Effective utilization of
IBM 3090 large virtual
storage in the
numerically intensive
computations of ab initio
molecular orbitals

A new level of storage hierarchy, called Expanded Stor-
age and available on the IBM 3090 system, is utilized
by the MVS/XA™ operating system as high-speed pag-
ing equipment, allowing a user to hold application data
in large virtual storage. To exploit the large virtual stor-
age capability of the IBM 3090, a new application tech-
nique was developed for numerically intensive compu-
tations of ab initio molecular orbitals where high-speed
transfer of a vast amount of intermediate data is a
common requirement of most application programs.
An application program running under MVS /XA was
modified so that it could handle a vast amount of inter-
mediate data in large virtual storage combined with
Expanded Storage, achieving a 4- to 10-fold improve-
ment in turnaround time at a CPU rate-determining
step (SCF step) in medium-sized molecules.

he 1BM 3090 computer system utilizes physical

storage in conjunction with the virtual address-
ing architecture of System/370 Extended Architec-
ture to permit direct addressing of a virtual memory
of 2048 million bytes, or two gigabytes (GB), with a
hierarchy consisting of high-speed buffer, central
storage, Expanded Storage, and a direct-access stor-
age device (DAsD)."” With the introduction of the
1BM 3090, a new technology called Expanded Storage
has been made available' and is consistent with the
large memory requirements called for in engineering
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and scientific fields. In this paper, we describe a
practical application of large virtual storage com-
bined with Expanded Storage in the numerically
intensive computation of ab initio molecular orbitals
(M0), which is a powerful tool for solving various
chemical problems.

High-speed transfer of a vast amount of intermediate
data is a common requirement of most ab initio MO
software programs, including the GAUSSIAN-82 pro-
gram which was developed by the quantum chem-
s . . . 34

istry group at Carnegie Mellon University.” We
chose GAUSSIAN-82 as the sample application soft-
ware for our present study, because it is not only a
good prototype of ab initio MO software but also has
been widely used for practical ab initio molecular
quantum mechanics calculations (among the func-
tions in GAUSSIAN-82, ab initio MO computation is
the most fundamental one). Analysis of the original
version of GAUSSIAN-82 [IBM Multiple Virtual Storage
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(Mvs) version3] disclosed that ab initio MO compu-
tations consumed a fairly large amount of elapsed
time (turnaround time) compared with CPU time.
Our experiments showed that the large elapsed/cpu
time ratio was mainly due to the disk access bottle-
neck resulting from a large amount of intermediate
data (two-electron repulsion integrals, or TEL) in
particular parts of the program. We assumed that

The HFR method is one approach
widely used to obtain ab initio MOs.

the bottleneck could be reduced by holding the TEI
data in a large virtual storage combined with Ex-
panded Storage. Using this idea, we implemented a
modification to the original program so as to keep
as many TEIs as possible in a large virtual storage
area combined with Expanded Storage, and to spill
over the remaining TEIs into disk storage.

Although Multiple Virtual Storage/Extended Archi-
tecture (Mvs/XA™) allows up to a 2-GB Dynamic
Common (DC) storage size, we selected a combina-
tion of appropriate DC size and disk spill file to
achieve optimized system performance. Optimized
DC size is selected on the basis of the sum of central
storage and Expanded Storage, and multijob envi-
ronment. Since the 1/0 routine of the TEIs (NTRAN)
was coded in the 24-bit addressing mode (Assembler
routine using the basic storage access method) in the
original GAUSSIAN-82 program, we needed to add a
mode-transformation function to the program for
31-bit addressing in the DC region above the 16-
megabyte (MB) line, and to add a function for effi-
cient treatment of spilled-over TEls which were con-
trolled below the 16-megabyte line. These additions
resulted in a noticeable improvement in the turna-
round time of the program, demonstrating the power
of large virtual storage when combined with Ex-
panded Storage.

