
PAM-CRASH on the IBM
309O/VF: An integrated
environment for crash
analysis

PAM-CRASHg is an industrial code developed by Engi-
neering Systems International (ESI) S.A. and designed
specifically for automotive crashworthiness analysis.
We discuss the problems encountered and describe
the solutions provided for an efficient migration of the
code on the IBM 309O/VF system. Runs on actual test
cases have shown a vectorlscalar speedup between
2.7 and 3.5. Moreover, we present the program modifi-
cations we have introduced in order to exploit parallel
processing using the Multitasking Facility of the VS
FORTRAN compiler. Performance results for 309O/VF
systems, from the Model 200E to the Model 600E, are
given. Finally, we describe the restructuring of the
graphic processors, PRE-3D and DAISY, to allow an
effective use of the IBM 5080 Graphics System capabil-
ities in providing an integrated design environment for
crash analysis.

I n the automotive industry, crash design is of vital
importance because it can significantly increase

the safety of vehicle occupants. Historically, many
car manufacturers have obtained information on
structural behavior under crash conditions by means
of experimental tests on prototypes. In the last ten
years, however, vehicle crashworthiness simulation
has become increasingly important as mathematical
models and computer programs have been devel-
oped to simulate structural crash.

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

by P. Angeleri
D. F. Lozupone
F. Piccolo
J. Clinckemaillie

Crash phenomena present some of the most complex
problems faced by structural mechanics. Since such
phenomena are both spatial and temporal, they in-
volve not only contacts among several surfaces, but
also complex nonlinear behavior characterized by
large strains. Consequently, the solution of such
problems requires the computational power pro-
vided by a supercomputer, in order to achieve results
consistent with the time constraints of the industrial
processes.

PAM-CRASH@ is a finite-element program for struc-
tural crash analysis. The program is an industrial
code designed for automotive crashworthiness analy-
sis; it was developed and is maintained by Engineer-
ing Systems International (ESI) S.A. Rungis-France.

The new IBM version of PAM-CRASH was developed
to take advantage of the vector-processing capabili-
ties of the 3090/v~ system in providing users of IBM

Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

ANGELERI ET AL. 541

systems in the automotive industry with an engi-
neering system for the simulation of crash phenom-
ena. The results of the PAM-CRASH migration allow
us to show the improvements in performance avail-
able to a user of PAM-CRASH on a 3090 system with
the Vector Facility feature. The vector version of
PAM-CRASH has been further provided with the ca-
pability of exploiting parallel processing on 3090/VF
multiprocessors.

We discuss the problems encountered and we de-
scribe the solutions provided for an efficient migra-
tion of the code on the IBM 3090/VF system. We deal
particularly with the problems posed by the class of
finite-element codes, which use an explicit algorithm
to perform the integration of dynamic equations.
Emphasis is placed on the description of the nonlin-
ear shell-element algorithm and on the criteria fol-
lowed in exploiting the vector-processing capabilities
of the 30901VF. Runs on actual test cases show a
vector/scalar speedup between 2.7 and 3.5. More-
over, we present the program modifications we have
introduced to exploit parallel processing using the
Multitasking Facility of the vs FORTRAN compiler.
Performance results for 30901VF systems, from the
Model 200E to the Model 600E, are shown.

A finite-element code can be exploited successfully
only if it is provided with graphic programs aiding
users in the pre- and post-processing phases. PAM-
CRASH is interfaced with the P R E - 3 ~ preprocessor and
the DAISY postprocessor to form an integrated design
environment for crash analysis. Use of the IBM Gra-

IBM 5080 Graphics System. They supply improved
interactivity by means of the 5080 local devices and
better performance by exploiting the local processing
capabilities of the 5080.

PHIGS Library allOWS PRE-3D and DAISY to run on the

PAM-CRASH code characteristics

PAM-CRASH' is a three-dimensional Lagrangian ex-
plicit finite-element code for analyzing the dynamic
response of structures. The code takes both material
and geometrical nonlinearities into account, and it
has general contact/impact capability. It is especitly
designed for automotive crashworthiness analysis .
Time integration by finite difference solves the prob-
lem of acceleration, velocity, and displacement time
histories at each discretization point of the structure.
There are two possible integration schemes, implicit
and explicit;' both reduce the dynamic equilibrium
equations to a set of algebraic equations. The explicit

542 ANGELERI ET AL

method, used by PAM-CRASH, recasts the dynamic
equations into a form yielding nodal accelerations,
by which the central finite-difference scheme is ap-
plied to obtain nodal velocities and displacements.
The solution of the final set of equations is trivial for
systems whose mass matrix is lumped. The condi-
tional stability of the explicit integration method
forces the evaluation of the integration step size by
a stability criterion. In the case of PAM-CRASH this is
the Courant criterion, based on the propagation time
of the sound waves across the smallest mesh element.
The advantages offered by unconditionally stable
implicit integration schemes, allowing larger time

A reduced integration technique
with one-point quadrature has been
used to evaluate the element forces.

steps, cannot be exploited in crash simulation be-
cause of the characteristics of these phenomena.
They are characterized by a short duration and
highly nonlinear behavior, and to be correctly de-
scribed they require a time-step size of the order of
that needed by an explicit code. Furthermore, the
explicit time integration scheme avoids matrix as-
sembly and inversion, the latter being very expensive
for large systems; therefore, it significantly reduces
virtual memory requirements.

For spatial discretization, the code only uses the
simplest finite-element formulation such as four- or
three-node bilinear shell elements and corresponding
two-node beam elements. Simple linear elements are
preferred to higher-order elements because experi-
ence has shown that the former are computationally
more cost-effective, even though a greater mesh den-
sity is required in areas of severe deformation.

The nonlinear shell element is the element most
widely used in automotive crash analysis. The PAM-
CRASH shell element is a bilinear four-node quadri;
lateral element, originally developed by Belytschko
and based on Reissner-Mindlin plate theory. This

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

theory differs from the classical Kirchhoff theory in
its treatment of shear deformation. In the Kirchhoff
hypothesis, the effect of the transverse shear defor-
mation is neglected, and the finite-elemFnt approxi-
mation requires shape functions with C continuity.
In the Reissner-Mindlin theory, the s p deforma-
tion is taken into account, and only C continuity is
required, with great simplification in the element
formulation. A reducsed integration technique with
one-point quadrature has been used to evaluate the
element forces in the context of the explicit time-
integration scheme provided by PAM-CRASH. How-
ever, reduced integration in a bilinear plate element
permits kinematic (zero-energy) modes. These
modes, cailed hourglassing modes in finite-difference
literature, can destroy the solution because of the
introduction of spurious spatial oscillations. An
hourglass control scheme has been implemented to
avoid that numerical instability phenomenon.

