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The  Enterprise  Systems  Architecturel370"  provides  a 
significant  step  in the IBM System/370 evolution  by 
providing  new  capabilities  for  virtual  addressing  and 
program  linkage  across  multiple  address  spaces. This 
paper  reviews the evolution that led to this  advance 
and  illuminates the goals,  such  as  eliminating  growth 
constraints  and  improving  security,  integrity,  reliability, 
and  performance,  that  have  guided it. The  major archi- 
tectural  capabilities are discussed,  along with the sys- 
tem environments  in which  they are useful.  The  ration- 
ale for design  choices  is  presented  and  related to is- 
sues of performance,  access  authorization,  and 
constraints  relief. 

I n the late 1970s and early 1980s, attention within 
IBM focused on extending the System/370-XA 

architecture to enable continued evolutionary 
growth  of  System/370  systems,  as required in light 
of  emerging customer requirements and rapidly 
changing  hardware and operating system technolo- 
gies. The Enterprise  Systems  Architecture/37OT" 
( ~ S ~ / 3 7 0 " )  was developed in response to these  re- 
quirements and trends. The development of more 
powerful  processors  was  already  underway and the 
continuing evolution of processors of ever-increasing 
speed was anticipated. As the processor  speed  grows, 
larger  workloads  can  be  handled and more data must 
be  available to keep the processor  highly  utilized. In 
fact, without sufficient data available to the system 
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in  high-speed  storage,  processor  power could be un- 
der-utilized. The high probability that large,  cost- 
effective electronic storage  hierarchies  would be gen- 
erally  available on such future processors made the 
requirement an even  stronger one. (The implications 
of electronic storage  hierarchies are discussed further 
by E. ,I. Cohen, G. M. King, and J. T. Brady in this 
issue. ) In addition to these  hardware trends, new 
approaches in operating system structure were  evolv- 
ing not only to exploit the advances in hardware, 
but also to meet customer requirements for data 
sharing, constraint relief, data integrity,  perform- 
ance, and usability in large  systems. The ESA/370 
architecture was developed considering all three of 
these  factors-customer requirements, hardware 
trends, and operating system structural issues. 

Evolution 

In the development of System/370 architecture, 
there was a commitment to the idea that the use  of 
virtual addressing in programs would  provide  a ve- 
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hicle  for the automatic adaptation of programs to 
large and multiple-level  storage  hierarchies.  These 
can be used to provide  increased performance with- 
out reprogramming, as electronic storage was in- 
creased  or  new  physical  levels  were added. To un- 

Although  multiprogramming 
has  made computer  processing 

more  efficient, it has also 
created much  more  demand 

for memory. 

derstand the relationship of storage  addressing and 
access authorization to operating system structure 
and architectural requirements, it is  useful to review 
the evolution of the addressing structure in Sys- 
tem/360 and System/370  systems. In the mid-l960s, 
System/360 operating environments allowed one 
program to execute at a time, with an addressing 
capability that was  precisely equal to the available 
main storage on the machine. The environment then 
was essentially the same as that of many personal 
computer systems today, in that job management is 
left to the human operator, and each job must wait 
for the prior one to complete. As is indicated by the 
primary control program (PCP) model in Figure 1 A, 
only the operating system  code and  one application 
are loaded into memory at one time. This mode 
requires only one distinction of authority: either 
privileged- or problem-program authority. This ded- 
ication to a  single application is an inefficient  use  of 
resource  because it leaves the processor  idle during 
input/output processing and between  jobs.  Figure 1B 
shows  how developments designed to overcome this 
shortcoming led to the multiprogramming with  a 
fixed number of tasks (MFT) and multiprogramming 
with  a  variable number of tasks (MVT) operating 
systems,  by  providing multiprogramming environ- 
ments. Multiple programs are loaded into memory 
concurrently to share both the processor and mem- 
ory  resources of the system. In this way,  when one 
task requires input/output processing, that task can 
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be  suspended until the 110 completion. Meanwhile, 
another task can be  executed. To insure integrity, 
this arrangement requires a protection mechanism 
to constrain the addressing of each  task to the parti- 
tion of memory allocated to it. In System/360,  pro- 
tection is  accomplished  with  a  storage key architec- 
ture, which  allows  for  16  different protected areas 
and a control program  access key  (key  zero) that 
allows  addressability to the entire range of memory. 

Although the introduction of multiprogramming has 
made computer processing far more efficient and has 
provided effective utilization of the processor, it has 
also  created much more demand for memory. Thus 
the available  memory had to be partitioned for  each 
of the concurrent tasks. Therefore, the addressability 
of each  task was reduced. The resultant memory 
constraint limited the size  of programs and the 
amount of data that could be  associated  with them. 
This left the users of the system  with  difficult trade- 
offs to manage  for balancing the number of concur- 
rent programs and the addressing  capacity  available 
to them. This motivated the development of  Sys- 
tem/370 and the virtual storage  system  depicted in 
Figure 1C. In this single virtual storage (svs) operat- 
ing  system, the memory  available to all of the tasks 
was increased  via the use  of virtual storage. Virtual 
storage  provides the appearance of more memory by 
supplementing main memory with  high-speed  exter- 
nal storage and a  paging mechanism. With virtual 
addressing,  a  processor performs the instruction if it 
and its operands are in main storage. If any of the 
required elements are not in main storage  when the 
instruction is  executed, the processor  signals the 
operating system. This process  is  called  a page fault. 
The operating system makes the missing  element(s) 
available in  main storage and causes the processor 
to re-execute the instruction. The program contain- 
ing the instruction is not involved in the manage- 
ment of the content of main storage and is written 
as though all instructions and data are resident. The 
processor and control program, in cooperation, can 
translate the virtual addresses and find the page 
frame that contains the desired element in main 
storage. The processor and the control program  also 
cooperate in keeping track of  which elements have 
been  most  recently required for  processing. This 
information is  used  by the operating system to man- 
age the content of the levels  of the storage  hierarchy 
for maximum performance benefit in throughput or 
response time, or  to meet installation priorities. This 
approach in svs allows the addressing structure to 
equal the full architectural limit of System/370, 
which  is  16  megabytes  for linear addressing. 
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Figure 1 Evolution of  storage  maps: (A) primary control program (PCP); (B) multiprogramming with a variable number of 
taskslmultiprogramming with a fixed number  of  tasks (MVTIMFT); (C) single virtual storage  (SVS); (D) Multiple Virtual 
Storage (MVS); (E) Multiple Virtual StorageIExtended Architecture (MVSIXA) 
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svs provides concurrent addressability to as  much as 
16 megabytes in a  single  mapping  of  all data and 
programs.  Such  a  single  linear  mapping of virtual 
addresses  is  called an address  space. In that operating 
system, the requirement for  multiprogramming  still 
requires that the single  virtual  address  space  be di- 
vided up among the concurrently executing  pro- 
grams,  thereby  limiting the amount available  for any 
one program. This problem was  addressed  by the 
development of operating  systems that give  each  user 

By using  virtual  addressability, 
multiple  address-space  structures 

provide  more  virtual  storage 
per  user. 

a  virtual  address  space that is independent of that of 
other users.  Such  a structure is  depicted in Figure 
lD, which  shows the Multiple  Virtual  Storage  (MVS) 
operating  system.  In  this  case, the addressing  range 
is  divided into segments that are common to all  users 
and contain programs and data relevant to many 
users. There are also  segments  called the private 
areas that are  relevant  only to individual  users and 
therefore  need not be commonly addressable.  In the 
VM operating  system,  users are similarly  segregated 
into  the independent memory of their virtual ma- 
chines. By using  virtual  addressability,  these multi- 
ple-address-space structures provide  more  virtual 
storage  per  user and the opportunity to extend  pro- 
tection beyond the limit of storage  keys. 