Numerically intensive computations of ab initio
molecular orbitals

The basic concept of the Hund-Mulliken, or molec-
ular orbital (MO), method is to find approximate
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electronic wavefunctions for a molecule by assigning
to each electron a one-electron wavefunction which
in general extends over the whole molecule.” The
computation of ab initio MoOs conforms to the
method that is based on the model derived from
basic principles of quantum mechanics. The Har-
tree-Fock-Roothaan (HFR) method for the closed-
shell system, which is made up of complete electron
shells, is one of the approaches that have been widely
used to obtain ab initio mos. The advances in theory,
algorithms, software programs, and computers have
been extending its application area. Today, the HFR
method can successfully address problems of practi-
cal importance in a variety of subjects ranging from
chemistry to biology.**™"" For extensive applications
of the computations—Ilarger in molecular size and
more accurate in computational results—numeri-
cally intensive computations are requisite. Effective
utilization of an advanced computer such as the iBM
3090 is important for the higher processing speed.
Preliminary knowledge of ab initio MO computations
is helpful for understanding the substance of appli-
cation software and also the modification concept
concerning the adaptation of GAUSSIAN-82 to the
large virtual storage of the 1BM 3090. In the following
subsection, we outline the technical foundations of
the ab initio MO computations.*’

Ab initio molecular orbital computations. We con-
sider a molecule which is made up of M nuclei and
N electrons. In the closed-shell HFR method,” MOs
¢4x,, ¥,, z,) = ¢,(u), in which each Mo is a function
of the Cartesian coordinates of the uth electron,
are expanded by a finite set of / basis functions

Xp (X5 Vs 2,) = X, (W)

!

o) = Y x,(WC,-

p=

[This is a Linear Combination of Atomic Orbital
(LCAO) approximation.]

As a set of basis functions, contracted Gaussians
have often been employed in practical computations.
A contracted Gaussian is a linear combination of
Gaussian-type atomic functions (primitive Gaussian
functions) taking the form of x’/y"z" X exp(=¢r).
The LCAO MOs are assumed to form an orthonormal
set:

! {
[ amsma, =3 3 as.c,

T =
=10 a=p D
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Here, dv, denotes the one-electron volume element
without spin for the electron 1, the asterisk denotes
complex conjugation, and S,, = [ x¥(1)x,(1) dv, is
the overlap integral. We give each electron a wave-
function (called molecular spinorbital) which, in ad-
dition to the space coordinates, also contains the
spin coordinates of that electron. A molecular spin-
orbital is represented by the product of an MO and
an electron spin function. The total N-electron wave-
function appropriate for the description of an N-
electron system should satisfy the antisymmetry
principle; i.e., it changes only by a factor of —1 under
an interchange of all the coordinates (including spin
coordinates) of any two electrons. The total N-elec-
tron wavefunction is built up as a determinant of N
molecular spinorbitals so as to satisfy the antisym-
metry principle (such a determinantal wavefunction
is often referred to as a Slater determinant).

The expansion coefficients {C,} are determined by a
variational method in which the total energy of the
system associated with the approximated total N-
electron wavefunction is minimized subject to the
orthonormality conditions of the MOs, as in Equation
1. The resultant Euler equation is the Hartree-Fock-
Roothaan (HFR) equation. The HFR equation for the
ith Mo [(i = 1, 2, -+, (IN/2)] is described as the
following:

!
X (F, e~ €8Cy =0
=1
! for p=1,2,---1 (2)

Here,

F,, = f xH(Dhx,(1) do,

I N2
+ 2 X [2Apglrs) = (ps|rg] ( ) Ci'}Cs,)

r=1 s=1

are the elements of the / X / matrix F, and ¢, is the
one-electron orbital energy of molecular orbital ¢,.

2
- K M Ze
hy=— A - 2

8 'm =1 N

®

is the one-electron operator corresponding to elec-
tronic kinetic energy and electron-nuclear attraction,
and

a1 = | [ im0 & e @@ do, o

is called the two-electron repulsion integral (TEI).
The r,, denotes the distance between electron 1 and
electron 2. The order of the total number of these
integrals is I*/8. Thus, if larger basis sets (larger /)
are employed, more intensive computations are re-
quired.

