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A new  level  of storage hierarchy, called Expanded  Stor- 
age  and  available on the ISM  3090 system, is utilized 
by the MVS/XAm operating system as high-speed  pag- 
ing equipment, allowing a user to hold application data 
in large virtual storage. To exploit the large virtual stor- 
age capability of the IBM  3090, a new application tech- 
nique was  developed for numerically intensive compu- 
tations of ab initio molecular orbitals where  high-speed 
transfer of a vast amount of intermediate data is a 
common requirement of most application programs. 
An application program running under MVSIXA was 
modified so that it could handle a vast  amount of inter- 
mediate data in large virtual storage combined with 
Expanded  Storage, achieving a 4- to 70-fold  improve- 
ment in turnaround time at a CPU ratedetermining 
step (SCF step) in medium-sized  molecules. 

T he IBM 3090 computer system  utilizes  physical 
storage in conjunction with  the virtual address- 

ing architecture of System/370  Extended  Architec- 
ture to permit direct addressing of a virtual memory 
of 2048 million bytes, or two  gigabytes (GB), with a 
hierarchy  consisting of  high-speed  buffer, central 
storage,  Expanded  Storage, and a direct-access stor- 
age  device (DASD).'.~ With the introduction of the 
IBM 3090, a new technology  called  Expanded  Storage 
has  been made available' and is consistent with the 
large  memory requirements called  for in engineering 

and scientific fields. In this paper, we describe a 
practical application of  large virtual storage com- 
bined  with Expanded Storage in the numerically 
intensive computation of ab initio molecular orbitals 
(MO), which  is a powerful tool for  solving  various 
chemical  problems. 

High-speed transfer of a vast amount of intermediate 
data is a common requirement of most ab initio MO 
software  programs, including the GAUSSIAN-82 pro- 
gram  which  was  developed by the quantum chem- 
istry group at Carnegie  Mellon Uni~ersity.~'~ We 
chose GAUSSIAN-82 as the sample application soft- 
ware  for our present study, because it is not only a 
good prototype of ab initio MO software but also  has 
been  widely  used  for  practical ab initio molecular 
quantum mechanics calculations (among the func- 
tions in GAUSSIAN-82, ab initio MO computation is 
the most fundamental one). Analysis  of the original 
version  of GAUSSIAN-82 [IBM Multiple Virtual Storage 
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(MVS) version3]  disclosed that ab initio MO compu- 
tations consumed a fairly  large amount of elapsed 
time (turnaround time) compared with CPU time. 
Our experiments showed that the large elapsed/cPu 
time ratio was mainly due to the disk  access  bottle- 
neck  resulting from a large amount of intermediate 
data (two-electron  repulsion  integrals, or TEIS) in 
particular parts of the program. We assumed that 

The HFR method  is  one  approach 
widely  used  to  obtain ab initio MOs. 

the bottleneck could be  reduced by holding the TEI 
data in a large virtual storage combined with Ex- 
panded Storage.  Using this idea, we implemented a 
modification to the original  program so as to keep 
as many TEIS as possible in a large virtual storage 
area combined with  Expanded  Storage, and to spill 
over the remaining TEIS into disk  storage. 

Although Multiple Virtual Storage/Extended  Archi- 
tecture (MVSIXA~") allows up to a 2-GB Dynamic 
Common (DC) storage  size, we selected a combina- 
tion of appropriate DC size and disk  spill file to 
achieve optimized system  performance. Optimized 
LX size  is  selected on the basis of the sum of central 
storage and Expanded  Storage, and multijob envi- 
ronment. Since the I/O routine of the TEIS (NTRAN) 
was coded in the 24-bit  addressing mode (Assembler 
routine using the basic  storage  access method) in the 
original GAUSSIAN-82 program, we needed to add a 
mode-transformation function to the program  for 
3 1-bit  addressing in the DC region  above the 16- 
megabyte (MB) line, and  to add a function for effi- 
cient treatment of spilled-over TEIS which  were con- 
trolled below the 16-megabyte  line.  These additions 
resulted in a noticeable improvement in the turna- 
round time of the program, demonstrating the power 
of large virtual storage  when combined with Ex- 
panded Storage. 

