Concepts of Enterprise
Systems Architecture /370

Enterprise Systems Architecture/370™ (ESA/370™) is
the next step in the architectural evolution of IBM’s
large processors from System/360 to System/370 to
System/370 Extended Architecture (370-XA). ESA/370
includes all of the facilities of 370-XA and also signifi-
cant new facilities. It greatly increases the amount of
apparent main storage that is readily available for use.
It provides for more efficient secure program linkage,
with increased status saving and restoring, among hi-
erarchically or nonhierarchically organized programs.
It allows improved control program efficiency.

he foremost central-processor-related attribute

of the architectural progression in the Enterprise
Systems Architecture/370™ (Esa/370™) family has
been ever-increasing apparent main storage. This
storage was expanded first through the mechanism
of virtual storage, as provided by dynamic address
translation in System/370,' and then through the
increase of the address size from 24 bits to 31 bits in
System/370 Extended Architecture (370-XA).?

Associated with the increase in apparent main stor-
age (referred to hereafter simply as storage), the
means for providing domains of storage has been
augmented, where a domain is defined abstractly as
“a set of information and authorizations for the
manipulation of that information within a comput-
ing system.”” Domains were initially provided by
storage keys associated with 2048-byte (now 4096-
byte or 4K) blocks of storage and a matching access
key, called the psw key, in the program status word
(psw) (and also by the privileged supervisor state,
which is used to establish a domain and can be used
to circumvent any type of domain). The domains
were then enhanced by the inherent ability of dy-

BM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

by K. E. Plambeck

namic address translation (assuming appropriate
support by a control program) to provide not only a
virtual storage but a unique address space for each
user of the system; that is, a set of contiguous virtual
addresses that each user may use but which maps, at
least partially, to actual main storage that is sepa-
rately assigned to each user. The segment-protection
facility of System/370 and the page-protection facil-
ity of 370-XA are other additions to the original
domain-producing facilities.

Domains are a way of isolating users, but complete
isolation is usually not desired. Accordingly, the dual
address-space (DAS) facility was added as a feature
to System/370 in 1980 and then made standard in
370-XA. pAs improves the usability of user domains
by allowing machine-effected, as opposed to operat-
ing-system-effected, data access and program linkage
between domains.

4
ESA/370 further enhances storage amounts and user
domains. Specifically, ESA/370 provides improved
means for

% Moving data between two address spaces

% Using the complete instruction set to operate on
data in other than the instruction address space

& Transferring control between address spaces

© Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

PLAMBECK 39

The new facilities of ESA/370 evolved from DAS, and
an understanding of DAS is a precursor to under-
standing the new facilities. In this paper, the way
DAS is used to communicate between address spaces

There is a prefix register for each
central processorin a
multiprocessing configuration.

and the problems that still remain when DAS is used
are described, as are the expanded and new solutions
provided by ESA/370.

The functions provided by DAS and by the new
facilities of ESA/370 are under the control of authori-
zation elements and mechanisms. The latter are
described along with the functions and are summa-
rized in the Appendix.

We first provide background with brief discussions
of storage terminology and dynamic address trans-
lation. Information about the general attributes and
development of System/360, System/370, and 370-
XA is given in References 5, 6, 7, and 8.

Storage. Main storage, which is sometimes called
processor storage, is “the program-addressable stor-
age from which instructions and other data can be
loaded directly into registers for subsequent execu-
tion or processing.”9 In the early members of the
ESA/370 family of machines, main storage consisted
of magnetic cores until the advent of transistorized
storage in the System/370 Model 145 in 1970.

In a virtual-storage system, main storage is called
real storage. Virtual storage is “the storage space that
may be regarded as addressable main storage by the
user of a computer system in which virtual addresses
are mapped into real addresses.”

The term “apparent main storage” is used in this
paper to mean main storage in a nonvirtual-storage
system and virtual storage in a virtual-storage sys-
tem.

40 rLaveeck

In ESA/370, virtual storage is provided in 4096-byte
units called pages, and the 4096-byte unit of real
storage that corresponds to a page, if any, is called a
page frame. Pages are contained within 1-megabyte
units called segments. Pages, page frames, and seg-
ments begin on integral boundaries; that is, the ad-
dress of the first location within a unit is a multiple
of the size of the unit.

An object is usually said to reside in real storage only
if it is addressed by means of a real address. (Most
of the control structures specified in the architecture
point to one another by means of real addresses and
so are said to be in real storage.)

Absolute storage is the same as real storage in that,
in general, real addresses correspond one-to-one to
absolute addresses. The exception is real addresses 0
to 4095, which are said to designate locations within
the prefix area and are changed to absolute addresses
by adding the contents of a prefix register to them.

There is a prefix register for each central processor
in a multiprocessing (shared main storage) configu-
ration (as well as in a uniprocessor configuration).
The contents of the prefix register are called the
prefix, and the process of adding the prefix to real
addresses 0 to 4095 is called prefixing. The prefix
designates a 4096-byte block (on an integral bound-
ary) of absolute storage.

The prefix area contains storage locations assigned
for special use by the central processor. For example,
the prefix area contains the locations in which the
old psw is stored and from which the new psw is
fetched during an interruption. Prefixing allows each
central processor to have its own prefix area in
absolute storage and thereby avoids interference with
the other central processors in the configuration.
(The assigned storage locations are actually in only
the first 512 bytes of the prefix area, although this is
subject to change. There is also reverse prefixing, in
which the real-storage block designated by the prefix
is mapped to absolute-storage block 0. Reverse pre-
fixing allows all central processors to access absolute-
storage block 0.)

A seven-bit storage key is associated with each 4096-
byte block of absolute storage. The storage key con-
sists of four access-control bits, a fetch-protection
bit, a reference bit, and a change bit. A store access
to the block is prohibited unless a four-bit access key
either matches the access-control bits or is all zeros.
For central-processor operations (as opposed to 1/0

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

operations), the access key is the PSw key in the psw.
When the fetch-protection bit is one, a fetch access
is similarly prohibited. The reference and change bits
are set to one when a reference is made to the block
and when the contents of the block are changed,
respectively. Privileged instructions are provided for
setting and inspecting the storage key. The protection
provided by means of the storage key is called key-
controlled protection.

Auxiliar}; storage is “a storage device that is not main
storage,”” for example, magnetic tape or a direct-
access storage device (DASD). (The 1BM 3090 proces-
sor expanded storage, which is addressable by block
number instead of by byte address, is a form of
auxiliary storage.)

Dynamic address translation. In ESA/370, a virtual
address is translated to a real address by a process
called dynamic address translation (DAT). DAT uses
a segment-table designation in a control register and
a segment table and a set of page tables in real or
absolute storage. (It cannot be predicted whether
prefixing is applied to references to the DAT tables
during DAT. This simply means that no part of the
DAT tables should be placed in the prefix area or
absolute-storage block 0.)

The segment-table designation and a 31-bit virtual
address are shown in Figure 1. The segment-table
designation specifies the origin and length of the
segment table. The segment-index part of the virtual
address selects an entry in the segment table, which
entry, if valid, specifies the origin and length of a
page table. The page-index part of the virtual address
selects an entry in the designated page table. The
page-table entry, if valid, contains the address of a
page frame in real storage. This page-frame address,
with the 12-bit byte-index part of the virtual address
appended on its right, is the resulting real address.
An interruption occurs if the segment-table entry or
page-table entry is invalid, with the result that the
control program normally makes the entry valid and
then causes the translation to be repeated.

The control program normally marks a segment-
table entry as invalid if it has not yet created the
page table that is to be pointed to from the segment-
table entry, and it normally marks a page-table entry
as invalid if it has not yet assigned a page frame to
correspond to the page represented by the page-table
entry. When the control program assigns a page
frame after the first reference to a page, the page
frame normally contains all zeros. If it is not the first

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

Figure 1 Segment-table designation and virtual address

SEGMENT-TABLE DESIGNATION

SEGMENT-TABLE SEGMENT-
ORIGIN TABLE
LENGTH
01 20 25 31

VIRTUAL ADDRESS

SEGMENT
INDEX

reference, the control program reads the contents of
the page from auxiliary storage and places them in
the page frame. The control program reclaims page
frames by writing their contents to auxiliary storage
if the contents have been changed (as indicated by a
change bit).

A segment-table designation corresponds to an ad-
dress space. The control program provides address-
ability to different address spaces by changing the
segment-table designation in the control register.

In addition to the protection against stores and
fetches provided by the storage key, stores can be
prohibited in System/370 by means of a bit in the
segment-table entry and in 370-XA and ESA/370 by
means of a bit in the page-table entry.

The first and third of the following three subsections
describe the situation prior to ESA/370 and MVS/ESA™,
Changes are described later in this paper.

