
PAM-CRASH  on the IBM 
309O/VF: An integrated 
environment for crash 
analysis 

PAM-CRASHg is an industrial code developed by Engi- 
neering  Systems International (ESI)  S.A.  and designed 
specifically for automotive crashworthiness analysis. 
We discuss the problems  encountered  and describe 
the solutions provided for an  efficient migration of the 
code on the IBM  309O/VF system. Runs on actual test 
cases have shown  a vectorlscalar speedup  between 
2.7 and 3.5. Moreover, we present the program modifi- 
cations we have introduced in order to exploit parallel 
processing using the Multitasking Facility of the VS 
FORTRAN compiler. Performance results for 309O/VF 
systems, from the Model 200E to the Model 600E, are 
given.  Finally, we describe the restructuring of the 
graphic processors, PRE-3D  and  DAISY, to allow an 
effective use of the IBM 5080 Graphics  System capabil- 
ities in providing an integrated design  environment for 
crash analysis. 

I n the automotive industry, crash  design  is  of  vital 
importance because it can significantly  increase 

the safety  of  vehicle occupants. Historically, many 
car manufacturers have obtained information on 
structural behavior under crash conditions by means 
of experimental tests on prototypes. In the last ten 
years,  however,  vehicle  crashworthiness simulation 
has  become  increasingly important as mathematical 
models and computer programs have  been  devel- 
oped to simulate structural crash. 
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Crash phenomena present  some of the most complex 
problems  faced by structural mechanics.  Since such 
phenomena are both spatial and temporal, they in- 
volve not only contacts among several  surfaces, but 
also  complex nonlinear behavior characterized by 
large strains. Consequently, the solution of such 
problems requires the computational power pro- 
vided by a supercomputer, in order to achieve  results 
consistent with the time constraints of the industrial 
processes. 

PAM-CRASH@ is  a  finite-element  program  for struc- 
tural crash  analysis. The program is an industrial 
code  designed  for automotive crashworthiness  analy- 
sis; it was developed and is maintained by Engineer- 
ing  Systems International (ESI) S.A. Rungis-France. 

The new IBM version  of PAM-CRASH was developed 
to take advantage of the vector-processing  capabili- 
ties of the 3090/v~ system in providing  users of IBM 
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systems  in the automotive industry with an engi- 
neering  system  for the simulation of crash phenom- 
ena. The results of the PAM-CRASH migration allow 
us to show the improvements in performance avail- 
able to a user of PAM-CRASH on a 3090 system  with 
the Vector  Facility feature. The vector  version  of 
PAM-CRASH has  been further provided  with the ca- 
pability of exploiting  parallel  processing on 3090/VF 
multiprocessors. 

We  discuss the problems encountered and we de- 
scribe the solutions provided  for an efficient  migra- 
tion of the code on the IBM 3090/VF system.  We  deal 
particularly  with the problems  posed by the class  of 
finite-element  codes,  which  use an explicit algorithm 
to perform the integration of dynamic equations. 
Emphasis is  placed on the description of the nonlin- 
ear shell-element algorithm and on the criteria fol- 
lowed in  exploiting the vector-processing  capabilities 
of the 30901VF. Runs  on actual test  cases  show a 
vector/scalar  speedup  between 2.7 and 3.5. More- 
over, we present the program  modifications we have 
introduced to exploit  parallel  processing  using the 
Multitasking  Facility of the vs FORTRAN compiler. 
Performance results  for 30901VF systems,  from the 
Model 200E to the Model  600E, are shown. 

A finite-element  code can be  exploited  successfully 
only if it is provided  with graphic programs aiding 
users in the pre- and post-processing  phases. PAM- 
CRASH is  interfaced  with the P R E - 3 ~  preprocessor and 
the DAISY postprocessor to form an integrated design 
environment for  crash  analysis. Use  of the IBM Gra- 

IBM 5080 Graphics System. They supply improved 
interactivity by means of the 5080 local  devices and 
better performance by exploiting the local  processing 
capabilities of the 5080. 

PHIGS Library allOWS PRE-3D and DAISY to run  on the 

PAM-CRASH code  characteristics 

PAM-CRASH' is a three-dimensional Lagrangian  ex- 
plicit  finite-element  code  for  analyzing the dynamic 
response of structures. The code takes both material 
and geometrical nonlinearities into account, and it 
has  general contact/impact capability. It is especitly 
designed  for automotive crashworthiness  analysis . 
Time integration by finite  difference  solves the prob- 
lem of acceleration,  velocity, and displacement time 
histories at each  discretization point of the structure. 
There are two  possible integration schemes, implicit 
and explicit;' both reduce the dynamic equilibrium 
equations to a set  of  algebraic equations. The explicit 
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method, used by PAM-CRASH, recasts the dynamic 
equations into a form yielding nodal accelerations, 
by which the central finite-difference  scheme  is ap- 
plied to obtain nodal velocities and displacements. 
The solution of the final  set of equations is  trivial  for 
systems whose  mass matrix is lumped. The condi- 
tional stability of the explicit integration method 
forces the evaluation of the integration step size  by 
a stability criterion. In the case  of PAM-CRASH this is 
the Courant criterion, based on the propagation time 
of the sound waves across the smallest  mesh element. 
The advantages  offered by unconditionally stable 
implicit integration schemes,  allowing  larger time 

A reduced  integration  technique 
with  one-point  quadrature  has  been 
used to evaluate  the  element  forces. 

steps, cannot be exploited in crash simulation be- 
cause of the characteristics of these phenomena. 
They are characterized by a short duration and 
highly nonlinear behavior, and to be  correctly  de- 
scribed they require a time-step size  of the order of 
that needed by an explicit  code. Furthermore, the 
explicit time integration scheme  avoids matrix as- 
sembly and inversion, the latter being  very  expensive 
for  large  systems;  therefore, it significantly  reduces 
virtual memory requirements. 