As multiple-address-space structures were  developed, 
subsystem  functions-such  as the job entry subsys- 
tem and  the Information Management  System  (IMS) 
database  subsystem in Mvs-began to exploit the 
structure to provide function for  many  users. The 
MVS subsystems adapted to the multiple-address- 
space structure of  Mvs in the System/370 time frame, 
in some  cases by maintaining control information 
and data buffers in private  areas  available  only to 
them. Access is  generally  accomplished  by their code 
operating in  the common area.  Many operations to 
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be  performed  require movement of data to or from 
the subsystem  private  area and a user’s private area. 
Because  of this,  mechanisms  for data passing and 
program  linkage  across  address  spaces are necessary. 
The dual address  space (DAS) facility  was  added to 
the architecture to facilitate  such  operations.  Two 
virtual  address  spaces  can  be  made  known to a 
processor  simultaneously and authorized programs 
can  easily  switch  from  operating  with primary space 
addressability to secondary space  addressability, 
thereby  making data in either a subsystem’s  space or 
its  caller’s  space  easily  accessible. To facilitate the 
movement of data from one space to the other, two 
new MOVE instructions were  added to System/370 to 
move data directly  from  primary to secondary or 
from  secondary to primary. Otherwise, the data 
would  have  had to be  moved to the common-ad- 
dressed  area en route between the two  private  address 
spaces. In addition, synchronous linkage instructions 
were provided to enable  programs to be  located in 
the private  area of an address  space and accessed 
from other address  spaces. This allowed  service  func- 
tions to be  removed  from common storage and 
implemented in independent address  spaces, thus 
reducing the virtual  storage impact of  service  func- 
tions on other address  spaces and improving the 
level  of protection of the programs and data associ- 
ated  with them. 

While DAS improved the usability  of multiple address 
spaces,  a  16-megabyte  address  space continued to be 
a constraint in many  environments. The Sys- 
tem/370-XA architecture was introduced to increase 
the size  of address  spaces in this structure. Sys- 
tem/370-XA  provided  a  3  1-bit  virtual  address that 
extended the size of address  spaces  from 16  mega- 
bytes to 2 gigabytes.  As depicted in Figure IE, the 
MVS/XA” structure contains larger  address  spaces 
than its System/370 forerunner, but the mechanisms 
to use multiple  address  spaces  concurrently are un- 
changed. The facilities  of DAS were carried  forward 
in System/370-XA to provide dual address-space 
capabilities  for the larger  spaces. 

Requirements 

As  we have  seen, the evolution of  System/36O  has 
continually  been  guided by the system  goals of elim- 
inating growth constraints; improving  security, in- 
tegrity, and reliability; and providing  improved  per- 
formance. The objective of Enterprise  Systems  Ar- 
chitecture/370 ( ~ ~ ~ 1 3 7 0 )  is to continue this process 
by enhancing  system  capabilities in the areas of 
virtual  addressing,  isolation and protection of code 
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and data, and program  linkage. To understand the 
~SA/370  solution, we examine  each of these  capabili- 
ties in light  of the current function, the motivation 
for  change, and the nature of the change or new 
function required. 

Extended  addressability. Current System/370-XA 
architecture allows  a  virtual  addressing  capability  of 

From  the  application  programmer’s 
perspective, it is  often  highly 

desirable  to  map an  entire  data 
structure  into  virtual  storage 

at  one  time. 

up  to 2 gigabytes (2 billion  bytes)  derived  from  a 
3 I-bit virtual  address that maps storage in a  single 
MVS address  space.  Although there can exist  many 
such  address  spaces,  only one is  generally  addressable 
at any point in time. The dual address  space (DAS) 
architecture inherent in System/370-XA  provides  a 
limited  capability to access  concurrently an addi- 
tional address  space.  However, this access  applies 
only to data movement  from one address  space to 
another. The balance of the System/370-XA instruc- 
tion set  applies  only to a  single  address  space,  thereby 
limiting  a  program’s  addressability to 2 gigabytes. 

To understand the motivation to increase  virtual 
addressing  capacity, we must first  examine the kinds 
of things that consume virtual  storage. One of the 
most important of  these  is control blocks.  System 
and subsystem control blocks consume large 
amounts of virtual  storage. Control block  storage 
generally  increases  proportionally  with entities such 
as the following that correlate to workload  per:  ter- 
minal, user, transaction, database,  device, and appli- 
cation.  Consequently,  virtual  storage limitations that 
restrict the amount of control-block consumption 
can  place  a  ceiling on workload  growth  regardless  of 
processing  power or direct-access  storage  device 
(DASD) configuration. This phenomenon of virtual 
storage constraint can in turn severely limit the 

usefulness  of  high-performance  processors and im- 
proved  storage  devices. 

In the System/370  systems, permanent data nor- 
mally  reside in datasets on external storage  devices, 
such  as  disks and tape devices.  In the context of 
permanent data, virtual  storage  is  primarily  used as 
a  buffer  area to make permanent data addressable to 
the processor. As applications increase the size and 
complexity of the data structures they  deal  with, the 
required  buffer  areas  grow  commensurately, requir- 
ing  larger  virtual  buffers to contain the data. Graphic 
representation of three-dimensional  objects,  image 
processing, and large arrays related to numeric com- 
putation are examples of the many  types of appli- 
cations requiring  large virtual storage  buffers. From 
the application  programmer’s  perspective,  it  is  often 
highly  desirable to  map an entire data structure into 
virtual  storage at one time, rather than deal  with the 
complexity of overlay data or complex  access meth- 
ods for  explicitly  managed I/O. However, as a  pro- 
gram obtains virtual  storage  for the variety  of entities 
it requires  within its address  space, the available 
space  can  easily  become  fragmented, constraining 
further the ability to take  advantage of  large contig- 
uous areas of  virtual  storage. 

As the function of data processing  applications 
evolves to meet  ever-broadening requirements, the 
complexity and sophistication of the underlying  pro- 
grams  expand. This results in the necessity  for  very 
large  programs and libraries of many  programs to be 
available to provide the needed function. As these 
programs are executed,  they  are  brought into virtual 
storage  for  access  by the processor. To achieve  high 
performance and to avoid  complex  overlay  struc- 
tures, it is  highly  desirable to keep  these  programs in 
virtual  storage, The accumulation of programs  can 
consume substantial amounts of virtual  storage. Be- 
cause  many  programs are of  value to multiple  users, 
it is  desirable to keep  them in commonly addressable 
ranges  of  virtual  storage, so as to minimize the usage 
of real  storage.  In the MVS operating  system, this 
mechanism  is the common area, and  in VM it may 
be implemented with  shared  segments.  In either case, 
the accumulation of shared  programs  can  reduce the 
amount of  privately  addressable  virtual  storage  avail- 
able. 

