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The storage hierarchy is a natural structure, given the 
set of available technologies and their price and per- 
formance characteristics. The physical structure of the 
storage subsystem is described, and the flow of data 
through the system is traced. The concept of a storage 
hierarchy is discussed,  and the specific components of 
the IBM storage hierarchy from the processor high- 
speed buffer (HSB) to the on-line DASD configuration 
are  described in detail. Trade-offs  between technoio- 
gies and the interactions among the levels  of the hier- 
archy  are  discussed. In particular, the importance of 
the 110 boundary,  processor storage volatility, and 
data sharing are highlighted. A continuous increase in 
virtual storage capacity can be  seen in the evolution of 
large-scale operating systems,  and MVS/ESAm now 
provides the ultimate virtual capacity and function. 
New virtual structures available in MVSIESA are dis- 
cussed,  and their relationship to the storage hierarchy 
is studied. The importance of storage to the perform- 
ance and cost of a large processing system  leads to a 
discussion of guidelines for storage configuration and 
data placement within the hierarchy. 

W ith the continued introduction of more pow- 
erful  processing  systems  based on faster, 

smaller, and more reliable  technology, the require- 
ments on storage  subsystems  become more and more 
stringent. There is also a greater  focus on storage 
cost and performance, since  storage is a key deter- 
minant of total system  cost, throughput capacity, 
and responsiveness. The types of available technol- 
ogy choices  allow  for the configuration of a storage 
structure consisting of a hierarchy of storage  levels, 
which taken together  meet the diverse requirements 
placed on the storage  subsystem. The significant new 
development in this hierarchy  is the increasing im- 
portance of processor  storage in diverting activity 
from the lower  levels of the storage hierarchy, thus 
reducing  system I/O rates. With the logical structure 

62 COHEN. KING, AND BRADY 

provided by Enterprise Systems  Architecture/370", 
increased usage  of  processor  storage can be quick 
and orderly, by extending the existing concept of 
virtual storage and addressability. This approach 
offers advantages in many aspects of  system perform- 
ance,  system structure, system  cost, and system 
maintenance and tuning. 

Before  discussing the advantages and disadvantages 
of various  storage options, one first must focus on 
the objectives  or  desired  characteristics of storage. 
Access  speed and bandwidth are primary among 
these  objectives.  High-speed  access is required to 
respond to a storage  request without delaying the 
central processor (CP) that is making the request. 
High bandwidth provides the ability to service both 
the sustained and peak requirements summed over 
all CPS. 

The storage must be  configurable into almost unlim- 
ited sizes to meet the data capacities  required by 
ultra-large  processing  systems. Other factors  such  as 
cost,  reliability,  power,  space, and cooling must also 
be reasonable.  These items, however, are not areas 
of focus  for this paper. 

If one were to specify the ideal  storage, one might 
imagine that the requirements would  lead naturally 
to a single-level, monolithic store consisting of only 
one type of technology. The resulting store might  be 
like a shared  processor  cache of near-infinite size. 
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Such a storage structure would  allow  full realization 
of a processor’s potential capacity, with no penalty 
for storage  delays.  In  reality there is no single tech- 
nology that  can provide speed, bandwidth, capacity, 
and low cost. There are a wide  variety of storage 
technologies available which cover a wide  range of 
performance. Faster technologies are usually more 
expensive and  are more difficult to configure in bulk. 
Therefore, the best approach is to use the available 
options in combination, taking advantage of the best 
features of each. In this way, one can attempt  to 
meet the full set of storage  objectives  as  closely as 
possible. A detailed and far-ranging discussion of the 
impact of memory systems on system structure and 
architecture can be found in Reference 1. We  expect 
storage technologies to improve over time, and we 
expect logic technologies to improve as well, both of 
which will produce even more stringent require- 
ments for storage performance. Thus a hierarchical 
storage  strategy will be applicable in  the future and 
will probably be an even more important  contributor 
to system performance. 

Storage  hierarchy  data flow 

The physical structure of the storage hierarchy can 
be  viewed as seen in Figure 1, which depicts a 
simplified diagram of an IBM 3090 triadic system. 
The diagram shows three CPUS, each with an inte- 
grated processor cache which  is also known as the 
high-speed  buffer (HSB). The system control element 
(SCE) is the central and most complex component  in 
this structure, because it routes data  among all the 
CPUS, central storage, expanded storage, and all chan- 
nels,  while ensuring that  the  data elements are cor- 
rect and up-to-date. 

The flow  of data through the physical components 
of the hierarchy can best be understood by the se- 
quence of actions taken when a CPU accesses data 
elements resident in each storage type. The best 
performance case  is a cache hit, because the  data 
element can be transferred directly to  the appropriate 
CPU component  in nanoseconds. If the  data element 
is not in the cache, it must be retrieved from the 
central storage through the SCE. These cache misses 
typically take hundreds of nanoseconds to resolve, 
but  the specific data element requested can be routed 
to  the CPU component  in parallel with the entire line 
being transferred to cache. 

A page fault occurs when the  data element is not 
resident in central storage. With the advent of ex- 
panded storage technology, many page faults can 
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now be satisfied in the  tens of microseconds needed 
to move a 4K-byte block from the expanded store 
to  the central store via the SCE. If the  data element 
is not resident in either central storage or expanded 
storage, it must be retrieved from one of the system 
paging datasets via a READ I/O. In this case, the  data 
element is transferred from the DASD through the 

In some cases, data can be 
retrieved much faster if present 

in a  control  unit  cache. 

control unit  to  the channel. The channel transfers 
the  data  to central storage  via the SCE. At this point, 
the  data  are brought into  the cache of a CPU via a 
cache miss the next time the requesting program is 
scheduled to execute. 