A wide variety of material laws are available to model
elastic, nonlinear, and failure conditions. Rigid walls
may be defined to provide external impact surfaces,
while a slide-line algorithm can prevent penetration
of internal structure surfaces that may collide during
the crash simulation. Various slide-line interface
conditions are available, including sliding, separa-
tion, and friction. The user must specify which re-
gion of the structure is to be considered for crash
purposes by listing the elements which are part of it.
An either partially or totally automatic “boxing strat-
egy” is under development, in which the user need
no longer list the elements belonging to the sliding
surfaces. Two basic types of contact p h e n ~ m e n a ~ - ~
can be represented. The first type involves two sur-
faces coming into contact, the second, a single sur-
face buckling and coming into contact with itself.
Both situations include friction interface behavior
and are based on the penalty method, which consists
in placing normal interface springs between the
nodes belonging to the penetrating surface and those
belonging to the contact surface.

Rezone and restart options are provided to allow
mesh redefinition during the analysis and to split
larger problems into a set of smaller computer runs.

Enabling environment

The new IBM version of the PAM-CRASH program was
developed to utilize the vector-pfxessing103’’ capa-
bilities of the IBM 3090/VF system in providing the
automotive industry with an engineering system for
the simulation of crash phenomena. The code was

IBM SYSTEMS JOURNAL, VOL 27. NO 4, 1W

written to run efficiently on different supercompu-
ters; it is installed on non-IBM systems in automotive-
industry computing centers. Alternatively, a version
of the code is currently running on IBM systems,
including 3090s, without exploiting the potential
benefits of vector and parallel processing that a vec-
tor multiprocessor machine such as the 3090/VF can
provide. The results of the PAM-CRASH enabling ef-
forts now af‘pw us to show the performance
improvement the user can obtain by using the new
IBM version of PAM-CRASH on the 3090 system pro-
vided with the Vector Facility feature. The vector
version of PAM-CRASH provides the additional capa-
bility of exploiting parallel processing on IBM multi-
processor systems.

Preliminary feasibility analysis was the first step of
the migration process. It was based essentially on an
exchange of information and expertise with Engi-
neering Systems International (ESI) S.A., the engi-
neering software house that developed the code and
maintains it. That step permitted a first rough esti-
mation both of the resources needed to carry out the
vector enabling and of the expected improvement in
performance. Once this preliminary phase was com-
pleted, an international team was set up for the
purpose of developing a vector version of the PAM-
CRASH code provided with parallel capability. At any
given time, the team comprised three people: the
first from ESI, owner of the code; a second from the
European Center for Scientific and Engineering
Computing (ECSEC), the European IBM organization
for Numerically Intensive Computing (NIC); and a
third from IBM Japan, whose customers requested
the enabling of the code on the ~ O ~ O / V F system.

The team composition was defined to cover all the
aspects involved in the enabling project:

Physical formulation and equations involved
Structure of the code and finite-element technol-

Vector and parallel architecture
System environment and performance

The code was installed on the IBM ~ O ~ O - ~ O O / V F of
ECSEC. At that time, the software environment com-
prised the following:

MvS/XA 2.1.3 operating system provided with the

TSO/E 1.4 provided with the ISPF 2.2 for the ter-

ogy

JES2 2.1.3 subsystem and the DFP 2.1.2

minal interactive environment

ANGELERI ET N. 543

. VSIFORTRAN 2.1 ,14-16 the vectorizing compiler,
provided with the Multitasking Facility (MTF) for
parallel processing . vs FORTRAN Execution Analyzer,” a software tool
for determining the percentage of time spent in
the different sections of the code.

ESI provided the enabling team with some test cases
from the automotive industry, since the code is

PAM-CRASH carries out the
integration of the dynamic equation

using a finitedifference
explicit algorithm.

widely used there. These test cases involved the crash
analysis either of a complete automobile or of part
of it. Since the test cases provide a wide range of
applications associated with different phases of the
automotive design process, they have allowed the
enabling team to estimate performance improve-
ments in the overall design process by exploiting
vector and parallel processing.

The team’s first task was to refine the feasibility
analysis in order to better approximate expected
improvements in performance, available resources,
time required to reach goals, and, finally, procedures.

Vector feasibility analysis

Once the presence of vector content in an applicgion
has been ascertained, vector feasibility analysis is a
basic step in assembling the elements necessary to
carry out a cost evaluation. That analysis allows one
to determine whether the price/performance require-
ments can be met. The vector feasibility analysis was
carried out as follows:

1. Definition of objectives and requirements
2. Analysis of the overall program structure, of the

logic organization, and of the coding implemen-
tation to build the execution flows and to identify
the main code sections

544 ANGELERI ET AL.

3. Evaluation of the computer resource distribution
among the code sections identified in the previous
step

4. Analysis of the algorithms of those code sections
which are responsible for a comparatively large
amount of computer resource utilization, and
definition of the algorithm characteristics for a
possible vector implementation

5. Evaluation of the vector content in the present
implementation

6. Comparison of the results of steps 4 and 5 to
identify the potential vector content, to locate the
inhibitors preventing vectorization, to evaluate
the level effort required to promote vectorization,
and finally to estimate the algorithm performance
improvement

7. Evaluation of the overall effort and estimation of
the global performance improvement according
to the objectives defined in step 1

8. Definition of time schedule and planning of hu-
man resources

The primary objective of a vector migration process
is the reduction of processing time by exploiting the
processing capability of the Vector Facility feature.
The secondary objective, which can also yield bene-
fits, is the exploitation of system resources such as
virtual storage and I/O processing.

PAM-CRASH carries out the integration of the dynamic
equation using a finite-difference explicit algorithm.
Thanks to the characteristics of this algorithm,
widely used in structural mechanics, the virtual
memory request is highly reduced compared with
that of alternative implicit schemes. According to
that, the System/370 architecture provides enough
virtual memory to make efficient use of the code in
standard applications. However, to meet future cus-
tomer requirements in terms of model sizes, the
exploitation of virtual memory over the 1 6 ” ~ line,
allowed by 370/XA architecture, whose present exten-
sion is 2 GB, has been included in the objectives.