The concept of mapping permanent or temporary 
data in virtual  storage  is  called data in virtual (DIV) 
and allows the application developer an interface to 
data without  coding any record-oriented I/O proto- 
cols, but instead to use virtual  addresses  as an access 
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Figure 2 Data-in-virtual usage 

I 

method. This capability  increases the demand for 
virtual addressability by augmenting its functional 
utility. The key aspects of this concept, as depicted 
in Figure 2, are as  follows. First, data are stored on 
external devices in a format that corresponds to page 
size.  When the dataset is opened or identified to the 
system, it is  assigned  a virtual storage  range to map 
the dataset, although no data are brought into proc- 
essor  storage immediately. The application program 
can then reference the data by virtual address,  which, 
in turn, causes page faults for any addresses not 
previously primed with data. The page fault process 

handles all I/O transparently to the user,  brings the 
page into real  storage so as to represent the user’s 
specified virtual address and  then re-executes the 
user’s instruction to operate on the virtual storage. 
When the dataset is closed by the user,  all  changed 
pages in the virtual storage  range  may  be written out 
to the permanent DASD locations, if the user so 
chooses. 

There are many advantages of the data-in-virtual 
data management approach. In this issue, K. Rub- 
sam  (Reference 2), describes the implementation and 
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benefits more completely than we do here.  Briefly,  a 
key value is that the user’s  view  of data is  greatly 
simplified. The normal instruction set  is  available to 
manipulate any data items of interest. From the 
user’s perspective,  all required data are immediately 
addressable at  one time, and program  logic  need not 
be encumbered by considerations of data buffering 
and I/O protocols. This view  of data eliminates de- 
pendencies on the specific  characteristics  of DASD 
hardware that can allow both easier adaptation of 
data residence to new technologies, and better usa- 
bility  for end users. 

Also, from the standpoint of performance, there is 
substantial potential for  reduced I/O overhead be- 
cause,  with DIV, only  referenced data are read into 
main storage.  Many applications need  reference  only 
small portions of an entire data structure, but those 
portions are determined dynamically during com- 
putation. Without DIV, the entire structure must be 
read into main storage to establish  addressability to 
the data in virtual storage. This results in needless 
I/O operations for  those  pages of the file that contain 
records that are not referenced. In addition, the 
integration of data management services and proces- 
sor storage management can enable more efficient 
utilization of the electronic storage hierarchy. The 
attractiveness of the data-in-virtual concept can, of 
course,  be limited by constraints on the amount of 
virtual storage  available. As large databases and other 
large data structures become mapped virtually, the 
requirement for  extended virtual addressability in- 
creases. 

Since  all of these factors combine to consume virtual 
storage, resultant virtual  storage constraints can ad- 
versely  affect systems by precluding the addition of 
new applications and databases.  Also, limited virtual 
storage can restrict the amount of virtual space  for 
control blocks and tables,  a  fact that constrains the 
size  of  system  configurations that can be handled. It 
is evident that virtual storage is a  precious  resource 
that is limited architecturally in the System/370-XA 
environment and therefore is a  system constraint. 
Such potential for constraint generates the require- 
ment for an open-ended  addressing  capability that 
allows  increased exploitation of virtual storage. If a 
program  is to utilize virtual storage  effectively, the 
entire instruction set must be  available to manipulate 
all  storage  available to the program. The objective of 
ESA/VO is to extend the addressing environment to 
allow concurrent access to multiple virtual spaces 
with the full  richness of the instruction set. The 
intention is to provide an environment in which the 
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logical entities of interest to a  program can be seg- 
mented into multiple virtual spaces,  each of which 
can be up to 2 gigabytes in size, and to allow con- 
current access to this entire set of virtual spaces. 
Here we call attention to the fact that the virtual 
spaces in this type of structure need not all  represent 
as much as 2 gigabytes, but in many instances they 
could  be  smaller. 

Isolation and ,protection. The basic  System/370-XA 
protection mechanism is the storage key  by  which 
each  block  of  storage  (4096  bytes)  has  a  four-bit  key 

Storage  in  the  private  areas is 
protected from other  users  by  not 

being  addressable  through  dynamic 
address  translation. 

value of  0-1 5 associated  with it. On any storage 
update, this key must match with the associated 
access  key in the program status word (PSW), with 
the exception of PSW key zero,  which  allows the 
program to access  storage in  any key. This architec- 
ture, therefore,  provides  for  a  storage protection 
granularity of just 16 levels. 

The structures of most System/370 operating sys- 
tems are based on multiple distinct address  spaces. 
Storage in the various  private areas is protected from 
other users by virtue of not being  addressable 
through dynamic address translation (DAT). Con- 
versely, any virtual storage that is made virtually 
addressable to multiple users  is limited in granularity 
to 16  keys for protection. 

With  respect to isolation, the separation of users into 
distinct address  spaces enhances protection and in- 
tegrity  by making them mutually exclusive  of one 
another during execution. The  unit of protection 
becomes the address  space instead of storage keys. 
Within any one address space, the storage  keys are 
used to protect data areas.  System and subsystem 
functions use  storage  keys to provide  integrity for 
their data areas in both the commonly and privately 
addressable  address  spaces. This enables the control 
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program to place  various control information that is 
relevant  only to a particular user in that user’s ad- 
dress  space and  at the same time prevent the user 

Localizing  control  information 
in  this  way  further  isolates 

errors  at  the addresmpace level. 

from  modifying  it.  Localizing control information 
in this way further isolates errors at the address-space 
level. This approach has  been found to increase the 
probability that errors can be contained to single 
users, thus reducing the probability  of impact to 
other users. 

Using  System/370-XA architecture, systems can do 
a  good job of isolating  users  from one another by 
way  of multiple address  spaces.  Because  each  user’s 
code and data reside in a  distinct  virtual  address 
space,  addressability  does not allow  interference  with 
other users. If the isolation of  users in today’s  struc- 
ture can  be  effectively  achieved, one may  well  ask 
why enhancements in this area are required. The 
answer  is  resource  sharing.  Individual  users  must 
share certain physical  resources  such as CPU, chan- 
nels,  real  storage,  direct-access  storage  devices 
(DASD), printers, etc., as  well as certain logical  re- 
sources  like  programs, data, system functions, and 
subsystem  functions.  Sharing  system and subsystem 
resources  is implemented by  system components and 
subsystems  whose  code and data areas  exist in virtual 
storage.  Such  programs and data areas  must either 
reside in commonly addressable  storage  available to 
all  users, or they  must  reside in separate  address 
spaces and execute in a  multiple-space environment. 
These  alternatives  apply  equally well to subsystem- 
oriented functions that may  provide  services  for  a 
subset  of the system’s  user population. 

