Enterprise Systems
Architecture/370: An
architecture for multiple
virtual space access
and authorization

The Enterprise Systems Architecture/370™ provides a
significant step in the IBM System/370 evolution by
providing new capabilities for virtual addressing and
program linkage across multiple address spaces. This
paper reviews the evolution that led to this advance
and illuminates the goals, such as eliminating growth
constraints and improving security, integrity, reliability,
and performance, that have guided it. The major archi-
tectural capabilities are discussed, along with the sys-
tem environments in which they are useful. The ration-
ale for design choices is presented and related to is-
sues of performance, access authorization, and
constraints relief,

In the late 1970s and early 1980s, attention within
1BM focused on extending the System/370-XA
architecture to enable continued evolutionary
growth of System/370 systems, as required in light
of emerging customer requirements and rapidly
changing hardware and operating system technolo-
gies. The Enterprise Systems Architecture/370™
(EsA/370™) was developed in response to these re-
quirements and trends. The development of more
powerful processors was already underway and the
continuing evolution of processors of ever-increasing
speed was anticipated. As the processor speed grows,
larger workloads can be handled and more data must
be available to keep the processor highiy utilized. In
fact, without sufficient data available to the system
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in high-speed storage, processor power could be un-
der-utilized. The high probability that large, cost-
effective electronic storage hierarchies would be gen-
erally available on such future processors made the
requirement an even stronger one. (The implications
of electronic storage hierarchies are discussed further
by E. 1. Cohen, G. M. King, and J. T. Brady in this
issue.') In addition to these hardware trends, new
approaches in operating system structure were evolv-
ing not only to exploit the advances in hardware,
but also to meet customer requirements for data
sharing, constraint relief, data integrity, perform-
ance, and usability in large systems. The ESA/370
architecture was developed considering all three of
these factors—customer requirements, hardware
trends, and operating system structural issues.

Evolution

In the development of System/370 architecture,
there was a commitment to the idea that the use of
virtual addressing in programs would provide a ve-
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hicle for the automatic adaptation of programs to
large and multiple-level storage hierarchies. These
can be used to provide increased performance with-
out reprogramming, as electronic storage was in-
creased or new physical levels were added. To un-

Although multiprogramming
has made computer processing
more efficient, it has also
created much more demand
for memory.

derstand the relationship of storage addressing and
access authorization to operating system structure
and architectural requirements, it is useful to review
the evolution of the addressing structure in Sys-
tem/360 and System/370 systems. In the mid-1960s,
System/360 operating environments allowed one
program to execute at a time, with an addressing
capability that was precisely equal to the available
main storage on the machine. The environment then
was essentially the same as that of many personal
computer systems today, in that job management is
left to the human operator, and each job must wait
for the prior one to complete. As is indicated by the
primary control program (PCP) model in Figure 1A,
only the operating system code and one application
are loaded into memory at one time. This mode
requires only one distinction of authority: either
privileged- or problem-program authority. This ded-
ication to a single application is an inefficient use of
resource because it leaves the processor idle during
input/output processing and between jobs. Figure 1B
shows how developments designed to overcome this
shortcoming led to the multiprogramming with a
fixed number of tasks (MFT) and multiprogramming
with a variable number of tasks (MvT) operating
systems, by providing multiprogramming environ-
ments. Multiple programs are loaded into memory
concurrently to share both the processor and mem-
ory resources of the system. In this way, when one
task requires input/output processing, that task can
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be suspended until the 1/0 completion. Meanwhile,
another task can be executed. To insure integrity,
this arrangement requires a protection mechanism
to constrain the addressing of each task to the parti-
tion of memory allocated to it. In System/360, pro-
tection is accomplished with a storage key architec-
ture, which allows for 16 different protected areas
and a control program access key (key zero) that
allows addressability to the entire range of memory.

Although the introduction of multiprogramming has
made computer processing far more efficient and has
provided effective utilization of the processor, it has
also created much more demand for memory. Thus
the available memory had to be partitioned for each
of the concurrent tasks. Therefore, the addressability
of each task was reduced. The resultant memory
constraint limited the size of programs and the
amount of data that could be associated with them.
This left the users of the system with difficult trade-
offs to manage for balancing the number of concur-
rent programs and the addressing capacity available
to them. This motivated the development of Sys-
tem/370 and the virtual storage system depicted in
Figure 1C. In this single virtual storage (Svs) operat-
ing system, the memory available to all of the tasks
was increased via the use of virtual storage. Virtual
storage provides the appearance of more memory by
supplementing main memory with high-speed exter-
nal storage and a paging mechanism. With virtual
addressing, a processor performs the instruction if it
and its operands are in main storage. If any of the
required elements are not in main storage when the
instruction is executed, the processor signals the
operating system. This process is called a page fauit.
The operating system makes the missing element(s)
available in main storage and causes the processor
to re-execute the instruction. The program contain-
ing the instruction is not involved in the manage-
ment of the content of main storage and is written
as though all instructions and data are resident. The
processor and control program, in cooperation, can
translate the virtual addresses and find the page
frame that contains the desired element in main
storage. The processor and the control program also
cooperate in keeping track of which elements have
been most recently required for processing. This
information is used by the operating system to man-
age the content of the levels of the storage hierarchy
for maximum performance benefit in throughput or
response time, or to meet installation priorities. This
approach in svs allows the addressing structure to
equal the full architectural limit of System/370,
which is 16 megabytes for linear addressing.
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Figure 1  Evolution of storage maps: (A) primary control program (PCP); (B) multiprogramming with a variable number of
tasks/multiprogramming with a fixed number of tasks (MVT/MFT); (C) single virtual storage (SVS); (D) Muitiple Virtual
Storage (MVS); (E) Multiple Virtual Storage/Extended Architecture (MVS/XA)
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svs provides concurrent addressability to as much as
16 megabytes in a single mapping of all data and
programs. Such a single linear mapping of virtual
addresses is called an address space. In that operating
system, the requirement for multiprogramming still
requires that the single virtual address space be di-
vided up among the concurrently executing pro-
grams, thereby limiting the amount available for any
one program. This problem was addressed by the
development of operating systems that give each user

By using virtual addressability,
multiple address-space structures
provide more virtual storage
per user.

a virtual address space that is independent of that of
other users. Such a structure is depicted in Figure
1D, which shows the Multiple Virtual Storage (Mvs)
operating system. In this case, the addressing range
is divided into segments that are common to all users
and contain programs and data relevant to many
users. There are also segments called the private
areas that are relevant only to individual users and
therefore need not be commonly addressable. In the
VM operating system, users are similarly segregated
into the independent memory of their virtual ma-
chines. By using virtual addressability, these multi-
ple-address-space structures provide more virtual
storage per user and the opportunity to extend pro-
tection beyond the limit of storage keys.

