Storage hierarchies
]

by E. I. Cohen

The storage hierarchy is a natural structure, given the
set of available technologies and their price and per-
formance characteristics. The physical structure of the
storage subsystem is described, and the flow of data
through the system is traced. The concept of a storage
hierarchy is discussed, and the specific components of
the IBM storage hierarchy from the processor high-
speed buffer (HSB) to the on-line DASD configuration
are described in detail. Trade-offs between technolo-
gies and the interactions among the levels of the hier-
archy are discussed. In particular, the importance of
the 1/0 boundary, processor storage volatility, and
data sharing are highlighted. A continuous increase in
virtual storage capacity can be seen in the evolution of
large-scale operating systems, and MVS/ESA™ now
provides the ultimate virtual capacity and function.
New virtual structures available in MVS/ESA are dis-
cussed, and their relationship to the storage hierarchy
is studied. The importance of storage to the perform-
ance and cost of a large processing system leads to a
discussion of guidelines for storage configuration and
data placement within the hierarchy.

With the continued introduction of more pow-
erful processing systems based on faster,
smaller, and more reliable technology, the require-
ments on storage subsystems become more and more
stringent. There is also a greater focus on storage
cost and performance, since storage is a key deter-
minant of total system cost, throughput capacity,
and responsiveness. The types of available technol-
ogy choices allow for the configuration of a storage
structure consisting of a hierarchy of storage levels,
which taken together meet the diverse requirements
placed on the storage subsystem. The significant new
development in this hierarchy is the increasing im-
portance of processor storage in diverting activity
from the lower levels of the storage hierarchy, thus
reducing system I/0 rates. With the logical structure

B2 COHEN, KING, AND BRADY

G. M. King
J. T. Brady

provided by Enterprise Systems Architecture/370™,
increased usage of processor storage can be quick
and orderly, by extending the existing concept of
virtual storage and addressability. This approach
offers advantages in many aspects of system perform-
ance, system structure, system cost, and system
maintenance and tuning.

Before discussing the advantages and disadvantages
of various storage options, one first must focus on
the objectives or desired characteristics of storage.
Access speed and bandwidth are primary among
these objectives. High-speed access is required to
respond to a storage request without delaying the
central processor (CP) that is making the request.
High bandwidth provides the ability to service both
the sustained and peak requirements summed over
all cps.

The storage must be configurable into almost unlim-
ited sizes to meet the data capacities required by
ultra-large processing systems. Other factors such as
cost, reliability, power, space, and cooling must also
be reasonable. These items, however, are not areas
of focus for this paper.

If one were to specify the ideal storage, one might
imagine that the requirements would lead naturally
to a single-level, monolithic store consisting of only
one type of technology. The resulting store might be
like a shared processor cache of near-infinite size.

© Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

Such a storage structure would allow full realization
of a processor’s potential capacity, with no penalty
for storage delays. In reality there is no single tech-
nology that can provide speed, bandwidth, capacity,
and low cost. There are a wide variety of storage
technologies available which cover a wide range of
performance. Faster technologies are usually more
expensive and are more difficult to configure in bulk.
Therefore, the best approach is to use the available
options in combination, taking advantage of the best
features of each. In this way, one can attempt to
meet the full set of storage objectives as closely as
possible. A detailed and far-ranging discussion of the
impact of memory systems on system structure and
architecture can be found in Reference 1. We expect
storage technologies to improve over time, and we
expect logic technologies to improve as well, both of
which will produce even more stringent require-
ments for storage performance. Thus a hierarchical
storage strategy will be applicable in the future and
will probably be an even more important contributor
to system performance.

Storage hierarchy data flow

The physical structure of the storage hierarchy can
be viewed as seen in Figure 1, which depicts a
simplified diagram of an 1BM 3090 triadic system.
The diagram shows three CPUs, each with an inte-
grated processor cache which is also known as the
high-speed buffer (HsB). The system control element
(SCE) is the central and most complex component in
this structure, because it routes data among all the
CPUs, central storage, expanded storage, and all chan-
nels, while ensuring that the data elements are cor-
rect and up-to-date.

The flow of data through the physical components
of the hierarchy can best be understood by the se-
quence of actions taken when a CPU accesses data
elements resident in each storage type. The best
performance case is a cache hit, because the data
element can be transferred directly to the appropriate
CPU component in nanoseconds. If the data element
1s not in the cache, it must be retrieved from the
central storage through the sCE. These cache misses
typically take hundreds of nanoseconds to resolve,
but the specific data element requested can be routed
to the CPU component in parallel with the entire line
being transferred to cache.

A page fault occurs when the data element is not
resident in central storage. With the advent of ex-
panded storage technology, many page faults can

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

now be satisfied in the tens of microseconds needed
to move a 4K-byte block from the expanded store
to the central store via the sce. If the data element
is not resident in either central storage or expanded
storage, it must be retrieved from one of the system
paging datasets via a READ 1/0. In this case, the data
element is transferred from the DASD through the

In some cases, data can be
retrieved much faster if present
in a control unit cache.

control unit to the channel. The channel transfers
the data to central storage via the SCE. At this point,
the data are brought into the cache of a CPU via a
cache miss the next time the requesting program is
scheduled to execute.

Data accessed from nonpaging DASD on a typical 1/0
request follow the same path as that of the paging
case previously described. In either case, the 1/0 can
take tens of milliseconds if the data need to be
retrieved from the DASD. In some cases, data can be
retrieved much faster if present in a control unit
cache. In this case, the physical DASD need not be
accessed, and the requested data can be transferred
directly from the electronic storage in the control
unit in about 2-3 milliseconds. This is logically
equivalent to finding the data one level higher in the
hierarchy on a faster but smaller capacity technology.
This physical hierarchy can vary depending on ma-
chine type and system configuration, but when
viewed conceptually we can study its general fea-
tures.