For spatial discretization, the code  only  uses the 
simplest  finite-element formulation such  as four- or 
three-node bilinear  shell elements and corresponding 
two-node beam elements.  Simple linear elements are 
preferred to higher-order elements because  experi- 
ence  has  shown that the former are computationally 
more cost-effective,  even though a greater  mesh den- 
sity  is required in areas of  severe deformation. 

The nonlinear shell element is the element most 
widely  used in automotive crash  analysis. The PAM- 
CRASH shell element is a bilinear four-node quadri; 
lateral element, originally  developed by  Belytschko 
and based on Reissner-Mindlin  plate theory. This 
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theory differs from the classical  Kirchhoff theory in 
its treatment of shear deformation. In the Kirchhoff 
hypothesis, the effect  of the transverse  shear  defor- 
mation is  neglected, and the finite-elemFnt approxi- 
mation requires shape functions with C continuity. 
In the Reissner-Mindlin theory, the s p  deforma- 
tion is taken into account, and only C continuity is 
required,  with  great  simplification  in the element 
formulation. A reducsed integration technique with 
one-point quadrature has  been  used to evaluate the 
element forces in the context of the explicit time- 
integration scheme  provided by PAM-CRASH. How- 
ever,  reduced integration in a bilinear  plate  element 
permits kinematic (zero-energy)  modes.  These 
modes,  cailed hourglassing modes  in  finite-difference 
literature, can destroy the solution because of the 
introduction of spurious spatial  oscillations. An 
hourglass control scheme  has  been implemented to 
avoid that numerical instability phenomenon. 

A wide  variety of material laws  are  available to model 
elastic, nonlinear, and failure conditions. Rigid  walls 
may  be  defined to provide  external impact surfaces, 
while a slide-line algorithm can  prevent penetration 
of internal structure surfaces that may  collide during 
the crash simulation. Various slide-line  interface 
conditions are available, including sliding,  separa- 
tion, and friction. The user must specify  which  re- 
gion of the structure is to be  considered  for  crash 
purposes by listing the elements which are part of it. 
An either partially or totally automatic “boxing strat- 
egy”  is under development, in which the user  need 
no longer  list the elements  belonging to the sliding 
surfaces.  Two  basic  types of contact p h e n ~ m e n a ~ - ~  
can be represented.  The  first  type  involves  two sur- 
faces  coming into contact, the second, a single sur- 
face  buckling and coming into contact with  itself. 
Both situations include friction interface behavior 
and are based on the penalty method, which  consists 
in placing normal interface  springs  between the 
nodes  belonging to the penetrating surface and those 
belonging to the contact surface. 

Rezone and restart options are provided to allow 
mesh  redefinition during the analysis and  to split 
larger  problems into a set of smaller computer runs. 

Enabling  environment 

The new IBM version of the PAM-CRASH program was 
developed to utilize the vector-pfxessing103’’ capa- 
bilities of the IBM 3090/VF system in providing the 
automotive industry with an engineering  system  for 
the simulation of  crash phenomena. The code was 
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written to  run efficiently on different supercompu- 
ters; it is  installed on non-IBM systems in automotive- 
industry computing centers.  Alternatively, a version 
of the code  is currently running on IBM systems, 
including 3090s, without exploiting the potential 
benefits of vector and parallel  processing that a vec- 
tor multiprocessor machine such as the 3090/VF can 
provide. The results of the PAM-CRASH enabling ef- 
forts now  af‘pw us to show the performance 
improvement the user can obtain by using the new 
IBM version  of PAM-CRASH on the 3090 system pro- 
vided  with the Vector  Facility feature. The vector 
version  of PAM-CRASH provides the additional capa- 
bility of exploiting  parallel  processing on IBM multi- 
processor  systems. 

Preliminary feasibility  analysis  was the first step of 
the migration  process. It was  based  essentially on an 
exchange of information and expertise  with Engi- 
neering  Systems International (ESI) S.A., the engi- 
neering  software  house that developed the code and 
maintains it. That step permitted a first  rough  esti- 
mation both of the resources  needed to carry out the 
vector enabling and of the expected improvement in 
performance. Once this preliminary phase  was com- 
pleted, an international team was set up for the 
purpose of developing a vector  version of the PAM- 
CRASH code  provided  with  parallel  capability. At any 
given time, the team comprised three people: the 
first  from ESI, owner of the code; a second  from the 
European Center for  Scientific and Engineering 
Computing (ECSEC), the European IBM organization 
for Numerically  Intensive Computing (NIC); and a 
third from IBM Japan, whose customers requested 
the enabling of the code on the ~ O ~ O / V F  system. 

The team composition was defined to cover  all the 
aspects  involved in the enabling project: 

Physical formulation and equations involved 
Structure of the code and finite-element technol- 

Vector and parallel architecture 
System environment and performance 

The code was installed on the IBM ~ O ~ O - ~ O O / V F  of 
ECSEC. At that time, the software environment com- 
prised the following: 

MvS/XA 2.1.3 operating system  provided  with the 

TSO/E 1.4 provided  with the ISPF 2.2 for the ter- 

ogy 

JES2 2.1.3 subsystem and the DFP 2.1.2 

minal interactive environment 
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. VSIFORTRAN 2.1 ,14-16 the vectorizing compiler, 
provided  with the Multitasking Facility (MTF) for 
parallel  processing . vs FORTRAN Execution  Analyzer,” a software tool 
for determining the percentage of time spent in 
the different sections of the code. 