Common and private segments. It is often useful to
have a segment containing the same information
exist at the same location in all address spaces as, for
example, a segment containing part of the control
program. Such a segment is called a common seg-
ment. A common segment is provided by having
each segment table contain, at the same segment-
index position, the designation of the same page
table. A segment that is not a common segment is
called a private segment.

paveeck 41

Figure 2 ASN-second-table entry

AUTHORITY -
TABLE
ORIGIN

AUTHORIZATION AUTHORITY ~
INDEX TABLE
LENGTH

SEGMENT-
TABLE ST
DESIGNATION .

In Mvs, the set of all common segments in an address
space is called the common area, and the set of all
private segments is called the private area. Note that
a program or an item of data present in the common
area is in all address spaces.

Translation-lookaside buffer. The central processor
uses a translation-lookaside buffer (TLB) to carry out
DAT with good performance. The TLB contains copies
of DAT-table entries that have been used recently to
perform translations. If the same DAT-table entries
are required again, the copies of them in the TLB are
used instead of fetching the entries from real or
absolute storage again. Except as will be described, a
TLB entry can be used for a translation only if the
segment-table origin that was used when the entry
was formed (this origin is kept as part of the entry)
is the same as the segment-table origin that is part of
the current segment-table designation in the control
register. This condition ensures that a TLB entry
formed because of a reference to one address space
will not be used to translate a reference to another
address space.

Common-segment bit. To allow a still further im-
provement in performance, a segment-table entry
contains a bit named the common-segment bit. This
bit should be set to one in each segment-table entry
that defines a common segment. A TLB entry formed
from a segment-table entry in which the common-
segment bit is one, or from any page-table entry
designated by that segment-table entry, is used to
perform a translation regardless of the segment-table
origin currently being used. Thus, only one set of

42 rLaveeck

TLB entries is needed for a common segment regard-
less of how many different address spaces contain
the common segment, and having one set decreases
the number of references to the DAT tables in real or
absolute storage.

Dual address-space facility

The dual address-space (DAS) facility allows opera-
tions on two address spaces concurrently. These
address spaces are called the primary address space
and the secondary address space, and they are de-
fined by a primary segment-table designation (PSTD)
and a secondary segment-table designation (SSTD) in
control registers.

All address spaces are identified by means of a 16-
bit binary address-space number (asN). The asNs for
the current primary and secondary address spaces
are also in control registers.

DAS includes instructions that use a two-level table
structure, anchored in a control register, to translate
an ASN and locate the corresponding ASN-second-
table entry (ASTE). The AsN-second-table entry resides
in real storage and is the principal control structure
representing an address space. It contains the seg-
ment-table designation that defines the space. It also
contains other control information that applies to
the space, as shown in Figure 2. This other infor-
mation is described in the subsections that follow.

The invalid (I) bit in the AsN-second-table entry
indicates, when one, that the entry is invalid; that is,
either (1) the entry is not currently assigned to rep-
resent an address space, or (2) the segment and page
tables for the address space are not currently in real
or absolute storage.

The instructions that perform AsN translation obtain
the segment-table designation from the located ASN-
second-table entry and place it in a control register
as the primary or secondary segment-table designa-
tion. Such an instruction also updates the corre-
sponding ASN in a control register.

DAS allows the following:

» A program being executed in the primary address
space can move data between the primary address
space and the secondary address space.

e A program being executed in the common area
(the area that is in all address spaces) can use the
complete instruction set to operate on data in

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

either the primary address space or the secondary
address space. (However, as will be described, it
must issue a control instruction to select which
one of these two spaces it can access.)

* A program being executed in one address space
can transfer control to a program in another ad-
dress space. The address space containing the
called program becomes the primary address
space, and the space containing the calling pro-
gram becomes the secondary address space. This
setting of the primary and secondary address
spaces allows the called program to move data
between the address spaces. There is also a return
linkage mechanism.

We now describe the above capabilities in more
detail and point out problems that still remain. The
authority elements and mechanisms that control the
capabilities also are described.

Moving data between spaces with DAS. DAs includes
the following instructions, whose operations are il-
lustrated in Figure 3:

* MOVE TO PRIMARY, which moves data from the
secondary address space to the primary address
space

* MOVE TO SECONDARY, which moves data from the
primary address space to the secondary address
space

* SETSECONDARY ASN, which causes an address space
designated by means of its ASN to become the
secondary address space

When setting the secondary address space to other
than the current primary address space, SET SECOND-
ARY ASN must be authorized by an authorization
index (AX), which is a 16-bit binary integer in a
control register. Each address space has associated
with it an authority table that contains a list of the
authorization indexes that allow the space to be
established as the secondary space by means of the
SET SECONDARY ASN instruction.

Each address space has associated with it a single
authorization index that is in the ASN-second-table
entry for the space. The authorization index for an
address space is placed in the authorization-index
control-register position whenever the space be-
comes the primary address space. This authorization
index then applies to the programs that are executed
in the primary address space. The origin and length
of the authority table for an address space also are
in the AsN-second-table entry for that space.

BM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

Figure 3 Moving data between the primary and secondary
address spaces

SECONDARY SPACE

PRIMARY SPACE

SET
SECONDARY ASN

PROGRAM

MOVE TO
PRIMARY

MOVE TO
SECONDARY

COMMON

MOVE TO PRIMARY and MOVE TO SECONDARY have an
operand that specifies the key to be used, instead of
the Psw key, to access the secondary address space;
the psw key is used to access the primary address
space. This operand is useful when the source and
target data areas have different storage keys. (For
MOVE TO PRIMARY, it is useful when the source data
area is fetch-protected.)

The use of a particular secondary-space access key
by MOVE TO PRIMARY and MOVE TO SECONDARY must
be authorized by the psw-key mask (PKM), a 16-bit
mask in a control register. An access key is author-
ized if the bit corresponding to it in the PSw-key
mask is one.

DAS also includes these instructions:

e MOVE WITH KEY, which moves data only within a
single address space but, in the same way as MOVE
TO PRIMARY (authorized by the psw-key mask),
uses a specified access key, instead of the psw key,
to access the source data area

paveeck 43

Figure 4 Moving data between arbitrary spaces (not in DAS)

INSTRUCTION SPACE

SPACE X

SPACE Y

PROGRAM |/

COMMON

* SET PSW KEY FROM ADDRESS, which sets the psw
key to a specified value if this value is authorized
by the psw-key mask

The psw-key mask that applies to a program is a
property of the entry point at which the program is
given control; unlike the authorization index, it is
not a property of the primary address space in which
the program is executed. (How a psw-key-mask
value is assigned to a program is described later.)

Problem—Moving data between arbitrary address
spaces. A program issuing the instructions MOVE TO
PRIMARY Or MOVE TO SECONDARY can move data
between two address spaces only when one of the
spaces 1s the instruction space; data cannot be moved
between two arbitrary address spaces. Figure 4 illus-
trates this missing capability.

Problem—Applicability of authorization index. Be-
cause all of the programs in a particular primary
address space have the same authorization index, all
of them are equally authorized to establish another
address space as the secondary one by means of the
SET SECONDARY ASN instruction. This problem could
be circumvented by mapping two or more address
spaces (different ASNs) to real storage by means of
exactly the same set of DAT tables and associating a
different authorization index with each space. How-

44 PiavBECK

ever, this circumvention would increase the over-
head related to the management of address spaces
by the control program.

Operating on data in another address space with
DAS. DAS provides two virtual translation modes
that are selected by a bit in the psw, which has
meaning only when DAT is on. The names and
properties of these modes are

e Primary-space mode. Instruction addresses (the
addresses of locations from which instructions are
fetched, including branch addresses and the ad-
dress of the target of the EXECUTE instruction) and
data addresses (called logical addresses in the ar-
chitecture) are in the primary address space.

» Secondary-space mode. Whether instruction ad-
dresses are in the primary address space or the
secondary address space cannot be predicted. Data
addresses are in the secondary address space.

The SET ADDRESS SPACE CONTROL instruction is used
to switch between the primary-space and secondary-
space modes. The INSERT ADDRESS SPACE CONTROL
instruction is used to obtain an indication of the
current mode so that the current mode can be saved
and then restored later by SET ADDRESS SPACE CON-
T_ROL.loNo authorization is required for these instruc-
tions.

The unpredictability of instruction addresses in the
secondary-space mode means that first one instruc-
tion could be fetched from the primary address space
and then the next instruction could be fetched from
the secondary address space. The only way to have
a program run reasonably under these conditions is
for it to be in the common area. A program in the
common area can switch between the primary-space
mode and secondary-space mode and can thereby
use the complete instruction set to operate on data
in either the primary address space or the secondary
address space, as shown in Figure 5.

The program.in Figure 5 is initially in the primary-
space mode and loads X from the primary address
space into a register. It then issues SET ADDRESS SPACE
CONTROL to change to the secondary-space mode
and compares the contents of the register to Y in the
secondary address space.

Problem—Use of common, and performance, in the
secondary-space mode. A large problem is the re-
quirement that a program using the secondary-space
mode must be in the common area; placing the

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

program in the common area increases the size of
the common area and decreases the size of the pri-
vate area. Also, SET ADDRESS SPACE CONTROL is a
serializing instruction (drains the pipeline by waiting
until all stores are completed and by causing all
prefetched information to be discarded), so it is not
practical, if good performance is desired, to switch
back and forth frequently between the primary-space
and secondary-space modes.