As multiple-address-space structures were developed,
subsystem functions—such as the job entry subsys-
tem and the Information Management System (iMS)
database subsystem in Mvs—began to exploit the
structure to provide function for many users. The
mvs subsystems adapted to the multiple-address-
space structure of Mvs in the System/370 time frame,
in some cases by maintaining control information
and data buffers in private areas available only to
them. Access is generally accomplished by their code
operating in the common area. Many operations to
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be performed require movement of data to or from
the subsystem private area and a user’s private area.
Because of this, mechanisms for data passing and
program linkage across address spaces are necessary.
The dual address space (DAS) facility was added to
the architecture to facilitate such operations. Two
virtual address spaces can be made known to a
processor simultaneously and authorized programs
can easily switch from operating with primary space
addressability to secondary space addressability,
thereby making data in either a subsystem’s space or
its caller’s space easily accessible. To facilitate the
movement of data from one space to the other, two
new MOVE instructions were added to System/370 to
move data directly from primary to secondary or
from secondary to primary. Otherwise, the data
would have had to be moved to the common-ad-
dressed area en route between the two private address
spaces. In addition, synchronous linkage instructions
were provided to enable programs to be located in
the private area of an address space and accessed
from other address spaces. This allowed service func-
tions to be removed from common storage and
implemented in independent address spaces, thus
reducing the virtual storage impact of service func-
tions on other address spaces and improving the
level of protection of the programs and data associ-
ated with them.

While DAS improved the usability of multiple address
spaces, a 16-megabyte address space continued to be
a constraint in many environments. The Sys-
tem/370-XA architecture was introduced to increase
the size of address spaces in this structure. Sys-
tem/370-XA provided a 31-bit virtual address that
extended the size of address spaces from 16 mega-
bytes to 2 gigabytes. As depicted in Figure 1E, the
MVS/XA™ structure contains larger address spaces
than its System/370 forerunner, but the mechanisms
to use multiple address spaces concurrently are un-
changed. The facilities of DAs were carried forward
in System/370-XA to provide dual address-space
capabilities for the larger spaces.

Requirements

As we have seen, the evolution of System/360 has
continually been guided by the system goals of elim-
inating growth constraints; improving security, in-
tegrity, and reliability; and providing improved per-
formance. The objective of Enterprise Systems Ar-
chitecture/370 (ESA/370) is to continue this process
by enhancing system capabilities in the areas of
virtual addressing, isolation and protection of code
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and data, and program linkage. To understand the
ESA/370 solution, we examine each of these capabili-
ties in light of the current function, the motivation
for change, and the nature of the change or new
function required.

Extended addressability. Current System/370-XA
architecture allows a virtual addressing capability of

From the application programmer’s
perspective, it is often highly
desirable to map an entire data
structure into virtual storage
at one time.

up to 2 gigabytes (2 billion bytes) derived from a
31-bit virtual address that maps storage in a single
Mvs address space. Although there can exist many
such address spaces, only one is generally addressable
at any point in time. The dual address space (DAS)
architecture inherent in System/370-XA provides a
limited capability to access concurrently an addi-
tional address space. However, this access applies
only to data movement from one address space to
another. The balance of the System/370-XA instruc-
tion set applies only to a single address space, thereby
limiting a program’s addressability to 2 gigabytes.

To understand the motivation to increase virtual
addressing capacity, we must first examine the kinds
of things that consume virtual storage. One of the
most important of these is control blocks. System
and subsystem control blocks consume large
amounts of virtual storage. Control block storage
generally increases proportionally with entities such
as the following that correlate to workload per: ter-
minal, user, transaction, database, device, and appli-
cation. Consequently, virtual storage limitations that
restrict the amount of control-block consumption
can place a ceiling on workload growth regardless of
processing power or direct-access storage device
(DAsD) configuration, This phenomenon of virtual
storage constraint can in turn severely limit the
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usefulness of high-performance processors and im-
proved storage devices.

In the System/370 systems, permanent data nor-
mally reside in datasets on external storage devices,
such as disks and tape devices. In the context of
permanent data, virtual storage is primarily used as
a buffer area to make permanent data addressable to
the processor. As applications increase the size and
complexity of the data structures they deal with, the
required buffer areas grow commensurately, requir-
ing larger virtual buffers to contain the data. Graphic
representation of three-dimensional objects, image
processing, and large arrays related to numeric com-
putation are examples of the many types of appli-
cations requiring large virtual storage buffers. From
the application programmer’s perspective, it is often
highly desirable to map an entire data structure into
virtual storage at one time, rather than deal with the
complexity of overlay data or complex access meth-
ods for explicitly managed 1/0. However, as a pro-
gram obtains virtual storage for the variety of entities
it requires within its address space, the available
space can easily become fragmented, constraining
further the ability to take advantage of large contig-
uous areas of virtual storage.

As the function of data processing applications
evolves to meet ever-broadening requirements, the
complexity and sophistication of the underlying pro-
grams expand. This results in the necessity for very
large programs and libraries of many programs to be
available to provide the needed function. As these
programs are executed, they are brought into virtual
storage for access by the processor. To achieve high
performance and to avoid complex overlay struc-
tures, it is highly desirable to keep these programs in
virtual storage. The accumulation of programs can
consume substantial amounts of virtual storage. Be-
cause many programs are of value to multiple users,
it is desirable to keep them in commonly addressable
ranges of virtual storage, so as to minimize the usage
of real storage. In the Mvs operating system, this
mechanism is the common area, and in vM it may
be implemented with shared segments. In either case,
the accumulation of shared programs can reduce the
amount of privately addressable virtual storage avail-
able.