ESI provided the enabling team with some test  cases 
from the automotive industry, since the code is 

PAM-CRASH carries  out  the 
integration of the  dynamic  equation 

using  a finitedifference 
explicit  algorithm. 

widely  used  there.  These  test  cases  involved the crash 
analysis either of a complete automobile or of part 
of it. Since the test  cases  provide a wide range of 
applications associated  with  different  phases of the 
automotive design  process,  they  have  allowed the 
enabling team to estimate performance improve- 
ments in the overall  design  process by exploiting 
vector and parallel  processing. 

The team’s  first  task was to refine the feasibility 
analysis in order to better approximate expected 
improvements in performance, available  resources, 
time required to reach  goals, and, finally,  procedures. 

Vector  feasibility analysis 

Once the presence of vector content in  an  applicgion 
has  been ascertained, vector  feasibility  analysis  is a 
basic step in assembling the elements necessary to 
carry out a cost evaluation. That analysis  allows one 
to determine whether the price/performance require- 
ments can be  met. The vector  feasibility  analysis  was 
carried out as follows: 

1. Definition of objectives and requirements 
2. Analysis  of the overall  program structure, of the 

logic organization, and of the coding implemen- 
tation to build the execution flows and to identify 
the main code  sections 
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3. Evaluation of the computer resource distribution 
among the code  sections  identified in the previous 
step 

4. Analysis  of the algorithms of those code sections 
which are responsible  for a comparatively large 
amount of computer resource utilization, and 
definition of the algorithm characteristics  for a 
possible  vector implementation 

5.  Evaluation of the vector content in the present 
implementation 

6. Comparison of the results of steps 4 and 5 to 
identify the potential vector content, to locate the 
inhibitors preventing vectorization, to evaluate 
the level  effort required to promote vectorization, 
and finally to estimate the algorithm performance 
improvement 

7. Evaluation of the overall  effort and estimation of 
the global performance improvement according 
to the objectives  defined in step 1 

8. Definition of time schedule and planning of hu- 
man resources 

The primary objective of a vector  migration  process 
is the reduction of processing time by exploiting the 
processing  capability  of the Vector  Facility  feature. 
The secondary  objective,  which can also  yield  bene- 
fits,  is the exploitation of system  resources such as 
virtual storage and I/O processing. 

PAM-CRASH carries out the integration of the dynamic 
equation using a finite-difference  explicit algorithm. 
Thanks to the characteristics of this algorithm, 
widely  used in structural mechanics, the virtual 
memory  request  is  highly  reduced compared with 
that of alternative implicit schemes.  According to 
that, the System/370 architecture provides enough 
virtual memory to make efficient  use  of the code in 
standard applications. However, to meet future cus- 
tomer requirements in terms of model  sizes, the 
exploitation of virtual memory over the 1 6 ” ~  line, 
allowed by 370/XA architecture, whose present  exten- 
sion  is 2 GB, has  been included in the objectives. 

The PAM-CRASH program produces hundreds of 
megabytes  of data as a result of the analysis.  These 
data can be  used as input for the graphic postpro- 
cessing program, DAISY, to aid the user in analyzing 
the results of the simulation, to check  whether the 
design requirements are met, and eventually to gen- 
erate further modifications. 

The 110 content can be  considerable, and the time 
the program spends to perform 110 activity can be- 
come a considerable fraction of the total time. An 
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I/O algorithm which  is either not well tuned or de- 
signed  for a different  system architecture can produce 
a degradation in performance. We decided to in- 
clude, among our objectives, I/O activity tuning if 
performance tests  revealed any degradation in 
elapsed-time performance due to the I/O processing. 

Many of the widely  used  engineering  codes  were 
written during the 1970s, and the system architecture 
for  which they were  designed  has  evolved  extensively 
during the last  twenty  years.  However, the software 
houses that develop and maintain those codes  have 
adopted a conservative  policy  with  respect to soft- 
ware  upgrading. Consequently, our experience in 
vector  migration  has  been that we must expect to 
face preliminary problems in mapping the code ar- 
chitecture to the hardware  characteristics to optimize 
the system  resource utilization. 

Although the software  houses  generally  deliver  dif- 
ferent versions  of the same programs for use in 
different environments, they reasonably  prefer to 
limit as much as possible the differences among the 
versions. Therefore, we had to define a policy  regard- 
ing the introduction of code  changes, taking into 
account portability, maintenance, and readability 
requirements. 

We  have, then, faced the problem of identifying the 
program structure by analyzing the physical formu- 
lation, the algorithms  involved, and their relation- 
ship to the code implementation. This implies 

Building the logic  program organization and lo- 

Drawing the “tree” of the execution flows and 

Identifying the data organization and the process 

cating the main code routines 

tracing the routine calling  sequence 

of data transmission 

The logic organization and data structure of a finite- 
element code making use  of an explicit algorithm 
for the ,t$e integration are well known in 
literature . However, requirements or program- 
ming  styles can cause the code implementation of 
two programs to be  very  different although they carry 
out the same tasks  using the same algorithms. For 
example, modularity requirements can affect the 
mapping of the logical organization of the code 
sections, and hardware requirements can affect the 
overall data organization. The flowchart  shown in 
Figure 1 describes the program organization and 
outlines the main sections. 

IBM SYSTEMS XXIRNAL. VOL 27. NO 4, 1988 

Figure 1 Program  organization  and  main sections 

XPLlClT TIME INTEGRATION 

I ELEMENT FORCE EVALUATION 

I CONTACT-IMPACT ALGORi?” 

From preliminary analysis this information has  been 
collected  for  each  code section: 

Element force evaluation. Nonlinear shell  ele- 
ments constitute over 90 percent of the elements 
used. 