Data accessed from nonpaging DASD on a typical I/O 
request follow the same path as that of the paging 
case  previously described. In either case, the I/O can 
take tens of milliseconds if the  data need to be 
retrieved from the DASD. In some cases, data  can be 
retrieved much faster if present in a control unit 
cache. In this case, the physical DASD need not be 
accessed, and the requested data  can be transferred 
directly from the electronic storage in  the control 
unit in  about 2-3 milliseconds. This is  logically 
equivalent to finding the  data  one level  higher in the 
hierarchy on a faster but smaller capacity technology. 
This physical hierarchy can vary depending on ma- 
chine type and system configuration, but when 
viewed conceptually we can study its general fea- 
tures. 

Elements of the IBM storage  hierarchy 

In designing a storage system consisting of multiple 
heterogeneous technologies, one tries to take advan- 
tage  of the key values of each technology, thus meet- 
ing all desired characteristics. This storage system 
structure is conceptually viewed as a pyramid of 
levels as in Figure 2. The levels are numbered se- 
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Figure 1 Storage  hierarchy  data flow 
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quentially  starting  from  level 1 (LI), as we descend 
the hierarchy. The CPUS are positioned  above the top 
level  of the hierarchy  because data elements  are 
brought to the top level  of the hierarchy  for the CPU 
to access them. 

The key characteristics in understanding the concept 
of  a  storage  hierarchy are access  speed,  capacity, and 
cost. As we move  downward  through the hierarchy, 
each  subsequent  level  is  slower and less  expensive 
and usually  configured in larger  cost-effective  capac- 
ities. The overall  objective  of the storage  hierarchy 
is to provide  average  access  speed  almost  as  fast  as 
the fastest  level (HSB) with an average  cost  per  bit  of 
on-line data almost  as low as the least  expensive  level 
(DASD). This can  be  achieved  only  if the vast  majority 
of on-line data are resident  on DASD while  almost  all 
of the CPUS storage  accesses are satisfied  from  high- 
speed  buffers. 

Data elements are moved  upward and downward 
through the storage  hierarchy  based on reference 
activity.  Storage  reference patterns show  a  strong 
locality of reference,  which  produces  a  high  degree 
of data reuse and allows  a  very  high hit ratio in the 
HSB with  a  very  small  working  set.  Each  level  of the 
hierarchy  is  managed by a  system component (hard- 
ware,  software, or microcode). The management 
approach  is  generally  based on a  least  recently  used 
(LRU) algorithm  for  replacing an inactive data ele- 
ment by a more active  element. The element  re- 
placed  is  moved  downward in the hierarchy,  while 
the requested  element  is  rising to the top of the 
hierarchy. 

Given  its  primary  position in the hierarchy, the 
performance of the HSB has  a  significant impact on 
the speed  of the processor and the overall  system 
performance.  Levels 2 and 3 together constitute the 
processor  storage (PS). Central storage (cs) is the byte- 
addressable  main  storage of the processor  system, 
and expanded  storage (ES) is the 4K-byte  block  ad- 
dressable  extension to the central storage. The DASD 
subsystem  is  made up of DASD and DASD caches. As 
the home  location of the bulk of permanent on-line 
data, the DASD subsystem  fulfills the role of the cost- 
effective  bulk  storage in the hierarchy. The DASD 
cache  can  be  very  effective in reducing the average 
response time and in  reducing the access rate to the 
DASD. Tape could be added  as  level 6 ,  but this  is not 
normally  a point of  focus  because  of its  archival 
rather than on-line nature. Each  of these  hierarchical 
elements is discussed  in further detail in the following 
sections. 
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Figure 2 IBM storage hierarchy elements 
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Processor  high-speed  buffer 

The top level  of the storage  hierarchy  is the processor 
cache,  which  is also called the high-speed  buffer 
(HSB). It is the most  critical  element in the hierarchy, 
because it satisfies  processor  storage  references (both 
instructions and data) directly to the CPU logic  ele- 
ments and registers. The HSB performance,  therefore, 
has  a  direct and powerful impact on  processor  speed 
and system  capacity. The processor  cache  needs to 
operate in the same  range of speed  as the processor 
to satisfy  its  storage  references  without  causing any 
CPU delays. This speed requirement also means that 
the cache  must  be  physically  close to the processor 
logic to minimize  propagation  delays. The L I  cache 
is  typically tens to low hundreds of  kilobytes in size, 
because of the high  cost and spatial  limitations. 
Processor  caches in this  size  range are extremely 
effective,  because  of the strong  locality  of  reference 
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exhibited by a program’s instruction and  data refer- 
ence sequences and typically can satisfy 95 to more 
than 99 percent of all storage requests. When a 
referenced data element is not  found  in  the cache, it 
must be retrieved from central storage. This is a 
much slower  access, and  the processor may become 

The  cache is  transparent  to  the 
program  executing  and is managed 
by  the  hardware  logic  in  the  buffer 

control  element. 

idle while waiting for a data element to be delivered. 
In this case, the requested data element is routed to 
both the processor  logic and  the cache in parallel, to 
minimize this delay. 

The cache is transparent  to  the program executing 
on  the processor and is completely managed by the 
hardware logic in the buffer control element. This is 
done totally independently of the software, and the 
software has no knowledge  of whether the  data re- 
quested are coming from the cache or  the central 
storage. In fact, the software is unaware of whether 
the processor has a cache, and  the same software can 
operate on a processor without a cache, albeit more 
slowly. The cache contents are managed within the 
processor hardware using an  mu-based replacement 
algorithm that is similar in philosophy to other  mem- 
ory managers implemented in software or microcode 
in other  parts of the storage hierarchy. 

The effectiveness  of a processor cache is usually 
described by a cache (or buffer) hit ratio, which is 
calculated as the percent of total storage  references 
satisfied directly from the buffer with no access to 
central storage. Although the typical buffer hit range 
seems to provide high  buffer performance, improve- 
ments within the range are very important  to CPU 
performance. Although there seems to be little dif- 
ference between  96 and 98 percent buffer hit ratios, 
the impact is pronounced because the buffer  miss 
ratio drops from 4 to 2 percent. This means  that half 
as many accesses to central storage are required and 
the overall CPU delay due to storage is cut  in half. 
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Looking at it from the viewpoint of cache misses 
gives a truer picture of the impact of cache perform- 
ance on  total processor performance. 