530 sAKAK, SAMUKAWA, AND HONJOU

Since F,,s are built up with Mo coefficients {C,}, the
solution necessarily involves an iterative process.
This technique is frequently called the self-consistent-
field (scF) method.” In the scF procedure, we (1)
assume a set of {C,}, (2) calculate the matrix F, (3)
solve Equation 2, and (4) compare the resulting ¢,
with the assumed ones. Guided by this comparison,
we choose a new set of {C,} and repeat the outlined
procesdure until the assumed and calculated {C,}
agree” (SCF iteration). For the case employing a larger
basis set (larger /), the SCF iteration requires more
intensive computing,

Extensive efforts have been made in developing prac-
tical methods and computer software, including the
HFR and more sophisticated methods.**™"" These
efforts have contributed in many significant ways to
substantial innovations in the scientific field and to
progress in scientific/engineering applications. In the
following sections, we describe our exploration in
adapting GAUSSIAN-82""* to the large virtual storage
of the 1BM 3090.

Analysis of the original code for further
improvement

Execution analysis. During experiments with molec-
ular orbital computations using the GAUSSIAN-82 pro-
gram (1BM/MVS version) distributed by Carnegie Mel-
lon University,’ we noticed that the elapsed time
consumed by the computations was fairly large com-
pared with the cpu time. To find bottlenecks, an
analysis was performed for the closed-shell HFR
computations® with the 3-21G basis set* on four
medium-sized molecules, e.g., 1-methylbutadiene
(CsHs), phenol (CsHgO), cytosine (C;H;sN;0), and
guanine (CsH;sNsO), using the Execution Analyzer'?
and user timer. The system environment for the
analysis was VS/FORTRAN Version 2.1, MvS/XA Ver-
sion 2.1.3, and a 3090-200 with two Vector Facilities.
The outline of the computations'® is given in Table
1, and the timing data obtained are shown in Table
2. The timing data were obtained under the condi-
tion of an exclusive use of the resources of the whole
system.

Finding a bottleneck. We selected an index, Total
Elapsed Time/Total CPU Time, to determine
whether a program is CPU-bound or 1/0-bound.
When the index is close to 1.0, the program is CPU-
bound. The Total Elapsed Time/Total cPU Time
ratio amounts to 3.0 to 7.6 in the computations.
This implies that molecular orbital computations
with the original program code are 1/0-bound. The
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Table 1 Outline of computations

Molecule 1-methyl phenol cytosine guanine
butadiene
Stoichiometry CyH, C¢HO CH:N,0 C H N0
Number of electrons 38 50 58 78
Number of primitive Gaussian functions 99 123 135 180
Number of basis functions 61 75 82 109
Number of two-electron repulsion integrals 991 174 2213389 3012060 8241 467
Number of SCF iterations 22 25 27 40
Table 2 Execution analysis of the original code (unit = second)
Molecule 1-methyl phenol cytosine guanine
butadiene
Stoichiometry C.H, C.H,0 CHNO CH,N0
CPU Time (s)
TEI step* 37.32 75.12 96.12 257.66
SCF stept 25.82 60.62 87.35 336.20
Total 68.40 143.54 193.25 613.41
Elapsed Time (s)
TEI step 38.71 76.59 97.83 301.56
SCF step 135.36 315.42 1067.68 4313.21
Total 215.10 433.79 1210.15 4671.25
Ratio of Total Elapsed Time
to Total CPU Time 3.1 3.0 6.3 7.6
Ratio of Elapsed Time
to CPU Time
TEI step 1.0 1.0 1.0 1.2
SCF step 5.2 5.2 12.2 12.8
Weight percent
of Elapsed Time
TEI step 18 18 8 7
SCF step 63 73 88 92
Sum 81 91 96 99
Number of 1/0st
INT file 11661 29 458 43 148 172 856

* TEI step denotes the computation of two-electron repulsion integrals.

+ SCF step denotes the computation of the Hartree-Fock-Roothaan self-consistent field (SCF) procedure.
1 Most of the 1/O activities in the MO computations are ascribed to the INT file. Block size of the file is selected as 23 472 bytes.

time distribution analysis revealed that, in cases hav-
ing more than 60 basis functions, more than 80
percent of the total elapsed time is consumed in the
two-electron repulsion integral (TEI) computation
step (LINK 311 module) and the SCF iteration step
(LINK 501 module). Within these two steps, most of
the 1/0 activity is ascribed to the two-electron INTe-
gral (INT) file. The Elapsed Time/cPu Time ratios
are only 1.0-1.2 for the TE1 step. However, they
come out to be 5.2-12.8 for the SCF step.
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At each SCF iteration, all of the INT file records are
read. The SCF iteration count ranges from 20-40,
depending on the model (see Table 1). Through the
analysis, we concluded that the 1/0 bottleneck was
mainly due to the iterative reading of large numbers
of TEls in particular parts of the program (i.e., the
SCF step).