Numerically  intensive  computations of ab initio 
molecular  orbitals 

The basic concept of the Hund-Mulliken, or molec- 
ular orbital (MO), method is to find approximate 
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electronic wavefunctions  for a molecule by assigning 
to each electron a one-electron wavefunction yhich 
in general extends over the whole  molecule. The 
computation of ab initio MOS conforms to the 
method that is  based on the model  derived from 
basic  principles of quantum mechanics. The Har- 
tree-Fock-Roothaan (HFR) method for the closed- 
shell  system,  which is made up of complete electron 
shells,  is one of the approaches that have  been  widely 
used to obtain ab initio MOL The advances in theory, 
algorithms,  software  programs, and computers have 
been extending its application area. Today, the HFR 
method can successfully  address problems of practi- 
cal importance in a variety of subjects  ranging  from 
chemistry to bio10gy.~'~" ' For extensive applications 
of the computations-larger in molecular size and 
more accurate in computational results-numeri- 
cally intensive computations are requisite. Effective 
utilization of an advanced computer such as the IBM 
3090 is important for the higher  processing  speed. 
Preliminary knowledge  of ab initio MO computations 
is  helpful  for understanding the substance of appli- 
cation software and also the modification concept 
concerning the adaptation of GAUSSIAN-82 to the 
large virtual storage of the IBM 3090. In the following 
subsection, we outline the tec42ical foundations of 
the ab initio MO computations. 

Ab initio molecular orbital computations. We con- 
sider a molecule  which  is made up of M nuclej and 
N electrons. In the closed-shell HFR method, M O ~  
@i(x,,, y,, z,,) = @;(p),  in  which  each MO is a function 
of the Cartesian coordinates of the pth electron, 
are expanded by a finite  set of 1 basis functions 
XP(X,? v,, z,) = xp(d: 

[This is a Linear Combination of Atomic Orbital 
(LCAO) approximation.] 

As a set of  basis functions, contracted Gaussians 
have  often  been  employed in practical computations. 
A contracted Gaussian is a linear combination of 
Gaussian-type atomic functions (primjtive Gaussqn 
functions) taking the form of x J y  z x exp(-{r ). 
The LCAO M O ~  are assumed to form an orthonormal 
set: 
r I 1  



Here, dv, denotes the one-electron  volume element 
without spin  for the electron 1 ,  the asterisk denotes 
complex conjugation, and S,, = J x:( l)x,( 1 )  dv, is 
the overlap  integral. We  give each electron a wave- 
function (called  molecular spinorbital) which, in ad- 
dition to the space coordinates, also contains the 
spin coordinates of that electron. A molecular spin- 
orbital is represented by the product of an MO and 
an electron  spin function. The total N-electron wave- 
function appropriate for the description of an N- 
electron  system  should  satisfy the antisymmetry 
principle;  i.e., it changes  only by a factor of - 1 under 
an interchange of all the coordinates (including spin 
coordinates) of any two  electrons. The total N-elec- 
tron wavefunction is built up as a determinant of N 
molecular spinorbitals so as to satisfy the antisym- 
metry  principle  (such a determinantal wavefunction 
is  often  referred to as a Slater determinant). 

The expansion  coefficients ( CPi) are determined by a 
variational method in which the total energy of the 
system  associated  with the approximated total N- 
electron  wavefunction  is minimized subject to the 
orthonormality conditions of the M O ~ ,  as in Equation 
1 .  The resultant Euler equation is the Hartree-Fock- 
Roothaan (HFR) equation. The HFR equation for the 
ith MO [(i = 1 ,  2, . ., (N/2)] is  described  as the 
following: 

I 

q=1 

for p = 1 ,  2, . . ., 1. (2) 
Here, 

r 

are the elements of the 1 X 1 matrix F, and ei is the 
one-electron orbital energy of molecular orbital 4i .  

is the one-electron operaior corresponding to elec- 
tronic kinetic  energy and electron-nuclear attraction, 
and 