Some history is in order here. The secondary-space
mode was originally defined so that, in it, instruction
addresses would be predictably in the primary ad-
dress space. This definition does not require a pro-
gram using the mode to be in the common area.
However, neither the 1BM 3031 and 3033 processors
nor the 308X processor, which were the first ma-
chines to implement DAS, have more than one seg-
ment-table designation in hardware. Therefore, those
processors fetch instructions from the secondary ad-
dress space when in the secondary-space mode."'
This is undesirable because it means that SET AD-
DRESS SPACE CONTROL is, in effect, a branch instruc-
tion; the next instruction is not fetched from the
next sequential location unless the program is in the
commeon area.

The 1BM 3090 processor does have two segment-table
designations in hardware and does fetch instructions
from the primary address space when in the second-
ary-space mode. To provide compatibility among
the 3031, 3033, 308X, and 3090, the “unpredictable”
definition was introduced.

At one time it was planned to announce an “instruc-
tion-space-separation facility” (1SSF) on the 3090 to
explain its different operation in the secondary-space
mode. However, it was finally realized that the orig-
inally intended definition of the secondary-space
mode (the same definition as ISSF) is unsatisfactory
because most programs are always written to include
some data, if only constants, within the programs.
Although the primary purpose of a program may be
to access only the secondary address space, the pro-
gram usually must actually access both the primary
address space and the secondary address space in
rapid succession, and this is not possible with good
performance using DAS.

In summary, the mechanism of a secondary address
space, with respect to which the MOVE TO PRIMARY
and MOVE TO SECONDARY instructions can be used,
is very useful, but the mechanism of a secondary-
space mode is not.

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

Figure 5 Operating on data in two address spaces

PRIMARY SPACE SECONDARY SPACE

LOAD X INTO REGISTER,

SET ADDRESS SPACE CONTROL
TO SECONDARY-SPACE MODE,
COMPARE REGISTER TO Y

COMMON

DAS program linkage. DAS includes the PROGRAM
cALL and PROGRAM TRANSFER instructions for trans-
ferring control between programs in either the same
or different address spaces. Generally, PROGRAM
CALL is used to perform a calling linkage, and PRO-
GRAM TRANSFER is used to perform the related return
linkage.12

Calling linkage. PROGRAM CALL uses an operand that
is a 20-bit binary integer called a pC number. PRO-
GRAM CALL translates the PC number to locate an
entry-table entry that specifies state changes to be
made, as follows:

» Primary address space. The primary address space
can either be left unchanged, with the operation
then called PROGRAM CALL to current primary, or
be changed to one specified by means of its ASN
in the entry-table entry, called PROGRAM CALL with
space switching. In a space-switching operation,
the ASN is translated to obtain a segment-table
designation, which replaces the primary segment-
table designation.

 Instruction address. The instruction address in the
PSW is replaced from the entry-table entry.

o Problem state. The problem-state bit in the psw is
replaced from the entry-table entry, thus placing
the machine in either the problem state or the
supervisor state.

rameeck 45

*, Addressing mode. The addressing-mode bit in the
PSW is replaced from the entry-table entry, thus
placing the machine in either the 24-bit addressing
mode or the 31-bit addressing mode.

o, PSW-key mask. The psw-key mask is ored with
an entry key mask (EKM) in the entry-table entry,
and the result replaces the psw-key mask. This
action can increase the authority provided by the
PSw-key mask."”

pPC-number translation locates an entry-table entry
within a two-level table structure consisting of a
linkage table and of entry tables designated by link-
age-table entries. The origin and length of the linkage
table, called the linkage-table designation (LTD), is
in a control register. The linkage table and entry
tables are in real storage.

PROGRAM CALL sets the secondary address space
equal to the old primary address space: The old
primary segment-table designation replaces the sec-
ondary segment-table designation. This occurs even
in a to-current-primary operation so that the called
program will be unaware of whether the linkage was
space-switching and can always access its caller’s
parameters in the secondary address space.

In the case of a space-switching PROGRAM CALL, a
new authorization index and a new linkage-table
designation are obtained from the asN-second-table
entry for the new primary address space and are
placed in their control-register positions.

The PROGRAM CALL operation must be authorized
by means of a 16-bit authorization key mask (AKM)
in the entry-table entry. The authorization key mask
is ANDed with the psw-key mask before the psw-key
mask is replaced. If the result is nonzero, the opera-
tion is authorized.

Because all of the programs being executed in a
particular primary address space have the same link-
age-table designation in a control register, all of them
have available the same set of entry-table entries.
However, because the programs can have different
pSw-key masks and the entry-table entries can con-
tain different authorization key masks, the programs
can be authorized differently to use the entry-table
entries in PROGRAM CALL operations. For example,
with the assumption that a primary address space
contains a user program and parts of subsystem
A and subsystem B, the user program might be au-
thorized to call subsystem A but not subsys-
tem B, whereas subsystem A is authorized to call
subsystem B.

46 PLAMBECK

Return linkage. PROGRAM CALL places the old pri-
mary ASN, problem-state bit, addressing-mode bit,
psw-key mask, and the return address, in general
registers. The called program is expected to save the
contents of these registers and then provide the con-
tents as operands of the PROGRAM TRANSFER instruc-
tion that it uses to return to the calling program.

If the AsSN specified as an operand of PROGRAM
TRANSFER is the same as the current primary ASN,
the operation is called PROGRAM TRANSFER t0 current
primary; otherwise, it is called PROGRAM TRANSFER
with space switching,.

The PROGRAM TRANSFER instruction performs oper-
ations as follows:

o, If the operation is space-switching, the ASN that is
specified as an operand is translated to obtain a
segment-table designation, which replaces the pri-
mary segment-table designation. This must be au-
thorized by the current authorization index (the
authorization index for the address space of the
called program). The authority table of each ad-
dress space contains a list of the authorization
indexes that allow the space to be established as
the primary address space by means of PROGRAM
TRANSFER. This list is different from the list that
applies to SET SECONDARY AsN.'* If the operation
is to-current-primary, the current primary seg-
ment-table designation remains unchanged.

*, The secondary segment-table designation is set
equal to what is now the primary segment-table
designation.

¢, The problem-state bit, addressing-mode bit, and
return address that are specified as operands are
placed in the pSw. However, the problem-state bit
is allowed to specify the supervisor state only if
PROGRAM TRANSFER is executed in the supervisor
state.

¢, The psw-key mask (in a control register) is ANDed
with the psw-key mask that is specified as an
operand, and the result replaces the psw-key mask.
This action can decrease the authority provided
by the psw-key mask.

A space-switching PROGRAM TRANSFER places a new
authorization index and linkage-table designation in
their control-register positions—both are obtained
from the AsN-second-table entry for the returned-to
primary address space.

Problem—Register save areas. The conventional
procedure when transferring control through a chain

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

of programs is for each program to provide a save
area pointed to by general register 13, and then for
each called program to save the general-register con-
tents in the caller’s save area and forward-chain and
backward-chain the caller’s save area and its own
save area together. Then if an error occurs requiring
analysis of a dump, the chain of save areas can be
examined in either the forward direction, starting at
a standard location, or the backward direction, start-
ing at the location designated by register 13.

The code that a called program usually uses to

manipulate save areas is inadequate when it and the
calling program are in different address spaces. This

It is unreasonable for different
subsystems to be hierarchically
ranked.

is particularly true when the called program is re-
entrant and would normally begin by saving registers
in the caller’s save area before using a control pro-
gram service to obtain storage of its own. Therefore,
when PROGRAM CALL was introduced, so was an Mvs
control program service named PCLINK. PCLINK es-
tablishes a special save area and backward-chains it
to the caller’s save area. Because PCLINK must disable
the machine for 1/0 and external interruptions under
certain circumstances, it requires that the program
requesting the PCLINK service be in the supervisor
state.

Two problems are related to PCLINK. First, although
it was intended that PROGRAM CALL be a fast means
of going across address spaces without intervention
by the control program, serviceability requirements
and functional requirements of re-entrant programs
cause the called program to immediately invoke the
PCLINK service, which detracts from the perform-
ance. ~ Second, since PCLINK requires the supervisor
state, PROGRAM CALL cannot be used to give control
to a problem-state program in another address space.

Ideally, subsystems should be problem-state pro-
grams so that they do not pose even a nonmalicious
threat to system integrity.

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

Problem—Hierarchical linkage, PROGRAM CALL pro-
vides only a hierarchical-type linkage; that is, the
called program is always of equal or higher authority
than the calling program. This hierarchy is evidenced
in three ways:

1. PROGRAM CALL cannot be used to give control
from a supervisor-state program to a problem-
state program because the paired PROGRAM
TRANSFER instruction cannot restore the supervi-
sor state when executed in the problem state.