The PAM-CRASH program produces hundreds of
megabytes of data as a result of the analysis. These
data can be used as input for the graphic postpro-
cessing program, DAISY, to aid the user in analyzing
the results of the simulation, to check whether the
design requirements are met, and eventually to gen-
erate further modifications.

The 110 content can be considerable, and the time
the program spends to perform 110 activity can be-
come a considerable fraction of the total time. An

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

I/O algorithm which is either not well tuned or de-
signed for a different system architecture can produce
a degradation in performance. We decided to in-
clude, among our objectives, I/O activity tuning if
performance tests revealed any degradation in
elapsed-time performance due to the I/O processing.

Many of the widely used engineering codes were
written during the 1970s, and the system architecture
for which they were designed has evolved extensively
during the last twenty years. However, the software
houses that develop and maintain those codes have
adopted a conservative policy with respect to soft-
ware upgrading. Consequently, our experience in
vector migration has been that we must expect to
face preliminary problems in mapping the code ar-
chitecture to the hardware characteristics to optimize
the system resource utilization.

Although the software houses generally deliver dif-
ferent versions of the same programs for use in
different environments, they reasonably prefer to
limit as much as possible the differences among the
versions. Therefore, we had to define a policy regard-
ing the introduction of code changes, taking into
account portability, maintenance, and readability
requirements.

We have, then, faced the problem of identifying the
program structure by analyzing the physical formu-
lation, the algorithms involved, and their relation-
ship to the code implementation. This implies

Building the logic program organization and lo-

Drawing the “tree” of the execution flows and

Identifying the data organization and the process

cating the main code routines

tracing the routine calling sequence

of data transmission

The logic organization and data structure of a finite-
element code making use of an explicit algorithm
for the ,t$e integration are well known in
literature . However, requirements or program-
ming styles can cause the code implementation of
two programs to be very different although they carry
out the same tasks using the same algorithms. For
example, modularity requirements can affect the
mapping of the logical organization of the code
sections, and hardware requirements can affect the
overall data organization. The flowchart shown in
Figure 1 describes the program organization and
outlines the main sections.

IBM SYSTEMS XXIRNAL. VOL 27. NO 4, 1988

Figure 1 Program organization and main sections

XPLlClT TIME INTEGRATION

I ELEMENT FORCE EVALUATION

I CONTACT-IMPACT ALGORi?”

From preliminary analysis this information has been
collected for each code section:

Element force evaluation. Nonlinear shell ele-
ments constitute over 90 percent of the elements
used.

Table 1 Processing time distribution

Code CPU
Seotion Percentage

1 Element force evaluation 70-82
2 Geometry update 7-9
3 Explicit time integration 3-4
4 Contact algorithm 17-3
1 + 2 + 3 + 4 97-98

Table 2 Vector percentages compared to total CPU
percentage

code CPU Yector
Sectfon Percentage Percentage

t I
1 Element force evaluation 70-82 63-74
2 Geometry update 7-9 7-9
3 Explicit time integration 3-4 3-4
4 Contact algorithm 17-3 0-0
1 + 2 + 3 + 4 97-98 73-87

Selective output. I/O activity is not negligible, and
it affects the elapsed time.
Contact algorithm. Execution time for the treat-
ment of impact phenomena depends on the mod-
eling choices, since the user can select the region
to be analyzed for crash purposes.

By performing a hot-spot analysis, we obtained the
percentage distribution of processing time among
the sections of the code. We carried out this task
using the vs FORTRAN Execution Analyzer, which
allows the user to obtain detailed timing information
at the subroutine and statement levels. The time
distribution depends on the type of the analysis, and
the user must select the region of the structure to be
analyzed for crash purposes.

Table 1 shows the range of variation of processing
time distribution among the different code sections
for the test cases provided by ESI. Since those cases
are a complete set of the applications currently em-
ployed in the design process of the automotive in-
dustry, that range can reasonably be considered rep-
resentative of the general class of problems in the
industry.

The remaining 2-3 percent of the CPU time is dis-
tributed among other code sections whose single
incidence is less than 1 percent. The incidence of the
input phase section is negligible.

We analyzed the algorithms of those code sections
which involved the utilization of a comparatively
large percentage of the computer resources, and we
defined the clyacteristics for a possible vector im-
plementation. We discovered the following:

The code sections of the geometry update and of
the explicit time integration are completely vec-
torizable.
The element force evaluation algorithm is vecto-
rizable, except for the section assembling the ele-
ment forces into the global force vector. We esti-
mated the percentage of its incidence at about 10
percent of the force execution time of the element
force section.
The contact algorithm is vectorizable, but we as-
certained from analysis of the present implemen-
tation that vector enabling was feasible by just
carrying out a complete reorganization of the
code.

We can assert that a good estimation of the vectoriz-
able percentage f; defined as the percentage of the
total scalar execution time spent on the vectorizable
code sections, varies in a range between 73 and 87
percent. Table 2 shows the vectorizable percentage
estimated for each section and compares it to the
total CPU percentage.

The theoretical model, known as Amdahl’s law,”
estimates the performance improvement of a vecto-
rizable application:

where S is the overall vector/scalar speedup factor, f
is the vectorizable percentage, and sr is the vec-
tor/scalar speedup obtained by performing the com-
putation of the vectorizable code sections with the
Vector Facility.

The vector/scalar speedup design range of the Vector
Facility is between 3 and 5. This value is optimized
for the middle range of vectorizable percentage. Fig-
ure 2 shows the improvement ratio of the execution
time of a vector application as a function of the
vectorization percentage. Several vector/scalar speed-
up ratios are given.

The parameter sr depends both on the hardware
characteristics of the Vector Facility feature and on
the characteristics of the computation performed
inside the code. We mention the most important
factors affecting the estimation of sr:

546 ANGELERI ET AL IBM SYSTEMS JOURNAL, VOL 27, NO 4, 19%

Figure 2 Amdahl's law

2 3 i 6 i a i 1 0 11
ETOR/scALAR SPEEDUP tun0

Kind of operations involved in the computation.
Different vector operations have different startup
times and different speeds in comparison with the
scalar instructions.
Vector length. A vector length of 128 elements is
close to the optimum speedup. The threshold
above which vector code performances are better
than scalar ones is approximately 12.
Stride of the vector element in storage. The best
vector performances are achieved with the lowest
stride, i.e., stride 1. (Stride represents the incre-
ment used to step through array storage to select
the vector elements from the array.) In actual
practice, it is important to reduce the stride to
minimize cache misses and paging. For particular
stride values, the scalar execution is preferred,
because it severally results in faster performance
than the vector execution.