Elements of the IBM storage hierarchy

In designing a storage system consisting of multiple
heterogeneous technologies, one tries to take advan-
tage of the key values of each technology, thus meet-
ing all desired characteristics. This storage system
structure is conceptually viewed as a pyramid of
levels as in Figure 2. The levels are numbered se-

COHEN, KING, AND BRADY 63

Figure 1 Storage hierarchy data flow

CENTRAL

SYSTEM CONTROL EXPANDED / -
STORAGE

ELEMENT (SCE) STORAGE

CHANNELS

CONTROL CONTROL
UNIT UNIT
CACHE

ON-LINE
DASD

64 COHEN, KING, AND BRADY IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

quentially starting from level 1 (L1), as we descend
the hierarchy. The CPUs are positioned above the top
level of the hierarchy because data elements are
brought to the top level of the hierarchy for the cpu
to access them.

The key characteristics in understanding the concept
of a storage hierarchy are access speed, capacity, and
cost. As we move downward through the hierarchy,
each subsequent level is slower and less expensive
and usually configured in larger cost-effective capac-
ities. The overall objective of the storage hierarchy
is to provide average access speed almost as fast as
the fastest level (HSB) with an average cost per bit of
on-line data almost as low as the least expensive level
(DAsD). This can be achieved only if the vast majority
of on-line data are resident on DASD while almost all
of the CPUs storage accesses are satisfied from high-
speed buffers.

Data elements are moved upward and downward
through the storage hierarchy based on reference
activity. Storage reference patterns show a strong
locality of reference, which produces a high degree
of data reuse and allows a very high hit ratio in the
HSB with a very small working set. Each level of the
hierarchy is managed by a system component (hard-
ware, software, or microcode). The management
approach is generally based on a least recently used
(LRU) algorithm for replacing an inactive data ele-
ment by a more active element. The element re-
placed is moved downward in the hierarchy, while
the requested element is rising to the top of the
hierarchy.

Given its primary position in the hierarchy, the
performance of the HsSB has a significant impact on
the speed of the processor and the overall system
performance. Levels 2 and 3 together constitute the
processor storage (Ps). Central storage (cS) is the byte-
addressable main storage of the processor system,
and expanded storage (ES) is the 4K-byte block ad-
dressable extension to the central storage. The DASD
subsystem is made up of DASD and DASD caches. As
the home location of the bulk of permanent on-line
data, the DASD subsystem fulfills the role of the cost-
effective bulk storage in the hierarchy. The DAsSD
cache can be very effective in reducing the average
response time and in reducing the access rate to the
DASD. Tape could be added as level 6, but this is not
normally a point of focus because of its archival
rather than on-line nature. Each of these hierarchical
elements is discussed in further detail in the following
sections.

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

Figure 2 IBM storage hierarchy elements

30808 CPU

PROCESSOR - L1
CACHE (HSB)

-L2

CENTRAL
STORAGE

170
BOUNDARY

EXPANDED
STORAGE

3990-3
DASD CACHE

- L4

3380 J/K
DASD

- L5

Processor high-speed buffer

The top level of the storage hierarchy is the processor
cache, which is also called the high-speed buffer
(usB). It is the most critical element in the hierarchy,
because it satisfies processor storage references (both
instructions and data) directly to the cpu logic ele-
ments and registers. The HSB performance, therefore,
has a direct and powerful impact on processor speed
and system capacity. The processor cache needs to
operate in the same range of speed as the processor
to satisfy its storage references without causing any
cpU delays. This speed requirement also means that
the cache must be physically close to the processor
logic to minimize propagation delays. The L1 cache
is typically tens to low hundreds of kilobytes in size,
because of the high cost and spatial limitations.
Processor caches in this size range are extremely
effective, because of the strong locality of reference

COHEN, KING, AND BRADY 65

exhibited by a program’s instruction and data refer-
ence sequences and typically can satisfy 95 to more
than 99 percent of all storage requests. When a
referenced data element is not found in the cache, it
must be retrieved from central storage. This is a
much slower access, and the processor may become

The cache is transparent to the
program executing and is managed
by the hardware logic in the buffer

control element.

idle while waiting for a data element to be delivered.
In this case, the requested data element is routed to
both the processor logic and the cache in parallel, to
minimize this delay.

The cache is transparent to the program executing
on the processor and is completely managed by the
hardware logic in the buffer control element. This is
done totally independently of the software, and the
software has no knowledge of whether the data re-
quested are coming from the cache or the central
storage. In fact, the software is unaware of whether
the processor has a cache, and the same software can
operate on a processor without a cache, albeit more
slowly. The cache contents are managed within the
processor hardware using an LRU-based replacement
algorithm that is similar in philosophy to other mem-
ory managers implemented in software or microcode
in other parts of the storage hierarchy.

The effectiveness of a processor cache is usually
described by a cache (or buffer) hit ratio, which is
calculated as the percent of total storage references
satisfied directly from the buffer with no access to
central storage. Although the typical buffer hit range
seems to provide high buffer performance, improve-
ments within the range are very important to CPU
performance. Although there seems to be little dif-
ference between 96 and 98 percent buffer hit ratios,
the impact is pronounced because the buffer miss
ratio drops from 4 to 2 percent. This means that half
as many accesses to central storage are required and
the overall cpu delay due to storage is cut in half.

66 COHEN. KING, AND BRADY

Looking at it from the viewpoint of cache misses
gives a truer picture of the impact of cache perform-
ance on total processor performance.