2. PROGRAM CALL can increase the authority pro-
vided by the pSw-key mask or leave it unchanged.
It cannot decrease the authority, nor can it sub-
stitute a completely different authority.

3. Because PROGRAM CALL sets the secondary seg-
ment-table designation equal to the old primary
segment-table designation, the called program al-
ways has access to the instruction address space
of the calling program.

Although it may usually be reasonable for a subsys-
tem to have higher authority than a user program, it
is unreasonable for different subsystems to be hier-
archically ranked. For example, to do distributed
data processing, a database subsystem calls a termi-
nal subsystem to send data to another node in the
teleprocessing network, which, at the other node,
causes the terminal subsystem to call the database
subsystem. Neither of these subsystems should have
to expose its resources to the other one.

The use of PROGRAM TRANSFER to give control from
a subsystem to a user exit routine and then of prO-
GRAM CALL to return to the subsystem (mentioned
in a note previously) is symptomatic of the inability
to use PROGRAM CALL to perform a nonhierarchical
linkage.

Problem—Setting of secondary address space by
PROGRAM TRANSFER. A minor problem is that PRO-
GRAM TRANSFER, even a PROGRAM TRANSFER to the
current primary, sets the secondary segment-table
designation equal to the new primary segment-table
designation. Thus, the returned-to program may no
longer have the same secondary address space as it
did before it issued PROGRAM CALL. If the returned-
to program is authorized, it can use SET SECONDARY
ASN to re-establish its original secondary address
space.

Problem—Calling fetch-protected code. A final prob-
lem is that PROGRAM CALL does not change the psw
key and, therefore, cannot be used to give control to

PLameeck 47

Figure 6 Use of access registers

INSTRUCTION

DISPLACEMENT

IN ACCESS-REGISTER MODE

GENERAL REGISTER

ACCESS REGISTER

ACCESS-
REGISTER
TRANSLATION

SEGMENT-TABLE DESIGNATION

8| BASE ADDRESS

y

[e

+_J:

VIRTUAL ADDRESS

DYNAMIC
ADDRESS
TRANSLATION

fetch-protected code that has a different storage key
than does the calling program. This problem is of
increasing significance as subsystems become more
and more proprietary.

ESA/370 facilities

The advanced address-space facilities of ESA/370 offer
improvements in two major areas:

* Data accessing. Data can be accessed concurrently
by the program in up to 16 different address
spaces, including the instruction space, without
changing any control parameiers. This facility is
provided by means of 16 new registers named
access registers. Still more address spaces can be
accessed by changing the contents of the access
registers,

48 rLaveECK

e Program linkage. The contents of an entry-table
entry are augmented to allow increased status
changing during a PROGRAM CALL operation. A
linkage stack is provided for saving status during
the operation and for restoring it by means of a
new instruction named PROGRAM RETURN. A new
branch-type linkage also uses the linkage stack.

The ESA/370 functions outlined above solve the DAS
problems listed earlier in this paper. They also have
other valuable features, as will be described.

ESA/370 is an upward-compatible extension of 370-
XA, although access registers are completely new.
Programs written to use DAS, or even only pre-DAS
facilities, will continue to be executed successfully
on any ESA/370 model.

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

ESA/370 also provides additional functions for im-
proving the efficiency of the control program, and it
includes a private-space facility for excluding the
common area from specified address spaces.

Access registers. ESA/370 provides sixteen 32-bit ac-
cess registers numbered O to 15. Access registers are
used to address storage operands in a new translation
mode named the access-register mode, which results
from new bit settings in the psw.

In the access-register mode, an instruction B or R
field that designates a general register containing a
storage-operand address also designates the same-
numbered access register. The contents of the access
register are used in a process called access-register
translation (ART) to obtain the segment-tabie desig-
nation that will be used to translate, by means of
DAT, the storage-operand address. The use of access
registers is shown in Figure 6.

For example, consider the following instruction,
which moves the second operand, of length L, to the
first-operand location:

mvce 0(L,1),0(2)

General register 2 contains the address of the second
operand, and general register 1 contains the address
of the first-operand location. In the primary-space
mode, both the second-operand and the first-oper-
and location are in the primary address space (the
instruction space). In the access-register mode, the
second operand is in the address space specified by
access register 2, and the first-operand location is in
the address space specified by access register 1. Either
or both of these spaces may be the same as or
different from the primary address space, which is
still the instruction space.

The DAS instruction SET ADDRESS SPACE CONTROL is
changed so that it can set the access-register mode as
well as the primary-space and secondary-space
modes. INSERT ADDRESS SPACE CONTROL is changed
so that it can return an indication of the access-
register mode.

An address space specified by means of an access
register is called an AR-specified address space. Access
registers apply only to data addresses, not instruction
addresses. In the access-register mode, instructions
are always fetched from the primary address space.
(It is not possible to branch from one address space
to another.)

IBM SYSTEMS JOURNAL, VOL. 28, NO 1, 1989

Figure 7 Format-RX instruction

OP CODE

0 8 12 16 20 31
STORAGE-OPERAND ADDRESS = {X;) + {B,) + D,

When a B or R field designates access register 0, the
contents of access register 0 are ignored, and the
designated storage operand is treated as being in the
primary address space.

A format-Rrx instruction has an X field that desig-
nates a general register containing an index that is
to be added to the base address. The contents of the
access register designated by the X field are ignored;
only the access register designated by the B field is
used in access-register translation. A format-rRX in-
struction is illustrated in Figure 7.

Through the use of access registers, data can be
moved between any two address spaces (see Figure
3), and the complete instruction set can be used to
operate on data in multiple different address spaces
without changing any control parameters.

The DAS instructions MOVE TO PRIMARY and MOVE
TO SECONDARY are not allowed in the access-register
mode. However, ESA/370 includes two new instruc-
tions: MOVE WITH SOURCE KEY and MOVE WITH DES-
TINATION KEY. They can be used, either in or not in
the access-register mode, to move data alternately in
both directions between two storage areas that are
fetch-protected by means of different storage keys,
without changing the psw key. Also, the DAS instruc-
tion MOVE WITH KEY remains available for use.

Access-list-entry token. The contents of an access
register are called an access-list-entry token (ALET)
because, in the general case, they designate an entry
in a data area called an access list. Access-register
translation uses the contents of the designated access-
list entry to obtain the segment-table designation
that will be used by DAT. The term “token” is used
because an ALET does not directly convey any capa-
bility to access an address space; it only designates
an access-list entry, which represents the actual ca-
pability.

pLaveeck 49

ALETs are manipulable as ordinary data. ESA/370 in-
cludes instructions for transferring ALETs between
access registers, general registers, and storage. Specif-
ically, a called program can save the contents of the
access registers in storage, load the access registers
for its own purposes, and then restore the original

Entries in the access list are the
addressing capabilities that are
usable by means of access
registers.

contents so that the calling program will find them
unchanged. An ALET can be transferred to and from
access register 0 even though access register 0 does
not participate in the addressing of a storage operand.

There are two special values of the ALET, 00000000
hex and 00000001 hex, referred to as ALET O and
ALET 1, that specify the primary address space and
secondary address space, respectively, without the
use of an access-list entry. ALET O allows a program
to have access to its own instruction space without
the need to form an access-list entry that designates
the space. After a space-switching PROGRAM CALL,
ALET | similarly allows the called program to have
access to the caller’s instruction space. As will be
described, a called program can be denied access to
its caller’s space.

Access list. Entries in the access list are the addressing
capabilities that are usable by means of access regis-
ters. The access list is in real storage and is intended
to be protected from the problem-state program to
ensure the integrity of the addressing capabilities.

As described by Clark, '* the control program MVS/ESA
provides a service that allocates an access-list entry
and returns an ALET designating the entry. The ALET
can then be used by the requesting program to access
the address space designated by the entry. The con-
trol program also provides a service for deallocating
an access-list entry so that the entry can be reused.

50 rrameeck

An access-list entry is marked invalid when it is not
in the allocated state. An exception is recognized on
an attempt to use an invalid access-list entry.

Two access lists are actually available to a program
at the same time. One is called the dispatchable-unit
access list and the other the primary-space access list.
The dispatchable-unit access list is intended to be
permanently associated with the dispatchable unit
(the task or process) on behalf of which the program
1s executed. The primary-space access list is a prop-
erty of the primary address space in which the pro-
gram is executed. A bit in the ALET specifies which
one of the dispatchable-unit and primary-space ac-
cess lists is designated by the ALET.

A bit in the access-list entry specifies whether the
entry is public or private. No authorization is re-
quired for the use of a public access-list entry. The
use of a private access-list entry must be authorized
by an extended authorization index (EAX) in a control
register. The extended authorization index may be a
property of either the dispatchable unit or the pro-
gram, as will be described. It is not a property of the
primary address space in which the program is exe-
cuted.