System components and subsystems that reside in 
commonly addressable  storage not only  aggravate 
the virtual-storage constraint problems,  discussed 
previously, but also  limit the granularity of protec- 
tion to key protection.  A  single  addressing  range 
contains different entities in virtual  storage,  all of 
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which  represent  some  form  of the code and data of 
the operating  system, the subsystems, or the users. 
Because there are many more such  resource  cate- 
gories  residing in a  given  address  space than 16 keys, 
the storage  key  mechanism  provides an inadequate 
level  of protection granularity, even for the environ- 
ment of a  single  address  space  with current Sys- 
tem/370 structures. Errors in programs that either 
execute in key zero or  in a key shared by other 
programs in the same  addressing  range  can  poten- 
tially  result in damage to data or code  associated 
with other functions or the currently addressable 
private  area. 

The alternative of implementing shared functions in 
a  multiple-space environment is  hampered by archi- 
tectural limitations inherent in System/370-XA  with 
respect to concurrent use  of multiple address  spaces. 
Such limitations not only  affect the existing  multiple- 
space  subsystems and system components, but also 
discourage other components and subsystems  from 
new  designs that might  achieve  greater  isolation and 
protection in a  multiple-address-space environment. 

The concept of functional isolation  is to limit as 
much  as  possible the errors of any function to its 
own data or to data passed to it by its caller. This 
technique is  called  encapsulation or error confine- 
ment. DAS enables this by allowing  code and data 
related to a function to be  placed in a unique address 
space and by providing the program  call instruction 
in another address  space to invoke the code.  Using 
DAS, the caller’s  parameters  can  be  copied  from the 
caller to target  address  spaces, and the output of the 
function can be  copied  back  from the functional 
space to the caller. 

One major difficulty  with  using  cross-memory  serv- 
ices  is the limited instruction set that the called 
function has available to manipulate the caller’s 
parameters and data. A short parameter list  can  be 
completely  copied  across  spaces, but it  can be  very 
clumsy if, for  example, the parameter list is of vary- 
ing  length. If the caller  needs to supply  large data 
areas that are impractical to copy, the called routine 
must  execute in commonly addressable  storage and 
switch  addressability  back and forth between the 
calling and called  spaces. This is  also true if the called 
program  must manipulate data objects that are 
imbedded in a  complex data structure, making them 
difficult to locate and move. 

Another alternative is to place the data in commonly 
addressable  storage, but the utilization of  code and 
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data in common storage in this manner undermines 
the benefit of a multiple-space structure for enhanced 
protection and virtual-storage constraint relief. It 
also introduces the need to fragment  code  artificially 
into commonly and privately  addressable  segments, 
thus increasing the complexity of programs. 

Another limitation of the DAS architecture relates to 
the authorization mechanisms. The DAS mechanisms 
in MVS require the invoked function to have the 
ability to address the caller’s  address  space to access 
parameters. Thus the DAS architecture requires that 
the called function be  given  access authority to all 

System  reliability  can  be  improved 
if error  confinement  can be achieved 

by  limiting  addressability  to  those 
required  objects  only. 

potential  callers’  address  spaces.  Because DAS au- 
thorization is on the address-space  level, any code 
that executes in the invoked  function’s  address  space 
can establish  addressability to any of its potential 
callers’  address  spaces and can  reference or update 
data in that space. This means that an error in a 
shared  program  residing in its  own  address  space  can 
corrupt data in any potential caller’s  address  space 
at any time. The possibility  of  such errors precludes 
this  type  of implementation for  shared  programs that 
are not authorized and trusted. 

Whereas  authorized  addressability  is  warranted in 
this DAS environment, it is  really  required  only  for 
the duration of the function being  performed and 
for the data specific to that caller’s  request.  In  es- 
sence, the caller  should  pass  addressability to the 
function and withdraw this capability  when control 
is  returned.  In this way,  addressing control is  asso- 
ciated  with the executing  process that is  making the 
functional request, rather than the function being 
invoked. DAS does not allow  this  capability. 

The passing  of the authorization to update a data 
area to a shared  program that is  invoked in a multi- 

ple-space environment, instead of each  shared  func- 
tion possessing  only a static  set of capabilities- 
regardless  of the caller-is an objective of ESA/370. 
This approach  is  conducive to an environment in 
which  problem-state unauthorized programs  may  be 
safely  shared. 

Another  restriction  imposed by the address-space- 
level authorization architecture of DAS is the inability 
to support multip1e.programs in one address  space, 
with  distinct  addressing  capabilities to access other 
address  spaces. This precludes  programs that require 
different  levels  of authorization from  coexisting in 
one address  space.  An  objective of E S A ~ ~ O  is to allow 
authorization granularity at the functional level  ap- 
propriate to the application. To meet  this  require- 
ment, architecture and operating-system support 
must be  flexible enough to allow data isolation and 
protection to be  provided at different  levels  within 
an address  space. 

The basic notion of  storage  isolation  of  code and 
data suggests that all  addressable entities in a com- 
puter system be divided into clearly  defined units 
called objects, and the authorization mechanisms of 
the system  be  such that any program  executing  in 
this environment can  access  only  those  objects  ap- 
propriately authorized to  that program.  The  basic 
premise of this approach is that system  reliability 
can  be  improved if error confinement  can  be 
achieved by limiting  addressability to those  required 
objects  only. 

The previously  described requirement for concurrent 
addressability to multiple address  spaces to extend 
the amount of addressability,  can  also  be  used to 
achieve enhanced isolation and protection, if it  can 
be combined  with authorization mechanisms that 
control addressing  capability. In describing authori- 
zation  capabilities, it is  useful to introduce the term 
domain, which  is an isolated unit consisting of  code 
and data relating to a specific function or related 
group of functions. A domain must  be  protected 
from unauthorized access  from  outside the domain, 
but yet must  be  capable of providing  services to 
callers  outside the domain and must  be  capable of 
invoking function provided by other domains. In the 
context of ~ ~ ~ 1 3 7 0 ,  a domain is implemented as an 
independent functional address space that provides 
services that can  be  invoked by  work units in other 
address  spaces. The domain achieves  isolation by the 
unique addressability  associated  with  its  address 
space and its authorization to other address  spaces. 
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Authorization  capabilities for domains can  be  ac- 
complished by extending and refining the capabilities 
introduced with DAS for  invoking  shared  programs 
residing in an independent address  space.  Depending 
on the size or logical structure of the function, a 
program  might  require additional address  spaces to 
contain objects  relevant to the function. Authority 
becomes  activated  on entry to the address  space via 
a  program  call instruction. This technique allows 
access  privilege to be provided  on  a module or 
functional basis. 

Another authorization requirement calls  for the abil- 
ity to provide  access  privileges to objects at  the 
granularity of the work unit or process. The access 
privileges  associated  with  such  processes are not 
associated  with domains, but rather can be  passed to 
domains or can  be  restricted  from  access by domains, 
as required.  A  simple  example of an object that 
would  be  process-related  is  a  virtual  buffer contain- 
ing information entered at a terminal by a  user in 
making  a  database  retrieval  request. What the ter- 
minal operator enters on the screen  might  be  relevant 
only to that user. By contrast, access to the database 
itself  might  be  associated  with the domain of the 
database  management function and must  be  denied 
to programs not executing in  the database  manage- 
ment domain. Conversely, the database  manager 
does not require  access to the user’s  virtual  buffer 
unless  invoked by the user and passed parameters 
identifying  it. 