There are two distinct management philosophies for 
processor caches based on when updates to data are 
pushed through to central storage. In a store-through 
design, updates are made to the cache and  to  the 
corresponding data in central storage, the home lo- 
cation of the data. In a store-in cache, updates are 
made only to cache; these updates are reflected back 
to central storage only when the  data element is 
removed from the cache by LRU replacement. The 
advantage of the store-through design  is its simplic- 
ity. All updates are made  to central storage imme- 
diately, which makes the newly changed data avail- 
able to  other processors from its central storage home 
location. A store-in cache has the advantage of  re- 
ducing transfers between cache and central storage, 
because changes are written back to central storage 
only when they are absolutely required. The controls 
required for store-in are more complex than store- 
through, particularly in tightly coupled CPUS. In this 
case, a storage reference on one processor may need 
to be checked against the  contents of caches on  other 
CPUS to  determine whether it contains an updated 
version of the  data. Overall, one  cannot say whether 
one approach is superior, because much depends on 
the objectives  of the design  (e.g., the trade-off  be- 
tween  efficient use of bandwidth and simplicity of 
design). Either design may be the best solution, 
depending on  the set of design criteria. 

Processor  storage 

Processor storage includes the synchronous levels of 
the storage hierarchy. That is, the processor  waits 
while an item of data is retrieved from a level  of this 
class of storage. Processor  storage  is  closely integrated 
with the processor, and  the  time to retrieve an item 
from it is measured in microseconds or less.  Because 
this access time is so fast, it is more efficient for the 
processor to pause momentarily to wait for an item 
to be retrieved from processor storage than  to have 
the processor  search for another task to execute.  (See 
the section on  the  importance of the I/O boundary 
later in this paper.) 

The size  of  processor  storage  generally  ranges from 
tens of  megabytes to several  gigabytes and consists 
of multiple 4096-byte blocks,  called frames of proc- 
essor storage. For example, a configuration of 256 
megabytes  of  processor  storage contains 65 536 
frames. The  contents of  processor storage are  man- 
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aged  by the operating system. Through the use  of a 
global LRU scheme, the operating system tends to 
keep the most  actively  referenced programs and data 
areas of the users of the system in processor  storage. 
There are  two  types of processor  storage in the IBM 
storage  hierarchy:  central  storage and expanded  stor- 
age, the characteristics of  which are discussed in the 
following  sections. 

Central storage. Central storage  (which is often  called 
real  storage) is byte-addressable  processor  storage. 
That is, an address  generated  for central storage 
points to one byte of central storage.  With the Sys- 

Although  the  buffer  hit  range  seems 
to  provide  high  performance, 

improvements  within  the  range 
are very  important. 

tem/370-XA and E S A / ~ ~ O ' "  architectures, 3 I-bit ad- 
dresses are defined  for central storage. Thus the 
maximum size central storage  allowed by these ar- 
chitectures is 2 gigabytes. For each frame of central 
storage, the hardware maintains reference,  change, 
and access  key indicators in special  high-speed stor- 
age  packaged  close to the processors.  These  indica- 
tors are used  by the operating system to preserve 
data integrity and to assist in its LRU managemgnt 
of central storage. Data reliability is maintained 
through the hardware use  of single-error-correcting, 
double-error-detecting  codes  packaged  with the cen- 
tral storage. 

Although  conceptually sitting between  two  levels of 
the  storage  hierarchy, central storage  is  physically 
accessable to three levels: the high-speed  buffer (HSB) 
of  each  processor, expanded storage, and the DASD 
subsystem.  When a processor  requires a data item 
that is located in central storage, the relatively  small 
piece  of central storage that contains the item  is 
moved into its HSB. Such a piece  of central storage 
is 128 bytes on  an IBM 3090s processor. This opera- 

- 

tion is managed by the hardware and takes a fraction 
of a microsecond to complete. See the section on 
processor  high-speed  buffers  presented  earlier in this 
paper.  Transfers  between central storage and ex- 
panded  storage are accomplished in frame-size  pieces 
under the control of the operating system in times 
measured in tens of microseconds. This is  discussed 
in greater detail in the section that follows.  Applica- 
tions usually  originate  requests  for data movement 
between central storage and the DASD subsystem. 
These  moves vary in size  typically from 80 to 32  768 
bytes or more and are made through a channel 
interface in times measured  in  milliseconds. This is 
discussed later in this paper under the subject of 
DASD. 

The operating system  keeps the most active  set of 
programs and data areas in central storage. Gener- 
ally, items can remain unreferenced in central stor- 
age for tens of seconds  before  they are moved out to 
a lower  level  of  the  hierarchy. 

Expanded  storage. Expanded  storage is block-ad- 
dressable  processor  storage. An address  generated for 
expanded  storage points to a 4096-byte  block or 
frame of expanded storage. A 32-bit  address is  de- 
fined  for expanded storage,  thereby  providing ad- 
dressability  for up to 16 terabytes (that is,  16  384 
gigabytes)  of  expanded  storage. The operating  system 
maintains information in a control block  for  each 
frame of expanded  storage, and that information is 
used for  preserving data integrity and for LRU man- 
agement of expanded  storage. Unlike central storage, 
there is no need  for  special circuitry to provide  these 
functions. Data reliability  in expanded storage is 
enhanced through the use  of double-error-correcting, 
triple-error-detecting  codes  packaged  with the ex- 
panded  storage. 

Conceptually, expanded storage  sits  between the cen- 
tral storage and the DASD subsystem  levels of the 
storage  hierarchy.  However, expanded storage  is 
physically  accessable  only to central storage.  When 
a processor  requires a data item that is located in 
expanded  storage, the contents of the expanded stor- 
age frame containing the item are moved into a 
central storage frame. This operation is  managed by 
the operating system and takes tens of microseconds 
to complete. For example, on a 3090s processor, 
this movement takes approximately 75 microsec- 
onds, including the hardware and operating system 
components. Once the data resides in central storage, 
it is then moved into the processor's HSB, as  described 
in the preceding  section on central storage. Data 
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movement to and from expanded storage  causes little 
interference to the other processors in a multiproces- 
sor system. Transfers between central storage and 
the other processor HSBS do not wait  for an expanded 
storage  transfer to complete.  However, should more 
than one processor  request  access to expanded stor- 
age, those  requests  are  usually  satisfied  sequentially. 