2 

is called the two-electron  repulsion  integral (TEI). 
The rI2 denotes the distance between electron 1 and 
electron 2. The order of the total number of these 
integrals  is 1 18. Thus, if larger  basis  sets  (larger 1 )  
are employed, more intensive computations are  re- 
quired. 
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Since Fpqs are built up with MO coefficients (CJ ,  th: 
solution necessarily  involves an iterative process. 
This technique is freyuently called the self-consistent- 
field (SCF) method. In the SCF procedure, we ( 1 )  
assume a set  of (CJ ,  (2) calculate the matrix F, (3) 
solve Equation 2, and (4) compare the resulting 4i 
with the assumed  ones. Guided by this comparison, 
we choose a new  set  of ( Cpi) and repeat the outlined 
procedure until the assumed and calculated (CPi) 
agree’ (SCF iteration). For the case  employing a larger 
basis  set  (larger I ) ,  the SCF iteration requires more 
intensive computing. 

Extensive  efforts  have  been made in developing  prac- 
tical methods and computer software, including the 
HFR and more sophisticated  These 
efforts  have contributed in many significant ways to 
substantial innovations in the scientific field and to 
progress in scientific/engineering applications. In the 
following  sections, we describe our exploration in 
adapting G A U S S I A N - ~ Z ~ - ~  to the large virtual storage 
of the IBM 3090. 

Analysis  of  the  original  code  for  further 
improvement 

Execution analysis. During experiments with  molec- 
ular orbital computations using the GAUSSIAN-82 pro- 
gram (IBM/MVS version) distributed by Carnegie  Mel- 
lon Uni~ersity,~ we noticed that the elapsed time 
consumed by the computations was fairly  large com- 
pared  with the CPU time. To find  bottlenecks, an 
analysis was performed for the closed-shell HFR 
computationsS with the 3-21G basis  set4 on four 
medium-sized  molecules, e.g., l-methylbutadiene 
(C5Hs), phenol (C6H60), cytosine (C4H5N30),  and 
guanine (C5HsN50), using the Execution Analyzer’’ 
and user timer. The system environment for the 
analysis was VS/FORTRAN Version 2.1, MVS/XA Ver- 
sion 2.1.3, and a 3090-200 with  two  Vector  Facilities. 
The outline of the comp~tations’~ is  given in Table 
1 ,  and the timing data obtained are shown in Table 
2. The timing data were obtained under the condi- 
tion of an exclusive  use  of the resources of the whole 
system. 

Finding a bottleneck. We selected an index, Total 
Elapsed TimelTotal CPU Time, to determine 
whether a program  is cpu-bound  or I/o-bound. 
When the index is  close to 1.0, the program  is CPU- 
bound. The Total Elapsed TimeITotal CPU Time 
ratio amounts  to 3.0 to 7.6 in the computations. 
This implies that molecular orbital computations 
with the original  program  code are I/o-bound. The 
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Table 1 Outline of computations 

Molecule  1-methyl  phenol  cytosine  guanine 
butadiene 

Stoichiometry CSH,  C,H,O  C,H,N,O  C,H,N,O 

Number of electrons 38 50 58 I8 
Number of primitive  Gaussian  functions 99 123 135 180 
Number  of  basis  functions 61 75 82 109 
Number of two-electron  repulsion  integrals 991  174 2 213 389 3 012 060 8 241 467 
Number of SCF iterations 22 25 21 40 

Table 2 Execution  analysis of the  original  code  (unit = second) 
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~~ ~~~ 

Molecule  1-methyl  phenol  cytosine 
butadiene 

guanine 

Stoichiometry CSH,  C,H,O C,H5N,0 C5H6N50 

CPU Time (s) 
TEI  step' 37.32 75.12 96.12 251.66 
SCF stept 25.82 60.62 87.35 336.20 
Total 68.40 143.54 193.25 613.41 

Elapsed Time (s) 
TEI  step 38.71 76.59 91.83 301.56 
SCF  step 135.36 315.42 1067.68 4313.21 
Total 215.10 433.19 1210.15 461 1.25 

Ratio of Total  Elapsed  Time 

Ratio of Elapsed  Time 
to Total CPU Time 3.1 3.0  6.3 7.6 

to CPU Time 
TEI  step 1 .O 1 .o 1 .o 1.2 
SCF step 5.2 5.2 12.2  12.8 

Weight  percent 
of Elapsed  Time 
TEI  step 18  18 8 I 
SCF step 63  13 88  92 
Sum 81  91 96 99 