The concept of mapping permanent or temporary
data in virtual storage is called data in virtual (DIV)
and allows the application developer an interface to
data without coding any record-oriented 1/0 proto-
cols, but instead to use virtual addresses as an access
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Figure 2 Data-in-virtual usage

method. This capability increases the demand for
virtual addressability by augmenting its functional
utility. The key aspects of this concept, as depicted
in Figure 2, are as follows. First, data are stored on
external devices in a format that corresponds to page
size. When the dataset is opened or identified to the
system, it is assigned a virtual storage range to map
the dataset, although no data are brought into proc-
essor storage immediately. The application program
can then reference the data by virtual address, which,
in turn, causes page faults for any addresses not
previously primed with data. The page fault process
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handles all 10 transparently to the user, brings the
page into real storage so as to represent the user’s
specified virtual address and then re-executes the
user’s instruction to operate on the virtual storage.
When the dataset is c/osed by the user, all changed
pages in the virtual storage range may be written out
to the permanent DASD locations, if the user so
chooses.

There are many advantages of the data-in-virtual

data management approach. In this issue, K. Rub-
sam (Reference 2), describes the implementation and
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benefits more completely than we do here. Briefly, a
key value is that the user’s view of data is greatly
simplified. The normal instruction set is available to
manipulate any data items of interest. From the
user’s perspective, all required data are immediately
addressable at one time, and program logic need not
be encumbered by considerations of data buffering
and 10 protocols. This view of data eliminates de-
pendencies on the specific characteristics of DASD
hardware that can allow both easier adaptation of
data residence to new technologies, and better usa-
bility for end users.

Also, from the standpoint of performance, there is
substantial potential for reduced 170 overhead be-
cause, with DIv, only referenced data are read into
main storage. Many applications need reference only
small portions of an entire data structure, but those
portions are determined dynamically during com-
putation. Without DIV, the entire structure must be
read into main storage to establish addressability to
the data in virtual storage. This results in needless
1/0 operations for those pages of the file that contain
records that are not referenced. In addition, the
integration of data management services and proces-
sor storage management can enable more efficient
utilization of the electronic storage hierarchy. The
attractiveness of the data-in-virtual concept can, of
course, be limited by constraints on the amount of
virtual storage available. As large databases and other
large data structures become mapped virtually, the
requirement for extended virtual addressability in-
creases.

Since all of these factors combine to consume virtual
storage, resultant virtual storage constraints can ad-
versely affect systems by precluding the addition of
new applications and databases. Also, limited virtual
storage can restrict the amount of virtual space for
control blocks and tables, a fact that constrains the
size of system configurations that can be handled. It
is evident that virtual storage is a precious resource
that is limited architecturally in the System/370-XA
environment and therefore is a system constraint.
Such potential for constraint generates the require-
ment for an open-ended addressing capability that
allows increased exploitation of virtual storage. If a
program is to utilize virtual storage effectively, the
entire instruction set must be available to manipulate
all storage available to the program. The objective of
ESA/370 is to extend the addressing environment to
allow concurrent access to multiple virtual spaces
with the full richness of the instruction set. The
intention is to provide an environment in which the
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logical entities of interest to a program can be seg-
mented into multiple virtual spaces, each of which
can be up to 2 gigabytes in size, and to allow con-
current access to this entire set of virtual spaces.
Here we call attention to the fact that the virtual
spaces in this type of structure need not all represent
as much as 2 gigabytes, but in many instances they
could be smaller.

Isolation and protection. The basic System/370-XA

protection mechanism is the storage key by which
each block of storage (4096 bytes) has a four-bit key

Storage in the private areas is
protected from other users by not
being addressable through dynamic
address translation.

value of 0-15 associated with it. On any storage
update, this key must match with the associated
access key in the program status word (psw), with
the exception of PSw key zero, which allows the
program to access storage in any key. This architec-
ture, therefore, provides for a storage protection
granularity of just 16 levels,

The structures of most System/370 operating sys-
tems are based on multiple distinct address spaces.
Storage in the various private areas is protected from
other users by virtue of not being addressable
through dynamic address translation (DAT). Con-
versely, any virtual storage that is made virtually
addressable to multiple users is limited in granularity
to 16 keys for protection.

With respect to isolation, the separation of users into
distinct address spaces enhances protection and in-
tegrity by making them mutually exclusive of one
another during execution. The unit of protection
becomes the address space instead of storage keys.
Within any one address space, the storage keys are
used to protect data areas. System and subsystem
functions use storage keys to provide integrity for
their data areas in both the commonly and privately
addressable address spaces. This enables the control
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program to place various control information that is
relevant only to a particular user in that user’s ad-
dress space and at the same time prevent the user

Localizing control information
in this way further isolates
errors at the address-space level.

from modifying it. Localizing control information
in this way further isolates errors at the address-space
level. This approach has been found to increase the
probability that errors can be contained to single
users, thus reducing the probability of impact to
other users.

Using System/370-XA architecture, systems can do
a good job of isolating users from one another by
way of multiple address spaces. Because each user’s
code and data reside in a distinct virtual address
space, addressability does not allow interference with
other users. If the isolation of users in today’s struc-
ture can be effectively achieved, one may well ask
why enhancements in this area are required. The
answer is resource sharing. Individual users must
share certain physical resources such as cpu, chan-
nels, real storage, direct-access storage devices
(DASD), printers, etc., as well as certain logical re-
sources like programs, data, system functions, and
subsystem functions. Sharing system and subsystem
resources is implemented by system components and
subsystems whose code and data areas exist in virtual
storage. Such programs and data areas must either
reside in commonly addressable storage available to
all users, or they must reside in separate address
spaces and execute in a multiple-space environment.
These alternatives apply equally well to subsystem-
oriented functions that may provide services for a
subset of the system’s user population.