Through the use of the extended authorization index,
an entry on a dispatchable-unit access list may be
usable by some, but not all, of the programs that are
executed to perform the work of the dispatchable
unit. Similarly, an entry on a primary-space access
list may be usable by some, but not all, of the
programs that are executed in the corresponding
primary address space. (In this discussion, a program
is considered to be in the address space that is
designated by the primary segment-table designation
in a control register when the program is executed.)

The DAs authorization index has a bearing on the
use of access registers since it authorizes the use of
SET SECONDARY ASN in establishing a secondary ad-
dress space, and the secondary address space can be
accessed by means of ALET 1. As has been said, the
authorization index is a property of the primary
address space.

The length of an access-list entry is 16 bytes.

Access-list designation. The real origin and length of
an access list are specified by an access-list designa-
tion (ALD). The access-list designation for the dis-
patchable-unit access list is in a control structure
named the dispatchable-unit control table (DUCT).

BM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

The access-list designation for the primary-space ac-
cess list is in an ASN-second-table entry named the
primary ASTE. The primary ASTE is the ASN-second-
table entry that represents the current primary ad-
dress space. The real origins of both the dispatchable-
unit control table and the primary ASTE are in control
registers.

When the new facilities of ESA/370 are active (con-
trolled by a control register bit), the address of the
primary ASTE is in the control register which contains
the linkage-table designation when the facilities are
not active (and in DAS). When the new facilities are

The access-list-entry number
designates an entry in the selected
access list.

active, PROGRAM CALL obtains the linkage-table des-
ignation for use in pC-number translation from the
primary ASTE, thus economizing on the number of
control registers that are used.

There are two formats of access-list designation,
format 0 and format 1.

A format-0 ALD specifies the length of the access list
in units of 128 bytes, thus making the length of the
access list variable in units of eight 16-byte entries.
With a format-0 ALD, the maximum length of the
access list is 128 units of 128 bytes, which equals 16
kilobytes or 1024 entries.

A format-1 ALD specifies the length of the access list
in units of 256 bytes, thus making the length of the
access list variable in units of sixteen 16-byte entries.
With a format-1 ALD, the maximum length of the
access list is 256 units of 256 bytes, which equals 64
kilobytes or 4096 entries.

An ESA/370 model implements either the format-0

ALD or the format-1 ALD but not both; that is, the
available ALD format is model-dependent, and no

1BM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

control is provided by which the program can specify
the format. (As of this writing, all models implement
format 0, and MVS/ESA supports an access list con-
taining at most 256 entries.)

Since two access lists are available for use at any
time and each access-list entry can specify a 2-
gigabyte address space, 2048 entries can provide a
total of 4 terabytes of addressable storage with the
format-0 ALD, and 8192 entries can provide a total
of 16 terabytes of addressable storage with the for-
mat-1 ALD.

Access-register translation. This subsection describes
the access-list-entry token and the access-list entry
in more detail and tells how they are used in the
access-register-translation process to obtain a seg-
ment-table designation for use by DAT.

As shown in Figure 8, the ALET contains a 16-bit
access-list-entry number (ALEN), an eight-bit se-
quence number (ALESN), and a primary-list (P) bit.
The primary-list bit selects the dispatchable-unit ac-
cess list if zero or the primary-space access list if one.
The appropriate access-list designation, in either the
dispatchable-unit control table or the primary ASTE,
respectively, is then used in the access-register-trans-
lation process.

The access-list-entry number designates an entry in
the selected access list. It is compared against the
length field in the access-list designation to ensure
that it designates an entry that is not beyond the end
of the access list, and it is then added to the origin
field in the access-list designation to form the real
address of the designated access-list entry (all with
appropriate shifting).

The invalid (I) bit in the access-list entry is tested for
being zero.

The access-list-entry sequence-number (ALESN) field
in the ALET is tested for being equal to the ALESN
field in the access-list entry. This testing ensures that
the ALET is not being used after the designated access-
list entry was reallocated to specify a different address
space. The control program increments the ALESN in
the access-list entry each time it reallocates the entry,
and it places the new value of the ALESN in the ALET
that it returns to the program that requested the new
allocation. Note that this is only a reliability mech-
anism. It provides no integrity since the requesting
program can change the ALESN in the ALET to any
value.

pameeck §1

Figure 8 Access-register translation

FORMAT -0 ACCESS~LIST DESIGNATION

ORIGIN

ALET IN ACCESS REGISTER

0000000

P{ SEQUENCE
NUMBER
(ALESN)

ACDESS-LIST .
ENTRY NUMBER
{ALEN)

e
L
»

ACCESS LIST

ALEAX

ASTE
ORIGIN
NUMBER

AST E »
. BEQUENCE

&

18 BYTES

v

ASN-SECOND~TABLE ENTRY

AUTHORITY -
TABLE
ORIGIN

AUTHORITY~
TABLE
LENGTH

AUTHORIZATION
INDEX

T SEGMENT-.
"TABLE . .
. DESIGNATION.

The origin of the AsN-second-table entry that repre-
sents the address space specified by the access-list
entry is obtained from the access-list entry, and the
invalid bit in this ASTE is tested for being zero.

The 32-bit ASTE sequence number in the access-list
entry is tested for being equal to the ASTE sequence
number in the ASTE. This testing ensures that the
access-list entry is not being used after a revocation
of the addressing capability that the entry represents.
The control program increments the ASTE sequence

52 rLameeck

number in the ASTE each time it assigns the ASTE to
represent a different address space and each time
some authorization policy concerning the repre-
sented address space is changed, for example, each
time a change is made to the authority table that is
pointed to from the ASTE. When the control program
allocates an access-list entry that provides access to
an address space, it places the ASTE sequence number
that is in the ASTE for the address space in the access-
list entry. Note that this is an integrity mechanism.
The mechanism is especially valuable because it

BM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

allows the control program to avoid keeping track of
the access-list entries that designate each ASTE and
then accessing those access-list entries in order to
revoke the addressing capabilities that they represent.

If we assume that all tests have been passed so far—
otherwise, an exception would have been recognized
and a program interruption would occur—the au-
thority of the program to use the access-list entry is
tested in the following ordered steps:

1. If the private bit in the access-list entry is zero,
the entry is public, and the program is authorized.

2. If the extended authorization index (EAX) in a
control register equals the ALEAX in the access-list
entry, the program is authorized.

3. If the EAX has a value which, if used as the
authorization index (aX) would allow the SET
SECONDARY ASN instruction to establish the spec-
ified address space as the secondary address space,
the program is authorized.

If the program is authorized, the segment-table des-
ignation in the ASTE is provided to DAT; otherwise,
an exception is recognized.

Note that an ASN is not used in access-register trans-
lation. If an ASTE designated by an access-list entry
represents an address space containing only data—
not also programs, so that its ASN need not be
specified in an entry-table entry—the ASTE need not
be in the two-level table structure that is indexed
into by the AsN-translation process. Such an ASTE is
sometimes called a pseudo ASTE. The number of
possible pseudo ASTEs is not restricted by the number
of possible ASNs (65 536).

When ALET O or ALET 1 is used, the process described
above does not occur, and the primary segment-table
designation or secondary segment-table designation
is obtained for DAT. The primary segment-table des-
ignation is also obtained if access register 0 is used.

Access-register translation occurs on every storage-
operand reference in the access-register mode. To
improve performance, the machine implements an
ART lookaside buffer (ALB) that is comparable to the
translation-lookaside buffer (TLB) used by DAT.

ESA/370 program linkage. In ESA/370, PROGRAM
CALL is changed to test a new bit, named the PC-type
bit, in the entry-table entry. If this bit is zero, PRO-
GRAM CALL performs the DAS operation, which is
now called the basic operation. If the bit is one,

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

PROGRAM CALL performs a new operation called the
stacking operation. The stacking operation makes
some state changes differently than the basic opera-
tion, and it saves the old state in an entry it forms
in a linkage stack. A new instruction named PRO-
GRAM RETURN logically deletes the linkage-stack state
entry and restores the old state.

The linkage stack resides in virtual storage (in the
home address space, which is described in a following
section of this paper). The linkage stack can consist
of one or more discontiguous sections, which are
chained together by means of a header entry and a
trailer entry in each section. The address of the last
state entry in the linkage stack, or of the header entry
of the current section if there is no state entry in that
section, is in a control register.

It is intended that there be a separate linkage stack
for each dispatchable unit and that the linkage stack
be protected from direct manipulation by the dis-
patchable unit. There are instructions for extracting
information from a state entry and for modifying
one field in the entry.

A new branch-type instruction can be used to form
a linkage-stack state entry. The branched-to program
returns to its caller by means of the PROGRAM RE-
TURN instruction.

Key-controlled protection does not apply to the in-
structions that operate specifically on the linkage
stack.

Calling linkage. Old programs that already contain
PROGRAM CALL can have the stacking operation per-
formed for them without the need to make any
changes in the programs. All that needs to be done
is to set the PC-type bit to one in the entry-table entry
used and to provide some additional state informa-
tion in the entry.17

The entry-table entry used in a stacking PROGRAM
CALL operation specifies the following state changes:

e Primary address space. As in the basic PROGRAM
CALL operation, either a to-current-primary or a
space-switching operation can be performed.