Table 1 Processing  time  distribution 

Code CPU 
Seotion Percentage 

1 Element force evaluation  70-82 
2  Geometry  update  7-9 
3  Explicit time  integration 3-4 
4  Contact  algorithm  17-3 
1 + 2 + 3 + 4  97-98 

Table 2 Vector  percentages  compared to  total  CPU 
percentage 

code CPU Yector 
Sectfon  Percentage  Percentage 

t I 
1 Element force evaluation 70-82 63-74 
2 Geometry  update 7-9  7-9 
3  Explicit time  integration 3-4 3-4 
4 Contact  algorithm 17-3 0-0 
1 + 2 + 3 + 4  97-98  73-87 

Selective output. I/O activity is not negligible, and 
it affects the elapsed time. 
Contact algorithm. Execution time for the treat- 
ment of impact phenomena depends on the mod- 
eling  choices,  since the user can select the region 
to be analyzed  for  crash  purposes. 

By performing  a hot-spot analysis, we obtained the 
percentage distribution of  processing time among 
the sections of the code. We carried out this task 
using the vs FORTRAN Execution  Analyzer,  which 
allows the user to obtain detailed timing information 
at the subroutine and statement levels. The time 
distribution depends on the type of the analysis, and 
the user must select the region of the structure to be 
analyzed  for  crash  purposes. 

Table 1 shows the range of variation of processing 
time distribution among the different  code  sections 
for the test  cases  provided by ESI. Since  those  cases 
are a complete set of the applications currently em- 
ployed in the design  process  of the automotive in- 
dustry, that range can reasonably be considered  rep- 
resentative of the general  class of problems in the 
industry. 

The remaining 2-3 percent of the CPU time is  dis- 
tributed among other code  sections whose  single 
incidence is  less than 1 percent. The incidence of the 
input phase section is  negligible. 

We analyzed the algorithms of those  code  sections 
which  involved the utilization of a  comparatively 
large  percentage of the computer resources, and we 
defined the clyacteristics for  a  possible  vector im- 
plementation. We discovered the following: 

The code  sections of the geometry update and of 
the explicit time integration are completely vec- 
torizable. 
The element force evaluation algorithm is vecto- 
rizable,  except  for the section  assembling the ele- 
ment forces into the global  force  vector.  We  esti- 
mated the percentage of its incidence at about 10 
percent of the force  execution time of the element 
force  section. 
The contact algorithm is  vectorizable, but we as- 
certained from  analysis of the present implemen- 
tation that vector enabling was  feasible  by just 
carrying out a complete reorganization of the 
code. 

We can assert that a  good estimation of the vectoriz- 
able  percentage f; defined  as the percentage of the 
total scalar  execution time spent on the vectorizable 
code  sections,  varies in a  range  between 73 and 87 
percent. Table 2 shows the vectorizable  percentage 
estimated for  each  section and compares it  to the 
total CPU percentage. 

The theoretical model,  known  as  Amdahl’s  law,” 
estimates the performance improvement of a  vecto- 
rizable application: 

where S is the overall  vector/scalar  speedup factor, f 
is the vectorizable  percentage, and sr is the vec- 
tor/scalar speedup obtained by performing the com- 
putation of the vectorizable  code  sections  with the 
Vector  Facility. 

The vector/scalar speedup design  range  of the Vector 
Facility is  between 3 and 5.  This value  is optimized 
for the middle  range of vectorizable  percentage. Fig- 
ure 2 shows the improvement ratio of the execution 
time of a  vector application as a function of the 
vectorization  percentage.  Several  vector/scalar  speed- 
up ratios are given. 

The parameter sr depends both on the hardware 
characteristics of the Vector  Facility feature and  on 
the characteristics of the computation performed 
inside the code.  We mention the most important 
factors  affecting the estimation of sr: 
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Figure 2 Amdahl's law 
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Kind of operations involved in the computation. 
Different  vector  operations  have  different startup 
times and different  speeds in comparison  with the 
scalar instructions. 
Vector length. A  vector  length  of 128 elements  is 
close to the optimum speedup. The threshold 
above  which  vector  code  performances are better 
than scalar  ones is approximately 12. 
Stride of the vector element in storage. The best 
vector  performances are achieved  with the lowest 
stride,  i.e.,  stride 1. (Stride represents the incre- 
ment used to step  through  array  storage to select 
the vector  elements  from the array.) In actual 
practice, it is important to reduce the stride to 
minimize  cache  misses and paging. For particular 
stride  values, the scalar  execution  is  preferred, 
because  it  severally  results in faster  performance 
than the vector  execution. 
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Presence of conditional processing. An  excessive 
number of IF statements can  cause  poor  perfor- 
mance.  When an IF statement is  vectorized, the 
time needed to process the IF statement and the 
operations governed by it remains the same 
whether or not the condition is  verified. 

The operations of the vectorizable  code  sections are 
essentially arithmetic in nature. The only functions 
are the trigonometric functions, sine and cosine, and 
the square  root. The presence  of conditional proc- 
essing  is minimal. The data organization  is  complex 
and requires  many  arrays  forming the database of 
the analysis. We have  noted that many operations 
are performed  using indirect element  selection. 

The preceding  considerations were formulated to 
give a  correct  estimate  of the sr parameter. However, 
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Figure 3 Original  implementation of the  shell  algorithm 

SHELL- 
ELEMENT 
FORCE 
EVALUATION 

the sr value  should  also  be  selected on the basis of 
practical  experience in vector  migration.  Using  these 
criteria, we selected a value of 4 as a reasonable 
estimation of sr. 

By means of  Amdahl's  law,  we have estimated be- 
tween 2.2 and 2.9 the global speedup S of the final 
enhanced version running in vector mode with  re- 
spect to the same one running in scalar  mode.  Yet, 
WE must consider that this speedup takes into ac- 
count only the performance improvement obtained 
by exploiting the vector  feature. A migration process 
involves a general  code optimization, with a conse- 
quent improvement in scalar  performances. A good 
percentage  of the efforts required to exploit the Vec- 
tor Facility  involves  good programming practices 
rather than specific  vector techniques, yielding a 
reasonable further improvement in performance of 
about 20 or at least  10  percent. Consequently, we 
can expect  values  for the final  global  vector/scalar 

speedup, with  respect to the original  scalar  code, to 
fall  between 2.4 and 3.5. 