There are two distinct management philosophies for
processor caches based on when updates to data are
pushed through to central storage. In a store-through
design, updates are made to the cache and to the
corresponding data in central storage, the home lo-
cation of the data. In a store-in cache, updates are
made only to cache; these updates are reflected back
to central storage only when the data element is
removed from the cache by LRU replacement. The
advantage of the store-through design is its simplic-
ity. All updates are made to central storage imme-
diately, which makes the newly changed data avail-
able to other processors from its central storage home
location. A store-in cache has the advantage of re-
ducing transfers between cache and central storage,
because changes are written back to central storage
only when they are absolutely required. The controls
required for store-in are more complex than store-
through, particularly in tightly coupled cpus. In this
case, a storage reference on one processor may need
to be checked against the contents of caches on other
CPUs to determine whether it contains an updated
version of the data. Overall, one cannot say whether
one approach is superior, because much depends on
the objectives of the design (e.g., the trade-off be-
tween efficient use of bandwidth and simplicity of
design). Either design may be the best solution,
depending on the set of design criteria.

Processor storage

Processor storage includes the synchronous levels of
the storage hierarchy. That is, the processor waits
while an item of data is retrieved from a level of this
class of storage. Processor storage is closely integrated
with the processor, and the time to retrieve an item
from it is measured in microseconds or less. Because
this access time is so fast, it is more efficient for the
processor to pause momentarily to wait for an item
to be retrieved from processor storage than to have
the processor search for another task to execute. (See
the section on the importance of the 170 boundary
later in this paper.)

The size of processor storage generally ranges from
tens of megabytes to several gigabytes and consists
of multiple 4096-byte blocks, called frames of proc-
essor storage. For example, a configuration of 256
megabytes of processor storage contains 65 536
frames. The contents of processor storage are man-

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

aged by the operating system. Through the use of a
global LRU scheme, the operating system tends to
keep the most actively referenced programs and data
areas of the users of the system in processor storage.
There are two types of processor storage in the IBM
storage hierarchy: central storage and expanded stor-
age, the characteristics of which are discussed in the
following sections.

Central storage. Central storage (which is often called
real storage) is byte-addressable processor storage.
That is, an address generated for central storage
points to one byte of central storage. With the Sys-

Although the buffer hit range seems
to provide high performance,
improvements within the range
are very important.

tem/370-XA and ESA/370™ architectures, 31-bit ad-
dresses are defined for central storage. Thus the
maximum size central storage aliowed by these ar-
chitectures is 2 gigabytes. For each frame of central
storage, the hardware maintains reference, change,
and access key indicators in special high-speed stor-
age packaged close to the processors. These indica-
tors are used by the operating system to preserve
data integrity and to assist in its LRU managemeént
of central storage. Data reliability is maintained
through the hardware use of single-error-correcting,
double-error-detecting codes packaged with the cen-
tral storage.

Although conceptually sitting between two levels of
the storage hierarchy, central storage is physically
accessable to three levels: the high-speed buffer (HsB)
of each processor, expanded storage, and the DASD
subsystem. When a processor requires a data item
that is located in central storage, the relatively small
piece of central storage that contains the item is
moved into its HSB. Such a piece of central storage
is 128 bytes on an 1BM 3090S processor. This opera-

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

tion is managed by the hardware and takes a fraction
of a microsecond to complete. See the section on
processor high-speed buffers presented earlier in this
paper. Transfers between central storage and ex-
panded storage are accomplished in frame-size pieces
under the control of the operating system in times
measured in tens of microseconds. This is discussed
in greater detail in the section that follows. Applica-
tions usually originate requests for data movement
between central storage and the DASD subsystem.
These moves vary in size typically from 80 to 32 768
bytes or more and are made through a channel
interface in times measured in milliseconds. This is
discussed later in this paper under the subject of
DASD.

The operating system keeps the most active set of
programs and data areas in central storage. Gener-
ally, items can remain unreferenced in central stor-
age for tens of seconds before they are moved out to
a lower level of the hierarchy.

Expanded storage. Expanded storage is block-ad-
dressable processor storage. An address generated for
expanded storage points to a 4096-byte block or
frame of expanded storage. A 32-bit address is de-
fined for expanded storage, thereby providing ad-
dressability for up to 16 terabytes (that is, 16 384
gigabytes) of expanded storage. The operating system
maintains information in a control block for each
frame of expanded storage, and that information is
used for preserving data integrity and for LRU man-
agement of expanded storage. Unlike central storage,
there is no need for special circuitry to provide these
functions. Data reliability in expanded storage is
enhanced through the use of double-error-correcting,
triple-error-detecting codes packaged with the ex-
panded storage.

Conceptually, expanded storage sits between the cen-
tral storage and the DASD subsystem levels of the
storage hierarchy. However, expanded storage is
physically accessable only to central storage. When
a processor requires a data item that is located in
expanded storage, the contents of the expanded stor-
age frame containing the item are moved into a
central storage frame. This operation is managed by
the operating system and takes tens of microseconds
to complete. For example, on a 3090S processor,
this movement takes approximately 75 microsec-
onds, including the hardware and operating system
components. Once the data resides in central storage,
it is then moved into the processor’s HSB, as described
in the preceding section on central storage. Data

COHEN, KING, AND BRADY BT

movement to and from expanded storage causes little
interference to the other processors in a multiproces-
sor system. Transfers between central storage and
the other processor HsBs do not wait for an expanded
storage transfer to complete. However, should more
than one processor request access to expanded stor-
age, those requests are usually satisfied sequentially.

The operating system keeps active programs and
data areas in expanded storage. This is in addition
to the most active programs and data areas, which
are kept in central storage. A global LRU algorithm
is used across the combination of central and ex-
panded storage. The most active data are placed in
central storage, the next most active data reside in
expanded storage. Generally, items can remain un-
referenced in expanded storage for hundreds or even
thousands of seconds before they are moved out to
a lower level of the hierarchy. The operating system
accomplishes the movement to the level below ex-
panded storage by first moving the data into central
storage and then sending it to the DASD subsystem.