The operating system  keeps  active programs and 
data areas in expanded  storage. This is in addition 
to the most  active  programs and data areas,  which 
are kept in central storage. A global LRU algorithm 
is used  across the combination of central and ex- 
panded  storage. The most  active data are placed in 
central storage, the next  most  active data reside in 
expanded  storage. Generally, items can remain un- 
referenced in expanded storage for hundreds or even 
thousands of seconds  before  they are moved out to 
a lower  level  of the hierarchy. The operating system 
accomplishes the movement to the level  below  ex- 
panded storage by first  moving the data into central 
storage and then sending it to the DASD subsystem. 

DASD 

In the large  systems of IBM, the base  of the active 
storage  hierarchy is the direct-access  storage  device 
(DASD).  These  devices are built on the magnetic  disk 
technology  with  mechanical actuators, and they  rep- 
resent a highly  evolved  trade-off  between  storage  cost 
and device  performance.  Typical DASD configura- 
tions provide  for tens to hundreds of  gigabytes  of 
storage. 

Response time. The most  critical  measure of DASD 
performance is  response time, which is composed of 
two components: service time and queuing time. 
Service time is  defined to be the sum of the following 
times:  seek,  latency, RPS miss, and data transfer. 
Service time is a raw measure of the performance of 
the DASD. 

The time to move the actuator from one location on 
the disk to another is  called seek time. The IBM 3380 
Model K has a rated average  seek time of 16 milli- 
seconds.  However, due to the reference pattern to 
the data, in most  cases the experienced  average seek 
is about 25 to 30 percent of the rated  average  seek. 

Latency is the time delay  associated  with the rotation 
of the disc  storage medium until the requested data 
field is  located under the read/write head. Generally, 
latency  is  stated in terms of the time it takes to 
complete a half revolution of the disc. The IBM 3380 

68 COHEN, KING, AND ERADY 

and many other DASD devices rotate at about 3600 
RPM, giving a latency of 8.3 milliseconds. 

Once the proper record on the disk has rotated under 
the read/write  head, the device  is  ready to transmit 
data back to the channel. If the channel is  busy 
servicing another device, the opportunity to transmit 
data is  missed and a full rotation is required  before 
the read/write head  is  properly positioned over the 
record  again. This additional delay  is  called a rota- 

Minimization of DASD response  time 
is  a primary  objective  in  the  design 

of a storage  hierarchy, 

tional position sensing (RPS) miss. The number of 
misses that can be  seen by a given 110 operation is a 
function of the utilization of the channel, control 
unit, and pathing configuration. 

Data transfer time is the time it takes to move the 
data from the device to the central storage of the 
processor. It may  be  calculated by dividing the num- 
ber of bytes to be transferred by the transfer rate of 
the DASD. The average  record  size  for  most on-line 
and interactive environments ranges from 4000 to 
8000 bytes,  with a modest  upward trend over time. 
The IBM 3380 DASD devices  transfer at 3 million 
bytes  per  second. This yields  average  transfer times 
in the range of 1 to 3 milliseconds.  With a seek time 
in the the 4 to 5 millisecond  range and latency above 
8 milliseconds, data transfer is often not a significant 
contributor to DASD performance.  However, in 
batch, logging, and dump/restore applications, and 
cached-DASD subsystems, the seek and latency can 
be minimized, and the transfer rate becomes domi- 
nant. 

Queuing time reflects the delay in initiating an I/O 
request,  because the path to the device or the device 
is  busy  with another request. 

Because of its effect on the overall  system throughput 
and end-user response time, minimization of DASD 
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response time is a primary  objective  in the design  of 
a storage  hierarchy.  Response time is  minimized by 
addressing  each of its components. In the current 
DASD and control units, one of the more  effective 
innovations is the use of alternate pathing to reduce 
path contention to a point that almost  eliminates 
the RPS miss.  In  these  systems the electronics  provide 
up to four alternate paths from the device to central 
storage. 

Long-term trends in processor and DASD technology 
show a 10 percent compound increase  of the proc- 
essor and DAsD-performance  gap.  Significant  con- 
tributors to DASD performance are based  on  mechan- 
ical rather than electronic  technologies.  Therefore, 
other avenues  must  be  explored to keep  pace  with 
the DASD response time requirements of systems. 
Data reference patterns, for one thing, lend them- 
selves to incorporating a more intelligent  manage- 
ment algorithm into the electronic  storage  technol- 
ogy  used in a DASD control unit. 

DASD control  unit  cache  performance. The buffering 
of data in a high-speed,  lookaside  cache  depends on 
a characteristic of data called  locality of reference. 
In the  case of sequential  access to data, there  is a 
high  probability that once a record  is  referenced, the 
succeeding  record will also  be  accessed. In the case 
of nonsequential  access to data, there  is a high  prob- 
ability that having  once  referenced an item of data, 
that item will shortly be referenced  again and data 
near  it will be  referenced. If a request  can  be  serviced 
from the cache, seek and latency  times  can be 
avoided, thus overcoming the two  most  severe  per- 
formance  problems in the DASD subsystem. 