An  objective of E S A ~ ~ O  is to provide an authority 
mechanism  with the flexibility to allow distinct ac- 
cess  privileges to be  associated  with both processes 
and functions, and yet  allow the intersection of these 
privileges to be  dynamically  provided  where appro- 
priate. This allows  objects to be  isolated by a  con- 
trolled authorization technique, yet made  available 
when appropriate to various  functions. 

The ability to share  objects in virtual  storage  is 
provided by the current System/370-XA  architec- 
ture. DAS authorization mechanisms  allow  multiple 
users to share  code or data in the private area, and 
common area  objects  have  always  been  entities that 
could  be  shared in System/370-XA. The objective of 
E S A / ~ ~ O  is to maintain the ability to share in this 
manner, while at the same time enhancing the facil- 
ities  for  addressing and controlling  access to objects 
in virtual  storage. The concept of sharing  virtual 
objects  is  particularly  well-suited to the data-in-vir- 
tual idea  discussed  earlier in this  paper. The sharing 
of  access to permanent data on direct-access  storage 
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devices (DASD) can  be implemented with  good  per- 
formance  characteristics and reduced  real-storage 
requirements, if asynchronous processes  can share 
the same  virtual  mappings of data instead of  using 
distinct  virtual  mappings  for  each  user that must  be 
synchronized  when updates are made. 

Linkage requirements. The requirement for  register 
and status handling in the context of interaddress 
space  linkage  is to remove the job of register and 

The  state  information  associated 
with  a  process  defines  its 

environment  within  the  system at 
any  point  in  time. 

status saving  from the user and to have the system 
provide this function. Any  such  system function, of 
course,  must  have  good  performance  characteristics. 
Ideally,  from the user  perspective, the calling  mech- 
anism  would  pass the caller’s  registers to the target 
program  unchanged,  yet not require the target  pro- 
gram to save  register  values  or state information. 
Obviously, to achieve  this,  some enhancement to the 
calling  mechanism is required  when control is re- 
turned. The technique must also  allow the user to 
return parameter values  across the interface. 

The state information associated  with  a  process  de- 
fines  its environment within the system at any point 
in time.  Users  require the ability to invoke functions 
that execute in different environments. In general, 
any  program should be concerned  only  with the 
capabilities of its own environment and the inter- 
faces  required to invoke other functions. The nature 
of the state transitions that can  occur  between  func- 
tions should not create  a burden to be  placed on the 
functions themselves. Thus the fundamental require- 
ments for  managing state transitions are the follow- 
ing: the ability to define an interface to a function, 
the ability to determine the environment in which 
the function will run, and the ability to restore the 
environment of the caller  when the function has 
completed  execution. 
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Figure 3 Data-in-memory based on Large  Systems  Requirements for Application  Development  report 
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Authorization considerations encompass a number 
of items in System/370-XA, including prob- 
lem/supervisor state, PSW key, PSW key mask, and 
address-space authorization. With respect to these 
aspects of authorization, as well as to new ones that 
govern  address-space authorization, linkage transi- 
tions must be  allowed that increase authority, de- 
crease authority, leave authority unchanged, and 
change authority in a nonhierarchical way. 

Customer requirements. An informed customer view 
of  emerging requirements was documented in Ref- 
erence 3. The Large  Systems Requirements for Ap- 
plication  Development (LSRAD) Task Force was or- 
ganized to “propose evolutionary operating system 
enhancements to improve the usability  of both MVS 
and VM/370.” A major set of the proposals were 
categorized as “data-in-memory” and included the 
ideas of named spaces, convenient dynamic sharing 
of  programs and data, 3 l-bit addressing,  device- 
independent 110, and a  hierarchical  storage  manager. 
Figure  3,  which  has  been adapted from Reference  3, 
illustrates the task  force view  of requirements in this 
area. The findings of this study with  regard to data- 
in-memory supported the technical objectives that 
were  being  established  for the ~ ~ ~ 1 3 7 0  architecture 
extensions, and they  provided  a customer require- 

ment statement that clearly supported the developing 
architecture, hardware, and software  facilities. 

ESA/370 addressing architecture 

Storage  addresses in the System/360 architecture are 
specified in instructions as displacements from  base 
addresses in programmable general-purpose regis- 
ters. In the most general  case, an effective  storage 
address  is the sum of the displacement, the contents 
of the base  register  specified  as  holding the operand 
base  address, and the contents of the index register 
specified in the instruction. Of course, not all  these 
elements are present in every  instruction’s format. 
In System/370,  these same effective storage  addresses 
are interpreted as virtual, with  system-managed 
translation tables  specifying the actual physical  resi- 
dence of the data being  addressed in virtual storage. 
In System/370-XA, the length of addresses was  ex- 
tended from 24 to 31 bits,  providing concurrent 
addressability to 2 gigabytes of programs and data. 

The addressing structure of MVS~XA is  shown in 
Figure 1E. There is a  single mapping of the virtual 
range in that the nucleus and common areas,  which 
are  occupied and used by the control program and 
the subsystems,  occupy the same virtual address 
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range  in  every  user’s  virtual  mapping.  Each  user  has 
a  separate  private  storage area, and all  private  areas 
are in the same numerical  address  range.  Such  a 
structure provides  access by system and subsystem 
services to their callers in private  areas  with  good 

The  basic  architecture  extension 
is  the  association  of  an 

identification  of  a  virtual  space 
with  each  storage  reference. 

performance.  A  disadvantage  is that any new or 
increased requirement for common storage  must,  of 
necessity, be taken from  all  users. 

Enhancements to the multiple-space  facilities of Sys- 
tern1370  beyond DAS were  called  for in order to 
support the evolution  toward more multiple-address- 
space  use in MVS and its  subsystems.  Better  perform- 
ance and more granular authorization were  clearly 
understood  objectives. 

An evolutionary  addressing  extension to Sys- 
tem1370-XA that meets the requirements is an ex- 
tension of the base  address of an operand to include 
the specification  of  a  virtual  space  identifier. This 
extended  definition of a  base  address  is in harmony 
with  System/360 and System/370  base  addressing 
architecture. In E S A / ~ ~ O ,  the virtual space  is the fun- 
damental unit of protection and isolation. The ob- 
jective of E S A / ~ ~ O  is to extend the use  of virtual  spaces 
to correlate to objects  as  defined  earlier.  Programs 
and data can  reside in multiple  spaces, and multiple- 
space  addressing environments can  allow concurrent 
access to all  required  objects. 

The basic architecture extension  is the association of 
an identification of a  virtual  space  with  each  storage 
reference. A space  identification  register  with  its 
associated  general-purpose  register  is  used for ad- 
dressing operands in such  a way that a  processor  can 
find the addressed data in real  storage  by the use  of 
the correct  address translation tables. The use  of 
multiple  space  identification registers-each  of 
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which  can  potentially  cause  a  different  virtual  space 
to be accessed-greatly  expands the concurrent vir- 
tual addressability of a  processor.  These  registers are 
named access  registers (AR) and allow  each  virtual 
space  specified  by them to be up to 2 gigabytes in 
size  architecturally. An  access  register  is  associated 
with  each  general-purpose  register (GPR) in such  a 
way that when the GPR is  used  as  a  base  register  for 
an operand location, the corresponding AR specifies 
the space in which the operand is  located. Thus it is 
possible  for  a  different  virtual  space to be  associated 
with  each  general-purpose  register so that concurrent 
virtual  addressability  is  greatly  expanded  beyond the 
capability of System/370-XA architecture with DAS. 