IBM SYSTEMS XXIRNAL. VOL 27, NO 4, 1988

Presence of conditional processing. An excessive
number of IF statements can cause poor perfor-
mance. When an IF statement is vectorized, the
time needed to process the IF statement and the
operations governed by it remains the same
whether or not the condition is verified.

The operations of the vectorizable code sections are
essentially arithmetic in nature. The only functions
are the trigonometric functions, sine and cosine, and
the square root. The presence of conditional proc-
essing is minimal. The data organization is complex
and requires many arrays forming the database of
the analysis. We have noted that many operations
are performed using indirect element selection.

The preceding considerations were formulated to
give a correct estimate of the sr parameter. However,

Ah'GELERl ET AL. 547

Figure 3 Original implementation of the shell algorithm

SHELL-
ELEMENT
FORCE
EVALUATION

the sr value should also be selected on the basis of
practical experience in vector migration. Using these
criteria, we selected a value of 4 as a reasonable
estimation of sr.

By means of Amdahl's law, we have estimated be-
tween 2.2 and 2.9 the global speedup S of the final
enhanced version running in vector mode with re-
spect to the same one running in scalar mode. Yet,
WE must consider that this speedup takes into ac-
count only the performance improvement obtained
by exploiting the vector feature. A migration process
involves a general code optimization, with a conse-
quent improvement in scalar performances. A good
percentage of the efforts required to exploit the Vec-
tor Facility involves good programming practices
rather than specific vector techniques, yielding a
reasonable further improvement in performance of
about 20 or at least 10 percent. Consequently, we
can expect values for the final global vector/scalar

speedup, with respect to the original scalar code, to
fall between 2.4 and 3.5.

We have defined procedures for

Vectorizing the code sections of the element force
evaluation, of the geometry update, and of the
explicit time integration
Applying a scalar optimization to the contact al-
gorithm section

The global number of statements involved in the
migration process is approximately 15 percent of the
whole program, of which 5 percent, spread over
twelve routines, is associated with vector enabling,
while the remaining 10 percent is associated with 110
operations and virtual memory tuning.

The criteria in the modification policy of the original
source code have been to limit code changes as much

548 ANGELERI ET AL IBM SYSTEMS JOURNAL, VOC 27, NO 4, 1988

Avoiding imbedding routines in one another
Applying modifications at routine level only if the
performance improvement is over a predefined
threshold value
Preserving the readability of the code

Vector migration process

Considerable effort has been applied in the vectori-
zation of the shell-element force evaluation section
because it has a major influence on processing time.

We now describe the restructuring process we have
applied to promote vectorization of2t,he code section
computing the shell-element forces.

From the initial analysis we realized that the original
coding form was developed for implementation on
a vector machine with a Cray-like architecture. The
original coding structure (Figure 3) comprised the
following:

The main routine, FORCX, carrying out the task of
sectioning the shell-element group into subsets of
128 elements. FORCX calls three routines and is
called by the driving program routine, FETI, which
performs the step-by-step integration of the finite-
element dynamic equation.
Three routines, FoRcx1 , FORCXZ, and FORCX~ com-
puting the shell forces for each subset. They call
other small routines to perform particular sub-
tasks.

The processing time spent in FORCX is negligible.

The code was well structured and organized in a DO-
loop pattern with a count value of 128, which is one
of the optimum values associated with the section
size of the vector register. With the aid of the com-
piler output relative to the vectorizatiy analysis
[compiler options: REPORT(XLIST LIST)], we have
ascertained that about 50 percent of the DO loops
have been correctly vectorized. The remaining 30
percent have presented some inhibitory factor pre-
venting the vectorization. The inhibitors can be clas-
sified according to the following different situations:

Use of intrinsic functions not available in vector

The presence of statements inhibiting the vectori-

Detection by the compiler of recurrence condi-

mode, e.g., MAXIMIN functions

zation, e.g., CALL and GO TO statements

tions

IBM SYSTEMS JOURNAL. VOL 27, NO 4, 1988

torizkd, but vector code was not generated because
of performance considerations.

Before approaching the problem of eliminating the
inhibitors, we thought it necessary to reformulate
the algorithm implementation in order to obtain the

"

The first step in the migration
process consisted in restructuring

the data organization.

best results from the migration process. We felt
particularly that the data organization must be re-
defined, since we could not get the best results from
vectorization with the current structure.

The data of each shell element, once preprocessed in
the input phase, are stored in a database comprising
several arrays. For the purpose of computing element
forces, the program makes use of pointer arrays to
locate in the database, wherever necessary, the data
associated with each element. Consequently, the pro-
gram must perform sparse-matrix computation wi$
a large utilization of the indirect element selection.
The original developers were not deeply aware of the
way in which this kind of data organization could
influence the performance of systems consisting of
central processor units provided with caches.

The first step of the migration process consisted in
restructuring the data organization to localize data
references and to promote an efficient utilization of
the cache. Our efforts were directed at achieving the
following goals:

Collecting the gather operations in a localized code
section at the beginning, before the force compu-
tation starts
Collecting the scatter operations in a localized
code section at the end, after the force computa-
tion has been completed
Performing the force computation on contiguous
data

ANGELERI ET AL. 549

Reducing and optimizing usage of those tempo-
rary arrays used to store either gathered data or
intermediate results

We have, then, dealt with the problem of eliminating
inhibitory factors in order to promote the vectori-
zation of those DO loops for which the compiler does
not generate vector code.

The MAX function did not vectorize at the time of
the enabling because the vs FORTRAN Compiler Ver-
sion 2.1 does not support maximum/minimum
functions in vector mode. The solution was to re-
place the function with an IF construct. The problem
has since been solved because the most recent vs
FORTRAN Compiler Version 2.3 now supports
min/max functions.