The IBM 3880 and 3990  cache control units adopt 
multiple  strategies to take  advantage of the locality 
of reference.  Least  recently  used (LRU) algorithms 
address the reuse of data. An LRU algorithm  is  used 
to decide  what data must be destaged or deleted  from 
a cache  when  all the buffers  in  cache  have  been 
committed. The use of LRU and the implementation 
of the fast  write  feature  can  allow the IBM 3990 to 
achieve up to 80 percent  hit  ratios on small-record 
databases.  These  are the most  difficult  databases to 
cache  because  of the smallness of the records and 
the random-access patterns of accessing them. In 
such  systems,  often 15 percent of the activity  is 
WRITE 110. The fast  write  capability  provides a non- 
volatile  storage  feature (NVS) in the controller that 
allows  write  hits to enjoy the same  performance 
advantage  granted to read  hits to the cache. That is, 
seek and latency  times  are  avoided. 
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Partial  track  staging  provides  two  improvements. By 
staging the record  referenced and the rest  of the track 
following it, the cache  anticipates  sequential  refer- 
ences and the nearby  references  associated  with  ran- 
dom databases.  With a little assistance  from the LRU 

Over  time, DASD has  become  one 
of the most reliable components 

of a computing  system. 

management of cache,  this  allows hit ratios in the 
high 90 percent  range to be achieved,  with  reasonable 
cache  sizes. A more detailed  discussion of cache- 
DASD performance  can  be found in Reference 2. 

Together  these  features give a DASD cache controller 
up to an order of magnitude better  service time and 
response time than an equivalent  configuration of 
uncached DASD. Our current estimate is these struc- 
tures and refinements on them will  allow the DASD 
subsystem to meet the performance  needs until the 
mid-  1990s and perhaps  beyond. 

DASD control  unit  cache  availability. Over time, 
DASD has  become one of the most  reliable  compo- 
nents of a computing system. As a result,  most 
recovery and availability  software  has made an as- 
sumption about the safety of data written to DASD. 
Whenever this assumption  is  wrong, the recovery is 
long,  tedious, and costly. Thus the design  of a cache 
control unit must  offer  availability and reliability 
characteristics very similar to those of the DASD. 

The IBM 3990 control unit structure provides a num- 
ber  of features that enhance availability as well as 
performance.  Each  3990  provides one or two  storage 
directors (SDS), each  of  which  provides  two  storage 
paths (SPS). Two SPS form a cluster and share a 
common power  supply. A cluster  has attachment 
capability  for  eight  channels. One control unit can 
attach 16 channels,  eight to each  cluster. This con- 
figuration  is  shown  in  Figure 3. 
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Figure 3 Pathing overview 
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The IBM 3380 Models J and K DASD have four paths 
out of each actuator that can be  dynamically 
switched to any of four SPS. Earlier DASD models  had 
two paths from  each actuator. These  features are 
called  device  level  selection-enhanced (DLSE) and 
device  level  selection (DLS), respectively. The channel 
attachment and DLSE features make it very unlikely 
that a path failure will result in the unavailability of 
data. In a configuration  designed to tolerate at least 
one failure, it takes two channel failures, or four 
storage path failures, or two  cluster  failures, or one 
actuator or head  disk  assembly (HDA) to make data 
unavailable.  Although the likelihood of such  events 
is  very small, a dual-copy feature permits a defense 
against  these kinds of failures. 

The NVS feature allows  write I/OS to be  buffered in 
the controller. By using the cross-connected NVS 
features, the system can ensure that the failure of 
one NVS feature is  recoverable in the DASD subsystem 
without requiring any actions by software  or opera- 
tors. The dual-copy feature extends that protection 
to the DASD. Dual copy  allows  volumes to be  backed 
up on another device and dynamically maintains an 
exact  copy  of the volumes. In the event of a failure 
in the HDA or actuator, the control unit automati- 
cally  switches to the backup volume and notifies the 
system of the failure. The operations staff can then 
schedule  service of the failed  device.  After  repair, the 
operations staff informs the DASD control unit to re- 
establish the dual copy.  Over a period of time, the 

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989 



good DASD is copied to the repaired  device while 
merging the updates made while the copy  process  is 
in  progress. 

Importance of the 1/0 boundary 

The most distinct break  between  levels  of the storage 
hierarchy  occurs  between the processor  storage and 
the DASD subsystem  levels. This point is  referred to 
as the 110 boundary and denotes the place  where data 
access  switches  from  being synchronous with the 
processor to being asynchronous. 

During the execution of a task, a processor contin- 
ually  requests the next instruction or data item  as- 
sociated  with the task, until the task is completed. 
The expected time to retrieve the requested item 
determines whether it is more efficient  for the proc- 
essor to wait  for the requested item to arrive than  to 
look for a different  task to execute. The break-even 
point for this decision  occurs  when the time a pro- 
cessor  sits  idle  waiting  for an item to arrive equals 
the time a processor  is  busy  switching among the 
tasks  being  executed. A retrieval is called synchron- 
ous when the processor  waits  for the item to arrive; 
a retrieval is called asynchronous when the processor 
looks  for something else to  do instead of  waiting. 

An asynchronous retrieval is a disruptive event  for 
both the hardware and the operating system. The 
operating system  must take the following  actions:  set 
up for and schedule the retrieval; save the state of 
the original  task; and search  for a new task to dis- 
patch. During the early  stages  of  execution  of a new 
task, the processor runs slowly, as it waits  for its HSB 
to be  filled  with data associated  with the new task by 
displacing the HSB data of the original  task. At some 
point in the future, the retrieval will  be completed, 
which  leads to a switch  back to the original  task and 
a repeat of the steps just described. 

On an IBM 3090s processor, the processor time over- 
head  associated  with an asynchronous retrieval  is of 
the order of  several hundred microseconds. This 
number includes the effects  of  two task  switches and 
of the HSB contents thrashing, which  might  be  elim- 
inated in a synchronous retrieval.  Therefore,  in de- 
ciding  which levels  of the storage  hierarchy on a 
3090s to access  synchronously and which to access 
asynchronously,  the time to retrieve a data item from 
a hierarchy level is compared with a break-even time 
of several hundred microseconds. The access time to 
the lowest  level  of  processor  storage,  expanded stor- 
age, is approximately 75 microseconds on a 3090s. 
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(See the earlier  section on expanded  storage.) The 
highest  level  of the DASD subsystem, the DASD control 
unit cache,  is  capable of delivering data in about 3 
milliseconds.  (See the earlier  sections on the DASD 

The most  common  implementation 
of an  asynchronous retrieval is 

an 1/0 operation. 

control unit cache.) Thus, levels of the storage  hier- 
archy  from  expanded  storage and above  are accessed 
synchronously, levels from the DASD control unit 
cache and below are  accessed  asynchronously. 

