-
vice. A simulated device may be used, for example,
to provide printer, card reader, or card-punch capa-
bilities without needing a real printer, reader, or
punch. Output from simulated printers and punches
is kept in “spool files’’ and may be dynamically
assigned to real printers and punches as desired.
Another type of device that can be completely sim-
ulated by VM/XA is a channel-to-channel adapter.
Such a device can allow communication between
two guest operating systems.

When devices are dedicated, the basic allocation unit
is a device; VM/XA manages channel paths. With the
introduction of Start Interpretive Execution (SIE)
Assist in 1985, devices dedicated to the V=R guest
benefitted from special treatment by the channel
subsystem. For a guest running M V S ~ O or MVS/XA,
the channel subsystem began to take advantage of
the guest’s fixed-storage layout by “interpreting”
most guest I/O instructions without host intervention,
thus no longer requiring the machine to exit interpre-
tive-execution mode. Similarly, many arriving 110
interruptions belonging to the V=R guest could be
“interpreted” by the machine without host interven-
tion and without leaving interpretive-execution
mode. Since the handling of every exit from interpre-
tive-execution mode requires host processing, signif-
icantly improved performance was realized from the
reduced frequency and from avoiding the VM/XA
overhead of simulating the 110 instructions and in-
terruptions.

VM/XA MPG uses the PRISM machine feature to make
this dramatic performance improvement available
to V=F guests as well as V=R guests. The resulting
performance is nearly that of a V=R guest, thus
making V=F guests a practical mechanism to run
production operating systems. On the 3090E and the
ES/3090S, VM/XA supports five V=F guests and a
V=R guest for a total of six preferred guests that
may exploit the PR/SM machine feature.

Though nondedicated devices cannot achieve the
high level of performance that dedicated devices can,
they do permit the sharing of real devices by multiple
guests. For example, a real disk may be divided into
several minidisks. As viewed by a guest, a minidisk
generally has the same characteristics as a real disk,
except for its size. Minidisks allow different areas of

IBM SYSTEMS JOURNAL, VOL 28. NO 1, 1989

a real disk to be allocated to different guests and also
allow the sharing of the same disk by different guests.
VM/XA allows a real disk to be mapped by a single
“full pack” minidisk, and this minidisk may then be
“linked” to multiple virtual machines. The virtual
machines control such sharing, if necessary, through
the I/O protocols of Reserve and Release.

Defining a virtual machine. Each virtual machine
that is permitted to log on to a VM/XA system is
described in a file called the user directory. The
directory describes the attributes of each virtual ma-
chine, including the identification (userid), privilege
class, storage size, CPU configuration, device config-
uration, scheduler share allocation, and additional
information of the virtual machine that is used to
define or limit its capabilities. This information pro-
vides a starting point for the virtual machine defini-
tion. Later changes may be made through VM/XA
commands issued dynamically from authorized
userids. Commands are available to add or delete I/O
devices, create new virtual CPUS, change scheduler
shares, etc. Many such changes to the virtual config-
uration can even be done without disturbing an
executing production guest, which may allow an
operator to reconfigure a guest dynamically in re-
sponse to changing resource requirements.

Comparison of LPAR and VM/XA MPG

With PRISM, IBM offers users a choice between two
methods for the logical partitioning of a 3090E or
ES/3090S: LPAR-mode operation and VMIXA with
MPG support. LPAR and VM/XA MPG are complemen-
tary offerings, each satisfying a unique set of user
requirements. This section is a comparison of LPAR
and VM/XA MPG, evaluating such areas as user expe-
rience, flexibility, performance, and reliability.

User experience. Users with no VM experience may
find that LPAR mode is the easier way to partition
their systems. In LPAR mode, the familiar hardware
console screens of the base machine are extended to
support multiple partitions, as is the IOCP process for
defining the system 110 configuration.

In order to use VM/XA MPG, one must configure,
generate, and build a VM/XA system. Like any large
operating system, VM/XA requires a certain amount
of expertise to set up. Non-vM users who wish to
logically partition their machines generally do not
have system programmers with VM skills, and do not
want to incur that staffing expense, nor the software
license fee for VM. For these users, therefore, LPAR is
a more attractive alternative.