The role  of  access  registers in ESA virtual  addressing 
is  illustrated in Figure 4. The provision of a  means 
for an executing  program to change the space  speci- 
fication in one of these  registers  dynamically-while 
at the same time remaining in problem  state- 
greatly  expands the amount of data that the program 
may  virtually  address  efficiently during execution. In 
this environment, virtual  addressing  is  transformed 
to an address-space.o#set style.  Addressing  consists 
of space  selection,  via  a new hardware  mechanism 
called access register translation (ART), offset calcu- 
lation within an address  space, and dynamic address 
translation. This process  is  depicted in Figure 5. 

Figure  6  illustrates  many of the possibilities that are 
available  with the new addressing  capabilities in 
access  register  mode. Three virtual  spaces are shown: 
the primary  address  space  P,  which contains an 
executing  program; and two other spaces  named Q 
and R, in this example. The sample instructions 
address operands in all three spaces. 

Instruction 1 moves  characters  from operand a to 
operand b. The instruction and both operands are 
in the primary  space  P. The associated access 
registers indicate the primary  space  with an archi- 
tecturally  defined  zero  value. 
Instruction 2 does  a  decimal  Add of operand a in 
space P to operand x in space Q. The example 
indicates that the access  register (AR) correspond- 
ing to the general  register containing the base 
address of x within  space Q specifies  space Q. 
Operand a is in the primary  space  P  as  indicated 
by the associated  access  register. 
Instruction 3  illustrates an instruction in one space 
operating on two operands in a  second  space. A 
logical  And  is  performed of operand x to operand 
y,  both in space Q. The access  registers are shown 
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Figure 4 ESA1370 addressing  architecture 
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qualifying the base  addresses of the operands to E S A ~ O  architecture provides the authorized, system- 
the space that contains them. controlled  sharing of access to virtual  spaces.  Each 
Instruction 4 illustrates the operation of an in- space  is independent of any other and access  may be 
struction in one space  with  two  operands,  each in allowed by  specific  users or by  specific programs. In 
a  different  space, The instruction in space P causes the architecture a token, called an access  list entry 
operand z in space R to replace operand y in space token (ALET), represents  a  space. The ALET is an 

Instruction 5 does  a compare of operand z in that the token is  local to a  dispatchable unit or to all 
space R to operand b in the primary  space P. programs  executing in a particular address  space. 

Q. indirect representation of the name of the space in 
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Figure 5 Address computation using address-space.offset and dynamic address translation 
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Access to a  space  may  be  allowed by any  program 
running on behalf of a particular dispatchable unit 
(DU), or access  may  be  allowed  by  a particular pro- 
gram  regardless  of  which  dispatchable unit the pro- 
gram  happens to be  serving. There is  provision  for 
giving  different routines in the same  address  space 
different  access  authorities. The architecture pro- 
vides an access  list  which  indicates  which  spaces 
have  been authorized for  access by a  specific DU or 
a  specific  address  space. In other words,  each  dis- 
patchable unit and each  address  space  may  have its 
own  access  list.  In certain situations, the total access 
authority available to a  program is the combination 
of the authority of the dispatchable unit and that of 

the address  space containing the executing  code. The 
creation and maintenance of  access lists  is an oper- 
ating  system  responsibility. The lists  reside in pro- 
tected  storage and cannot be  accessed  by application 
programs. 

The initial MVS implementation allows  each  dis- 
patchable unit and each  address  space to have  over 
250 spaces  available  for  access, This allows the ju- 
dicious  placement of information so as to maintain 
privacy of some information while at  the same time 
allowing  sharing of other information with other 
dispatchable units or address  spaces on a  selective 
basis.  Figure 7 illustrates the potential sharing  capa- 
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Figure 6 Direct addressing  of data outside the primary space using the full processor instruction set 
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bility by  showing three  dispatchable  units,  each  with 
its own access  list  of  spaces that it can access.  The 
illustration  indicates that a  particular  space  may be 
shared by all DUS. Others  may  be  accessed  only  by 
one DU, and the sharing of others  can  be  done 
between  particular DUS selectively,  while  preventing 
access  by other DUS. 

In the translation of a  virtual  address  within a specific 
address  space to a  real  address, the ESAWO architec- 
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ture operates  under the same  rules as in 370-XA 
architecture.  This  is  shown in Figure 8B. The virtual 
address  is  used in a  two-level  look-up to find the real 
address of the page frame  containing the operand. 
In ESA, operands  in  multiple  spaces  are  concurrently 
addressable.  Therefore, the architectural  translation 
process  must  determine  which  segment  table  desig- 
nation should be  used in the translation. The  archi- 
tectural  process  is  shown  in  Figure 8A. This archi- 
tecture  provides  for  two  access  lists to be  in  force 

SCALZI,  GANEK, AND SCHMAK 29 



Figure 7 The  sharing of spaces  shown  using  three  dispatchable  units 

DISPATCHABLE UNITS 

LISTS 

t t  

t 

concurrently.  One,  called the dispatchable unit ac- 
cess  list (DU-AL), contains the access  capabilities 
available to all  programs  executing on behalf of the 
task. The other, the primary  address  space number 
access  list (PASN-AL), contains the access  capabilities 
available to all  programs  executing  in  a  particular 
address  space,  regardless of  which  task  they  are serv- 
ing. The ALET specifies  which  of the two current 
access  lists, the one  of the dispatchable unit or that 
of the primary  address  space,  should  be  used to locate 
the operand.  Each  entry in an access  list  represents 
a  virtual  space.  The ALET identifies  which  member 
of an access  list  represents the space to be  accessed. 
An  access  list entry (ALE) contains an address to an 
entry in  system-wide  tables  containing the designa- 

tions of all  virtual  spaces. The addressed  entry  pro- 
vides the origin and length of the segment  table to 
be  used in the translation of the virtual  address. In 
particular  processor  implementations,  various  look- 
aside  buffers  are  used to reduce the frequency of full 
translation. The table  containing the virtual  space 
definition  is  called an address  second  table  because, 
in  address  space number (ASN) translation, it is the 
second  table  accessed  in  a  two-level  translation  proc- 
ess.  However, the  address  pointer in the access  list 
entry makes ASN translation unnecessary to find the 
definition of an ALET-addressed  space. 

The increased  facility  of  virtual  addressing  provided 
by the architecture  extensions can be  exploited to 
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Figure 8 €SA1370 virtual-to-real address translation: (A) access register translation; (6) dynamic address translation 
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provide  a  convenient  capability  for  a  program or enhance the opportunity to provide  increased  appli- 
programming  subsystem to map data stored on ex- cation and system  performance through effective  use 
ternal DASDS to virtual  storage and operate on it there of the electronic part of the storage  hierarchy.  Ad- 
without  explicit 110 programming.  Such  use  signifi- dressing  external data in virtual will  provide addi- 
cantly  increases the amount of data available to the tional benefit  where  a  large data structure is to be 
operating  system in paging  storage, This will  greatly accessed at random. In this case,  only the pages 



containing  referenced  operands  are  brought to cen- 
tral storage  from  the DASD. At the conclusion of a 
transaction or job, only the pages containing  changes 
need  be  written  back to the external  dataset.  A 
further general  benefit  is  increased  programming 
ease-of-use and productivity that may  result  in  many 

Data  spaces  can  provide  increased 
virtual  storage,  data  isolation, 

and  an  entity  conducive to being 
shared  among  multiple  processes 

or domains. 

programming  situations  from the capability  of  op- 
erating on external data directly  with  processor in- 
structions  without the requirement  of  using  access 
methods, I/O programming, and buffer  management. 
The system  manages  physical  residence of the data 
based on usage. This is particularly  effective in sys- 
tems  with  expanded  storage. 