System components and subsystems that reside in
commonly addressable storage not only aggravate
the virtual-storage constraint problems, discussed
previously, but also limit the granularity of protec-
tion to key protection. A single addressing range
contains different entities in virtual storage, all of
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which represent some form of the code and data of
the operating system, the subsystems, or the users.
Because there are many more such resource cate-
gories residing in a given address space than 16 keys,
the storage key mechanism provides an inadequate
level of protection granularity, even for the environ-
ment of a single address space with current Sys-
tem/370 structures. Errors in programs that either
execute in key zero or in a key shared by other
programs in the same addressing range can poten-
tially result in damage to data or code associated
with other functions or the currently addressable
private area.

The alternative of implementing shared functions in
a multiple-space environment is hampered by archi-
tectural limitations inherent in System/370-XA with
respect to concurrent use of multiple address spaces.
Such limitations not only affect the existing multiple-
space subsystems and system components, but also
discourage other components and subsystems from
new designs that might achieve greater isolation and
protection in a multiple-address-space environment.

The concept of functional isolation is to limit as
much as possible the errors of any function to its
own data or to data passed to it by its caller. This
technique is called encapsulation or error confine-
ment. DAS enables this by allowing code and data
related to a function to be placed in a unique address
space and by providing the program call instruction
in another address space to invoke the code. Using
DAS, the caller’s parameters can be copied from the
caller to target address spaces, and the output of the
function can be copied back from the functional
space to the caller.

One major difficulty with using cross-memory serv-
ices is the limited instruction set that the called
function has available to manipulate the caller’s
parameters and data. A short parameter list can be
completely copied across spaces, but it can be very
clumsy if, for example, the parameter list is of vary-
ing length. If the caller needs to supply large data
areas that are impractical to copy, the called routine
must execute in commonly addressable storage and
switch addressability back and forth between the
calling and called spaces. This is also true if the called
program must manipulate data objects that are
imbedded in a complex data structure, making them
difficult to locate and move.

Another alternative is to place the data in commonly
addressable storage, but the utilization of code and
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data in common storage in this manner undermines
the benefit of a multiple-space structure for enhanced
protection and virtual-storage constraint relief, It
also introduces the need to fragment code artificially
into commonly and privately addressable segments,
thus increasing the complexity of programs.

Another limitation of the DAS architecture relates to
the authorization mechanisms, The bAS mechanisms
in MvS require the invoked function to have the
ability to address the caller’s address space to access
parameters. Thus the DAS architecture requires that
the called function be given access authority to all

System reliability can be improved
if error confinement can be achieved
by limiting addressability to those
required objects only.

potential callers’ address spaces. Because DAS au-
thorization is on the address-space level, any code
that executes in the invoked function’s address space
can establish addressability to any of its potential
callers’ address spaces and can reference or update
data in that space. This means that an error in a
shared program residing in its own address space can
corrupt data in any potential caller’s address space
at any time. The possibility of such errors precludes
this type of implementation for shared programs that
are not authorized and trusted.

Whereas authorized addressability is warranted in
this DAS environment, it is really required only for
the duration of the function being performed and
for the data specific to that caller’s request. In es-
sence, the caller should pass addressability to the
function and withdraw this capability when control
is returned. In this way, addressing control is asso-
ciated with the executing process that is making the
functional request, rather than the function being
invoked. DAS does not allow this capability.

The passing of the authorization to update a data
area to a shared program that is invoked in a multi-
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ple-space environment, instead of each shared func-
tion possessing only a static set of capabilities—
regardless of the caller—is an objective of EsA/370.
This approach is conducive to an environment in
which problem-state unauthorized programs may be
safely shared.

Another restriction imposed by the address-space-
level authorization architecture of DAS is the inability
to support multiple programs in one address space,
with distinct addressing capabilities to access other
address spaces. This precludes programs that require
different levels of authorization from coexisting in
one address space. An objective of ESa/370 is to allow
authorization granularity at the functional level ap-
propriate to the application. To meet this require-
ment, architecture and operating-system support
must be flexible enough to allow data isolation and
protection to be provided at different levels within
an address space.

The basic notion of storage isolation of code and
data suggests that all addressable entities in a com-
puter system be divided into clearly defined units
called objects, and the authorization mechanisms of
the system be such that any program executing in
this environment can access only those objects ap-
propriately authorized to that program. The basic
premise of this approach is that system reliability
can be improved if error confinement can be
achieved by limiting addressability to those required
objects only.

The previously described requirement for concurrent
addressability to multiple address spaces to extend
the amount of addressability, can also be used to
achieve enhanced isolation and protection, if it can
be combined with authorization mechanisms that
control addressing capability. In describing authori-
zation capabilities, it is useful to introduce the term
domain, which is an isolated unit consisting of code
and data relating to a specific function or related
group of functions. A domain must be protected
from unauthorized access from outside the domain,
but yet must be capable of providing services to
callers outside the domain and must be capable of
invoking function provided by other domains. In the
context of ESA/370, a domain is implemented as an
independent functional address space that provides
services that can be invoked by work units in other
address spaces. The domain achieves isolation by the
unique addressability associated with its address
space and its authorization to other address spaces.
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Authorization capabilities for domains can be ac-
complished by extending and refining the capabilities
introduced with DAS for invoking shared programs
residing in an independent address space. Depending
on the size or logical structure of the function, a
program might require additional address spaces to
contain objects relevant to the function. Authority
becomes activated on entry to the address space via
a program call instruction. This technique allows
access privilege to be provided on a module or
functional basis.

Another authorization requirement calls for the abil-
ity to provide access privileges to objects at the
granularity of the work unit or process. The access
privileges associated with such processes are not
associated with domains, but rather can be passed to
domains or can be restricted from access by domains,
as required. A simple example of an object that
would be process-related is a virtual buffer contain-
ing information entered at a terminal by a user in
making a database retrieval request. What the ter-
minal operator enters on the screen might be relevant
only to that user. By contrast, access to the database
itself might be associated with the domain of the
database management function and must be denied
to programs not executing in the database manage-
ment domain. Conversely, the database manager
does not require access to the user’s virtual buffer
unless invoked by the user and passed parameters
identifying it.