Number of I/Os# 
INT file I 1  661  29  458 43 148  172  856 

* TEI step denotes the computation of two-electron repulsion integrals. 
t SCF step denotes the computation of the Hartree-Fock-Roothaan self-consistent field (SCF) procedure. 
# Most of the I/O activitles in the MO computations are  ascribed to the INT file.  Block size of the file is selected as 23 472 bytes 

time distribution analysis  revealed that, in cases  hav- 
ing more than 60 basis functions, more than 80 
percent of the total elapsed time is consumed in the 
two-electron  repulsion  integral (TEI) computation 
step (LINK 3 1 1 module) and the SCF iteration step 
(LINK 501 module). Within these  two  steps,  most of 
the I/O activity is ascribed to the two-electron INTe- 
gral (INT) file. The Elapsed Timemu Time ratios 
are  only 1.0-1.2 for the TEI step.  However,  they 
come out to be  5.2-1 2.8 for the SCF step. 

At each SCF iteration, all  of the INT file records  are 
read. The SCF iteration count ranges  from 20-40, 
depending on the model (see Table 1). Through the 
analysis, we concluded that the 110 bottleneck was 
mainly due to the iterative reading of large numbers 
of TEIS in particular parts of the program  (i.e., the 
SCF Step). 

Bottleneck analysis. The following I ~ O  technique is 
used on the TEI (INT file) data access: 



Figure 1 Flow of TEI data in the original program 
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In the write operation, 
1. The TEI process routine ( O U T ~ E  routine) trans- 

fers TEI data to one of the toggle  buffers,  as 
shown in Figure 1. 

2. When the buffer  is  filled  with data, control is 
passed to an 110 routine named NTRAN, which 
transfers integral data to the disk file (INT file). 
NTRAN is written in assembly  language and 
accesses the INT file sequentially  with an asyn- 
chronous double-buffering technique. 

3. Control is returned to the OUT2E immediately 
after NTRAN initiates an 110 operation, and the 
buffer  is  switched to continue TEI processing. 

In the read operation, the reverse procedure takes 
place (i.e., NTRAN transfers integral data from the 
disk  file to the toggle  buffers  asynchronously). 

GAUSSIAN-82 has the capability to optimize the disk 
110 speed of the INT file  by  specifying I/O block  size 
at execution time. The 110 block  size  is passed to 
G A U S S I A N - ~ ~  through a Job Control Language data 
control block (JCL DCB) parameter. In general, disk 
110 activity  is optimized when  block  size  is equal to 
the full-track or half-track  size.  According to the 

rule, we set the block  size to 23  472 bytes,  which  is 
approximately the half-track  size  of the IBM 3380 
disk. We then observed the 110 operation to the INT 
file with the block  size  setting. During the write 
phase, the TEI computation step had little 110 delay, 
because the calculation CPU time  and 110 block  size 
matched well. During the read  phase, the SCF itera- 
tion step suffered considerable I/O delay,  because the 
CPU calculation time was too short in comparison to 
the 110 completion time. The larger the number of 
basis functions (i.e., the scale  of the computations 
increases), the larger the burden on the SCF iteration 
step and the longer the total elapsed time became. 
This was the resulting bottleneck. 

New approach to solve the bottleneck. We deter- 
mined that reduction in  disk 110 delay was essential 
to improve the turnaround time of the numerically 
intensive computations of ab initio MOS. We exam- 
ined several ways to realize  this:  disk  cache,  semicon- 
ductor disk, and Expanded  Storage. The Expanded 
Storage looked best because of its speed,  capacity, 
future expandability, and easy  modification of source 
code.  Accordingly, we moved the TEI data from the 
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disk file to a large virtual storage combined with 
Expanded  Storage. In the following section, the mod- 
ification of the software  which  led to a noticeable 
improvement in turnaround time is described. 