Data spaces. Increased  isolation and separation of 
data objects, as well  as the requirement to share 
objects  among  multiple  users,  encourages the use  of 
identifiable data areas that contain no code. In MVS, 
all  virtual  spaces  are  uniform in size and map both 
code and data in  their  addressing  range,  including 
all  commonly  addressable  areas.  Such  virtual  spaces 
are called address  spaces. As protection  require- 
ments  evolve to finer  levels  of distinction, the need 
arises to isolate  objects much smaller than the 3  1- 
bit, 2 gigabyte  address  space  of  System/370-XA. 
Because the system  overhead  for  supporting  address 
spaces  in terms of real-storage consumption is  related 
to the space  size, it is  worthwhile to provide  smaller 
spaces  for  smaller  objects. In view  of the  fact that 
there  is  a  certain amount of  system  overhead  asso- 
ciated  with  supporting functional address  spaces  be- 
cause of the dispatchable unit structures that must 
be  provided, it is  beneficial to provide  virtual  spaces 
earmarked  for data only. 

Virtual  spaces  with  these  characteristics,  called data 
spaces, can  provide  increased  virtual  storage, data 
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isolation, and an entity  conducive to being  shared 
among  multiple  processes or domains.  They are also 
useful  containers  for  mapping  data-in-virtual  stor- 
age. The size  of the addressing  range of data spaces 
can be  variable,  allowing  for  objects  of  as  small as 
one page.  In the context  of E S A / ~ ~ O ,  the maximum  is 
limited  architecturally to 2 gigabytes  for  a  single 
virtual  space. 

In the MVS support of ESA, the basic MVS virtual 
address  space  is, of course,  supported in addition to 
the new data space.  A data space  does not contain 
those  areas common to MVS address  spaces:  a  prefix 
save  area (PSA), the MVS nucleus, or the MVS common 
area.  Because the control program cannot execute 
within  a data space, it need not contain the PSA, the 
hardware-software  interface  area to communicate 
interruptions and other information, nor  need  it 
contain the MVS common area  for  interprogram 
communication.  A data space  starts at a  specified 
origin,  expected to be  zero  in  most  cases, and may 
be  addressed by the full  3 l-bit addressing  range of 
the architecture. The MVS addressing structure with 
the addition of data spaces  is  shown in Figurt 9. MVS 
provides  services,  described  by  C. E. Clark in this 
issue, to create and delete  spaces.  A  space  may  be 
used as a  temporary  work  space or file, as an area 
for communication with other program  address 
spaces, or it may  be the vehicle  for  addressing  per- 
manent data on DASD. To support the DASD function, 
the data-in-virtual (DIV) component of MVS has  been 
extended so that its services  can  apply to data spaces 
as well as MVS address  spaces.  This  allows permanent 
collections of data to be  defined as data objects and 
be operated on directly by all  processor  instructions, 
with the actual  physical  residence  of  pages  controlled 
by the  system  based on actual reference  patterns. 
Commitment of any  changes to  the original  dataset 
is under  control of the using  program. 

The  mapping of datasets in page-format to virtual 
spaces  is  illustrated in Figure  10. This figure  illus- 
trates the operation of an add instruction whose  two 
operands  are  each  in  a  different  external data file, 
each  of  which  has  been mapped into virtual  storage. 
In this  example, the add instruction in the primary 
space  specifies  two  operands,  each of  which  is in a 
different DIV object that has  been  mapped into its 
own data space.  Operands a and b are to be  obtained 
and the result  replaces  operand a. If the pages con- 
taining the operands  had not been  referenced  before, 
they will be obtained  from the DASD datasets by the 
page-fault  resolution  process. The physical  residence 
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Figure 9 MVS addressing  structure  with the addition of data  spaces 
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of the pages containing operand b and the result a 
are subsequently under control of the system  paging 
operation. The new contents of a will  be  used to 
update the external DASD dataset only on command 
of the program. Of course,  if either or both operands 
had  been  previously  referenced,  they  will  be obtained 
from  system  paging  space  if  they are not in real 
storage. The example  makes use  of multiple spaces 
addressed through access  registers, though it would 
work similarly if the data objects were mapped into 
portions of the primary space.  Use  of  access  registers 
allow  each data object to occupy its own 2 gigabyte 
space. Also, this allows shared access in virtual stor- 
age  of the DIV objects  with other authority domains, 
separately, if desirable or required, and without re- 
quiring the primary space to be shared with the other 
domains. Addressing  of  such DIV objects  can  be 
natural to their internal structures, because  each  may 
be addressed in its own  space, starting from zero. 
For example, a DIV object  may contain internal 
pointers to its parts that remain valid without pro- 
grammed relocation  when the object  is made ad- 

dressable  within a processor. DIV supports objects 
mapped to data spaces  with its full  services,  which 
include writing  back  only  changed pages  when  spec- 
ified  by the using  program. This is further described 
by K. Rubsam2 in this issue. 

The mapping of data to virtual makes  good use  of 
the storage  hierarchy,  because the hierarchy can be 
managed on a system-wide  basis to meet  overall 
performance goals. Frequently accessed data is in 
effect cached in main storage or in expanded  storage, 
so that references can be  satisfied  with  high  perform- 
ance. Much more data can take advantage of the 
speed of expanded  storage (ES), for  example, by using 
this technique. This puts the physical  residence of 
data pages under system control and allows ES to be 
used as an effective cache  for frequently accessed 
data. 

There are  some  cases  where an application or sub- 
system  has an algorithmic reference pattern to data 
that, if exploited,  provide superior performance to 
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Figure 10 Mapping  of page-format datasets to data-in-virtual (DIV) spaces 
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general algorithms that assume random access. Such 
a  program  benefits by treating the ES effectively  as 
an 110 device,  directing the staging  of data to  and 
from it and main storage. MVS supports such opera- 
tion through the provision of hiperspaces. The phys- 
ical  residence of  pages in a  hiperspace  is  primarily 
ES. Thus data are addressed in a  hiperspace  only in 
move  mode. The data are operated on arithmetically 
and logically  only in buffers in the primary space. 
Provision is made for multiple page  moves in either 
direction to reduce the frequency of calling the sys- 
tem services. This allows  a  program to manage the 
content of processor  real  storage through use  of 
logical programming constructs, while obtaining the 
performance benefit of the ES as  a  cache  for  a very 
large amount of data. Hiperspaces and the services 
useful in processing them are described further in 
Reference 2 in this issue. 