DASD

In the large systems of 1BM, the base of the active
storage hierarchy is the direct-access storage device
(DAsD). These devices are built on the magnetic disk
technology with mechanical actuators, and they rep-
resent a highly evolved trade-off between storage cost
and device performance. Typical DASD configura-
tions provide for tens to hundreds of gigabytes of
storage.

Response time. The most critical measure of DASD
performance is response time, which is composed of
two components: service time and queuing time.
Service time is defined to be the sum of the following
times: seek, latency, RPS miss, and data transfer.
Service time is a raw measure of the performance of
the DASD.

The time to move the actuator from one location on
the disk to another is called seek time. The 1BM 3380
Model K has a rated average seek time of 16 milli-
seconds. However, due to the reference pattern to
the data, in most cases the experienced average seek
is about 25 to 30 percent of the rated average seek.

Latency is the time delay associated with the rotation
of the disc storage medium until the requested data
field is located under the read/write head. Generally,
latency is stated in terms of the time it takes to
complete a half revolution of the disc. The 1BM 3380

68 cowen. KING, AND BRADY

and many other DASD devices rotate at about 3600
RPM, giving a latency of 8.3 milliseconds.

Once the proper record on the disk has rotated under
the read/write head, the device is ready to transmit
data back to the channel. If the channel is busy
servicing another device, the opportunity to transmit
data is missed and a full rotation is required before
the read/write head is properly positioned over the
record again. This additional delay is called a rota-

Minimization of DASD response time
is a primary objective in the design
of a storage hierarchy.

tional position sensing (RPS) miss. The number of
misses that can be seen by a given 1/0 operation is a
function of the utilization of the channel, control
unit, and pathing configuration.

Data transfer time is the time it takes to move the
data from the device to the central storage of the
processor. It may be calculated by dividing the num-
ber of bytes to be transferred by the transfer rate of
the pasD. The average record size for most on-line
and interactive environments ranges from 4000 to
8000 bytes, with a modest upward trend over time.
The 1BM 3380 pAsSD devices transfer at 3 million
bytes per second. This yields average transfer times
in the range of 1 to 3 milliseconds. With a seek time
in the the 4 to 5 millisecond range and latency above
8 milliseconds, data transfer is often not a significant
contributor to DASD performance. However, in
batch, logging, and dump/restore applications, and
cached-DASD subsystems, the seek and latency can
be minimized, and the transfer rate becomes domi-
nant.

Queuing time reflects the delay in initiating an 10
request, because the path to the device or the device
is busy with another request.

Because of its effect on the overall system throughput
and end-user response time, minimization of DASD

1BM SYSTEMS JOURNAL, VOL 28, NO 1, 1988

response time is a primary objective in the design of
a storage hierarchy. Response time is minimized by
addressing each of its components. In the current
DASD and control units, one of the more effective
innovations is the use of alternate pathing to reduce
path contention to a point that almost eliminates
the RPs miss. In these systems the electronics provide
up to four alternate paths from the device to central
storage.

Long-term trends in processor and DAsD technology
show a 10 percent compound increase of the proc-
essor and DAsD-performance gap. Significant con-
tributors to DASD performance are based on mechan-
ical rather than electronic technologies. Therefore,
other avenues must be explored to keep pace with
the DASD response time requirements of systems.
Data reference patterns, for one thing, lend them-
selves to incorporating a more intelligent manage-
ment algorithm into the electronic storage technol-
ogy used in a DASD control unit.

DASD control unit cache performance. The buffering
of data in a high-speed, lookaside cache depends on
a characteristic of data called locality of reference.
In the case of sequential access to data, there is a
high probability that once a record is referenced, the
succeeding record will also be accessed. In the case
of nonsequential access to data, there is a high prob-
ability that having once referenced an item of data,
that item will shortly be referenced again and data
near it will be referenced. If a request can be serviced
from the cache, seek and latency times can be
avoided, thus overcoming the two most severe per-
formance problems in the DASD subsystem.

The 1BM 3880 and 3990 cache control units adopt
multiple strategies to take advantage of the locality
of reference. Least recently used (LRU) algorithms
address the reuse of data. An LRU algorithm is used
to decide what data must be destaged or deleted from
a cache when all the buffers in cache have been
committed. The use of LRU and the implementation
of the fast write feature can allow the 1BM 3990 to
achieve up to 80 percent hit ratios on small-record
databases. These are the most difficult databases to
cache because of the smallness of the records and
the random-access patterns of accessing them. In
such systems, often 15 percent of the activity is
WRITE 1/0. The fast write capability provides a non-
volatile storage feature (NvS) in the controller that
allows write hits to enjoy the same performance
advantage granted to read hits to the cache. That is,
seek and latency times are avoided.

IBM SYSTEMS JOURNAL, VOL. 28, NO 1, 1989

Partial track staging provides two improvements. By
staging the record referenced and the rest of the track
following it, the cache anticipates sequential refer-
ences and the nearby references associated with ran-
dom databases. With a little assistance from the LRU

Over time, DASD has become one
of the most reliable components
of a computing system.

management of cache, this allows hit ratios in the
high 90 percent range to be achieved, with reasonable
cache sizes. A more detailed discussion of cache-
DASD performance can be found in Reference 2.

Together these features give a DASD cache controller
up to an order of magnitude better service time and
response time than an equivalent configuration of
uncached DASD. Our current estimate is these struc-
tures and refinements on them will allow the DASD
subsystem to meet the performance needs until the
mid-1990s and perhaps beyond.

DASD control unit cache availability. Over time,
DASD has become one of the most reliable compo-
nents of a computing system. As a result, most
recovery and availability software has made an as-
sumption about the safety of data written to DASD.
Whenever this assumption is wrong, the recovery is
long, tedious, and costly. Thus the design of a cache
control unit must offer availability and reliability
characteristics very similar to those of the DASD.