Design of program  modification 

New  design to exploit Expanded Storage. A large 
virtual storage combined with  Expanded  Storage (ES) 
can handle a vast data area on central and Expanded 
Storage  with V=V addressing architecture in a 3 1- 

Dynamic  Common  allows  elapsed 
time  to be reduced  to  the  level of 

CPU time. 

bit addressing mode (System 3 7 0 1 ~ ~  or System 
3 7 0 1 ~ s ~ ’ ~ ) .  Logically,  user data are placed in a large 
virtual storage area. FORTRAN offers the capability 
with the Dynamic Common (DC) function. Dynamic 
Common is a large virtual storage  dynamically  allo- 
cated at execution time by FORTRAN. Physically, the 
logical data are mapped on the MVS/XA storage  hier- 
archy  consisting of central storage,  Expanded Stor- 
age, and disk-paging file. The three storage  hierarchy 
devices are shared among multijob users, and 
MVS/XA optimizes effective utilization of these three 
devices  based on the LRU (Least  Recently  Used) 
algorithm. Initially, MVS/XA tries to keep  user data 
in central storage.  When central storage  is  full, it 
moves the least  inactive data  to Expanded  Storage 
page  by  page (a page  size  is four kilobytes). If  Ex- 
panded Storage  is  large enough to keep the data of 
all  users, almost all of the data will stay on it. But  if 
the total amount of data exceeds the sum of central 
storage and Expanded  Storage, the least inactive data 
are moved down to the disk-paging file  page  by  page. 
The following  paragraph  describes the optimum use 
of the storage  hierarchy  based on program character- 
istics Of GAUSSIAN-82. 

In modifying GAUSSIAN-82, we wanted to optimize 
data handling for the two-electron  repulsion  integral 
(TEI) data so that execution time is improved. The 
fundamental approach to achieving  balanced usage 
of the CPU, 110 devices, and temporary data set  has 
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been  discussed,  for example, by Shavitt,I5 Yoshim- 
ine,I6 McLean,” and Bagus et al.l* But, as described 
in the previous section, distribution of the TEI data 
is uniform; i.e., the read/write  access pattern is se- 
quential. The data are written once and then read 
through repeatedly. In addition, the paging  capability 
of MVS/XA was greatly enhanced when  Expanded 
Storage was introduced. On the basis  of  these points, 
we selected a simple method that kept the TEI data 
in Dynamic Common, and let MVS/XA manage it by 
the paging mechanism. 

The next step was to find a way to achieve optimal 
usage  of the MVS/XA paging mechanism. From a 
system point of  view, the paging mechanism is a 
chained I/O operation of multiple 4-kilobyte (KB) 
blocks, but it is a sequential I/O operation of  4-KB 
blocks  for an individual program (task). The access 
speed  for  Expanded  Storage  is approximately 75 
microseconds  per ~ - K B  page, including MVSIXA rou- 
tine time,’ which  is 50 to 100 times faster than disk 
access. Thus, paging to/from Expanded  Storage pro- 
vides a much faster data retrieval  capability than any 
disk I/O operation. In contrast, a disk I/O operation 
of an INT file (TEI data) is faster than disk  paging 
because the I/O block  size of an INT file is  large 
enough  (23  KB). The optimal method is to assign the 
DC size so as to let MVS/XA keep the TEI data either 
in central storage or Expanded  Storage, and not spill 
the data out  to a disk page. In the application we 
designed, the DC size  was determined at execution 
time through a GAUSSIAN-82 control card, because 
available DC size  may  vary  according to the customer 
installation (size  of  installed  expanded  storage) and 
multijob environment. The DC area is considered  as 
an “in-memory file,” illustrated in Figure  2. The 
relationship between  elapsed time and CPU time is 
illustrated in  Figure 3. Dynamic Common allows 
elapsed time to be reduced to the level  of CPU time, 
whereas CPU time remains almost unchanged. In this 
design, we expected  elapsed time to be improved by 
a factor of three. 

Although the size  of  Expanded  Storage on a cus- 
tomer site  today  may  set a ceiling  of DC size  for 
effective utilization of the storage  hierarchy, we  be- 
lieve it will be  overcome by computers in the next 
generation. Hence, we expect an auspicious future 
for an approach that will exploit  large virtual storage. 

Implementation of new design. At the implementa- 
tion phase, the following  two restrictions (the first 
derived from MVS/XA and the second from GAUSSIAN- 
82) had to be considered: 
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Figure 2 Flow of TEI data in the modified program 
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1. The I/O buffer and 110 routine must be in 24-bit 
addressing mode and must reside  below the 16- 
MB line. 