An objective of ESA/370 is to provide an authority
mechanism with the flexibility to allow distinct ac-
cess privileges to be associated with both processes
and functions, and yet allow the intersection of these
privileges to be dynamically provided where appro-
priate. This allows objects to be isolated by a con-
trolled authorization technique, yet made available
when appropriate to various functions.

The ability to share objects in virtual storage is
provided by the current System/370-XA architec-
ture. DAS authorization mechanisms allow multiple
users to share code or data in the private area, and
common area objects have always been entities that
could be shared in System/370-XA. The objective of
ESA/370 is t0 maintain the ability to share in this
manner, while at the same time enhancing the facil-
ities for addressing and controlling access to objects
in virtual storage. The concept of sharing virtual
objects is particularly well-suited to the data-in-vir-
tual idea discussed earlier in this paper. The sharing
of access to permanent data on direct-access storage
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devices (DASD) can be implemented with good per-
formance characteristics and reduced real-storage
requirements, if asynchronous processes can share
the same virtual mappings of data instead of using
distinct virtual mappings for each user that must be
synchronized when updates are made.

Linkage requirements. The requirement for register

and status handling in the context of interaddress
space linkage is to remove the job of register and

The state information associated
with a process defines its
environment within the system at
any point in time.

status saving from the user and to have the system
provide this function. Any such system function, of
course, must have good performance characteristics.
Ideally, from the user perspective, the calling mech-
anism would pass the caller’s registers to the target
program unchanged, yet not require the target pro-
gram to save register values or state information.
Obviously, to achieve this, some enhancement to the
calling mechanism is required when control is re-
turned. The technique must also allow the user to
return parameter values across the interface.

The state information associated with a process de-
fines its environment within the system at any point
in time. Users require the ability to invoke functions
that execute in different environments. In general,
any program should be concerned only with the
capabilities of its own environment and the inter-
faces required to invoke other functions. The nature
of the state transitions that can occur between func-
tions should not create a burden to be placed on the
functions themselves. Thus the fundamental require-
ments for managing state transitions are the follow-
ing: the ability to define an interface to a function,
the ability to determine the environment in which
the function will run, and the ability to restore the
environment of the caller when the function has
completed execution.
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Figure 3 Data-in-memory based on Large Systems Requirements for Application Development report
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Authorization considerations encompass a number
of items in System/370-XA, including prob-
lem/supervisor state, PSW key, PSW key mask, and
address-space authorization. With respect to these
aspects of authorization, as well as to new ones that
govern address-space authorization, linkage transi-
tions must be allowed that increase authority, de-
crease authority, leave authority unchanged, and
change authority in a nonhierarchical way.

Customer requirements. An informed customer view
of emerging requirements was documented in Ref-
erence 3. The Large Systems Requirements for Ap-
plication Development (LsRAD) Task Force was or-
ganized to “propose evolutionary operating system
enhancements to improve the usability of both Mvs
and vM/370.” A major set of the proposals were
categorized as “data-in-memory” and included the
ideas of named spaces, convenient dynamic sharing
of programs and data, 31-bit addressing, device-
independent 1/0, and a hierarchical storage manager.
Figure 3, which has been adapted from Reference 3,
illustrates the task force view of requirements in this
area. The findings of this study with regard to data-
in-memory supported the technical objectives that
were being established for the Esa/370 architecture
extensions, and they provided a customer require-
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ment statement that clearly supported the developing
architecture, hardware, and software facilities.

ESA/370 addressing architecture

Storage addresses in the System/360 architecture are
specified in instructions as displacements from base
addresses in programmable general-purpose regis-
ters. In the most general case, an effective storage
address is the sum of the displacement, the contents
of the base register specified as holding the operand
base address, and the contents of the index register
specified in the instruction. Of course, not all these
elements are present in every instruction’s format.
In System/370, these same effective storage addresses
are interpreted as virtual, with system-managed
translation tables specifying the actual physical resi-
dence of the data being addressed in virtual storage.
In System/370-XA, the length of addresses was ex-
tended from 24 to 31 bits, providing concurrent
addressability to 2 gigabytes of programs and data.

The addressing structure of Mvs/xA is shown in
Figure 1E. There is a single mapping of the virtual
range in that the nucleus and common areas, which
are occupied and used by the control program and
the subsystems, occupy the same virtual address
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range in every user’s virtual mapping. Each user has
a separate private storage area, and all private areas
are in the same numerical address range. Such a
structure provides access by system and subsystem
services to their callers in private areas with good

The basic architecture extension
is the association of an
identification of a virtual space
with each storage reference.

performance. A disadvantage is that any new or
increased requirement for common storage must, of
necessity, be taken from all users.

Enhancements to the multiple-space facilities of Sys-
tem/370 beyond Das were called for in order to
support the evolution toward more multiple-address-
space use in MVS and its subsystems. Better perform-
ance and more granular authorization were clearly
understood objectives.

An evolutionary addressing extension to Sys-
tem/370-XA that meets the requirements is an ex-
tension of the base address of an operand to include
the specification of a virtual space identifier. This
extended definition of a base address is in harmony
with System/360 and System/370 base addressing
architecture. In ESA/370, the virtual space is the fun-
damental unit of protection and isolation. The ob-
jective of ESA/370 is to extend the use of virtual spaces
to correlate to objects as defined earlier. Programs
and data can reside in multiple spaces, and multiple-
space addressing environments can allow concurrent
access to all required objects.

The basic architecture extension is the association of
an identification of a virtual space with each storage
reference. A space identification register with its
associated general-purpose register is used for ad-
dressing operands in such a way that a processor can
find the addressed data in real storage by the use of
the correct address translation tables. The use of
multiple space identification registers—each of
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which can potentially cause a different virtual space
to be accessed—greatly expands the concurrent vir-
tual addressability of a processor. These registers are
named access registers (AR) and allow each virtual
space specified by them to be up to 2 gigabytes in
size architecturally. An access register is associated
with each general-purpose register (GPR) in such a
way that when the GPR is used as a base register for
an operand location, the corresponding AR specifies
the space in which the operand is located. Thus it is
possible for a different virtual space to be associated
with each general-purpose register so that concurrent
virtual addressability is greatly expanded beyond the
capability of System/370-XA architecture with DAS.