IBM SYSTEMS JOURNAL, VOL 28. NO 1. 1989

In contrast, VM users may find that VM/XA MPG
provides a more natural and flexible partitioning
alternative. These users are generally using VM for
reasons beyond its guest-machine capability, as de-
scribed below, and they already have the required
VM skills. These users would consequently base their
decision on some of the remaining differences.

External interfaces. As a machine feature, LPAR pro-
vides its external interface through the system con-
sole. That is, console menus are provided to activate
and control partitions, and the operator for a parti-
tion uses a panel that is very similar to the operator
panel on the base, unpartitioned machine. It is there-
fore an easier migration in terms of human factors.
However, in most installations, the system console
is placed in a secure area and may therefore be
inconvenient to access, although the IBM Net-
View’”/rscF (Inter-System Control Facility) product
may be used to control the console from a remote
terminal.

The VM/XA operational interface is via existing vM/XA
commands, which are well known to experienced
VM operators. These commands can be entered from
any authorized terminal (any number are permitted),
without requiring NetView.

Types of guests. LPAR supports up to six high-per-
formance partitions (on the ES/3090S). VM/XA MPG
supports up to six preferred guests and a large num-
ber of nonpreferred (V=V) guests. These additional
nonpreferred guests can be very useful for test, de-
velopment, and ws-intensive applications that do
not require much processing resource.

Debugging tools. While LPAR provides rudimentary
debugging tools appropriate to a machine feature,
VM/XA offers a robust set of debugging tools appro-
priate to an operating system. These tools include,
for example, commands to trace the execution of
instructions in the guest operating system. This fa-
cility is very flexible and allows quite a rich set of
debugging “traps” to be created. A facility such as
this one can be invaluable in tracking down subtle
bugs.

Monitoring tools. VM/XA offers standard monitoring
facilities, such as would be found in any operating
system, that can be used to measure and tune the
system to produce optimum overall performance.
LPAR provides processor and channel utilization in-
formation which must be recorded and reduced by
the operating systems running in the partitions.

W E N . HENNESSY. AND RYMARCZYK 121

Channel path configuration. With LPAR, channel
paths must be dedicated to partitions. This dedica-
tion ensures that all 110 operations on a channel path
are associated with a single partition, avoiding any
need for the machine to be involved in 110 authority-
checking or error recovery, both of which may be
device-dependent. However, if multiple partitions
need to share an 110 device, each must have at least
one dedicated channel path to the device.

In contrast, VM/XA allows its guests to share channel
paths and devices by assigning resources at the device
level. That is, an installation may specify what de-
vices are to be dedicated to the preferred guest with-
out consideration for the rest of the devices on the
channel path. VMIXA is thus more flexible as it per-
mits an installation to give a preferred guest access
to some devices on a control unit without giving the
guest access to all devices on the control unit.

Virtual devices. LPAR, a machine feature, does not
have the ability to “simulate” devices as does VMIXA.
VMIXA uses software to create “virtual” devices, de-
vices that appear like real ones to a guest but which
do not in fact have a real equivalent. For instance,
by using VMIXA one can define a virtual printer.
Output sent to that virtual printer will be collected
(“spooled”) by VM/XA and can subsequently be di-
rected to a variety of destinations using appropriate
VMIXA commands. It can be printed on a real printer,
put on tape, or even treated as input for a virtual
“card-reader’’ device.

Another kind of virtual device that is often useful in
a production guest environment is a virtual channel-
to-channel adapter. This virtual device can be used
to connect two guest operating systems, thus allow-
ing them to communicate. If LPAR is used, physical
hardware is required to perform the equivalent func-
tion.

Performance. Since LPAR is a machine feature, it
offers high performance, comparable to that of an
unpartitioned machine. VM/XA MPG, through the use
of the PRISM hardware, can also provide comparable
performance if dedicated 110 resources are allocated
to the guest machine. If the VM guest exploits the VM
capability to share devices, it will incur some addi-
tional overhead necessary to implement the con-
trolled sharing of the physical resources. For similar
dedicated 110 configurations, with no shared devices,
the performance of VMIXA is typically within 1 or 2
percent of that of the LPAR mode.

122 BORDEN, HENNESSY, AND RYMARCZYK

Reliability and availability. The implementation of
LPAR mode, in hardware and microcode, is much
smaller and simpler than that of VM/XA, and the
reliability of LPAR mode is comparable to that of an
unpartitioned machine. VMIXA provides a software
recovery capability, called Preferred-Guest Recov-
ery, through which VM/XA can usually sustain the
V=R guest machine despite a failure in VM itself.