The 1BM 3990 control unit structure provides a num-
ber of features that enhance availability as well as
performance. Each 3990 provides one or two storage
directors (sDs), each of which provides two storage
paths (sps). Two sps form a cluster and share a
common power supply. A cluster has attachment
capability for eight channels. One control unit can
attach 16 channels, eight to each cluster. This con-
figuration is shown in Figure 3.

COMEN, KNG, AND BRADY 9

Figure 3 Pathing overview

UP TO 8
CHANNEL
ATTACHMENTS

UP TO 8
CHANNEL
ATTACHMENTS

8 PORTS

1] |] | i
T T T T T 1 T

STORAGE CLUSTER 2

STORAGE
PATH 2

STORAGE
PATH 3

|r 8 PORTS

| A
| STORAGE CLUSTER 1

|

|

I STORAGE STORAGE
{ PATH O PATH 1
|

|

|

L .

The 18BM 3380 Models J and K DASD have four paths
out of each actuator that can be dynamically
switched to any of four sps. Earlier DASD models had
two paths from each actuator. These features are
called device level selection—enhanced (DLSE) and
device level selection (DLS), respectively. The channel
attachment and DLSE features make it very unlikely
that a path failure will result in the unavailability of
data. In a configuration designed to tolerate at least
one failure, it takes two channel failures, or four
storage path failures, or two cluster failures, or one
actuator or head disk assembly (HDA) to make data
unavailable. Although the likelihood of such events
is very small, a dual-copy feature permits a defense
against these kinds of failures.

T0 coHen, kNG, AND BRADY

The Nvs feature allows write 1/0s to be buffered in
the controller. By using the cross-connected Nvs
features, the system can ensure that the failure of
one NVs feature is recoverable in the DASD subsystem
without requiring any actions by software or opera-
tors. The dual-copy feature extends that protection
to the DASD. Dual copy allows volumes to be backed
up on another device and dynamically maintains an
exact copy of the volumes. In the event of a failure
in the HDA or actuator, the control unit automati-
cally switches to the backup volume and notifies the
system of the failure. The operations staff can then
schedule service of the failed device. After repair, the
operations staff informs the DASD control unit to re-
establish the dual copy. Over a period of time, the

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

good DASD is copied to the repaired device while
merging the updates made while the copy process is
in progress.

Importance of the 1/0 boundary

The most distinct break between levels of the storage
hierarchy occurs between the processor storage and
the DASD subsystem levels. This point is referred to
as the 1o boundary and denotes the place where data
access switches from being synchronous with the
processor to being asynchronous.

During the execution of a task, a processor contin-
ually requests the next instruction or data item as-
sociated with the task, until the task is completed.
The expected time to retrieve the requested item
determines whether it is more efficient for the proc-
essor to wait for the requested item to arrive than to
look for a different task to execute. The break-even
point for this decision occurs when the time a pro-
cessor sits idle waiting for an item to arrive equals
the time a processor is busy switching among the
tasks being executed. A retrieval is called synchron-
ous when the processor waits for the item to arrive;
a retrieval is called asynchronous when the processor
looks for something else to do instead of waiting,

An asynchronous retrieval is a disruptive event for
both the hardware and the operating system. The
operating system must take the following actions: set
up for and schedule the retrieval; save the state of
the original task; and search for a new task to dis-
patch. During the early stages of execution of a new
task, the processor runs slowly, as it waits for its HSB
to be filled with data associated with the new task by
displacing the HSB data of the original task. At some
point in the future, the retrieval will be completed,
which leads to a switch back to the original task and
a repeat of the steps just described.

On an 1BM 30908 processor, the processor time over-
head associated with an asynchronous retrieval is of
the order of several hundred microseconds. This
number includes the effects of two task switches and
of the HSB contents thrashing, which might be elim-
inated in a synchronous retrieval. Therefore, in de-
ciding which levels of the storage hierarchy on a
3090S to access synchronously and which to access
asynchronously, the time to retrieve a data item from
a hierarchy level is compared with a break-even time
of several hundred microseconds. The access time to
the lowest level of processor storage, expanded stor-
age, 1s approximately 75 microseconds on a 3090S.

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

(See the earlier section on expanded storage.) The
highest level of the DASD subsystem, the DASD control
unit cache, is capable of delivering data in about 3
milliseconds. (See the earlier sections on the DASD

The most common implementation
of an asynchronous retrieval is
an |/0 operation.

control unit cache.) Thus, levels of the storage hier-
archy from expanded storage and above are accessed
synchronously, levels from the DASD control unit
cache and below are accessed asynchronously.

The most common implementation of an asyn-
chronous retrieval is an 1/0 operation. To retrieve a
data item in this manner, an application (or possibly
the operating system) builds a request for an 1/0
operation. The operating system schedules the 1/0
and then performs a task switch. When the data are
available, an 1/0 interrupt is processed by the oper-
ating system followed by an eventual task switch
back to the original task. This entire process may
consume 400 to 800 microseconds of processor time
on a 30908, now adding the application 1/0-interface-
build cost to the asynchronous retrieval overhead.
Thus, the 10 boundary, that point at which access
to levels of the storage hierarchy switches from syn-
chronous to asynchronous, is significant relative to
the processor-time cost of data access.

Processor storage volatility

Volatility of storage means that the contents are lost
when the power is shut off. Processor storage (both
central and expanded) is volatile, and the analogous
element in previous systems (real or main storage)
has also been volatile. Therefore, all software has
been designed so as to take this volatility into ac-
count. For example, 170 buffer managers and data-
base systems force updates out of the buffer to the
DASD subsystem before the update is complete. The
software has been designed to function properly with
volatile processor storage and buffer pools of any
size,

COHEN, KING, AND BRADY 71

In a typical interactive database environment every
update must be written through to nonvolatile stor-
age in the DASD subsystem. Therefore, in this case,

Data sharing is a key part
of providing operational flexibility,
capacity, and availability.

the use of storage for caching is not effective in
reducing the number of write 1/0s. Thus, the read-
write ratio is an important parameter in determining
the potential impact of large buffer pools, because
only the read 1/0s can readily be avoided. The read-
write ratio in a large database system is typically of
the order of five to one. Because most of the 1/0s are
read operations the buffering can be very effective in
reducing the number of 1/0s. Even in the case of a
one-to-one ratio, buffering can address half of the
1/0s and still make a significant reduction in the 1/0
rate. Additionally, even in the case of a sequential,
write-only, large dataset, buffering (either by using
larger blocks or chaining more blocks together per
channel program) can significantly reduce the num-
ber of write 1/0s needed to transfer a given amount
of data.