The most common implementation of an asyn- 
chronous retrieval is an I/O operation. To retrieve a 
data item in this manner, an application (or possibly 
the operating system) builds a request  for an I/O 
operation. The operating system  schedules the I/O 
and then performs a task  switch.  When the data are 
available, an I/O interrupt is  processed by the oper- 
ating system  followed  by an eventual task  switch 
back to the original task. This entire process  may 
consume 400 to 800 microseconds of  processor time 
on a 3090S, now adding the application 110-interface- 
build  cost to the asynchronous retrieval  overhead. 
Thus, the I/O boundary, that point at which  access 
to levels  of the storage  hierarchy  switches  from  syn- 
chronous to asynchronous, is significant  relative to 
the processor-time  cost of data access. 

Processor  storage  volatility 

Volatility of storage means that the contents are lost 
when the power  is shut off. Processor  storage (both 
central and expanded) is  volatile, and the analogous 
element in previous  systems  (real or main storage) 
has  also  been  volatile.  Therefore,  all  software  has 
been  designed so as to take this volatility into ac- 
count. For example, I/O buffer  managers and data- 
base  systems  force updates out of the buffer to the 
DASD subsystem  before the update is complete. The 
software  has  been  designed to function properly  with 
volatile  processor  storage and buffer  pools of any 
size. 



In a typical interactive database environment every 
update must be written through to nonvolatile stor- 
age in the DASD subsystem.  Therefore, in this case, 

Data sharing is  a key part 
of providing  operational  flexibility, 

capacity,  and  availability. 

the use  of storage  for  caching  is not effective in 
reducing the number of write I/@. Thus, the read- 
write ratio is an important parameter in determining 
the potential impact of  large  buffer  pools,  because 
only the read I/@ can readily  be  avoided. The read- 
write ratio in a large database system  is  typically  of 
the order of  five to one.  Because  most of the 110s are 
read operations the buffering can be  very  effective in 
reducing the number of  110s. Even in the case of a 
one-to-one ratio, buffering can address  half of the 
110s  and still make a significant reduction in the I/O 
rate. Additionally,  even in the case  of a sequential, 
write-only,  large dataset, buffering (either by using 
larger  blocks or chaining more blocks  together  per 
channel program) can significantly  reduce the num- 
ber of write I/OS needed to transfer a given amount 
of data. 

Multisystem  shared  data 

Data sharing is a key part of providing operational 
flexibility,  capacity, and availability. This sharing can 
occur at any level  of the hierarchy. The system 
architect must know the performance criteria for the 
data and its sharing characteristics to select the most 
efficient  level. 

Data that has stringent response time demands and 
has  read-only or near-read-only  characteristics can 
be  cached in the DASD control unit or expanded 
storage.  Expanded  storage gives better performance 
in these  cases,  because there are no (few) WRITES that 
must be  reflected  back to DASD. This limits the 
overhead of synchronizing multiple copies of the 
data. A penalty  for sharing data in a processor  local 

cache,  such  as expanded storage,  is the cost of the 
storage in each  local  cache. If multiple processors- 
four for  example-share a program  library that is 
frequently  used, the active  programs  would  be in- 
cluded in each  local  cache.  Experience indicates that 
the performance advantage of doing this by far  ex- 
ceeds the cost  of the storage  necessary to keep the 
three additional copies. 

The cost of synchronizing  storage  levels must be 
separately  assessed. As the WRITE content of a shared 
dataset increases, the cost of managing multiple con- 
current buffers in the form of software path length 
and communications delays  begins to mount. These 
performance effects eventually  overshadow the ad- 
vantage of expanded  storage, and the DASD cache 
begins to emerge  as  having the cost/performance 
advantage. The READ-to-wRm ratio, the rereference 
and local  reference components of the hit ratio, the 
efficiency  of the buffer management process, and the 
performance of the DASD all  have substantial impact 
on the overall  trade-off  between a DASD cache and 
an expanded  storage  cache. In general, unshared data 
and shared data with a low update rate are able to 
cache well in a processor  local  cache,  giving through- 
put and response-time  advantages  over a DASD cache. 
In the case of the shared data with a high update 
content, DASD cache currently has the advantage. It 
requires less storage to achieve the required hit ratios, 
to provide more consistent performance as the  num- 
ber of systems sharing the data increases, and to 
provide better availability  characteristics. 

Over time, the challenge to the large-system  archi- 
tects is to try to combine the advantages of each 
form of caching. As the cost of storage  technology 
falls, channel data rates improve, and new synchro- 
nization techniques are developed, the relationship 
of the data cache to its backing DASD and the proc- 
essor  storage are expected to change and give  rise to 
new  system structures. 

The  impact of virtual  addressability 

The performance advantages of I/O avoidance are 
achieved through the improved use of the physical 
storage  hierarchy through the extended use  of virtual 
storage. In this way, the details of the physical  storage 
can be hidden from application programs, but the 
value  can  be obtained through use  of an existing 
facility. The use  of virtual storage as the mechanism 
to address the storage  hierarchy  provides an easy-to- 
use  system function and structure. 
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The permanent home location of on-line data is on 
DASD. Virtual data is the view from a program, and 
it is  mapped to a subset of the hierarchy  consisting 
of central storage, expanded storage, and auxiliary 
storage  (i.e., the paging/swapping datasets on DASD). 
The approach is to capture more of the active  per- 
manent data in the virtualized  hierarchy  where the 
performance  value of central and expanded  storage 

The major  trade-off  is  the  cost 
of increasing  the  size of a level 

versus  the  savings from reduced 
data  movement. 

can be realized. The increased use of virtual  storage 
is the key to the increased use  of  processor  storage, 
and the resulting reduction in read I/OS to permanent 
on-line data. 