Bottleneck analysis. The following |j0 technique is
used on the TE1 (INT file) data access:
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Figure1 Flow of TEl data in the original program
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¢ In the write operation,

1. The TE1 process routine (OUT2E routine) trans-
fers TEI data to one of the toggle buffers, as
shown in Figure 1.

2. When the buffer is filled with data, control is
passed to an 1/0 routine named NTRAN, which
transfers integral data to the disk file (INT file).
NTRAN is written in assembly language and
accesses the INT file sequentially with an asyn-
chronous double-buffering technique.

3. Control is returned to the OUT2E immediately
after NTRAN initiates an I/0 operation, and the
buffer is switched to continue TEI processing.

¢ In the read operation, the reverse procedure takes
place (i.e., NTRAN transfers integral data from the
disk file to the toggle buffers asynchronously).

GAUSSIAN-82 has the capability to optimize the disk
1/0 speed of the INT file by specifying 170 block size
at execution time. The 170 block size is passed to
GAUSSIAN-82 through a Job Control Language data
control block (JCL. DCB) parameter. In general, disk
1/0 activity is optimized when block size is equal to
the full-track or half-track size. According to the
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rule, we set the block size to 23 472 bytes, which is
approximately the half-track size of the M 3380
disk. We then observed the 1/0 operation to the INT
file with the block size setting. During the write
phase, the TEI computation step had little 1/0 delay,
because the calculation cpuU time and 1/0 block size
matched well. During the read phase, the SCF itera-
tion step suffered considerable 1/0 delay, because the
CPU calculation time was too short in comparison to
the /0 completion time. The larger the number of
basis functions (i.e., the scale of the computations
increases), the larger the burden on the SCF iteration
step and the longer the total elapsed time became.
This was the resulting bottleneck.

New approach to solve the bottleneck. We deter-
mined that reduction in disk 1/0 delay was essential
to improve the turnaround time of the numerically
intensive computations of ab initio MOs. We exam-
ined several ways to realize this: disk cache, semicon-
ductor disk, and Expanded Storage. The Expanded
Storage looked best because of its speed, capacity,
future expandability, and easy modification of source
code. Accordingly, we moved the TEI data from the
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disk file to a large virtual storage combined with
Expanded Storage. In the following section, the mod-
ification of the software which led to a noticeable
improvement in turnaround time is described.

Design of program modification

New design to exploit Expanded Storage. A large
virtual storage combined with Expanded Storage (ES)
can handle a vast data area on central and Expanded
Storage with V=V addressing architecture in a 31-

Dynamic Common allows elapsed
time to be reduced to the level of
CPU time.

bit addressing mode (System 370/XA or System
370/EsA'*). Logically, user data are placed in a large
virtual storage area. FORTRAN offers the capability
with the Dynamic Common (DC) function. Dynamic
Common is a large virtual storage dynamically allo-
cated at execution time by FORTRAN. Physically, the
logical data are mapped on the Mvs/xA storage hier-
archy consisting of central storage, Expanded Stor-
age, and disk-paging file. The three storage hierarchy
devices are shared among multijob users, and
MVS/XA optimizes effective utilization of these three
devices based on the LRU (Least Recently Used)
algorithm. Initially, Mvs/xA tries to keep user data
in central storage. When central storage is full, it
moves the least inactive data to Expanded Storage
page by page (a page size is four kilobytes). If Ex-
panded Storage is large enough to keep the data of
all users, almost all of the data will stay on it. But if
the total amount of data exceeds the sum of central
storage and Expanded Storage, the least inactive data
are moved down to the disk-paging file page by page.
The following paragraph describes the optimum use
of the storage hierarchy based on program character-
istics of GAUSSIAN-82.