2. The generalized I/O subroutine named NTRAN was 
coded  in  assembler  language and looked very 
difficult to replace  with FORTRAN subroutines be- 
cause of unsupported FORTRAN functions. NTRAN 
is  designed to run  with  24-bit  addressing mode 
and resides  below the 16"~ line. 

On the basis of these restrictions and our design 
requirements, the following  two preconditions were 
introduced: 

1. Dynamic Common (DC) should be placed  above 
the 16-MB line and accessed  with 3 1 -bit  addressing 
mode in order to keep a large amount of TEI data 
in it. It allows the TEI data  to increase up  to 2 GB. 

2. A certain "glue" module was required to make a 
bridge  between the 3 1 -bit addressing DC routines 
and a 24-bit  addressing 110 routine. 

We considered  several ways to implement the new 
design  satisfying both the restrictions and precondi- 
tions. 

Case 1: ~ ~ ~ ~ ~ ~ ~ ~ ~ u p p r o u c h - C o n v e r t  FORTRAN 

programs to the 3 1-bit addressing  mode,  allocate 
the DC area  above the 16-MB line, and access  it by 
FORTRAN routines. Add an addressing mode con- 
version routine so as to make an interface  with 
the NTRAN 1/O subroutine. 
Case 2: Simulating DC with Assembler-FORTRAN 

remains with the 24-bit  addressing mode. Add 
Assembler subroutines to switch to the 31-bit ad- 
dressing mode, and simulate FORTRAN DC with 
assembler  language. The simulated DC is  placed 

bler routines reside  below the 16"~ line. 
Case 3: VIO approach-The  program remains un- 
changed and uses virtual I/O (vIO) for the INT file. 
(VIO to Expanded  Storage was not  available  when 
this modification was  designed, but we want to 
include it  in our comparison list.) 

above the 16"~ line. Both FORTRAN and Assem- 

The three approaches are compared from  different 
viewpoints  in Table 3. 

We thought splitting the TEI data between  Expanded 
Storage and the disk  spill file  was essential to achieve 
high response time. Although VIO requires no mod- 
ification  work, it is not a good candidate for the TEI 
data because the disk  spill  file  is not available.  How- 
ever, VIO will  be  very  effective for  small- or medium- 
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Figure 3 Turnaround  time  improvement  through  Dynamic 
Common  utilization 

J 
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Table 3 Effect of viewpoint  on  each  approach 

Viewpoint Case 1 Case2  Case3 

Manpower  required large small zero 
Dynamic  Common  size NO YES YES 
Use of ES YES YES YES 
Control of ES data YES YES NO 
Disk  spill  file YES YES NO 
Paging  unit  size 4KB 4KB 4KB 
Spilled 1/0 size 23KB 2 3 K B  - 

sized calculation of GAuSSIAN-E~ where the spill file 
is not required.  Both  Cases 1 and 2 looked  good  for 
the new approach. We selected  Case 2 because of its 
lighter  modification  workload and DC size allocation 
capability (FORTRAN assigns DC size  statically at com- 
pile  time). As a future consideration, if the GAUSSIAN 
main routine is converted to the 31-bit  addressing 
mode,  Case 1 would  become very attractive. 

The actual program  modification was performed as 
described  above.'' The original  code was modified 
to keep  as many integrals as possible in a simulated 
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Molecule  1-methyl  phenol  cytosine  guanine 
butadiene 