* Secondary address space. Under the control of a
bit in the entry-table entry, the secondary address
space can be set equal to either the old primary
address space or the new primary address space.
By setting the secondary space equal to the new
primary space, the called program is denied auto-

PLAMBECK 53

Figure 9 Linkage-stack program-call state entry

CONTENTS OF
GENERAL REGISTERS 0~15

R

CONTENTS OF
ACCESS REGISTERS 0-15

S R T B B S T DS T R At

PKM SASN EAX PASN

PSW

PC NUMBER*

MODIFIABLE AREA

ENTRY DESCRIFTOR

4
v

8 BYTES

*BRANCH ADDRESS IN A BRANCH STATE ENTRY

matic access to the primary space of the calling
program. The called program still may be able to
establish that space as the secondary space by
means of SET SECONDARY ASN."*

* [Instruction address, problem state, and addressing
mode. As in the basic operation, the instruction
address, problem-state bit, and addressing-mode
bit in the psw are replaced from the entry-table
entry.

* psw-key mask. Under the control of a bit in the
entry-table entry, the psw-key mask is replaced by
either (1) the OrR of the psw-key mask and the
entry key mask (in the entry-table entry) or (2) the
entry key mask. In the second case, the new psw-
key mask may provide reduced or entirely differ-
ent authority.

* psw key. Under the control of a bit in the entry-
table entry, the psw key can be either left un-
changed or replaced from the entry-table entry.

* Translation mode. Under the control of a bit in
the entry-table entry, the translation mode can be
set to etther the primary-space mode or the access-
register mode.

54 rLamseECK

o Extended authorization index. Under the control
of a bit in the entry-table entry, the extended
authorization index can be either left unchanged
or replaced from the entry-table entry. Thus, the
extended authorization index that authorizes use
of access-list entries by the called program can be
a property of either the dispatchable unit or the
called program, respectively.

Stacking PROGRAM CALL, like basic PROGRAM CALL,
is authorized by the authorization key mask in the
entry-table entry. A space-switching stacking PRO-
GRAM CALL instruction places a new primary-ASTE
origin and authorization index (properties of the new
primary address space) in the control registers. As
iltustrated in Figure 9, stacking PROGRAM CALL saves
the following state information in the linkage-stack
state entry that it forms:

¢ Complete psw with an updated instruction ad-
dress (the return address)

* Primary and secondary ASNs

* psw-key mask and extended authorization index

¢ Contents of general registers 0-15 and access reg-
isters 0-15

Stacking PROGRAM CALL also places the PC number
used, a two-word modifiable area, and an entry
descriptor in the state entry.

An entry descriptor is in all linkage-stack entries. It
contains an identification of the entry type (header,
trailer, or state) and also a next-entry-size field that
specifies the size of the next entry, if any. The entry-
type code includes an indication of whether a state
entry was formed by PROGRAM CALL or the new
branch-type instruction. The next-entry-size field al-
lows the logical end of the linkage stack to be deter-
mined in a storage dump.

ESA/370 includes instructions for extracting the infor-
mation in the last state entry in the linkage stack and
for modifying the contents of the modifiable area in
the entry. The purpose of the modifiable area is to
allow a program to “footprint” its progress so that
appropriate recovery actions can be taken if the
program fails.

A state entry formed by PROGRAM CALL is called a
program-call state entry.

ESA/370 includes the BRANCH AND STACK instruction,

which can be used in place of BRANCH AND LINK.
The only state information changed by BRANCH AND

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

STACK is the instruction address in the PSW. BRANCH
AND STACK forms a branch state entry that is the
same as a program-call state entry, except that it
indicates that it was formed by BRANCH AND STACK
and contains the branch address instead of a pC
number.

The addressing-mode bit and instruction address
that are part of the complete PSw saved in a branch
state entry can be either the updated"’ values in the
PSW or can be specified in a register as an operand
of BRANCH AND STACK. This register can be one that
had link information placed in it by a BRANCH AND
LINK, BRANCH AND SAVE, BRANCH AND SAVE AND SET
MODE, or BRANCH AND SET MODE instruction. Thus,
BRANCH AND STACK can be used either in a calling
program or at (or near) the entry point of a called
program, and, in either case, a PROGRAM RETURN at
the end of the called program will return correctly
to the calling program. The ability to use BRANCH
AND STACK at an entry point allows the linkage stack
to be used without changing old calling programs.

Return linkage. The ESA/370 instruction PROGRAM
RETURN is used to return from a program given
control by means of either stacking PROGRAM CALL
Or BRANCH AND STACK. PROGRAM RETURN logically
deletes the last linkage-stack state entry, which may
be either a program-call state entry or a branch state
entry. If the last state entry is a program-call state
entry, PROGRAM RETURN restores all of the state
information that was saved in the entry, except that
it leaves the contents of general registers 15, 0, and
1 and access registers 15, 0, and 1 unchanged—
information can be returned to the calling program
in these registers. If the last state entry is a branch
state entry, PROGRAM RETURN restores only the com-
plete psw and the contents of general registers 2-14
and access registers 2—-14. However, PROGRAM RE-
TURN always leaves the PER mask in the PSW un-
changed in order not to counteract a PER enablement
or disablement that may have occurred while the
called program was being executed.

A bit can be set to one in the entry descriptor of a
linkage-stack state entry to cause a program inter-
ruption if PROGRAM RETURN operates on the entry.
The control program may set this bit to one to guard
against an erroneous use of PROGRAM RETURN, for
example, when the last linkage instruction executed
was a SUPERVISOR CALL instruction, in which case a
return service of the control program should be used
before PROGRAM RETURN.

1BM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

Note that the combination of stacking PROGRAM
CALL and PROGRAM RETURN permits nonhierarchical
program linkage (linkage from a program with some
amount of authority to a program with less or com-
pletely different authority).

Testing authorization. The ESA/370 instruction TEST
ACCESS has as operands an access-list-entry token
(ALET) in an access register and an extended author-
ization index (EAX) in a general register. TEST ACCESS
applies access-register translation (ART) to the ALET,
except that ART uses the EAX in the general register
instead of the current EAX in a control register. TEST
ACcEss indicates one of the following results: (1) the
ALET is ALET 0, specifying the primary address space,
(2) the ALET designates an entry in the dispatchable-
unit access list and can be translated successfully by
ART, (3) the ALET designates an entry in the primary-
space access list and can be translated successfully
by ART, or (4) the ALET is ALET 1, specifying the
secondary address space, or causes ART to recognize
an exception.

The principal purpose of TEST ACCESS is to allow a
called program to determine whether an ALET passed
to it by the calling program is authorized for use by
the calling program by means of the Eax of the
calling program. This purpose is in support of a
possible programming convention in which a called
program will not operate on an AR-specified address
space by means of its own EAX unless the calling
program is authorized to operate on the space by
means of the EAX of the calling program. The called
program can obtain the EaX of the calling program
for use by TEST ACCESS by extracting it from the
current linkage-stack state entry.

Another purpose of TEST ACCESS is to indicate when
the ALET is ALET O or ALET 1. Because PROGRAM
CALL may change the primary and secondary address
spaces, ALETs 0 and 1 may specify different address
spaces when used by the called program than when
used by the calling program.

Still another purpose of TEST ACCESS is to indicate
whether the ALET designates an entry in the primary-
space access list, since the occurrence of such a
designation after the primary address space has been
changed by a space-switching program linkage is an
error.

Control-program facilities. When MVS/ESA initiates a
job step, which at least initially is a single dispatch-
able unit, it does so in an address space that is unique

PLAMBECK BB

Figure 10 Translation modes

PSW BIT TRANSLATION INSTRUCTION OPERAND
MODE ADDRESS ADDRESS
SPACE SPACE
16 17
0 0 PRIMARY - PRIMARY PRIMARY
SPACE
o] 1 ACCESS- PRIMARY AR-SPECIFIED
REGISTER
1 0 SECONDARY - PRIMARY SECONDARY
SPACE
1 1 HOME- HOME HOME
SPACE

to the job step. This address space is called the home
address space of the job step. Mvs/ESA places the
principal control blocks that represent the job step
(for example, where status is saved when the job step
is undispatched) in the home address space of the
job step. If the job step uses PROGRAM CALL to give
control to another address space and an 1/0 or exter-
nal interruption then occurs, MVS/ESA must change
control-register contents in order to gain access to
the home address space so that it can save the status
of the step.

To improve the efficiency of accessing the home
address space, ESA/370 includes (1) a home segment-
table designation (HSTD) in a control register and (2)
another translation mode, named the home-space
mode, which is conditioned by bit settings in the
psw. The new psw that is loaded by the machine
when an interruption occurs can specify the home-
space mode to provide immediate access to both
instructions and operands in the home address space.

SET ADDRESS SPACE CONTROL can set the home-space
mode but only in the supervisor state. INSERT AD-
DRESS SPACE CONTROL can return an indication of
the home-space mode.