The history of storage  addressing  is one of continu- 
ous expansion of the maximum addressable  storage 
available to a program. This is  being driven by larger 
space requirements for  larger, more complex pro- 
grams, more system data and code, and increased 
buffering  of  user data. In the MVT operating system, 
which  was dominant in the late 1960s and early 
197Os, a single  16-megabyte  real  storage  was  shared 
among programs. MVT was superseded in the 1970s 
by M V S / ~ ~ O ,  which  provided a dedicated 16-megabyte 
address  space  per  program. The next dominant op- 
erating system  was MVS/XA'" which  was introduced 
in 1983 and provided a dedicated  2-gigabyte  address 
space to each program. Although 2 gigabytes are 
thought to be sufficient  for  long-term code growth, 
data growth could surpass it rather quickly. A new 
extensible structure is  required to meet the poten- 
tially  explosive  growth in virtualized permanent 
data. 

This requirement can be  satisfied by the virtual 
extensions  provided by Enterprise Systems  Architec- 
ture/370. In MVSIESA, a program can gain  access to 
one or more data spaces in addition to the address 
space  holding the program  itself.  Each data space 
can hold 2 gigabytes of data, and a large number of 
data spaces can be  accessible  from a single  address 
space. This type of horizontal growth-that is, 2 
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gigabytes  for  each data space added-can  satisfy 
long-term  growth in virtualizing  active permanent 
data. In order to make data spaces  immediately 
accessible and valuable, standard MVS functions can 
now  use data spaces through a common system 
component, the virtual lookaside  facility (VLF). Cur- 
rent application programs use data spaces  indirectly 
by using functions which in turn use VLF. The overall 
function provided  is a data caching function, where 
VLF uses data spaces to hold the cached data. With 
sufficient  configurations of expanded storage, this 
cached data reside  physically in expanded storage, a 
much higher-performance medium than permanent 
DASD. Many functions already  use data spaces, and 
other functions are to be added as new  system  facil- 
ities  become  available. 

The  residency  of  virtualized data in central storage, 
expanded  storage, and auxiliary  storage is managed 
by demand fetch into central storage  with LRU re- 
placement  from central storage to expanded  storage 
and from  expanded  storage to auxiliary  storage. Al- 
though LRU management is the best one can do with 
no special  knowledge of upcoming reference  pat- 
terns, at times a subsystem  or application may  know 
more about the upcoming data than does the oper- 
ating system. For example, data no longer  needed 
can  be  immediately  moved  down in the hierarchy 
rather than aging out due to inactivity and LRU 
replacement. 

A subsystem  or application may  know the data area 
to be  used  next by the program, in which  case that 
data can be brought into central storage  via an 
anticipatory prefetch rather than page-by-page de- 
mand fetch. This potential is realized through the 
use of a hiperspace. A hiperspace is a space  consisting 
of 4K-byte  blocks of data that can be  moved  directly 
to and from the hiperspace via command rather than 
page  by page, as its inactivity is  recognized. Standard 
hiperspaces  generally  exist on expanded  storage, and 
older pages  of a hiperspace  may  be  migrated to 
auxiliary  storage  when expanded storage is full. The 
definition of a hiperspace  allows a subsystem or 
application to move  blocks of data to central storage, 
use them, and then move them back to the hiper- 
space on expanded  storage.  Hiperspaces  provide a 
complementary facility to address  spaces and data 
spaces, and among them the virtual addressability 
can  be  increased  easily and efficiently. In this way, 
E S A ~ ~ O  provides the virtual extensibility that allows 
for the exploitation of virtual storage and through 
it the value of the storage  hierarchy,  as  shown in 
Figure 4. 
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Figure 4 Virtual storage and the storage hierarchy 

Storage  estimates  and  hierarchy  configuration 

The determination of the size  of  each  level  of the 
storage  hierarchy to be configured to a system in- 
volves the evaluation of  several  factors. The major 
trade-off to be analyzed is the cost of increasing the 
size of a level  of the hierarchy  versus the savings 
from the resulting  reduced data movement rate to a 
lower  level  of the hierarchy.  However, a level  of the 
hierarchy  may  have unique characteristics or provide 
special functions that must be  considered in addition 
to the aforementioned trade-off. 

The analysis required to size  two  of the levels  of the 
storage  hierarchy is quite straightforward. By defini- 
tion, the lowest  level  of the hierarchy  has no lower 
level to which a data movement rate may  be  reduced. 
Thus the lowest  level,  high-capacity DASD must be 
large  enough to contain all data. On the other hand, 
the highest  level  of the hierarchy-the  processor 
high-speed  buffer-is  of  fixed  size, and no variable- 
size  trade-off can be  made. 
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Another level  of the storage hierarchy-DAsD control 
unit cache-offers  several attractive options the val- 
ues  of  which  go beyond  simply  reducing the data 
movement rate to a lower  level  of the hierarchy. The 
dual copy function provides  increased  availability 
for  critical data. The DASD fast  write function can 
provide improved performance for data that must 
be  written to a nonvolatile medium, as  discussed 
previously  in the section on the DASD control unit 
cache.  Both  these functions are intended to enhance 
the movement of data to a lower  level  of the hier- 
archy.  In any case, the dual-copy and fast-write 
functions generally do not reduce the data move- 
ment rate to a lower  hierarchical  level. The DASD 
control unit cache can also  reduce the data retrieval 
(READS) from the level  below it. Thus the trade-off of 
size  versus  reduced data movement rate  also  applies. 