The role of access registers in EsA virtual addressing
is illustrated in Figure 4. The provision of a means
for an executing program to change the space speci-
fication in one of these registers dynamically—while
at the same time remaining in problem state—
greatly expands the amount of data that the program
may virtually address efficiently during execution. In
this environment, virtual addressing is transformed
to an address-space.offset style. Addressing consists
of space selection, via a new hardware mechanism
called access register translation (ART), offset calcu-
lation within an address space, and dynamic address
translation. This process is depicted in Figure 5.

Figure 6 illustrates many of the possibilities that are
available with the new addressing capabilities in
access register mode. Three virtual spaces are shown:
the primary address space P, which contains an
executing program; and two other spaces named Q
and R, in this example. The sample instructions
address operands in all three spaces.

 Instruction 1 moves characters from operand a to
operand b. The instruction and both operands are
in the primary space P. The associated access
registers indicate the primary space with an archi-
tecturally defined zero value.

e Instruction 2 does a decimal Add of operand a in
space P to operand x in space Q. The example
indicates that the access register (AR) correspond-
ing to the general register containing the base
address of x within space Q specifies space Q.
Operand a is in the primary space P as indicated
by the associated access register.

¢ Instruction 3 illustrates an instruction in one space
operating on two operands in a second space. A
logical And is performed of operand x to operand
¥, both in space Q. The access registers are shown
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Figure 4 ESA/370 addressing architecture
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qualifying the base addresses of the operands to
the space that contains them.

s Instruction 4 illustrates the operation of an in-
struction in one space with two operands, each in
a different space. The instruction in space P causes
operand z in space R to replace operand y in space

s Instruction 5 does a compare of operand z in
space R to operand b in the primary space P.
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ESA/370 architecture provides the authorized, system-
controlled sharing of access to virtual spaces. Each
space is independent of any other and access may be
allowed by specific users or by specific programs. In
the architecture a token, called an access list entry
token (ALET), represents a space. The ALET is an
indirect representation of the name of the space in
that the token is local to a dispatchable unit or to all
programs executing in a particular address space.
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Figure 5 Address computation using address-space.offset and dynamic address translation

INSTRUCTION STORAGE ADDRESS FIELDS

DISPLACEMENT

SPACE SELECTION

ACCESS REGISTER
TRANSLATION {ART)

OFFSET CALCULATION

1]

ZERO~ORIGIN

v

SPACE I ADDRESSED BYTE

VIRTUAL ADDRESS

DYNAMIC ADDRESS
TRANSLATION (DAT)

Access to a space may be allowed by any program
running on behalf of a particular dispatchable unit
(Du), or access may be allowed by a particular pro-
gram regardless of which dispatchable unit the pro-
gram happens to be serving. There is provision for
giving different routines in the same address space
different access authorities. The architecture pro-
vides an access list which indicates which spaces
have been authorized for access by a specific DU or
a specific address space. In other words, each dis-
patchable unit and each address space may have its
own access list. In certain situations, the total access
authority available to a program is the combination
of the authority of the dispatchable unit and that of
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the address space containing the executing code. The
creation and maintenance of access lists is an oper-
ating system responsibility. The lists reside in pro-
tected storage and cannot be accessed by application
programs.

The initial MvS implementation allows each dis-
patchable unit and each address space to have over
250 spaces available for access. This allows the ju-
dicious placement of information so as to maintain
privacy of some information while at the same time
allowing sharing of other information with other
dispatchable units or address spaces on a selective
basis. Figure 7 illustrates the potential sharing capa-
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Figure 6 Direct addressing of data outside the primary space using the full processor instruction set
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bility by showing three dispatchable units, each with
its own access list of spaces that it can access. The
illustration indicates that a particular space may be
shared by all bus. Others may be accessed only by
one DU, and the sharing of others can be done
between particular DUs selectively, while preventing
access by other DUs,

In the translation of a virtual address within a specific
address space to a real address, the ESA/370 architec-
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ture operates under the same rules as in 370-XA
architecture. This is shown in Figure 8B. The virtual
address is used in a two-level look-up to find the real
address of the page frame containing the operand.
In ESA, operands in multiple spaces are concurrently
addressable. Therefore, the architectural translation
process must determine which segment table desig-
nation should be used in the translation. The archi-
tectural process is shown in Figure 8A. This archi-
tecture provides for two access lists to be in force
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Figure 7 The sharing of spaces shown using three dispatchable units
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concurrently. One, called the dispatchable unit ac-
cess list (DU-AL), contains the access capabilities
available to all programs executing on behalf of the
task. The other, the primary address space number
access list (PASN-AL), contains the access capabilities
available to all programs executing in a particular
address space, regardless of which task they are serv-
ing. The ALET specifies which of the two current
access lists, the one of the dispatchable unit or that
of the primary address space, should be used to locate
the operand. Each entry in an access list represents
a virtual space. The ALET identifies which member
of an access list represents the space to be accessed.
An access list entry (ALE) contains an address to an
entry in system-wide tables containing the designa-
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tions of all virtual spaces. The addressed entry pro-
vides the origin and length of the segment table to
be used in the translation of the virtual address. In
particular processor implementations, various look-
aside buffers are used to reduce the frequency of full
translation. The table containing the virtual space
definition is called an address second table because,
in address space number (ASN) translation, it is the
second table accessed in a two-level translation proc-
ess. However, the address pointer in the access list
entry makes ASN translation unnecessary to find the
definition of an ALET-addressed space.

The increased facility of virtual addressing provided
by the architecture extensions can be exploited to
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Figure 8 ESA/370 virtual-to-real address translation: (A) access register translation; (B) dynamic address translation
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provide a convenient capability for a program or
programming subsystem to map data stored on ex-
ternal DASDs to virtual storage and operate on it there
without explicit 1/0 programming. Such use signifi-
cantly increases the amount of data available to the
operating system in paging storage. This will greatly

1BM SYSTEMS JOURNAL, VOL 28, NO 1, 1989

enhance the opportunity to provide increased appli-
cation and system performance through effective use
of the electronic part of the storage hierarchy. Ad-
dressing external data in virtual will provide addi-
tional benefit where a large data structure is to be
accessed at random. In this case, only the pages
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containing referenced operands are brought to cen-
tral storage from the DASD. At the conclusion of a
transaction or job, only the pages containing changes
need be written back to the external dataset. A
further general benefit is increased programming
ease-of-use and productivity that may result in many

Data spaces can provide increased
virtual storage, data isolation,
and an entity conducive to being
shared among multiple processes
or domains.

programming situations from the capability of op-
erating on external data directly with processor in-
structions without the requirement of using access
methods, I/0 programming, and buffer management.
The system manages physical residence of the data
based on usage. This is particularly effective in sys-
tems with expanded storage.