Conclusion

The Processor Resource/Systems Manager provides
an efficient and flexible capability to run multiple
operating systems on a single IBM 3090E or ES/3090S
processor complex. Through special hardware and
microcode, it virtualizes the base machine to create
multiple partitions, each of which is a logical ma-
chine with its own set of resources.

PRISM may be used in either of two ways: directly
from the system console (LPAR mode) or indirectly
through the VM/XA SP operating system. Via LPAR
mode, the PRISM feature expands the base machine
functions to include logical machine definition and
control and physical resource management (e.g., par-
tition dispatching).

Each PRISM partition is an image of the underlying
3090E or ES/3090S machine, but each may be con-
figured differently and operated independently.
Thus, today, one partition might be a System/370-
mode logical machine with no expanded storage,
whereas another could be an EsA-mode machine with
expanded storage and hiperspaces. As further archi-
tectural enhancements are made, PRISM can readily
serve as a means of migration and/or coexistence.

Processor Resource/Systems Manager, ES/3090, MVS/ESA,
MVS/XA, PRISM, Enterprise Systems Architecture/370,
ESA/370, and NetView are trademarks of International Business
Machines Corporation.

Cited references and notes

1. R. A. Meyer and L. H. Seawright, “A virtual machine time-
sharing system,” IBM Systems Journal 9, No. 3, 199-218
(1970).

2. J. P. Buzen and U. 0. Gagliardi, “The evolution of virtual
machine architecture,” Proceedings of AFIPS NCC 42, 291-
299 (June 1973).

3. The machine is put in interpretive-execution mode when
VM/XA dispatches guests. The machine enters interpretive-
execution mode when a Start Interpretive Execution (SIE)
instruction is issued and exits when host intervention is required
for proper guest simulation, or when a host interruption occurs.

4. In this regard, relative shares work much the same as the LPAR
“partition weights” described earlier.

B M SYSTEMS JOURNAL, VOL ’28, NO 1 . 1989

Terry L. Borden IBM Data Systems Division, P.O. Box 390,
Poughkeepsie, New York 12602. Mr. Borden is a senior technical
staff member at IBMs Meyers Comers Laboratory. He joined IBM
as an associate programmer in 1970 in a programming test tech-
nology area. During his career at IBM his work has included
developing support systems for program development, MVS design
and performance, CPU architecture, high-availability design, and
PR/SM design. He is the recipient of a Division Award for MVS
Cross Memory Services design, Outstanding Technical Achieve-
ment Awards for high-availability design and for PR/SM design,
and a First Level Patent Award. Mr. Borden's current responsibil-
ity is for MVS architecture and design. He received a B.S. degree
in computer science from the University of Illinois.

James P. Hennessy IBM Data Systems Division, P.O. Box 100,
Kingston, New York 12401. Mr. Hennessy is a staff programmer
in VM/XA development at the IBM Kingston Programming Lab-
oratory. He received his B.S. degree in computer science from
Rensselaer Polytechnic Institute in 1982, and joined IBM and
VM/XA development the same year. Since then, he has been
involved in many enhancements to VM/XA in the areas of real
and virtual CPU management. Most recently, Mr. Hennessy de-
signed and implemented a portion of Multiple Preferred Guests
support available in VM/XA SPI .

James W. Rymarczyk IBM Data Systems Division, P . 0 . Box
390, Poughkeepsie, New York 12602. Mr. Rymarczyk joined the
IBM Boston Programming Center in 1968 as a programmer work-
ing on the design of an experimental time-sharing system. In 1972
he transferred to the IBM Poughkeepsie Laboratory where he
worked on hardware and microcode design projects for future
systems. He was a principal logic designer for the IBM 3033
processor beginning in 1975 and became manager of Performance
Analysis and Measurement in 1978. In 1983 Mr. Rymarczyk
became manager of Processor Architecture and System Structure,
and in 1984 he was promoted to program manager of Product
Design and Verification. He is currently a Senior Technical Staff
Member in the area of Systems Architecture and Performance.
Mr. Rymarczyk received a BSEE from the Massachusetts Institute
of Technology and has served as Adjunct Professor of Computer
Science with Union College.

Reprint Order No. G321-5350.