In modifying GAUSSIAN-82, we wanted to optimize
data handling for the two-electron repulsion integral
(TEI) data so that execution time is improved. The
fundamental approach to achieving balanced usage
of the cpu, 1/0 devices, and temporary data set has
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been discussed, for example, by Shavitt,'> Yoshim-
ine,'® McLean,'” and Bagus et al.'® But, as described
in the previous section, distribution of the TEI data
is uniform; i.e., the read/write access pattern is se-
quential. The data are written once and then read
through repeatedly. In addition, the paging capability
of Mvs/xA was greatly enhanced when Expanded
Storage was introduced. On the basis of these points,
we selected a simple method that kept the TEI data
in Dynamic Common, and let MVS/XA manage it by
the paging mechanism.

The next step was to find a way to achieve optimal
usage of the Mvs/XA paging mechanism. From a
system point of view, the paging mechanism is a
chained 1/0 operation of multiple 4-kilobyte (KB)
blocks, but it is a sequential 1/0 operation of 4-KB
blocks for an individual program (task). The access
speed for Expanded Storage is approximately 75
microseconds per 4-KB page, including MvS/XA rou-
tine time,' which is 50 to 100 times faster than disk
access. Thus, paging to/from Expanded Storage pro-
vides a much faster data retrieval capability than any
disk 1/0 operation. In contrast, a disk 1/0 operation
of an INT file (TE1 data) is faster than disk paging
because the 1/0 block size of an INT file is large
enough (23 kB). The optimal method is to assign the
DC size so as to let Mvs/xA keep the TEI data either
in central storage or Expanded Storage, and not spill
the data out to a disk page. In the application we
designed, the DC size was determined at execution
time through a GAUSSIAN-82 control card, because
available DC size may vary according to the customer
installation (size of installed expanded storage) and
multijob environment. The DC area i1s considered as
an “in-memory file,” illustrated in Figure 2. The
relationship between elapsed time and CPU time is
illustrated in Figure 3. Dynamic Common allows
elapsed time to be reduced to the level of cpu time,
whereas CPU time remains almost unchanged. In this
design, we expected elapsed time to be improved by
a factor of three.

Although the size of Expanded Storage on a cus-
tomer site today may set a ceiling of DC size for
effective utilization of the storage hierarchy, we be-
lieve it will be overcome by computers in the next
generation. Hence, we expect an auspicious future
for an approach that will exploit large virtual storage.

Implementation of new design. At the implementa-
tion phase, the following two restrictions (the first
derived from Mvs/xA and the second from GAUSSIAN-
82) had to be considered:
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Figure 2 Flow of TEI data in the modified program
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1. The yo buffer and 1/0 routine must be in 24-bit
addressing mode and must reside below the 16-
MB line.

2. The generalized 1/0 subroutine named NTRAN was
coded in assembler language and looked very
difficult to replace with FORTRAN subroutines be-
cause of unsupported FORTRAN functions. NTRAN
is designed to run with 24-bit addressing mode
and resides below the 16-MB line.

On the basis of these restrictions and our design
requirements, the following two preconditions were
introduced:

1. Dynamic Common (DC) should be placed above
the 16-MB line and accessed with 31-bit addressing
mode in order to keep a large amount of TEI data
in it. It allows the TEI data to increase up to 2 GB.

2. A certain “glue” module was required to make a
bridge between the 31-bit addressing DC routines
and a 24-bit addressing 1/0 routine.

We considered several ways to implement the new
design satisfying both the restrictions and precondi-
tions.

o Case 1: FORTRAN DC approach—Convert FORTRAN
programs to the 31-bit addressing mode, allocate
the pC area above the 16-MB line, and access it by
FORTRAN routines. Add an addressing mode con-
version routine so as to make an interface with
the NTRAN 1/0 subroutine.

» Case 2: Simulating DC with Assembler—FORTRAN
remains with the 24-bit addressing mode. Add
Assembler subroutines to switch to the 31-bit ad-
dressing mode, and simulate FORTRAN DC with
assembler language. The simulated DC is placed
above the 16-MB line. Both FORTRAN and Assem-
bler routines reside below the 16-MB line.

» Case 3: vIO approach—The program remains un-
changed and uses virtual 170 (vio) for the INT file.
(vio to Expanded Storage was not available when
this modification was designed, but we want to
include it in our comparison list.)

The three approaches are compared from different
viewpoints in Table 3.