Multisystem shared data

Data sharing is a key part of providing operational
flexibility, capacity, and availability. This sharing can
occur at any level of the hierarchy. The system
architect must know the performance criteria for the
data and its sharing characteristics to select the most
efficient level.

Data that has stringent response time demands and
has read-only or near-read-only characteristics can
be cached in the DASD control unit or expanded
storage. Expanded storage gives better performance
in these cases, because there are no (few) WRITEs that
must be reflected back to DASD. This limits the
overhead of synchronizing multiple copies of the
data. A penalty for sharing data in a processor local

72 COHEN, KING, AND BRADY

cache, such as expanded storage, is the cost of the
storage in each local cache. If multiple processors—
four for example—share a program library that is
frequently used, the active programs would be in-
cluded in each local cache. Experience indicates that
the performance advantage of doing this by far ex-
ceeds the cost of the storage necessary to keep the
three additional copies.

The cost of synchronizing storage levels must be
separately assessed. As the WRITE content of a shared
dataset increases, the cost of managing multiple con-
current buffers in the form of software path length
and communications delays begins to mount. These
performance effects eventually overshadow the ad-
vantage of expanded storage, and the DASD cache
begins to emerge as having the cost/performance
advantage. The READ-to-WRITE ratio, the rereference
and local reference components of the hit ratio, the
efficiency of the buffer management process, and the
performance of the DASD all have substantial impact
on the overall trade-off between a DASD cache and
an expanded storage cache. In general, unshared data
and shared data with a low update rate are able to
cache well in a processor local cache, giving through-
put and response-time advantages over a DASD cache.
In the case of the shared data with a high update
content, DASD cache currently has the advantage. It
requires less storage to achieve the required hit ratios,
1o provide more consistent performance as the num-
ber of systems sharing the data increases, and to
provide better availability characteristics.

Over time, the challenge to the large-system archi-
tects is to try to combine the advantages of each
form of caching. As the cost of storage technology
falls, channel data rates improve, and new synchro-
nization techniques are developed, the relationship
of the data cache to its backing DASD and the proc-
essor storage are expected to change and give rise to
new system structures.

The impact of virtual addressability

The performance advantages of 10 avoidance are
achieved through the improved use of the physical
storage hierarchy through the extended use of virtual
storage. In this way, the details of the physical storage
can be hidden from application programs, but the
value can be obtained through use of an existing
facility. The use of virtual storage as the mechanism
to address the storage hierarchy provides an easy-to-
use system function and structure.

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

The permanent home location of on-line data is on
DASD. Virtual data is the view from a program, and
it is mapped to a subset of the hierarchy consisting
of central storage, expanded storage, and auxiliary
storage (i.e., the paging/swapping datasets on DASD).
The approach is to capture more of the active per-
manent data in the virtualized hierarchy where the
performance value of central and expanded storage

The major trade-off is the cost
of increasing the size of a level
versus the savings from reduced
data movement.

can be realized. The increased use of virtual storage
is the key to the increased use of processor storage,
and the resulting reduction in read 1/0s to permanent
on-line data.

The history of storage addressing is one of continu-
ous expansion of the maximum addressable storage
available to a program. This is being driven by larger
space requirements for larger, more complex pro-
grams, more system data and code, and increased
buffering of user data. In the MvT operating system,
which was dominant in the late 1960s and early
1970s, a single 16-megabyte real storage was shared
among programs. MVT was superseded in the 1970s
by Mvs/370, which provided a dedicated 16-megabyte
address space per program. The next dominant op-
erating system was MvS/XA™ which was introduced
in 1983 and provided a dedicated 2-gigabyte address
space to each program. Although 2 gigabytes are
thought to be sufficient for long-term code growth,
data growth could surpass it rather quickly. A new
extensible structure is required to meet the poten-
tially explosive growth in virtualized permanent
data.

This requirement can be satisfied by the virtual
extensions provided by Enterprise Systems Architec-
ture/370. In MVS/ESA, a program can gain access to
one or more data spaces in addition to the address
space holding the program itself. Each data space
can hold 2 gigabytes of data, and a large number of
data spaces can be accessible from a single address
space. This type of horizontal growth—that is, 2

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

gigabytes for each data space added—can satisfy
long-term growth in virtualizing active permanent
data. In order to make data spaces immediately
accessible and valuable, standard Mvs functions can
now use data spaces through a common system
component, the virtual lookaside facility (vLF). Cur-
rent application programs use data spaces indirectly
by using functions which in turn use VLF. The overall
function provided is a data caching function, where
VLF uses data spaces to hold the cached data. With
sufficient configurations of expanded storage, this
cached data reside physically in expanded storage, a
much higher-performance medium than permanent
DASD. Many functions already use data spaces, and
other functions are to be added as new system facil-
ities become available.

The residency of virtualized data in central storage,
expanded storage, and auxiliary storage is managed
by demand fetch into central storage with LRU re-
placement from central storage to expanded storage
and from expanded storage to auxiliary storage. Al-
though LRU management is the best one can do with
no special knowledge of upcoming reference pat-
terns, at times a subsystem or application may know
more about the upcoming data than does the oper-
ating system. For example, data no longer needed
can be immediately moved down in the hierarchy
rather than aging out due to inactivity and LRU
replacement.