It is interesting to note that the set of facilities just 
described are believed on the whole to meet the 
LSRAD objective of a  hierarchical  storage  manager. 
The objectives of device-independent 110 are ad- 
dressed  by the data facilities product system man- 
aged storage component. Technical objectives in- 
clude removing dependencies on,  and management 
of,  physical  device  characteristics from the program- 
ming environment. Taking the LSRAD report as  a 
comprehensive statement of customer requirements 
in  the use of virtual addressing for data, ESA and the 
associated programming support takes the system  a 
very long way toward  a complete solution. 

ESA/370 linkage  architecture 

ESA/VO supports the use  of virtual spaces  as  isolated 
objects  with individual authorization and also pro- 
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vides the capability of establishing separate authority 
domains, each  with its own  access authority. It  does 
this through extensions to the program  call (PC) 
instruction, the addition of a program return (PR) 
instruction, provision of a linkage stack, and archi- 
tecture facilities  for controlling the use  of  access  lists 
and the entities within them. The program  call in- 
struction was defined  in DAS architecture to be a 
function-calling mechanism, whereby  code of differ- 
ent operating authority-possibly in a different ad- 
dress space-could  be  accessed  with a synchronous 
instruction. The operating environment in which the 
code that provides the called function is to operate 
is initialized through operating system  services in an 
entry table, used by a processor in performing the 
PC instruction. In ~ S ~ / 3 7 0 ,  the authority mechanism 
architecture is enhanced so that such a called  func- 
tion can operate at greater, less, or completely  differ- 
ent access authority than its caller. In addition to the 
hierarchical key handling provided in DAS, whereby 
the called  program  has  access to the key  of its caller 
as well as its own potentially different key, the called 
program  may  be  restricted to its own  different  key. 
Also,  because  of the capability to establish separate 
shared virtual spaces  for communication, an option 
exists to prevent access by the called  program to the 
address  space of its caller.  Isolation of caller and 
called programs is provided by the linkage stack, 
which can be specified to receive the caller’s operat- 
ing state information during the execution of the PC 
instruction. These include its PSW key, PSW key 
mask, primary and secondary  space  designations, 
general-purpose  register and access  register contents, 
return address, and PSW operating mode. A program 
return instruction in the called  program  restores the 
calling  program’s environment from the linkage 
stack  except  for  those  registers  defined  for intercom- 
munication between  calling and called  programs. 
Each  dispatchable unit (DU) has its own  linkage 
stack. In summary, the entry table  for a particular 
callable  program contains the conditions under 
which the called  program is  allowed to operate. The 
linkage  stack  dynamically  receives the operating state 
of the caller so that it may  be  restored on return 
from a called program. The linkage operation is 
illustrated in Figure 1 1. 

In the execution of a PC, a new primary space can 
be  established that may  have its own primary ad- 
dress  space  access  list (PASN-AL) containing spaces 
that can potentially  be  accessed by code running in 
that primary space. The task  executing a PC has its 
own dispatchable unit access  list (DU-AL) containing 
spaces that any code operating under that dispatch- 
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able unit may  potentially  access. On a call to a 
function provided in another address  space, the 
spaces in the dispatchable unit’s  access  list  may  be 
accessed in providing the requested function, but the 
architecture contains controls to constrain such  ac- 
cess.  Spaces  designated in an access  list  may  be 
specified  as “public,” meaning that any code running 
with the access  list  may  access them regardless  of 
where the code  resides. To emphasize  this,  such 
spaces  are  public  only in the context of the access 
lists containing them, but no other authority is  re- 
quired. To provide  controlled sharing of access, an 
extended authorization index (EAX) has  been  defined. 
All code runs with a particular EAX, which constrains 
its access to spaces. The EAX controls which non- 
public  spaces  may  be  accessed.  Each  access  list entry 
can contain an EAX to restrict  access to the space it 
represents. Access to nonpublic spaces  is permitted 
in either of  two  ways: 

The EAX of the running code equals the EAX in the 
access  list entry defining the space. 
Otherwise, the authority table entry for the space 
to be  accessed  allows  such  access  for the particular 
EAX attempting access. (The authority table was 
added to the architecture as a part of DAS to 
provide a control mechanism  over  multiple-space 
access.) 

The first  case can be thought of as the owner of a 
space  accessing it. The second  case can be thought 
of as the owner of a space  selectively  allowing  access 
to it for one or more functions operating with their 
own  different EAX. The EAX is a characteristic or 
capability of executing  code and may  be  specified to 
change during a PC and be  restored from the linkage 
stack on a subsequent PR. It is  designed to provide 
controlled, shared access to spaces in an authority 
domain environment. MVS supports the use  of the 
EAX for  address  spaces but not for data spaces. 

Concluding remarks 

The basic ~ S ~ / 3 7 0  system structure direction is to 
provide a programming environment in which mul- 
tiple virtual spaces can be  used  effectively to allow 
extensive and practically unconstrained use of virtual 
storage. This usage  is intended not only to overcome 
current and anticipated virtual storage constraints, 
but also to extend the System/370  systems to take 
advantage of technological  progress in electronic 
storage  hierarchies and allow enhanced isolation, 
protection, and sharing of programs and data. The 
operating system environment necessary to satisfy 
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Figure 11 The  linkage  operation 
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these requirements is one in which the key  logical 
entities of the operating system environment are 
segregated into distinct virtual spaces,  where the 
virtual space  becomes the basic unit of protection. 

E S A ~ ~ O  provides the needed  addressing  capability to 
avoid constraints for the foreseeable future. As vir- 
tual storage requirements increase, new address 
spaces or  data spaces  easily  may  be added to accom- 
modate more addressability. The architecture pro- 

vides a rich instruction set  with  which to manipulate 
storage  across a large number of  spaces. In addition, 
a robust authorization control mechanism  with 
hardware enforcement is  provided to allow a flexible 
environment for  access control with  good perform- 
ance. This is  significantly important in improving 
security and integrity. 

With E S A ~ ~ O ,  this system direction will  be  achieved 
in an evolutionary manner. Existing environments 
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must be continually supported for compatibility with 
prior systems. The approach to accomplish this ev- 
olution must provide new functions and capabilities 
while  still supporting existing environments. Grad- 
ually, the advantages and extended function offered 
in new environments will encourage more pervasive 
usage  of the multiple virtual space addressing fea- 
tures. ~ ~ ~ 1 3 7 0  has been  designed to enable a strategy 
of supplying new  facilities without disturbing existing 
user environments. By extending Systemf360, Sys- 
tem/370, DAS, and Systemf370-XA architectures in 
a nondisruptive way,  usage  of the new  facilities can 
coexist  with  existing programs and operating system 
environments. Exploitation of the enhanced archi- 
tecture will initially materialize in subsystems and 
system components in ways that are, for the most 
part, transparent  to users. Over time  more software 
services will be made available that facilitate direct 
usage  by the  end user of the enhanced architecture. 

~ ~ ~ 1 3 7 0  is designed with extendability in mind. It 
provides a new architectural base that  can be ex- 
tended in  an evolutionary way as technological ad- 
vances occur in processor and electronic storage 
hardware and  accommodate evolving software tech- 
nologies in operating systems, subsystems, and  ap- 
plications. 
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