We have  defined  procedures  for 

Vectorizing the code  sections of the element force 
evaluation, of the geometry update, and of the 
explicit time integration 
Applying a scalar optimization to the contact  al- 
gorithm section 

The global number of statements involved in the 
migration  process is approximately 15 percent of the 
whole program, of which 5 percent, spread over 
twelve routines, is associated  with  vector  enabling, 
while the remaining 10 percent is  associated  with 110 
operations and virtual memory tuning. 

The criteria in the modification  policy of the original 
source  code  have  been to limit code  changes as much 
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Avoiding imbedding routines in one another 
Applying  modifications at routine level  only  if the 
performance improvement is  over  a  predefined 
threshold  value 
Preserving the readability of the code 

Vector  migration  process 

Considerable  effort  has  been  applied in the vectori- 
zation of the shell-element  force evaluation section 
because it has  a major influence on processing time. 

We  now  describe the restructuring process we have 
applied to promote vectorization of2t,he code  section 
computing the shell-element  forces. 

From the initial analysis we realized that the original 
coding form was developed  for implementation on 
a  vector machine with  a  Cray-like architecture. The 
original  coding structure (Figure 3) comprised the 
following: 

The main routine, FORCX, carrying out the task of 
sectioning the shell-element group into subsets of 
128 elements. FORCX calls three routines and is 
called by the driving  program routine, FETI, which 
performs the step-by-step integration of the finite- 
element dynamic equation. 
Three routines, FoRcx1 ,  FORCXZ, and FORCX~ com- 
puting the shell  forces  for  each  subset.  They  call 
other small routines to perform particular sub- 
tasks. 

The processing time spent in FORCX is negligible. 

The code was  well structured and organized in a DO- 
loop pattern with  a count value of 128, which  is one 
of the optimum values  associated  with the section 
size of the vector  register. With the aid of the com- 
piler output relative to the vectorizatiy analysis 
[compiler options: REPORT(XLIST LIST)], we have 
ascertained that about 50 percent of the DO loops 
have  been  correctly  vectorized. The remaining 30 
percent have  presented some inhibitory factor pre- 
venting the vectorization. The inhibitors can be  clas- 
sified according to the following  different situations: 

Use  of intrinsic functions not available in vector 

The presence of statements inhibiting the vectori- 

Detection by the compiler of recurrence condi- 

mode, e.g., MAXIMIN functions 

zation, e.g., CALL and GO TO statements 

tions 
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torizkd, but vector  code was not generated because 
of performance considerations. 

Before approaching the problem of eliminating the 
inhibitors, we thought it necessary to reformulate 
the algorithm implementation in order to obtain the 

" 

The  first  step  in  the  migration 
process  consisted  in  restructuring 

the  data  organization. 

best  results  from the migration  process. We  felt 
particularly that the data organization must be  re- 
defined,  since we could not get the best  results  from 
vectorization  with the current structure. 

The data of each  shell element, once preprocessed in 
the  input phase, are stored  in  a database comprising 
several  arrays. For the purpose of computing element 
forces, the program  makes use of pointer arrays to 
locate in the database, wherever  necessary, the data 
associated  with  each element. Consequently, the pro- 
gram  must  perform  sparse-matrix computation wi$ 
a  large utilization of the indirect element selection. 
The original  developers were not deeply  aware of the 
way in which this kind of data organization could 
influence the performance of systems  consisting of 
central processor units provided  with  caches. 

The first step of the migration process  consisted in 
restructuring the data organization to localize data 
references and  to promote an efficient utilization of 
the cache. Our efforts  were  directed at achieving the 
following  goals: 

Collecting the gather operations in a  localized  code 
section at the beginning,  before the force compu- 
tation starts 
Collecting the scatter operations in a  localized 
code  section at the end, after the force computa- 
tion has  been completed 
Performing the force computation on contiguous 
data 
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Reducing and optimizing usage  of those tempo- 
rary arrays used to store either gathered data or 
intermediate results 

We  have, then, dealt  with the problem of eliminating 
inhibitory factors in order to promote the vectori- 
zation of those DO loops  for  which the compiler  does 
not generate  vector  code. 

The MAX function did not vectorize at the time of 
the enabling  because the vs FORTRAN Compiler Ver- 
sion  2.1  does not support maximum/minimum 
functions in vector  mode. The solution was to re- 
place the function with an IF construct. The problem 
has  since  been  solved  because the most  recent vs 
FORTRAN Compiler Version 2.3 now supports 
min/max functions. 

The FORCXZ routine calls a routine evaluating the 
element stresses by means of a material relation 
defined by the user. This routine is small, and we 
have  imbedded it inside the calling routine. In this 
way  we have promoted the vectorization of the DO- 
loop in whose  range the CALL statement was in- 
cluded. 

The presence of a GO TO statement in a Do-loop 
range inhibits vectorization.  Although we replaced it 
with an IF construction to promote vectorization, we 
did not obtain satisfactory performance results. We 
then split the original DO loop into two  blocks. In 
the first  block, the program computes the number of 
times the condition for conditional processing  is met, 
and a pointer vector  is  initialized to identify the 
array elements on which the computation must  be 
performed: 

K= 1 

DO 10 I=l,N 

IF(A(1). . . . . .) 
K=K+ 1 

IND(K)=I 

. . . . . . . . . 
10 CONTINUE 

NK=K 

In the second  block, the operations executed  earlier 
under the control of the IF statement are processed, 
selecting the array elements by means of the pointer 
vector  evaluated at the 10 DO loop: 
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DO 20 I= 1 ,NK 

. . . . . . . . 