The sole purpose of the processor  storage level  of the 
hierarchy is to reduce data accesses to the levels 
below it, that is, to reduce data movement across the 
110 boundary. (See the section on the importance of 
the I/O boundary.) A curve,  such  as given in  Figure 
5, may  be  drawn to illustrate the relationship be- 
tween the size of processor  storage and the I/O rate 
of a system. The shape of the curve depends on the 
type of workload and the extent to which data and 
programs  have  been  virtualized (thus permitting 
their residence in processor  storage). The benefits of 
a reduced 110 rate are numerous. As 110 is  reduced, 
the capacity of the processor to execute transactions 
may  be  increased in two ways: (1) The processor 
time per transaction is  reduced  (as  discussed in the 
section on the importance of the I/O boundary); (2) 
the processor  may  be  able to achieve a higher  utili- 
zation. A reduction in I/O generally  provides  signifi- 
cant improvements in response time, thereby in- 
creasing the productivity of the user community. 
Often, less  system programmer time is required  for 
tuning a system as the I/O rate drops. There may  also 
be a savings in the I/O configuration,  as the DASD 
access  density  is  decreased.  With  these  benefits in 
mind, the amount of processor  storage to configure 
to a system  should  be  chosen  from the flat part of 
the curve. That is, choose an  amount where an 
additional increment of  processor  storage  would 
have little effect on reducing the I/O rate of the 
system.  Reference 3 provides a methodology  for 
estimating processor  storage  configurations. 

The processor  storage  level of the storage  hierarchy 
is actually  composed of  two  levels: central storage 
and expanded  storage. The choice of a central storage 
size determines the rate of data movement between 
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the two  levels. A curve similar to that discussed 
above  may  be  drawn, this time to illustrate the 
relationship between the size  of central storage and 
the data movement rate to expanded  storage. A 
reduction in the data movement results in an in- 
crease in processor  capacity  resulting  from the de- 
crease  in  processor time spent on page movement. 
Generally, no noticeable  changes in response time 
or tuning occur from  reduced page movement to 
expanded  storage. The amount of central storage to 
configure to a system should be  chosen at the point 
where an additional increment of central storage 
would improve system  capacity by less than several 
percent. Reference 3 provides a methodology  for 
estimating central storage  configurations. 

Data  placement 

Data placement within the storage  hierarchy is au- 
tomatically  managed by the operating system, the 
subsystems, and the hardware. The systems  program- 
mer controls the eligibility of data to be retained at 
a particular level.  Essentially,  all data are initially 
placed in the lowest  level of the hierarchy, i.e.,  high- 
capacity DASD. Based on its eligibility status, the data 
may be moved into  and held at the DASD control 
unit cache  level and/or the processor  storage  levels. 
Entry into the highest  level,  processor  high-speed 
buffer,  is  strictly a hardware function resulting from 
a processor’s  request to operate on a particular data 
item. 

A data placement strategy is implemented through 
the specification of the data that are  eligible to be 
retained in processor  storage and those that may  be 
retained in the DASD control unit cache. Data are 
made eligible  for  processor  storage by placing them 
in virtual storage. Data are made eligible  for DASD 
control unit cache through service-level  specification 
and placement  within the DASD subsystem.  (See the 
section on DASD control unit cache.) 

The choice of  which data to virtualize  is  based on 
several  factors.  First, can the data be  virtualized? If 
there is no mechanism that allows a substantial 
amount of the data in question to be  placed in virtual 
storage, the choice  is  academic.  Second, do the data 
have an attractive access  density, that is,  can the 
movement rate to a lower  level of the hierarchy be 
significantly  reduced by retaining a manageable 
amount of the data? Third, are the data shared with 
another system? If so, management of the data to 
ensure that each  system  has an up-to-date  copy  may 
prohibit significant I/O reduction. The types of data 
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Figure 5 Storage size versus 110 rate 
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that can be attractive candidates for  processor  storage 
include: program  libraries, other libraries with  fre- 
quently read members, nonsequentially accessed 
databases  (such as those  used by IMS, CICS, and D B ~ ) ,  
and temporary files.  By placing data in processor 
storage, the read  activity (READ I/O) from the lower 
levels  of the hierarchy  is  generally reduced. However, 
in the case of temporary files both READ and WRITE 
accesses can be eliminated. Reference 4 provides an 
overview  of the data eligible for processor  storage. 

There are effectively no restrictions on the type of 
data that may  reside in the DASD control unit cache. 
In addition, several features of the DASD control unit 
cache (DASD FAST WRITE, DUAL COPY) address areas 
beyond  read-access performance for permanent data. 
Thus, the choice of which data to make  eligible to 
this level  of the hierarchy is  based on the following 
system  characteristics: the performance require- 
ments for READS and WRITES, the access density to 
the data; the availability requirements of the data; 
and the cross-system sharing characteristics of the 
data. The types of data that are attractive candidates 
for DASD control unit cache include the following: 
frequently  read data that was not appropriate to be 
held in processor  storage; data with a need  for  fre- 
quent  and/or fast updates (WRITE VO); data with  high 
availability requirements, and data being updated by 
more than one system. 

Concluding  remarks 

A storage  hierarchy is the natural system structure 
to take best  advantage of the total set of available 
storage  technologies. It provides a sophisticated and 
elegant solution to the key problems of storage  per- 
formance and cost.  Storage  hierarchies  have  been 
successfully  utilized in addressing the problems of a 
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speed  mismatch  between the CPU and DASD and 
between the CPU and real  storage. The value  of the 
hierarchy  has  been  recognized in large-scale  proces- 
sor  systems  for quite a  while and is now  being  utilized 
to some  extent in both  medium and small-scale 
processing  systems.  Virtual  storage  is the key to 
making the physical  storage  subsystem transparent 
to the users  of the system.  New  facilities  available 
with MvSIEsA such  as data spaces and hiperspaces 
provide the structures that allow  easy and almost 
unlimited  growth of virtual  storage  capacity. This in 
turn provides the maximum value  from the storage 
hierarchy. The future will include ultra-large  proc- 
essing  systems  with an ever-increasing requirement 
for  on-line data capacity that can be  accessed both 
quickly and efficiently.  In  this environment, storage 
hierarchies will become  even more important. Be- 
cause  they will result in higher  performance,  they 
will be  used more extensively. 

MVS/ESA, Enterprise Systems Architecture/370, ESA/370, and 
MVS/XA are trademarks of International Business Machines Cor- 
poration. 
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