Data spaces. Increased isolation and separation of
data objects, as well as the requirement to share
objects among multiple users, encourages the use of
identifiable data areas that contain no code. In Mvs,
all virtual spaces are uniform in size and map both
code and data in their addressing range, including
all commonly addressable areas. Such virtual spaces
are called address spaces. As protection require-
ments evolve to finer levels of distinction, the need
arises to isolate objects much smaller than the 31-
bit, 2 gigabyte address space of System/370-XA.
Because the system overhead for supporting address
spaces in terms of real-storage consumption is related
to the space size, it is worthwhile to provide smaller
spaces for smaller objects. In view of the fact that
there is a certain amount of system overhead asso-
ciated with supporting functional address spaces be-
cause of the dispatchable unit structures that must
be provided, it is beneficial to provide virtual spaces
earmarked for data only.

Virtual spaces with these characteristics, called data
spaces, can provide increased virtual storage, data
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isolation, and an entity conducive to being shared
among multiple processes or domains. They are also
useful containers for mapping data-in-virtual stor-
age. The size of the addressing range of data spaces
can be variable, allowing for objects of as small as
one page. In the context of ESA/370, the maximum is
limited architecturally to 2 gigabytes for a single
virtual space.

In the Mvs support of ESA, the basic Mvs virtual
address space is, of course, supported in addition to
the new data space. A data space does not contain
those areas common to Mvs address spaces: a prefix
save area (PsA), the Mvs nucleus, or the Mvs common
area. Because the control program cannot execute
within a data space, it need not contain the psa, the
hardware-software interface area to communicate
interruptions and other information, nor need it
contain the Mvs common area for interprogram
communication. A data space starts at a specified
origin, expected to be zero in most cases, and may
be addressed by the full 31-bit addressing range of
the architecture. The Mvs addressing structure with
the addition of data spaces is shown in Figure 9. mvs
provides services, described by C. E. Clark® in this
issue, to create and delete spaces. A space may be
used as a temporary work space or file, as an area
for communication with other program address
spaces, or it may be the vehicle for addressing per-
manent data on DASD. To support the DASD function,
the data-in-virtual (DIv) component of Mvs has been
extended so that its services can apply to data spaces
as well as Mvs address spaces. This allows permanent
collections of data to be defined as data objects and
be operated on directly by all processor instructions,
with the actual physical residence of pages controlled
by the system based on actual reference patterns.
Commitment of any changes to the original dataset
is under control of the using program.

The mapping of datasets in page-format to virtual
spaces is illustrated in Figure 10. This figure illus-
trates the operation of an add instruction whose two
operands are each in a different external data file,
each of which has been mapped into virtual storage.
In this example, the add instruction in the primary
space specifies two operands, each of which is in a
different DIV object that has been mapped into its
own data space. Operands a and b are to be obtained
and the result replaces operand a. If the pages con-
taining the operands had not been referenced before,
they will be obtained from the DASD datasets by the
page-fault resolution process. The physical residence
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Figure 9 MVS addressing structure with the addition of data spaces
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of the pages containing operand b and the result a
are subsequently under control of the system paging
operation. The new contents of a will be used to
update the external DASD dataset only on command
of the program. Of course, if either or both operands
had been previously referenced, they will be obtained
from system paging space if they are not in real
storage. The example makes use of multiple spaces
addressed through access registers, though it would
work similarly if the data objects were mapped into
portions of the primary space. Use of access registers
allow each data object to occupy its own 2 gigabyte
space. Also, this allows shared access in virtual stor-
age of the DIv objects with other authority domains,
separately, if desirable or required, and without re-
quiring the primary space to be shared with the other
domains. Addressing of such DIV objects can be
natural to their internal structures, because each may
be addressed in its own space, starting from zero.
For example, a piv object may contain internal
pointers to its parts that remain valid without pro-
grammed relocation when the object is made ad-
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dressable within a processor. DIV supports objects
mapped to data spaces with its full services, which
include writing back only changed pages when spec-
ified by the using program. This is further described
by K. Rubsam’ in this issue.

The mapping of data to virtual makes good use of
the storage hierarchy, because the hierarchy can be
managed on a system-wide basis to meet overall
performance goals. Frequently accessed data is in
effect cached in main storage or in expanded storage,
50 that references can be satisfied with high perform-
ance. Much more data can take advantage of the
speed of expanded storage (Es), for example, by using
this technique. This puts the physical residence of
data pages under system control and allows ES to be
used as an effective cache for frequently accessed
data.

There are some cases where an application or sub-
system has an algorithmic reference pattern to data
that, if exploited, provide superior performance to
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Figure 10 Mapping of page-format datasets to data-in-virtual (DIV) spaces
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general algorithms that assume random access. Such
a program benefits by treating the Es effectively as
an 1/0 device, directing the staging of data to and
from it and main storage. Mvs supports such opera-
tion through the provision of Aiperspaces. The phys-
ical residence of pages in a hiperspace is primarily
ES. Thus data are addressed in a hiperspace only in
move mode. The data are operated on arithmetically
and logically only in buffers in the primary space.
Provision is made for multiple page moves in either
direction to reduce the frequency of calling the sys-
tem services. This allows a program to manage the
content of processor real storage through use of
logical programming constructs, while obtaining the
performance benefit of the ES as a cache for a very
large amount of data. Hiperspaces and the services
useful in processing them are described further in
Reference 2 in this issue.
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It is interesting to note that the set of facilities just
described are believed on the whole to meet the
LSRAD objective of a hierarchical storage manager.
The objectives of device-independent yo are ad-
dressed by the data facilities product system man-
aged storage component. Technical objectives in-
clude removing dependencies on, and management
of, physical device characteristics from the program-
ming environment. Taking the LSRAD report as a
comprehensive statement of customer requirements
in the use of virtual addressing for data, Esa and the
associated programming support takes the system a
very long way toward a complete solution.