. . . .Y(IND(I)). . 

. . . .Z(IND(I)). . 

. . . . . . . . 
20 CONTINUE 

The 20 DO loop is  executed either in vector or in 
scalar mode depending on the count value. The 
directive ASSUME COUNT forces the compiler to gen- 
erate scalar  code  when the count value  is smaller 
than a threshold. 

The recurrence conditions are detected by the com- 
piler  when the program  performs  scattering opera- 
tions, in order to save element information to be 
used in the next time step and  to assemble the global 
force  vector. 

Those operations are performed by means of pointer 
vectors,  previously evaluated in the FORCX, indirectly 
selecting the array elements on which the computa- 
tion has to be  performed. The compiler cannot rec- 
ognize  whether the recurrence condition involves a 
backward  dependence.  Since we know the algorithm, 
we are sure that no backward  recurrences are asso- 
ciated  with the former situation. Vectorization  has 
been promoted by means of the directive IGNORE 
RECRDEPS. In the latter situation, the recurrence con- 
dition is detected  when the global  force  vector  is 
assembled. The vectorization cannot be promoted 
because the assembling algorithm is  serial (it involves 
an unbreakable recurrence condition). 

The compiler recognizes 20 percent of the DO loops 
as  eligible  for  vector  analysis, but prefers,  for  per- 
formance reasons, to generate a scalar  code.  Vecto- 
rization has  been promoted by means of the directive 
ASSUME COUNT. 

The final  coding structure is shown in Figure 4. 

We  now  describe some fine-tuning techniques to 
optimize the utilization of the vector  registers and of 
the compound instructions which  have  yielded  re- 
markable improvements in performance. 

Vector-register usage can be optimized by keeping 
in mind that the Vector  Facility feature makes avail- 
able  sixteen  vector  registers in single  precision and 
eight  registers in double precision. The compiler  uses 
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Figure 4 Vector implementation of the  shell  algorithm 
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the registers to store the intermediate results of the 
operations in the Do-loop  range in trying to optimize 
the load and store operations. The programmer can 
explicitly  assist the compiler in the optimization 
process by using a particular programming style. 
This intervention involves minimizing, inside the 
Do-loop range, the work vectors  used to store inter- 
mediate  results and replacing them with  fictitious 
scalar  variables. This method forces the compiler to 
hold in the vector  registers  (when a sufficient number 
of them are  available) the intermediate results of the 
computation. The programmer is  assisted in the 
vector-register optimization technique by the listing 
of the object module in pseudo-assembler  language 
that can  be  generated  with the LIST compiler option. 
In general,  successful optimization is enhanced by 
minimizing load and store operations. 

The Vector  Facility  provides  two compound instruc- 
tions, multiply-add and multiply-accumulate, per- 
forming  two operations in a single machine cycle. 
We  have tried to increase the number of the com- 
pound instructions automatically generated by the 
compiler.  Once the statements with compound in- 
structions had  been identified, we have  verified by 

Table 3 Performance  results 

case 
Test  Original-  Enhanced-  Enhanced- 

Version  Version  VWSiOn 
(s) Scalar  Run  Scalar  Run  Vector Run 

1234 97 1 
6273 5303 1774 449 I 

means of the object  listing  whether compound in- 
structions had  also  been  generated.  Otherwise, we 
have tried to reorder the statement operation, keep- 
ing in mind that the compiler follows arithmetic 
rules in performing operations and  that three oper- 
ands cannot reside simultaneously in the vector reg- 
isters. 

We present  some performance results  showing the 
improvement the migration  work  has  yielded. In 
Tables 3 and 4 we report the performance results of 
two  test  cases in terms of CPU time for the first table 
and in terms of speedup for the second  table. The 
two  selected  test  cases  were  chosen to represent the 
lower and the upper bound in performance results, 
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Table 4 Performance  results  with  speedup 

Enhanced 
SPeeduP- -UP vs Speedup  vs 

Original- Enhanced- 
Version  Version 

Scalar  Run 
Version 

Scalar Run 

Si 
s2  

2,7 2.2 
3.5 3.0 

Table 5 CPU  percentages for scalar  and  vector  modes 

Code 
SecHMI 

CPU cw 
Percentage Percentage 

(Scalar (Vector 
Mode) Mode) 

1 Element  force  evaluation 70-82  52-83 
2  Ceometry  update 7-9  4-6 
3  Explicit  time  integration 3-4  4-6 
4  Contact  algorithm 17-3  36-2 
1 + 2 + 3 + 4  97-98  96-97 

Table 6 Processing  time  percentages  and  parallel 
percentages 

Code 
Section 

CPU Parallel 
Percentage  Percentage 

(Vector 
Mode) 

1 Element  force  evaiuation 82 74 
2  Geometry  update 5 5 
3 Explicit  time  integration 6 0 
4 Contact algorithm 3 0 
1 + 2 + 3 + 4  96 79 

due to the different  incidence  of  vector  code  exploi- 
tation. In  Table 3 the second column shows the CPU 
time needed  by the original ESI scalar  version run in 
scalar  mode, the third shows the CPU time of the 
final  enhanced-version  result of the migration  work, 
compiled and run in scalar mode, and the fourth 
shows the time of the same enhanced version run in 
vector  mode. 

In  Table 4, the two  righthand columns show the 
speedups of the final enhanced version run in vector 
mode  compared to the original  version and  to the 
enhanced one, both run in scalar  mode. 

Parallel  implementation 

Once the vectorization was completed, we faced the 
problem of parallelizing the program by dividing up 
the computation among the processors in a multi- 
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processor  configuration. The main  objectives in de- 
veloping  a  parallel  version of the PAM-CRASH pro- 
gram  were improvement of turnaround time in a 
shared environment and reduction of  elapsed time 
in a  dedicated environment. 