We thought splitting the TEI data between Expanded
Storage and the disk spill file was essential to achieve
high response time. Although vIO requires no mod-
ification work, it is not a good candidate for the TEI
data because the disk spill file is not available. How-
ever, vio will be very effective for small- or medium-
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Figure 3 Turnaround time improvement through Dynamic
Common utilization

ME

F  TOTAL ELAPSED

1/0 DELAY

TOTAL ELAPSED

I/O DELAY

WITHOUT DC WITH DC

Table3 Effect of vi'ewpoint on each approach

Viewpoint Case1 Case2 Case3
Manpower required large small Zero
Dynamic Common size NO YES YES
Use of ES YES YES YES
Control of ES data YES YES NO
Disk spill file YES YES NO
Paging unit size 4 KB 4KB 4KB
Spilled 1/0 size 23KB 23KB —

sized calculation of GAUSSIAN-82 where the spill file
is not required. Both Cases 1 and 2 looked good for
the new approach. We selected Case 2 because of its
lighter modification workload and Dc size allocation
capability (FORTRAN assigns DC size statically at com-
pile time). As a future consideration, if the GAUSSIAN
main routine is converted to the 3[-bit addressing
mode, Case 1 would become very attractive.

The actual program modification was performed as

described above.”’ The original code was modified
to keep as many integrals as possible in a simulated
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Table 4 Execution analysis of the modified code (unit = second)

Molecule 1-methyl phenol cytosine guanine
butadiene
Stoichiometry C:H, CH0 C.H;N,0 C;H N0

Used size of Dynamic

Common (MB) 12 27 37 99
CPU Time (s)

TEI step 37.35 74.82 95.47 256.19

SCF step 23.54 55.18 79.41 321.94

Total 66.20 137.88 184.77 598.40
Elapsed Time (s)

TEI step 39.31 71.31 98.22 260.92

SCF step 35.38 68.42 104.36 586.38

Total 119.82 194,62 252.84 908.61
Original/modified ratio

of Total Elapsed Time 1.8 2.2 4.8 5.1
Original/modified ratio

of Elapsed Time

TEI step 1.0 1.0 1.0 1.2

SCF step 3.8 4.6 10.2 7.4
Ratio of Total Elapsed Time

to Total CPU time 1.8 1.4 1.4 1.5
Ratio of Elapsed Time

to CPU Time

TEI step 1.0 1.0 1.0

SCF step 1.2 1.3 1.8
Weight percent of CPU Time

TEI step 56 54 52 43

SCF step 36 40 43 54

Sum . 92 94 95 97
Weight percent of Elapsed Time

TEI step 33 40 39 29

SCF step 30 35 41 65

Sum 63 75 80 94

DC, and remaining integrals (spilled-over integrals)
were transferred to/from an 1BM 3380 disk file. With
the implementation, we developed four Assembler
routines and seven FORTRAN routines, and added a
small common storage to keep control information
used for DC simulation. The following four Assem-
bler routines were developed to cover DC simulation:

1. DCOPEN—Establish 31-bit addressing mode and
create a DC area.

2. pcwriT—Establish 31-bit addressing mode and
move a record from the FORTRAN buffer to DC.

3. DCREAD—Establish 31-bit addressing mode and
move a record from DC to the FORTRAN buffer.

4. DCLOSE—Establish 31-bit addressing mode and
release the DC area.

536 sakaKi saMuKawA. AND HONJOU

The following three FORTRAN routines are modified
for job control:

1. poLLAR—Read DC control cards to determine DC
size.

2. CHAINX—WTrite common data to a disk file in
order to pass common data to a user-controlled
overlay module.

3. bRUM—Read common data from a disk file in
order to receive common data from a user-con-
trolled overlay module.

The following four FORTRAN routines are modified
to perform access control to DC and the disk spill
file:
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1. iwriIT—Control the write operation by splitting
the TEI data to DC or to the disk spill file.

2. IREAD—Control read operation by merging the
TEI data from DC and the disk spill file.

3. iIWwIND—Reset DC pointer and rewind the disk
spill file.

4. IWAIT—Synchronize 170 completion. No syn-
chronization is necessary for DC area access.

Effects of modification

Measurement of the modified code. Execution analy-
sis has been performed with the modified code. The
sample molecules and the method of computation
are the same as in the analysis of the original code,
which was described earlier. The resultant timing
data are given in Table 4. By taking guanine in the
table as an example, the relationship between total
elapsed time and total cpuU time before and after
Dynamic Common utilization is illustrated in Figure
4, and that between elapsed time and CPU time at
the SCF step in Figure 5. CPU time improvement at
the SCF step comes partly from 1/0 activity reduction
and partly from VF utilization.”