The instructions that operate on the linkage stack
are not allowed in the home-space mode. The linkage
stack for a dispatchable unit is in the home address
space of that dispatchable unit.

ESA/370 also includes privileged instructions for load-
ing a general register and storing from one through
the use of a real address. These instructions allow
the control program to process both machine and

56 PLAMBECK

software control structures that are linked by real
addresses without turning DAT off.

Translation modes. Since the ESA/370 virtual-address
translation modes have already all been described in
this paper, this section is mainly a summary. The
modes are controlled by bits 16 and 17 in the psw,
When DAT is on, psw bits 16 and 17 specify the
translation mode as shown in Figure 10. The figure
also shows which address spaces contain instructions
and operands in each mode.

In ESA/370, unlike in System/370 and 370-XA, in-
structions are fetched predictably from the primary
address space in the secondary-space mode.

In ESA/370 and its predecessors, the central processor
always recognizes its own stores into the instruction
stream in the primary- or secondary-space mode.”
Thus, it is possible for a program to modify its next
sequential instruction. This recognition is not nec-
essarily done in the two new EsA/370 modes—access-
register mode and home-space mode. (It is consid-
ered to be poor programming practice to store into
the instruction stream. An instruction that causes
prefetched instructions to be discarded can be exe-
cuted to ensure recognition of a store if recognition
1S necessary.)

Private-space facility. The private-space facility
makes the entire 2 gigabytes of specified address
spaces available to contain information that is inde-
pendent of the contents of other address spaces. The
facility provides a bit, named the private-space con-
trol, in the segment-table designation. When this bit
is one in the segment-table designation used by DAT,
it makes a translation-lookaside buffer (TLB) entry in
which the common-segment bit is one ineligible for
use by DAT, even if the segment-table origin field
associated with the TLB entry is the same as the one
in the segment-table designation. This excludes the
common area from the address space specified by
the segment-table designation. The private-space
control applies regardless of whether the segment-
table designation is obtained from a control register
or from an AsSN-second-table entry by means of
access-register translation.

The private-space control, when one, also makes
low-address protection (store protection of effective
addresses 0-511) and fetch-protection override (not
applying fetch protection to effective addresses 0-
2047 when effective addresses 0-4095 are fetch
protectedzz) not apply to the address space specified

BM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

by the segment-table designation, which results in
the first 2048 bytes of the address space being as fully
usable as the remainder of the space. (An effective
address is an address before translation, if any.)

The private-space facility is implemented by some
but not all ESA/370 models. When running on a model
that does not implement the facility, MVS/ESA ex-
cludes the common area from certain address spaces
by never setting the common-segment bit to one in
any segment-table entry. This exclusion results in a
slight performance loss because it requires more
frequent creation of TLB entries. Thus, the private-
space facility is primarily a performance item, al-
though it does also provide function with respect to
bytes 0-2047.

When the private-space control is one in a segment-
table designation, the specified address space is called
a private address space. MVS/ESA calls a private ad-
dress space a data space since it allows only data in
the space; MVS/ESA does not assign an ASN to the
space, so the space cannot be specified in an entry-
table entry. There is no architectural reason why
programs cannot be in a private address space.

Unlike the architecture, MVS/ESA strictly uses the
dichotomy address space and data space: An address
space always contains a common area, and a data
space is not an address space.

Concluding remarks

ESA/370 allows increased isolation of both data and
programs in separate address spaces. It does so by
providing efficient controlled means (access registers
and a program-linkage mechanism) of reaching other
address spaces when necessary. The benefits are to:

¢ Increase reliability, meaning the absence of errors
that might reduce integrity. By separating data
and programs, together and separately, in different
address spaces as much as possible, the reliability
of the system is improved over what can be accom-
plished just by means of key-controlled protection.
The damage potential of psw key zero is reduced,
and the number of practical domains is increased.

¢ Increase the storage available in the common and
private areas of primary address spaces. By moving
data and programs into other address spaces (pri-
marily from the common area), storage is kept
available in the primary address spaces for appli-
cations that have not been coded to use access
registers.

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

* Increase the total size of the data that can be
processed efficiently by a program without con-
trol-program intervention. With access registers,
data in up to 15 address spaces besides the instruc-
tion space can be processed concurrently by means
of the complete instruction set, and by changing
the contents of the access registers, data in
hundreds of other address spaces can be processed
without control-program intervention.

¢ Increase the size of an individual data object that
can be processed concurrently by a program. The
size of the private area in an address space is 2
gigabytes minus the size of the common area in
the space. For example, if the size of the common
area is 1 gigabyte, so is the size of the private area.
In this case, if a program processes several data
objects concurrently (for example, several vari-
ables that are arrays), each of those objects must,
without access registers, be much smaller than 1
gigabyte in size since all of the objects together
(and also the program) must fit within one address
space. With access registers, each data object can
be in its own private address space and can occupy
the entire 2 gigabytes in the space.

ESA/370 allows new tests of the principle23 that prob-
lems expand to fill the storage allowed for their
completion.

Acknowledgments

The new facilities of ESA/370 are based on the access-
register concept developed by J. R. Butwell, C. A.
Scalzi, and R. J. Schmalz. Many elements of the
specific architecture were developed by R. I. Baum,
T. L. Borden, C. E. Clark, A. G. Ganek, J. Lum, and
M. G. Mall. R. M. Smith, J. Thomas, and P. C.
Yeh also contributed.

Appendix: Authorization elements

The dual address-space (Das) facility and ESA/370
contain authorization elements that provide direct
and indirect authority to programs. Direct authority
allows the execution of specific instructions or the
performance of a function that is part of the execu-
tion of many instructions. Indirect authority allows
changing the state of an authorization element that
provides direct authority.

An authorization element is described here in terms
of:

¢ What it authorizes (and also the authorization
mechanism if that is unobvious)

pLAMBECK §7

Figure 11 Authorization elements

AUTHORIZATION OTHER AUTHORIZATION AUTHORIZES SETS
ELEMENTS ELEMENTS
PASN, PSTD e R AUTHORIZATION —-—-——E:: T pusnssends PASN, PSTD
INDEX
SSAR
» ALET O
N ART
oo | INKAGE~TABLE » PC
DESIGNATION |
SPKA,
PSW-KEY MASK 4 MVCK, PSW-KEY MASK
OR SUPERVISOR > WMVOSK, Jr—b AND SUPEAVISOR
STA 1 1 MYCDK STATE
‘ ‘ F—> wver
| % MvVCS
SASN, SSTD . -b ALET 1 s SASN, SSTD
I IN ART
PRIMARY~SPACE ——-——1
ACCESS LIST
EXTENDED y . ART EXTENDED
AUTHORIZATION > (NOT ALET O hsceel AUTHORIZATION
INDEX OR ALET 1) INDEX
DISPATCHABLE-]
UNIT
ACCESS LisT
» How its state is set Primary space (PASN and PSTD).
~ What its state is a property of
L . Authorizes:
The authorization elements are listed below. Infor-
mation pertaining only. 10 ESA/370 is 11_1dlc_ated as I. Linkage-table designation
such. Many of the details of the authorization ele- 2. Authorization index
ments are illustrated in Figure 11. Note that 3. Primary-space access list (EsA/370 only)
. oo . 4. ALET O (ESA/370 only)
» DaS introduced the concept of semiprivileged in- y
structions that are authorized by certain bits in
. y L PASN set by:
control registers. The only use of the bits is to
provide predictable results (a program interrup-)
tion) if a program using DAS is executed on a DAS 1. PROGRAM CALL (PC-ss) fromfan entry-table entry
machine under a down-level control program that 2. PROGRAM TRANSFER (PT-ss) from a general register

does not support the use of DAS. The bits are not 3. PROGRAM RETURN (PR-ss) from a linkage-stack

included in the authorization elements that this state entry (ESA/370 only)
appendix describes.

« The symbols PC-ss, PR-ss, and PT-ss are used below PSTD set by: Same as PASN, except from the ASN-
to denote the space-switching operations of PRO- second-table entry for the specified primary address
GRAM CALL, PROGRAM RETURN, and PROGRAM space
TRANSFER, respectively; and SSAR is the mnemonic
for SET SECONDARY ASN. Property of- Entry-table entry

58 PLAMBECK IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

Linkage-table designation.

Authorizes: Which entry-table entries are available
to (but not necessarily able to be used by) PROGRAM
CALL

Set by: PROGRAM CALL (PC-ss), PROGRAM TRANSFER
(pT=ss), and (ESA/370 only) PROGRAM RETURN (PR-ss)
from the AsN-second-table entry for the new primary
address space

Property of° Primary address space
Authorization index.
Authorizes:

1. PROGRAM TRANSFER (PT-ss) (must select P bit in
authority table for specified primary address space
that is one)

2. SETSECONDARY ASN (must select S bit in authority
table for specified secondary address space that is
one)

Set by: PROGRAM CALL (PC-ss), PROGRAM TRANSFER
(pT-ss), and (ESA/370 only) PROGRAM RETURN (PR-ss)

from the aAsN-second-table entry for the new primary
address space

Property of: Primary address space

Access list (ESA /370 only).