The FORCXZ routine calls a routine evaluating the
element stresses by means of a material relation
defined by the user. This routine is small, and we
have imbedded it inside the calling routine. In this
way we have promoted the vectorization of the DO-
loop in whose range the CALL statement was in-
cluded.

The presence of a GO TO statement in a Do-loop
range inhibits vectorization. Although we replaced it
with an IF construction to promote vectorization, we
did not obtain satisfactory performance results. We
then split the original DO loop into two blocks. In
the first block, the program computes the number of
times the condition for conditional processing is met,
and a pointer vector is initialized to identify the
array elements on which the computation must be
performed:

K= 1

DO 10 I=l,N

IF(A(1).)
K=K+ 1

IND(K)=I

.
10 CONTINUE

NK=K

In the second block, the operations executed earlier
under the control of the IF statement are processed,
selecting the array elements by means of the pointer
vector evaluated at the 10 DO loop:

550 ANGELERI ET AL.

DO 20 I= 1 ,NK

.

. . . .Y(IND(I)). .

. . . .Z(IND(I)). .

.
20 CONTINUE

The 20 DO loop is executed either in vector or in
scalar mode depending on the count value. The
directive ASSUME COUNT forces the compiler to gen-
erate scalar code when the count value is smaller
than a threshold.

The recurrence conditions are detected by the com-
piler when the program performs scattering opera-
tions, in order to save element information to be
used in the next time step and to assemble the global
force vector.

Those operations are performed by means of pointer
vectors, previously evaluated in the FORCX, indirectly
selecting the array elements on which the computa-
tion has to be performed. The compiler cannot rec-
ognize whether the recurrence condition involves a
backward dependence. Since we know the algorithm,
we are sure that no backward recurrences are asso-
ciated with the former situation. Vectorization has
been promoted by means of the directive IGNORE
RECRDEPS. In the latter situation, the recurrence con-
dition is detected when the global force vector is
assembled. The vectorization cannot be promoted
because the assembling algorithm is serial (it involves
an unbreakable recurrence condition).

The compiler recognizes 20 percent of the DO loops
as eligible for vector analysis, but prefers, for per-
formance reasons, to generate a scalar code. Vecto-
rization has been promoted by means of the directive
ASSUME COUNT.

The final coding structure is shown in Figure 4.

We now describe some fine-tuning techniques to
optimize the utilization of the vector registers and of
the compound instructions which have yielded re-
markable improvements in performance.

Vector-register usage can be optimized by keeping
in mind that the Vector Facility feature makes avail-
able sixteen vector registers in single precision and
eight registers in double precision. The compiler uses

IBM SYSTEMS JOURNAL. VOL 27, NO 4, 1988

Figure 4 Vector implementation of the shell algorithm

swm-
ELEMENT
FORCE
EVALUATION

LOOP
ON 128

GROUP
ELEMENT

the registers to store the intermediate results of the
operations in the Do-loop range in trying to optimize
the load and store operations. The programmer can
explicitly assist the compiler in the optimization
process by using a particular programming style.
This intervention involves minimizing, inside the
Do-loop range, the work vectors used to store inter-
mediate results and replacing them with fictitious
scalar variables. This method forces the compiler to
hold in the vector registers (when a sufficient number
of them are available) the intermediate results of the
computation. The programmer is assisted in the
vector-register optimization technique by the listing
of the object module in pseudo-assembler language
that can be generated with the LIST compiler option.
In general, successful optimization is enhanced by
minimizing load and store operations.

The Vector Facility provides two compound instruc-
tions, multiply-add and multiply-accumulate, per-
forming two operations in a single machine cycle.
We have tried to increase the number of the com-
pound instructions automatically generated by the
compiler. Once the statements with compound in-
structions had been identified, we have verified by

Table 3 Performance results

case
Test Original- Enhanced- Enhanced-

Version Version VWSiOn
(s) Scalar Run Scalar Run Vector Run

1234 97 1
6273 5303 1774 449 I

means of the object listing whether compound in-
structions had also been generated. Otherwise, we
have tried to reorder the statement operation, keep-
ing in mind that the compiler follows arithmetic
rules in performing operations and that three oper-
ands cannot reside simultaneously in the vector reg-
isters.

We present some performance results showing the
improvement the migration work has yielded. In
Tables 3 and 4 we report the performance results of
two test cases in terms of CPU time for the first table
and in terms of speedup for the second table. The
two selected test cases were chosen to represent the
lower and the upper bound in performance results,

ANGELERI ET AL. 551 IBM SYSTEMS JOURNAL, VOC 27, NO 4, 1988

Table 4 Performance results with speedup

Enhanced
SPeeduP- -UP vs Speedup vs

Original- Enhanced-
Version Version

Scalar Run
Version

Scalar Run

Si
s2

2,7 2.2
3.5 3.0

Table 5 CPU percentages for scalar and vector modes

Code
SecHMI

CPU cw
Percentage Percentage

(Scalar (Vector
Mode) Mode)

1 Element force evaluation 70-82 52-83
2 Ceometry update 7-9 4-6
3 Explicit time integration 3-4 4-6
4 Contact algorithm 17-3 36-2
1 + 2 + 3 + 4 97-98 96-97

Table 6 Processing time percentages and parallel
percentages

Code
Section

CPU Parallel
Percentage Percentage

(Vector
Mode)

1 Element force evaiuation 82 74
2 Geometry update 5 5
3 Explicit time integration 6 0
4 Contact algorithm 3 0
1 + 2 + 3 + 4 96 79

due to the different incidence of vector code exploi-
tation. In Table 3 the second column shows the CPU
time needed by the original ESI scalar version run in
scalar mode, the third shows the CPU time of the
final enhanced-version result of the migration work,
compiled and run in scalar mode, and the fourth
shows the time of the same enhanced version run in
vector mode.

In Table 4, the two righthand columns show the
speedups of the final enhanced version run in vector
mode compared to the original version and to the
enhanced one, both run in scalar mode.

Parallel implementation

Once the vectorization was completed, we faced the
problem of parallelizing the program by dividing up
the computation among the processors in a multi-

552 ANGELERI ET AL.

processor configuration. The main objectives in de-
veloping a parallel version of the PAM-CRASH pro-
gram were improvement of turnaround time in a
shared environment and reduction of elapsed time
in a dedicated environment.