Noticeable improvement in turnaround time. We can
point to the following evidence of turnaround time

Figure4 Total turnaround time improvement through
Dynamic Common utilization in the case
of guanine

Figure 5 Turnaround time improvement through Dynamic
Common utilization at the SCF step in the case
of guanine
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improvement through this analysis:

1. The ratio of total elapsed time with the original
code to that with the modified code (Origi-
nal/Modified ratio) shows that the total elapsed
time with the modified code becomes 1.8-5.1
times shorter than that with the original code.
This reveals a substantial improvement in total
turnaround time.

2. The Elapsed Time/cPu Time ratio of the SCF step
is reduced from 5.2-12.8 to less than 2.0. The
Total Elapsed Time/Total cpu Time ratio is also
reduced from 3.0-7.6 to less than 2.0. These
numbers indicate that the present modification
has almost removed the 1/0 bottleneck found in
the molecular orbital computations.

We find from Table 4 that the CPU time is primarily
consumed (over 90 percent) in the TEI and SCF step.
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Figure 6 Total turnaround time improvement through
Dynamic Common utilization in the case of
phenol with large basis set
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We also find that elapsed time in the SCF step with
the modified code has achieved a 3.8- to 10.2-times
improvement against the original code. This indi-
cates that the first result is mainly due to the im-
provement in the turnaround time at the SCF step,
since the elapsed time in the TEI step is close to the
CPU time even with the original code.

It is observed from the computations at the SCF step
(using the LINK 501 module) that the CPU time per
one SCF iteration increases roughly by the 3.4 power
of the number of basis functions. The Elapsed
Time/cPU Time ratios of the original code are ob-
served to be over five at the SCF step. They are
expected to remain over five even in cases of much-
larger-scale computations, in which a greater number
of basis functions is employed, for example, to obtain
higher accuracy or to apply to larger-sized molecular
systems. Dynamic Common utilization for the sCF
step would be more effective for such larger-scale
computations, because much more turnaround time
should be saved by the utilization.

In this regard, a larger-scale computation has been
performed for the phenol molecule using the 6-
31G** basis set’ (135 basis functions and 238 prim-
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itive Gaussian functions). The TEI step generated
20631 816 TEIs, and the SCF step required 24 SCF
iterations for the convergence. The size of the Dy-
namic Common utilization necessary for storing all
of the TEIs was 248 megabytes. This computation
was carried out on a 3090-400 with two Vector
Facilities. The resultant improvement in the timing
1s illustrated in Figure 6. The results showed that the
elapsed time with the DC (2525 seconds) was 3.6
times shorter than without the Dc (9066 seconds).
Thus, the effectiveness of the Dynamic Common
utilization is confirmed in the numerically intensive
computations of ab initio molecular orbitals.

Summary and concluding remarks

The 1BM 3090 introduced a new technology, called
Expanded Storage, with a capacity up to 2 GB, in the
group of computers classified as large processors. It
is a new level of storage hierarchy, and the Mvs/xa
operating system utilizes it as high-speed paging
equipment, allowing a user to hold application data
in large virtual storage (FORTRAN Dynamic Common
area). In order to exploit the large virtual storage
capability of the 1BM 3090, we intended to develop a
new application technique for numerically intensive
computations of ab initio molecular orbitals. We
modified an application program (GAUSSIAN-82) on
the 3090 Mvs/XA so that it can handle a vast amount
of intermediate data in large virtual storage com-
bined with Expanded Storage; i.e., application data
were stored in a large virtual storage instead of disk
file storage. The modification achieved a 4- to 10-
fold improvement in turnaround time at a CPU rate-
determining step (SCF step) in medium-sized mole-
cules. Thus, the advantage of large virtual storage
combined with Expanded Storage was demonstrated.
The present modification will be quite effective for
the computation of larger molecular systems. With
the use of large virtual storage, a similarly noticeable
improvement in turnaround time can be expected
for other applications where the computations have
an 1/0 bottleneck due to excessive disk access.
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