The software  selected to support the development of 
the PAM-CRASH parallel  version was the Multitasking 
Facility (MTF), a standard feature of the IBM vs FOR- 
TRAN compiler. MTF uses the MVS macros to execute 
selected routines in parallel and to synchronize their 
execution. The programmer  can  easily introduce 
into the program  suitable  calls to the simple MTF 
primitives to specify the sections of the code to be 
executed  in  parallel and  to synchronize their execu- 
tion. The overhead  associated  with exgution sched- 
uling  of  a  parallel subroutine is 75 ps. 

The percentage  incidence,  with  respect to total proc- 
essing time, of code  sections  which can take advan- 
tage  of  vector  enabling and consequently are eligible 
to be  parallelized drops considerably in analyses 
involving  a  reduced use  of the contact algorithm. On 
the other hand, that percentage  has  remained  nearly 
constant in analyses  with  a  large utilization of  serial 
code.  In  Table 5, the second column shows the 
processing time percentages  associated  with  code 
sections  executed in scalar  mode, and the third one 
shows  those  associated  with the same  sections  exe- 
cuted in vector  mode. The two  values  of  each column 
define the range  of  variation  depending on the type 
of analysis and, consequently, on vector  processing 
exploitation. 

A parallel  feasibility  analysis was performed in order 
to define the conditions which  allow  parallelism to 
be  efficiently  exploited and  to estimate  costs,  times, 
and resources. We selected  a  reference  test  case  which 
needed  sufficient computer resources to require uti- 
lization of  parallel  processing. The crash  analysis of 
a  complete  vehicle-about 10 CPU hours with the 
vector  version-was  chosen. The criteria  followed in 
identifying the code  sections to be  parallelized con- 
sisted in selecting the sections  benefitted by the vec- 
tor processing. The vector  processing time of those 
sections  had to exceed  a  threshold  above  which the 
overhead  ,due to dispatching and synchronization 
could  be  considered  negligible. The requirement was 
met  for  those  code  sections  performing the shell- 
element force evaluation and the geometry  update. 
Table 6 shows the processing time percentage of each 
single  section and the parallel  percentage we esti- 
mated  for the reference  test  case, the crash  analysis 
of a  complete  vehicle. 
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We estimated the parallel  percentage,  defined  as the 
percentage of the vector  execution time relative to 
those  code  sections  which  benefit  from  paralleliza- 
tion, at about 79 percent. A relation based on Am- 
dahl's  law  was  used to estimate the improvement in 
performance to be  expected from parallel  processing. 
That relation takes into account the degradation in 
performance due both to the task  load imbalance 
and  to the parallelization  overhead, by means of 
specific normalized factors,  respectively op and lb,. 

S =  
1 

(1 -4) + (fJn,) * (1 + 0, + lb,)' 
(2) 

where S is the overall  parallel speedup factor, f ,  is 
the percentage of parallelization, np is the number of 
processors, o p  is the overhead factor associated  with 
task  scheduling and synchronization, and lb, is the 
task  load imbalance factor. The overhead factor 0, 
takes into account the overhead  associated  with  task 
dispatching and synchronization; it is normalized 
with  respect to the average execution time of each 
task, 

where to is the time needed to perform the task 
scheduling and synchronization. The task  load im- 
balance factor Zb, takes into account the possibility 
that the workload is not equally distributed among 
the parallel  tasks. This condition is  verified  when 
more computational paths can be  followed  inside 
the parallel  code. 

The parameter lb, is defined  as follows: 

where t,, is the maximum execution time among 
the parallel  tasks. 

Assuming that the task  load imbalance factor lb, is 
equal to 0 (i.e., the workload is equally distributed 
among the parallel  tasks) and imposing an overhead 
op not exceeding 5 percent, we have estimated the 
performance improvement to be 1.5 for  3090-200E 
systems and 2.4 for  3090-400E  systems. 

The algorithm of the shell-element  force evaluation 
section  is suitable for  parallel  processing,  except  for 
the section  assembling the element forces into the 
global  force  vector,  whose algorithm is  serial. The 
solution selected  consisted in assigning to each  proc- 

essor the force computation relative to 128  ele- 
ments. The synchronization was scheduled  before 
the force  assembly  was performed. The number of 
dispatching operations was equal to the number of 
128 element groups, and the number of synchroni- 
zations was equal to the number of dispatching 
operations divided by the number of available  proc- 
essors. 

From the point of  view  of the coding structure, an 
interface routine has  been  created to reorganize the 
data communication among the main task and the 
parallel  ones. This operation was  previously  per- 
formed  using the storage areas defined by the COM- 
MON statement, whereas it is  now camed  out by 
means of the subroutine arguments. The element 
force  assembly  section  has  been  moved into a new 
routine whose execution is scheduled after the syn- 
chronization. Figure 5 shows the implementation 
structure of the shell-element  algorithm. This parallel 
migration  phase was quite laborious because we  were 
forced to apply  heavy  changes in the code structure 
and considerable  effort  went into preserving  code 
readability. 

The task load imbalance factor lb, was discovered 
during the program  test to be  greater than 0. A load 
imbalance among the tasks  arose  because the shell 
element is a nonlinear element. Different computa- 
tional paths can be  followed, depending on the de- 
formation and stress state of the structure, which 
generate  a  task  load imbalance that does not remain 
constant but differs step by step. This factor nega- 
tively  affected the performance of the parallel ver- 
sion. Performance measurements have further 
shown that the overhead factor does not exceed  a 
value of 2  percent. 

The geometry update section was parallelized by 
means of the MTF capabilities.  Each  parallel  task 
performs the update in the finite-element  model of 
a  defined  region whose dimension depends on the 
number of available  processors. 