ESA/370 linkage architecture

ESA/370 supports the use of virtual spaces as isolated
objects with individual authorization and also pro-
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vides the capability of establishing separate authority
domains, each with its own access authority. It does
this through extensions to the program call (PC)
instruction, the addition of a program return (PR)
instruction, provision of a linkage stack, and archi-
tecture facilities for controlling the use of access lists
and the entities within them. The program call in-
struction was defined in DAs architecture to be a
function-calling mechanism, whereby code of differ-
ent operating authority—possibly in a different ad-
dress space—could be accessed with a synchronous
instruction. The operating environment in which the
code that provides the called function is to operate
is initialized through operating system services in an
entry table, used by a processor in performing the
PC instruction. In EsA/370, the authority mechanism
architecture is enhanced so that such a called func-
tion can operate at greater, less, or completely differ-
ent access authority than its caller. In addition to the
hierarchical key handling provided in DAs, whereby
the called program has access to the key of its caller
as well as its own potentially different key, the called
program may be restricted to its own different key.
Also, because of the capability to establish separate
shared virtual spaces for communication, an option
exists to prevent access by the called program to the
address space of its caller. Isolation of caller and
called programs is provided by the linkage stack,
which can be specified to receive the caller’s operat-
ing state information during the execution of the pC
instruction. These include its psw key, Psw key
mask, primary and secondary space designations,
general-purpose register and access register contents,
return address, and PSW operating mode. A program
return instruction in the called program restores the
calling program’s environment from the linkage
stack except for those registers defined for intercom-
munication between calling and called programs.
Each dispatchable unit (DU) has its own linkage
stack. In summary, the entry table for a particular
callable program contains the conditions under
which the called program is allowed to operate. The
linkage stack dynamically receives the operating state
of the caller so that it may be restored on return
from a called program. The linkage operation is
illustrated in Figure 11.

In the execution of a PC, a new primary space can
be established that may have its own primary ad-
dress space access list (PASN-AL) containing spaces
that can potentially be accessed by code running in
that primary space. The task executing a pcC has its
own dispatchable unit access list (DU-AL) containing
spaces that any code operating under that dispatch-
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able unit may potentially access. On a call to a
function provided in another address space, the
spaces in the dispatchable unit’s access list may be
accessed in providing the requested function, but the
architecture contains controls to constrain such ac-
cess. Spaces designated in an access list may be
specified as “public,” meaning that any code running
with the access list may access them regardless of
where the code resides. To emphasize this, such
spaces are public only in the context of the access
lists containing them, but no other authority is re-
quired. To provide controlled sharing of access, an
extended authorization index (EAX) has been defined.
All code runs with a particular EAX, which constrains
its access to spaces. The EAX controls which non-
public spaces may be accessed. Each access list entry
can contain an EAX to restrict access to the space it
represents. Access to nonpublic spaces is permitted
in either of two ways:

s The EAX of the running code equals the EAX in the
access list entry defining the space.

s Otherwise, the authority table entry for the space
to be accessed allows such access for the particular
EAX attempting access. (The authority table was
added to the architecture as a part of DAS to
provide a control mechanism over multiple-space
access.)

The first case can be thought of as the owner of a
space accessing it. The second case can be thought
of as the owner of a space selectively allowing access
to it for one or more functions operating with their
own different eax. The EAX is a characteristic or
capability of executing code and may be specified to
change during a pc and be restored from the linkage
stack on a subsequent PR. It is designed to provide
controlled, shared access to spaces in an authority
domain environment. Mvs supports the use of the
EAX for address spaces but not for data spaces.

Concluding remarks

The basic ESA/370 system structure direction is to
provide a programming environment in which mul-
tiple virtual spaces can be used effectively to allow
extensive and practically unconstrained use of virtual
storage. This usage is intended not only to overcome
current and anticipated virtual storage constraints,
but also to extend the System/370 systems to take
advantage of technological progress in electronic
storage hierarchies and allow enhanced isolation,
protection, and sharing of programs and data. The
operating system environment necessary to satisfy
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Figure 11 The linkage operation
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these requirements is one in which the key logical vides a rich instruction set with which to manipulate

entities of the operating system environment are storage across a large number of spaces. In addition,

segregated into distinct virtual spaces, where the a robust authorization control mechanism with

virtual space becomes the basic unit of protection. hardware enforcement is provided to allow a flexible
environment for access control with good perform-

ESA/370 provides the needed addressing capability to ance. This is significantly important in improving

avoid constraints for the foreseeable future. As vir- security and integrity.

tual storage requirements increase, new address

spaces or data spaces easily may be added to accom- With ESA/370, this system direction will be achieved

modate more addressability. The architecture pro- in an evolutionary manner. Existing environments
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must be continually supported for compatibility with
prior systems. The approach to accomplish this ev-
olution must provide new functions and capabilities
while still supporting existing environments. Grad-
uvally, the advantages and extended function offered
in new environments will encourage more pervasive
usage of the multiple virtual space addressing fea-
tures. ESA/370 has been designed to enable a strategy
of supplying new facilities without disturbing existing
user environments. By extending System/360, Sys-
tem/370, DAS, and System/370-XA architectures in
a nondisruptive way, usage of the new facilities can
coexist with existing programs and operating system
environments. Exploitation of the enhanced archi-
tecture will initially materialize in subsystems and
system components in ways that are, for the most
part, transparent to users. Over time more software
services will be made available that facilitate direct
usage by the end user of the enhanced architecture.

ESA/370 is designed with extendability in mind. It
provides a new architectural base that can be ex-
tended in an evolutionary way as technological ad-
vances occur in processor and electronic storage
hardware and accommodate evolving software tech-
nologies in operating systems, subsystems, and ap-
plications.
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