The software selected to support the development of
the PAM-CRASH parallel version was the Multitasking
Facility (MTF), a standard feature of the IBM vs FOR-
TRAN compiler. MTF uses the MVS macros to execute
selected routines in parallel and to synchronize their
execution. The programmer can easily introduce
into the program suitable calls to the simple MTF
primitives to specify the sections of the code to be
executed in parallel and to synchronize their execu-
tion. The overhead associated with exgution sched-
uling of a parallel subroutine is 75 ps.

The percentage incidence, with respect to total proc-
essing time, of code sections which can take advan-
tage of vector enabling and consequently are eligible
to be parallelized drops considerably in analyses
involving a reduced use of the contact algorithm. On
the other hand, that percentage has remained nearly
constant in analyses with a large utilization of serial
code. In Table 5, the second column shows the
processing time percentages associated with code
sections executed in scalar mode, and the third one
shows those associated with the same sections exe-
cuted in vector mode. The two values of each column
define the range of variation depending on the type
of analysis and, consequently, on vector processing
exploitation.

A parallel feasibility analysis was performed in order
to define the conditions which allow parallelism to
be efficiently exploited and to estimate costs, times,
and resources. We selected a reference test case which
needed sufficient computer resources to require uti-
lization of parallel processing. The crash analysis of
a complete vehicle-about 10 CPU hours with the
vector version-was chosen. The criteria followed in
identifying the code sections to be parallelized con-
sisted in selecting the sections benefitted by the vec-
tor processing. The vector processing time of those
sections had to exceed a threshold above which the
overhead ,due to dispatching and synchronization
could be considered negligible. The requirement was
met for those code sections performing the shell-
element force evaluation and the geometry update.
Table 6 shows the processing time percentage of each
single section and the parallel percentage we esti-
mated for the reference test case, the crash analysis
of a complete vehicle.

18M SYSTEMS XXIRNAL, VOL 27. NO 4, 1988

We estimated the parallel percentage, defined as the
percentage of the vector execution time relative to
those code sections which benefit from paralleliza-
tion, at about 79 percent. A relation based on Am-
dahl's law was used to estimate the improvement in
performance to be expected from parallel processing.
That relation takes into account the degradation in
performance due both to the task load imbalance
and to the parallelization overhead, by means of
specific normalized factors, respectively op and lb,.

S =
1

(1 -4) + (fJn,) * (1 + 0, + lb,)'
(2)

where S is the overall parallel speedup factor, f , is
the percentage of parallelization, np is the number of
processors, o p is the overhead factor associated with
task scheduling and synchronization, and lb, is the
task load imbalance factor. The overhead factor 0,
takes into account the overhead associated with task
dispatching and synchronization; it is normalized
with respect to the average execution time of each
task,

where to is the time needed to perform the task
scheduling and synchronization. The task load im-
balance factor Zb, takes into account the possibility
that the workload is not equally distributed among
the parallel tasks. This condition is verified when
more computational paths can be followed inside
the parallel code.

The parameter lb, is defined as follows:

where t,, is the maximum execution time among
the parallel tasks.

Assuming that the task load imbalance factor lb, is
equal to 0 (i.e., the workload is equally distributed
among the parallel tasks) and imposing an overhead
op not exceeding 5 percent, we have estimated the
performance improvement to be 1.5 for 3090-200E
systems and 2.4 for 3090-400E systems.

The algorithm of the shell-element force evaluation
section is suitable for parallel processing, except for
the section assembling the element forces into the
global force vector, whose algorithm is serial. The
solution selected consisted in assigning to each proc-

essor the force computation relative to 128 ele-
ments. The synchronization was scheduled before
the force assembly was performed. The number of
dispatching operations was equal to the number of
128 element groups, and the number of synchroni-
zations was equal to the number of dispatching
operations divided by the number of available proc-
essors.

From the point of view of the coding structure, an
interface routine has been created to reorganize the
data communication among the main task and the
parallel ones. This operation was previously per-
formed using the storage areas defined by the COM-
MON statement, whereas it is now camed out by
means of the subroutine arguments. The element
force assembly section has been moved into a new
routine whose execution is scheduled after the syn-
chronization. Figure 5 shows the implementation
structure of the shell-element algorithm. This parallel
migration phase was quite laborious because we were
forced to apply heavy changes in the code structure
and considerable effort went into preserving code
readability.

The task load imbalance factor lb, was discovered
during the program test to be greater than 0. A load
imbalance among the tasks arose because the shell
element is a nonlinear element. Different computa-
tional paths can be followed, depending on the de-
formation and stress state of the structure, which
generate a task load imbalance that does not remain
constant but differs step by step. This factor nega-
tively affected the performance of the parallel ver-
sion. Performance measurements have further
shown that the overhead factor does not exceed a
value of 2 percent.

The geometry update section was parallelized by
means of the MTF capabilities. Each parallel task
performs the update in the finite-element model of
a defined region whose dimension depends on the
number of available processors.

Benchmarks were performed on the test case, which
involved a complete vehicle model, and in other
selected cases suitable for parallelization. The speed-
up figures, reported in Table 7, provide an average
estimation of the parallel PAM-CRASH version per-
formance.

PAM-CRASH graphic processing

A finite-element code can be successfully utilized
only if it is provided with graphic programs aiding

ANGELERI ET AL. 553 IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

Figure 5 Parallel implementation of the shell algorithm

the user in the pre- and post-processing p e e s . PAM- provide powerful graphic capabilities to generate
CRASH code is interfaced with the PRE-3D preproc- finite-element models and visualize finite-element
essor and the DAISY” postprocessor to form an inte- analysis results. Use of the IBM GraPHIGs Libra~y~*’*~
grated environment for crash analysis. Both codes allows P R E - 3 ~ and DAISY to run on the IBM 5080
were developed and are maintained by ESI; they Graphics System.30 They supply improved interac-

554 ANGELEAI ET AL. IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1%

tivity by means of the 5080 local devices and per-
formance improvement by exploiting the 5080 local
processing capabilities:

5080 local devices, e.g., graphics tablet and dials,
allow the user to achieve a real-time interaction in
performing image manipulation such as transla-
tion, rotation, clipping, and zooming. These trans-
formations are performed by taking advantage of
the 5080 local processing capabilities, with signif-
icant offloading of the @t processor.
GraPHIGs 3 0 functions allow the user to handle
graphics data in a real 3D environment. In most
of the engineering graphic codes, the visualization
process is obtained by projecting the object to be
displayed on an assigned plane that depends on
the observer’s position, and then applying 2D
primitives to the projected object. GraPHIGs prim-
itives reduce the complexity and the dimensions
of the application program by performing the
projection process, which was previously a pro-
grammer’s task, directly.