Benchmarks were performed on the test  case,  which 
involved  a complete vehicle  model, and in other 
selected  cases suitable for  parallelization. The speed- 
up figures, reported in Table 7,  provide an average 
estimation of the parallel PAM-CRASH version  per- 
formance. 

PAM-CRASH graphic  processing 

A finite-element  code can be  successfully  utilized 
only if it is  provided  with graphic programs aiding 
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Figure 5 Parallel  implementation of the  shell  algorithm 

the user  in the pre- and post-processing p e e s .  PAM- provide  powerful  graphic  capabilities to generate 
CRASH code  is  interfaced  with the PRE-3D preproc- finite-element  models and visualize  finite-element 
essor and the DAISY” postprocessor to form an inte- analysis  results.  Use  of the IBM GraPHIGs Libra~y~*’*~ 
grated environment for  crash  analysis.  Both  codes allows P R E - 3 ~  and DAISY to run on the IBM 5080 
were  developed and are maintained by ESI; they Graphics  System.30  They  supply  improved interac- 

554 ANGELEAI ET AL. IBM  SYSTEMS JOURNAL, VOL 27, NO 4, 1% 



tivity by means of the 5080 local  devices and per- 
formance improvement by exploiting the 5080 local 
processing  capabilities: 

5080 local devices, e.g.,  graphics tablet and dials, 
allow the user to achieve a real-time interaction in 
performing  image manipulation such as transla- 
tion, rotation, clipping, and zooming.  These trans- 
formations are performed by taking advantage of 
the 5080 local  processing  capabilities,  with  signif- 
icant offloading  of the @t  processor. 
GraPHIGs 3 0  functions allow the user to handle 
graphics data in a real 3D environment. In most 
of the engineering  graphic  codes, the visualization 
process  is obtained by projecting the object to be 
displayed on an assigned  plane that depends on 
the observer’s  position, and then applying 2D 
primitives to the projected  object. GraPHIGs prim- 
itives  reduce the complexity and the dimensions 
of the application program by performing the 
projection  process,  which was previously a pro- 
grammer’s task, directly. 

P R E - 3 ~  is a graphics  preprocessor  for the interactive 
generation of three-dimensional meshes;  with the 
application of simple  changes, it can easily  be inter- 
faced  with other finite-element  codes. The code was 
specifically  designed either for use in generating fi- 
nite-element  models, or in adjusting and refining 
meshes,  originally  developed  for  static  analyses, to 
make them suitable  for  crash  analysis. PRE-3D pro- 
vides  the  following  capabilities to shorten and sim- 
plify the generation of a model: 

Mesh generation: Generation of lines and splines, 
generation of surfaces and volumes,  intersections 
of volumes and surfaces . Mesh modification: Interactive modification and 
refinement of meshes, interactive modification of 
element, material, and sliding  surface  characteris- 
tics 
Mesh visualization: Total and partial visualization 
of the model,  with the capability of translating, 
rotating, and zooming the image 

PAM-CRASH analysis  results can be  displayed by 
DAISY, providing a user-friendly interactive graphics 
environment. The capabilities  provided by the code 
comprise the following: 

Mesh visualization: Total or partial perspective 
view  of the model at each step of the analysis,  with 
removal of either hidden  lines  or  hidden  surfaces 
and shaded-image  display.  Selective viewing  of 
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Table 7 Average  estimated  parallel  PAM-CRASH 
performance 1 3090 System Parallel  Speedup 

600E 

different materials or  different elements with im- 
age zooming,  scaling, rotating, and clipping  fea- 
tures is also  available. 
Analysis result interpretation: A powerful tool aid- 
ing the engineer in the model-verification  phase. 
Either contour lines or color-filling patterns asso- 
ciated  with  stresses, strains, and kinematic entities 
are available at each step of the analysis, both for 
the complete model and for part of it. Effective 
stresses,  according to different  yielding criteria, can 
also be displayed.  These  values can also be plotted 
in a graph  shape  selecting the nodes of interest. 

Examples of the DAISY output are  shown in Figures 
6- 1 1. They  display  different  steps of the crash-sim- 
ulation analysis of a moving  vehicle striking a rigid 
wall. 

Conclusions 

Our work has  resulted in the development of a new 
IBM version of PAM-CRASH which  utilizes the vector 
and parallel  capabilities of the 30901~~ system, to- 
gether  with new IBM versions of the P R E - 3 ~  and DAISY 
programs. 

The new  version  of PAM-CRASH presents a perfor- 
mance improvement, compared to the old  scalar 
performance, of 300 percent on a uniprocessor 
~ O ~ O E I V F ,  of 600 percent on a ~O~O-~OOE/VF,  and of 900 
percent on a 3 0 9 0 - 6 0 0 ~ / ~ ~  system. 

The quality of the results, not only in terms of PAM- 
CRASH performance improvement, but also  with  re- 
spect to increased  ease of  use  of the graphics  package 
(due to stronger  interactivity),  has  far  exceeded initial 
expectations. 

In October  1987, the new IBM versions of the pro- 
grams were made available by ESI,  which  is  now 
capable of handling the code implementation of 
future developments. 

PAM-CRASH has  been  installed and runs successfully 
on the 30901~~ systems of a Japanese automotive 
manufacturer. 

ANGELERI ET AL. 555 



Figure 6 The  complete  model of the  Citroen BX car  displayed  with  shading effects 

Figure 7 The image of a car model  displayed  with  hidden  line  removal  technique 
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Figure 8 A wire  frame  model  displayed during a  session of an interactive 3-D manipulation 

Figure 9 A velocity component colored field of the frontal vehicle section 
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Figure 10 Display  of  a  velocity component of the vehicle compartment with an exploded view as a colored field 

Figure 11 Display of a stress component of a  vehicle as a colored field 
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