Authorizes: Which access-list entries are available to
(but not necessarily able to be used in) access-register
translation

Primary-space access list set by: PROGRAM CALL (PC-
ss), PROGRAM TRANSFER (PT-ss), and PROGRAM RE-
TURN (PR-ss) from primary ASN-second-table entry

Property of:

1. Dispatchable-unit access list: dispatchable unit
2. Primary-space access list: primary address space

Supervisor state.
Authorizes:
1. Execution of privileged instructions

2. Omission of the use of the psw-key mask as an
authorization element

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

Set by:

—_—

PROGRAM CALL from an entry-table entry

2. PROGRAM TRANSFER from a general register (su-
pervisor state can be set only in the supervisor
state)

3. PROGRAM RETURN from a linkage-stack state entry

(ESA/370 only)

Property of- Entry-table entry
PSW-key mask.
Authorizes (only necessary in the problem state):

1. SET PSW KEY FROM ADDRESS (mask bit correspond-
ing to specified key must be one)

2. Second access key used by MOVE TO PRIMARY,
MOVE TO SECONDARY, MOVE WITH KEY, MOVE WITH
SOURCE KEY, and MOVE WITH DESTINATION KEY
(mask bit corresponding to specified key must be
one)

3. PROGRAM CALL (result of ANDing with authoriza-
tion key mask in entry-table entry must be non-
ZET0)

Set by:

1. PROGRAM CALL by ORing or (ESA/370 only) option-
ally replacing from an entry-table entry

2. PROGRAM TRANSFER by ANDing from a general
register

3. PROGRAMRETURN from a linkage-stack state entry
(EsA/370 only)

Property of: Dispatchable unit and entry-table entry
or (ESA/370 only), optionally, entry-table entry

PSW key.

Authorizes: Accesses to real storage (must match
storage key or be zero)

Set by:

1. SET PSW KEY FROM ADDRESS

2. PROGRAM CALL, optionally, from an entry-table
entry (ESA/370 only)

3. PROGRAMRETURN from a linkage-stack state entry
(Esa/370 only)

Property of: Dispatchable unit or (ESA/370 only), op-
tionally, entry-table entry

pLameeck 59

Extended authorization index (ESA/370 only).

Authorizes: Use of a private access-list entry in ac-
cess-register translation

Set by:

l. PROGRAM CALL, optionally, from an entry-table
entry
2. PROGRAMRETURN from a linkage-stack state entry

Property of: Dispatchable unit or, optionally, entry-
table entry

SASN and SSTD.
Authorizes: Secondary address space accessed by:

1. MOVE TO PRIMARY and MOVE TO SECONDARY

2. Storage-operand references in the secondary-
space mode

3. ALET 1 (ESA/370 only)

Set by:

1. SET SECONDARY ASN

2. PROGRAM CALL with old PASN and PSTD or (ESA/370
only), optionally, with new PASN and PSTD

3. PROGRAM TRANSFER with new PASN and PSTD

4. PROGRAM RETURN (ESA/370 only):

* SASN from a linkage-stack state entry
* SSTD from the AsN-second-table entry for the
specified secondary address space

Ifroperzy of: Dispatchable unit or (EsA/370 only), op-
tionally, entry-table entry

Enterprise Systems Architecture/370, ESA/370, and MVS/ESA
are trademarks of International Business Machines Corporation.

Cited references and notes

1. System/370 Principles of Operation, GA22-7000, IBM Cor-
poration; available through IBM branch offices.

2. System/370 Extended Architecture Principles of Operation,
SA22-7085, IBM Corporation; available through IBM branch
offices.

3. The definition of domain is by Carl E. Landwehr and Brian
Tretick (Naval Research Laboratory, Washington, D.C.), John
M. Carroll (University of Western Ontario), and Paul Ander-
son (Naval Space and Warfare Systems Command), and it
relates to earlier work by B. W. Lampson.

4. Enterprise Systems Architecture/370 Principles of Operation,
SA22-7200, IBM Corporation; available through IBM branch
offices.

60 rLaveECK

10.

14.

15.

18.

19.

20.

21.

22.

. R. P. Case and A. Padegs, “Architecture of the IBM Sys-
tem/360,” Communications of the ACM 21, No. 1, 73-96
(January 1978).

. A. Padegs, “System/360 and beyond,” IBM Journal of Re-
search and Development 25, No. 5, 377-390 (September
1981).

. A. Padegs, “System/370 extended architecture: design consid-
erations,” IBM Journal of Research and Development 27, No.
3, 198-205 (May 1983).

. D. Gifford and A. Spector, “Case study: IBM System/360-
370 architecture,” Communications of the ACM 30, No. 4,
292-307 (April 1987).

. American National Dictionary for Information Processing Sys-

tems, available from the American National Standards Insti-

tute, 1430 Broadway, New York, NY 10018.

Actually, SET ADDRESS SPACE CONTROL and INSERT

ADDRESS SPACE CONTROL are authorized by bits in a

control register. The only purpose of these bits is to provide

predictable results if the SSTD has not been set because a

down-level control program is being used.

. DAS was simulated on the System/370 Models 158, 168, and
3032. This simulation would have been a very poor performer
if instructions and data had to be accessed in different address
spaces.

. There are cases where PROGRAM TRANSFER is used by a
subsystem to give control to a user exit routine and then
PROGRAM CALL is used to return control, in a secure way,
to the subsystem.

. It was said previously that the PSW-key mask of a program is

a property of an entry point. This is not strictly true since

different PC numbers may specify the same entry point but

different entry key masks.

An authority table consists of two-bit entries corresponding to

different values of the authorization index. One bit (P) au-

thorizes PROGRAM TRANSFER and the other (S) author-
izes SET SECONDARY ASN.

Performance may also be affected in that, because PRO-

GRAM CALL sets several general registers, the calling pro-

gram must save and restore these registers around the PRO-

GRAM CALL linkage, if necessary.

. C. E. Clark, “The facilities and evolution of MVS/ESA,” IBM
Systems Journal 28, No. 1, 124-150 (1989, this issue).

. It is, of course, advantageous not to have to change old

programs. On the other hand, performance can be improved

if instructions that save and restore registers around a PRO-

GRAM CALL linkage are deleted from the old programs.

The new significance of the secondary address space is that it

can be accessed by means of ALET 1. The called program

may also be able to access the primary address space of the
calling program if there is an entry for it on the the dispatch-
able-unit access list.

As part of the execution of an instruction, the instruction

address in the PSW is updated to address the next sequential

instruction. This address is subsequently changed again if the
instruction branches.

The great majority of the MVS/ESA control program does

not reside in virtual-equals-real storage. To turn DAT off, the

control program usually must first branch to a special virtual-
equals-real part so that the change to DAT is not a branch.

A store into the instruction stream is recognized if the same

effective address is used for the store and the fetch and the

store is not made by the vector facility. Different effective
addresses might be used because they can map to the same
real address by means of DAT.

Fetch-protection override relates to the change of the storage-

key block size from 2048 bytes to 4096 bytes that began in

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

System/370 (although fetch-protection override is not pro-
vided in System/370). It is used by evolving control programs
that originally chose to fetch-protect the second 2048 bytes of
real storage but not the first 2048 bytes (because problem
programs fetched pointers from the first 2048 bytes). With
these control programs, virtual addresses 0-4095 (a problem
program can generally use only virtual addresses) map to real
addresses 0-4095, which is why fetch-protection override ap-
plies to effective addresses.

23. R. Matick, Computer Storage Systems and Technology, John
Wiley & Sons, Inc., New York (1977).

Kenneth E. Plambeck /BM Data Systems Division, P.O. Box
950, Poughkeepsie, New York 12602. Mr. Plambeck joined IBM
in early 1958 and is a senior programmer in the Enterprise Systems
Central Architecture department. His initial projects included
diagnostic programming for the IBM 709, 7090, and 7950 (a
special-purpose extension of the 7030 Stretch computer) computer
systems, the indexing and output phases of a FORTRAN compiler
for the 7030, and the modification of this compiler to demonstrate
the correctness of the number of general registers in System/360.
Beginning in 1964, he was in the OS/360 area working on super-
visor services, job-scheduler improvements, system-management
facilities, checkpoint restart, standards for linkage conventions,
volume and file labels, and the development process, and the
control of all system control blocks. He began his systems-archi-
tecture career in 1972, working first on the FS architecture, then
on the VSE architecture, and, beginning in 1979, on extensions to
the System/370 architecture. He is the author of the new material
in Enterprise Systems Architecture/370 Principles of Operation.
Mr. Plambeck received a B.E.E. degree from the Georgia Institute
of Technology in 1956 and an M.S. degree in electrical engineering
from the University of [llinois in 1958.

Reprint Order No. G321-5347,

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

PLavBECK 61