A subsystem or application may know the data area
to be used next by the program, in which case that
data can be brought into central storage via an
anticipatory prefetch rather than page-by-page de-
mand fetch. This potential is realized through the
use of a hiperspace. A hiperspace is a space consisting
of 4K-byte blocks of data that can be moved directly
to and from the hiperspace via command rather than
page by page, as its inactivity is recognized. Standard
hiperspaces generally exist on expanded storage, and
older pages of a hiperspace may be migrated to
auxiliary storage when expanded storage is full. The
definition of a hiperspace allows a subsystem or
application to move blocks of data to central storage,
use them, and then move them back to the hiper-
space on expanded storage. Hiperspaces provide a
complementary facility to address spaces and data
spaces, and among them the virtual addressability
can be increased easily and efficiently. In this way,
ESA/370 provides the virtual extensibility that allows
for the exploitation of virtual storage and through
it the value of the storage hierarchy, as shown in
Figure 4.

COHEN, KING, AND BRADY 13

Figure 4 Virtual storage and the storage hierarchy

APPLICATION

VIRTUAL LEVEL

ADDRESS | DATA HIPER-
SPACES SPACES SPACES |

PHYSICAL LEVEL
A

Storage estimates and hierarchy configuration

The determination of the size of each level of the
storage hierarchy to be configured to a system in-
volves the evaluation of several factors. The major
trade-off to be analyzed is the cost of increasing the
size of a level of the hierarchy versus the savings
from the resulting reduced data movement rate to a
lower level of the hierarchy. However, a level of the
hierarchy may have unique characteristics or provide
special functions that must be considered in addition
to the aforementioned trade-off.

The analysis required to size two of the levels of the
storage hierarchy is quite straightforward. By defini-
tion, the lowest level of the hierarchy has no lower
level to which a data movement rate may be reduced.
Thus the lowest level, high-capacity DASD must be
large enough to contain all data. On the other hand,
the highest level of the hierarchy—-the processor
high-speed buffer—is of fixed size, and no variable-
size trade-off can be made.

T4 COHEN, KNG, AND BRADY

Another level of the storage hierarchy—DASD control
unit cache—offers several attractive options the val-
ues of which go beyond simply reducing the data
movement rate to a lower level of the hierarchy. The
dual copy function provides increased availability
for critical data. The DASD fast write function can
provide improved performance for data that must
be written to a nonvolatile medium, as discussed
previously in the section on the DASD control unit
cache. Both these functions are intended to enhance
the movement of data to a lower level of the hier-
archy. In any case, the dual-copy and fast-write
functions generally do not reduce the data move-
ment rate to a lower hierarchical level. The DASD
control unit cache can also reduce the data retrieval
(READs) from the level below it. Thus the trade-off of
size versus reduced data movement rate also applies.

The sole purpose of the processor storage level of the
hierarchy is to reduce data accesses to the levels
below it, that is, to reduce data movement across the
1/0 boundary. (See the section on the importance of
the 170 boundary.) A curve, such as given in Figure
5, may be drawn to illustrate the relationship be-
tween the size of processor storage and the 1/0 rate
of a system. The shape of the curve depends on the
type of workload and the extent to which data and
programs have been virtualized (thus permitting
their residence in processor storage). The benefits of
a reduced 1/0 rate are numerous. As 1/0 is reduced,
the capacity of the processor to execute transactions
may be increased in two ways: (1) The processor
time per transaction is reduced (as discussed in the
section on the importance of the 1/0 boundary); (2)
the processor may be able to achieve a higher utili-
zation. A reduction in 170 generally provides signifi-
cant improvements in response time, thereby in-
creasing the productivity of the user community.
Often, less system programmer time is required for
tuning a system as the 1/0 rate drops. There may also
be a savings in the 1/0 configuration, as the DASD
access density is decreased. With these benefits in
mind, the amount of processor storage to configure
to a system should be chosen from the flat part of
the curve. That is, choose an amount where an
additional increment of processor storage would
have little effect on reducing the 1/0 rate of the
system. Reference 3 provides a methodology for
estimating processor storage configurations.

The processor storage level of the storage hierarchy
is actually composed of two levels: central storage
and expanded storage. The choice of a central storage
size determines the rate of data movement between

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

the two levels. A curve similar to that discussed
above may be drawn, this time to illustrate the
relationship between the size of central storage and
the data movement rate to expanded storage. A
reduction in the data movement results in an in-
crease in processor capacity resulting from the de-
crease in processor time spent on page movement.
Generally, no noticeable changes in response time
or tuning occur from reduced page movement to
expanded storage. The amount of central storage to
configure to a system should be chosen at the point
where an additional increment of central storage
would improve system capacity by less than several
percent. Reference 3 provides a methodology for
estimating central storage configurations.

Data placement

Data placement within the storage hierarchy is au-
tomatically managed by the operating system, the
subsystems, and the hardware. The systems program-
mer controls the eligibility of data to be retained at
a particular level. Essentially, all data are initially
placed in the lowest level of the hierarchy, i.e., high-
capacity DASD. Based on its eligibility status, the data
may be moved into and held at the DASD control
unit cache level and/or the processor storage levels.
Entry into the highest level, processor high-speed
buffer, is strictly a hardware function resulting from
a processor’s request to operate on a particular data
1tem.

A data placement strategy is implemented through
the specification of the data that are eligible to be
retained in processor storage and those that may be
retained in the DASD control unit cache. Data are
made eligible for processor storage by placing them
in virtual storage. Data are made eligible for DASD
control unit cache through service-level specification
and placement within the DASD subsystem. (See the
section on DASD control unit cache.)