P R E - 3 ~ is a graphics preprocessor for the interactive
generation of three-dimensional meshes; with the
application of simple changes, it can easily be inter-
faced with other finite-element codes. The code was
specifically designed either for use in generating fi-
nite-element models, or in adjusting and refining
meshes, originally developed for static analyses, to
make them suitable for crash analysis. PRE-3D pro-
vides the following capabilities to shorten and sim-
plify the generation of a model:

Mesh generation: Generation of lines and splines,
generation of surfaces and volumes, intersections
of volumes and surfaces . Mesh modification: Interactive modification and
refinement of meshes, interactive modification of
element, material, and sliding surface characteris-
tics
Mesh visualization: Total and partial visualization
of the model, with the capability of translating,
rotating, and zooming the image

PAM-CRASH analysis results can be displayed by
DAISY, providing a user-friendly interactive graphics
environment. The capabilities provided by the code
comprise the following:

Mesh visualization: Total or partial perspective
view of the model at each step of the analysis, with
removal of either hidden lines or hidden surfaces
and shaded-image display. Selective viewing of

IBM SYSTEMS XWRNAL, VOC 27, NO 4, 1988

Table 7 Average estimated parallel PAM-CRASH
performance 1 3090 System Parallel Speedup

600E

different materials or different elements with im-
age zooming, scaling, rotating, and clipping fea-
tures is also available.
Analysis result interpretation: A powerful tool aid-
ing the engineer in the model-verification phase.
Either contour lines or color-filling patterns asso-
ciated with stresses, strains, and kinematic entities
are available at each step of the analysis, both for
the complete model and for part of it. Effective
stresses, according to different yielding criteria, can
also be displayed. These values can also be plotted
in a graph shape selecting the nodes of interest.

Examples of the DAISY output are shown in Figures
6- 1 1. They display different steps of the crash-sim-
ulation analysis of a moving vehicle striking a rigid
wall.

Conclusions

Our work has resulted in the development of a new
IBM version of PAM-CRASH which utilizes the vector
and parallel capabilities of the 30901~~ system, to-
gether with new IBM versions of the P R E - 3 ~ and DAISY
programs.

The new version of PAM-CRASH presents a perfor-
mance improvement, compared to the old scalar
performance, of 300 percent on a uniprocessor
~ O ~ O E I V F , of 600 percent on a ~O~O-~OOE/VF, and of 900
percent on a 3 0 9 0 - 6 0 0 ~ / ~ ~ system.

The quality of the results, not only in terms of PAM-
CRASH performance improvement, but also with re-
spect to increased ease of use of the graphics package
(due to stronger interactivity), has far exceeded initial
expectations.

In October 1987, the new IBM versions of the pro-
grams were made available by ESI, which is now
capable of handling the code implementation of
future developments.

PAM-CRASH has been installed and runs successfully
on the 30901~~ systems of a Japanese automotive
manufacturer.

ANGELERI ET AL. 555

Figure 6 The complete model of the Citroen BX car displayed with shading effects

Figure 7 The image of a car model displayed with hidden line removal technique

556 ANGELERI ET AL. 13.4 SYSTEMS JOURNAL, VOL 27, NO 4, 1988

Figure 8 A wire frame model displayed during a session of an interactive 3-D manipulation

Figure 9 A velocity component colored field of the frontal vehicle section

8 M SYSTEMS XXIRNAL. VOL 27, NO 4, 1988 ANGELERI ET AL. 557

Figure 10 Display of a velocity component of the vehicle compartment with an exploded view as a colored field

Figure 11 Display of a stress component of a vehicle as a colored field

558 ANGELERI ET AL. IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

Acknowledgments

We are grateful to Shunichi Katoh and Susumu Suda
(IBM Japan) for their active contribution in devel-
oping, respectively, the vector and the parallel ver-
sions of PAM-CRASH. We are also grateful to Leo
Carlesimo (IBM/ECSEC) and Cecile Pauquet (ESI) for
their valuable cooperation in the migration of the
graphics package, and to Renzo Di Antonio
(IBM/ECSEC) for suggestions on the evaluation of sys-
tem performance. Crash analyses on the Citroen BX
automobile were carried out by the ESI team on the
IBM 3090-600E Vector Facility of ECSEC. Finally, the
authors are indebted to Silvia Frangipane
(IBMIECSEC) for her critical reading ofthe manuscript.

PAM-CRASH is a registered trademark of Engineering Systems
International (ESI) S.A. Rungis-France.

Cited references

1. PAM-CRASH User Manual, Engineering Systems Interna-
tional, Paris (1987).

2. J. F. Chedmail, P. Du Bois, A. K. Pickett, E. Haug, B. Dagba,
and G. Winkelmuller, “Numerical techniques, experimental
validation and industrial applications of structural impact and
crashworthiness analysis with supercomputers for the auto-
motive industries,” Proceedings of the International Confer-
ence on Supercomputer Applications in the Automotive Indus-
try, Zurich (1986).

3. T. J. R. Hughes, K. S . Pister, and R. L. Taylor, “Implicit-
explicit finite elements in nonlinear transient analysis,” Com-
puter Methods in Applied Mechanics and Engineering 17/18,

4. T. Belytschko and J. I . Lin, “Explicit algorithms for the
nonlinear dynamics of shells,” Computer Methods in Applied
Mechanics and Engineering 42,225-25 1 (1984).

5. T. Belytschko and C. S. Tsay, “A stabilization procedure for
the quadrilateral plate element with one-point quadrature,”
International Journal for Numerical Methods in Engineering

6. T. Belytschko, J. S. Ong, W. K. Liu, and J. M. Kennedy,
“Hourglass control in linear and nonlinear problems,” Com-
puter Methods in Applied Mechanics and Engineering 43,25 I -
276 (1984).

7. T. J. R. Hughes, R. L. Taylor, J. L. Sackman, A. Curnier, and
W. Kanoknukulchai, “A finite element method for a class of
contact-impact problems,” Computer Methods in Applied Me-
chanics and Engineering 8,249-276 (1976).