The choice of which data to virtualize is based on
several factors. First, can the data be virtualized? If
there is no mechanism that allows a substantial
amount of the data in question to be placed in virtual
storage, the choice is academic. Second, do the data
have an attractive access density, that is, can the
movement rate to a lower level of the hierarchy be
significantly reduced by retaining a manageable
amount of the data? Third, are the data shared with
another system? If so, management of the data to
ensure that each system has an up-to-date copy may
prohibit significant 1/0 reduction. The types of data

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

Figure 5 Storage size versus /O rate

HIGH

170 RATE

5
S

SMALL [PROCESSOR STORAGE SIZE| LARGE

that can be attractive candidates for processor storage
include: program libraries, other libraries with fre-
quently read members, nonsequentially accessed
databases (such as those used by IMs, CICS, and DB2),
and temporary files. By placing data in processor
storage, the read activity (READ 1/0) from the lower
levels of the hierarchy is generally reduced. However,
in the case of temporary files both READ and WRITE
accesses can be eliminated. Reference 4 provides an
overview of the data eligible for processor storage.

There are effectively no restrictions on the type of
data that may reside in the DASD control unit cache.
In addition, several features of the DASD control unit
cache (DASD FAST WRITE, DUAL COPY) address areas
beyond read-access performance for permanent data.
Thus, the choice of which data to make eligible to
this level of the hierarchy is based on the following
system characteristics: the performance require-
ments for READs and WRITEs, the access density to
the data; the availability requirements of the data;
and the cross-system sharing characteristics of the
data. The types of data that are attractive candidates
for DASD control unit cache include the following:
frequently read data that was not appropriate to be
held in processor storage; data with a need for fre-
quent and/or fast updates (WRITE 1/0); data with high
availability requirements, and data being updated by
more than one system.

Concluding remarks

A storage hierarchy is the natural system structure
to take best advantage of the total set of available
storage technologies. It provides a sophisticated and
elegant solution to the key problems of storage per-
formance and cost. Storage hierarchies have been
successfully utilized in addressing the problems of a

COHEN, KING, AND BRADY 5

speed mismatch between the CPU and DASD and
between the CPU and real storage. The value of the
hierarchy has been recognized in large-scale proces-
sor systems for quite a while and is now being utilized
to some extent in both medium and small-scale
processing systems. Virtual storage is the key to
making the physical storage subsystem transparent
to the users of the system. New facilities available
with MVS/ESA such as data spaces and hiperspaces
provide the structures that allow easy and almost
unlimited growth of virtual storage capacity. This in
turn provides the maximum value from the storage
hierarchy. The future will include ultra-large proc-
essing systems with an ever-increasing requirement
for on-line data capacity that can be accessed both
quickly and efficiently. In this environment, storage
hierarchies will become even more important. Be-
cause they will result in higher performance, they
will be used more extensively.

MVS/ESA, Enterprise Systems Architecture/370, ESA/370, and
MYVS/XA are trademarks of International Business Machines Cor-
poration.

Cited references

1. R. E. Matick, “Impact of memory systems on computer archi-
tecture and system organization,” IBM Systems Journal 25,
Nos. 3/4, 274-305 (1986).

2. C. P. Grossman, “Cache-DASD storage design for improving
system performance,” /BM Systems Journal 24, Nos. 3/4, 316~
334 (1985).

3. G. M. King, “Processor Storage Estimation,” Proceedings of
CMG °88, International Conference on Management and Per-
formance Evaluation of Computer Systems, Dallas, TX, De-
cember 12-16, 1988; Computer Measurement Group, pp.
1044-1057.

4. G. M. King, “Processor Storage Overview,” Proceedings of
CMG '88, International Conference on Management and Per-
formance Evaluation of Computer Systems, Dallas, TX, De-
cember 12-16, 1988; Computer Measurement Group, pp.
1036-1043.

Edward I. Cohen IBM Data Systems Division, P.O. Box 950,
Poughkeepsie, New York 12602. Dr. Cohen is a senior programmer
and manager of the System Performance Analysis department. He
joined IBM in the Poughkeepsie Development Laboratory in 1978.
He has held various positions in the area of large-system design
and performance analysis. He has received two Outstanding Tech-
nical Achievement Awards, one for MVS performance analysis in
1982 and another for the design of the MVS/XA True Ready
Queue Dispatcher in 1986. Dr. Cohen received a B.S. in physics
from Rensselaer Polytechnic Institute in 1972 and a Ph.D. in
computer science from the Ohio State University in 1978.

Gary M. King /BM Data Systems Division, P.O. Box 950, Pough-
keepsie, New York 12602. Mr. King is a senior programmer in the
System Performance Analysis department. He joined IBM in 1974
as an associate programmer with the Systems Development Divi-

76 COHEN. KING, AND BRADY

sion. Mr. King has been involved in the design and evaluation of
the MVS resource managers, especially in the area of storage
management. He received Outstanding Technical Achievement
Awards for the development of a technique to study virtual storage
page reference patterns and for the design of expanded storage
management in 1982 and 1985, respectively. Mr. King received a
B.S. in mathematics from the State University of New York at
Albany in 1972 and an M.S. in computer science from the Penn-
sylvania State University in 1974,

James T. Brady /BM General Products Division, 5600 Cottle
Road, San Jose, California 95193. Mr. Brady joined IBM in 1961
as a systems engineer—scientific. He has held various positions in
the Data Processing, Advanced Systems Development, Systems
Products, Data Systems, and General Products Divisions. He was
manager of DSD systems technology and strategy, where he initi-
ated the development of the Enterprise Systems Architecture and
expanded storage. Mr. Brady is currently product manager of GPD
storage systems strategy and architecture, where he is responsible
for performance analysis, architecture, and the development of
new product opportunities. Mr. Brady graduated from Creighton
University in 1961, with a B.S. degree in mathematics. He has
done graduate work in mathematics and business administration
and is a graduate of the IBM Systems Research Institute.

Reprint Order No. G321-5348.

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