8. G. L. Goudreau and J. 0. Hallquist, “Recent developments
in large-scale finite element Lagrangian hydrocode technology
problems,” Computer Methods in Applied Mechanics and
Engineering 33, 725-757 (1982).

9. J. 0. Hallquist, G. L. Goudreau, and D. J. Benson, “Sliding
surfaces with contact-impact in large-scale Lagrangian com-
putations problems,” Computer Methods in Applied Mechan-
ics and Engineering 51, 107-137 (1985).

10. IBM System/370 Vector Operations, SA22-7125, IBM Cor-
poration; available through IBM branch offices.

11. W. Buchholz, “The IBM System/370 vector architecture,”
IBM Systems Journal 25, 5 1-62 (1986).

12. 3090 Processor Complex: Functional Characteristics, SA22-
7 12 I , IBM Corporation; available through IBM branch offices.

159-182 (1979).

19,405-419 (1983).

IBM SYSTEMS JOURNAL. VOL 27, NO 4, 1W

13. R. S . Clark and T. Wilson, “Vector system performance of
the IBM 3090,” IBM Systems Journal 25,63-82 (1986).

14. R. G. Scarborough and H. G. Kolsky, “A vectorizing FOR-
TRAN compiler,” IBM Journal of Research and Development

15. VS FORTRAN V2 Language and Library Reference, SC26-
422 1, IBM Corporation; available through IBM branch offices.

16. VS FORTRAN V2 Programming Guide, SC26-4222, IBM
Corporation; available through IBM branch offices.

17. VS FORTRAN Execution Analyzer, SC23-0335, IBM Cor-
poration; available through IBM branch offices.

18. Vectorization and Vector Migration Techniques, SR20-4966,
IBM Corporation; available through IBM branch offices.

19. E. Hinton and D. R. J. Owen, Finite Elements in Plasticity,
Pineridge Press, Swansea, U.K. (1 982).

20. K. J. Bathe, Finite Element Procedures in Engineering Analy-
sis, Prentice-Hall, Inc., Englewood Cliffs, NJ (1982).

2 1. Finite Element Handbook, H. Kardestuncer and D. H. Nome,
Editors, McGraw-Hill Book Co., Inc., New York (1987).

22. G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS Confer-
ence Proceedings 30,483-485 (1987).

23. Designing and Writing FORTRAN Programs for Vector and
Parallel Programs, SC23-0337, IBM Corporation; available
through IBM branch offices.

24. G. Radicati and M. Vitaletti, Sparse Matrix-Vector Product
and Storage Representation on the IBM 3090 Vector Facility,
IBM ECSEC Report G5 13-4098, European Center for Scien-
tific and Engineering Computing, Rome (1986).

25. P. Carnevali, P. Sguazzero, and V. Zecca, “Microtasking on
IBM multiprocessors,” IBM Journal of Research and Devel-
opment 30,574-582 (1986).

26. PRE-3D User Manual, Engineering Systems International
(ESI) S.A. Rungis-France, Paris (1987).

27. DAISY User Manual, Engineering Systems International (ESI)
S.A. Rungis-France, Paris (1987).

28. Introducing GraPHIGS, SC33-8 100, IBM Corporation; avail-
able through IBM branch offices.

29. Understanding GraPHIGS, SC33-8 102, IBM Corporation;
available through IBM branch offices.

30. IBM 5080 Graphics System: Principles of Operation, GA23-
20 12, IBM Corporation; available through IBM branch offices.

31. Programmer’s Reference for GraPHIGS, SC33-8104, IBM
Corporation; available through IBM branch offices.

30, 163-171 (1986).

General reference

J. D. Foley and A. Van Dam, Fundamentals of Interactive Com-
puter Graphics, Addison-Wesley Publishing Co., Reading, MA
(1982).

P. Angeleri IBM European Center for Scientific and Engineering
Computing (ECSEC). via Giorgione 159, 00144 Rome, Italy. Mr.
Angeleri received his degree in civil engineering at the University
of Rome in 1983. From 1983 to 1985 he worked as consulting
engineer in bridge and aseismic structure design. At the same time,
he was working in conjunction with the Department of Structural
and Geotechnical Engineering of Rome University on the devel-
opment of finite-element models for nonlinear dynamic analysis.
In 1985 Mr. Angeleri joined IBM at the NIC Center in Rome,
where he has been working on finite-element method develop
ments and vector/parallel migration.

D. Fabio Lozupone IBM European Center for Scientific and
Engineering Computing (ECSEC), via Giorgione 159, 00144
Rome, Italy. Mr. Lozupone received his degree in civil engineering
at the University of Rome in 1983. From 1983 to 1987 he worked
as a consulting engineer for bridge and aseismic structure design.
At the same time, he was working with the Department of Struc-
tural and Geotechnical Engineering of Rome University, primarily
on earthquake engineering and soil-structure interaction problems.
In 1987 Mr. Lozupone joined IBM at the NIC Center in Rome,
where he has been working on finite-element method development
and applications and on graphics representation of engineering
code results.

F. Piccolo IBM European Center for Scient,@ and Engineering
Computing (ECSEC). via Giorgione 159, 00144 Rome, Italy. Mr.
Piccolo received his degree in physics at the University of Rome
in 1986. From 1986 to 1987, he worked as an aerospace engineer
on the ESA-Remote Sensing Satellite- 1. In 1987 Mr. Piccolo joined
IBM at the NIC Center in Rome, where he has been working on
finite-element method applications and on graphics representation
of engineering code results.

Jan Clinckemaillie Engineering Systems International (ESI), 20,
Rue Saarinen, 94578 Rungis, France. Mr. Clinckemaillie obtained
his degree in civil engineering at the University of Ghent, Belgium,
in 1979. Between 1979 and 1981 he studied at the University of
California, Berkeley, as a Fulbright scholar and received the degrees
of Master of Science and Master of Engineering. He joined Engi-
neering Systems International in 1982, and has been involved in
the development and application of finite-element codes in various
fields such as hydraulic fracturing, lubrication, inflatable struc-
tures, etc. At present Mr. Clinckemaillie is program manager of
ESI's hydrodynamics code EFHYD and its crash-analysis code,
PAM-CRASH.

Reprint Order No. G321-5342.

560 ANGELERI ET AL. IBM SYSTEMS JOURNAL, VOL 27. NO 4, 1988