Original/modified  ratio 

Original/modified  ratio 
of Total  Elapsed  Time 

of Elapsed  Time 
TEI  step 
SCF  step 

Ratio of Total  Elapsed  Time 
to Total CPU time 

Ratio of Elapsed  Time 
to CPU Time 
TEI  step 
SCF step 

Weight  percent of CPU Time 
TEI  step 
SCF step 
Sum 

1.8 

1 .o 
3.8 

1.8 

1.1 
1.5 

56 
36 
92 

2.2 4.8 5.1 

1 .o 1 .o 1.2 
4.6 10.2 7.4 

1.4 

1 .o 
1.2 

1.4 

1 .o 
1.3 

1.5 

1 .o 
1.8 

54 
40 
94 

52 
43 
95 

43 
54 
97 

Stoichiometry C,H,  C,H&  C,H,NSO C,H,NsO 

Used size of Dynamic 
Common (MB) 12 27 37 99 

CPU Time (s) 
TEI  step 
SCF step 
Total 

37.35 74.82 95.47 256.19 
23.54 55.18 
66.20 137.88 

79.4 1 32  1.94 
184.77 598.40 

Elapsed  Time (s) 
TEI  step 
SCF step 
Total 

39.3 1 77.31 98.22 260.92 
35.38 68.42 104.36 

194.62 
586.38 

252.84 908.61 119.82 

Table 4 Execution  analysis of the  modified  code  (unit = second) - 

- 
- 

Weight  percent of Elapsed  Time 
TEI  step 33 40 39 
SCF step 

29 
35 

Sum 63 80 94 
41 

75 
65 30 

DC, and remaining integrals  (spilled-over  integrals) 
were transferred to/from an IBM 3380  disk  file.  With 
the implementation, we developed four Assembler 
routines and seven FORTRAN routines, and added a 
small common storage to keep control information 
used  for DC simulation. The following four Assem- 
bler routines were  developed to cover DC simulation: 

1. DCOPEN-Establish 3  1-bit  addressing mode and 
create  a DC area. 

2. DcwRIT-Establish 3 1 -bit addressing mode and 
move  a  record from the FORTRAN buffer to DC. 

3. DCREAD-Establish 31-bit  addressing mode and 
move  a  record from DC to the FORTRAN buffer. 

4. DcLOsE-Establish 3  1-bit  addressing mode and 
release the DC area. 

The following three FORTRAN routines are modified 
for job control: 

1.  DOLLAR-Read DC control cards to determine DC 
size. 

2. CHAINX-Write common data to a  disk  file in 
order to pass common data to a  user-controlled 
overlay module. 

3.  DRUM-Read common data from  a  disk file in 
order to receive common data from  a  user-con- 
trolled  overlay module. 

The following four FORTRAN routines are modified 
to perform access control to DC and the disk  spill 
file: 
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1. IwRrT-Control the write operation by splitting 

2. IREAD-Control read operation by merging the 

3. IWIND-Reset DC pointer and rewind the disk 

4. IwAIT-Synchronize 110 completion. No syn- 

the TEI data to DC or to the disk  spill file. 

TEI data from DC and the disk  spill  file. 

spill file. 

chronization is  necessary  for DC area access. 

Effects of  modification 

Measurement of the modified  code. Execution analy- 
sis  has  been  performed  with the modified  code. The 
sample molecules and the method of computation 
are the same as in the analysis of the original  code, 
which  was  described  earlier. The resultant timing 
data are given in Table 4. By taking guanine in the 
table as an example, the relationship between total 
elapsed time and total CPU time before and after 
Dynamic Common utilization is illustrated in Figure 
4, and  that between  elapsed time  and CPU time at 
the SCF step in Figure 5.  CPU time improvement at 
the SCF step comes partly from I/O activity reduction 
and partly from VF utilization.20 

Noticeable  improvement in turnaround  time. We can 
point to  the following  evidence  of turnaround time 

Figure 4 Total turnaround  time  improvement  through 

of guanine 
Dynamic  Common  utilization  in  the  case 
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0 

5 4671 (1 HR 18  MIN) 
TOTAL  ELAPSED 

1 

4058 I/O D U A Y  

WITHOUT M: WITH DC 

3090 - 200 
CS 6 4  MB + 
ES 128 MB 
DC SIZE = 99  MB 

TOTAL  ELAPSED 
909 (15.2 MIN) 

Figure 5 Turnaround  time  improvement  through  Dynamic 
Common  utilization  at  the SCF step in the  case 
of guanine 

I 

1 
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4000 
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D 

. TOTAL  ELAPSED 
! 4671 (1 HR 18  MIN) 

WITHOUT  DC 

3090 - 200 
CS 6 4  MB + 
ES 128 MB 
DC SIZE = 99  MB 

TOTAL  ELAPSED 
909 (15.2 MIN) 

WITH DC 

improvement through this analysis: 

1. The ratio of total elapsed time with the original 
code to that with the modified  code  (Origi- 
nal/Modified ratio) shows that the total elapsed 
time with the modified  code  becomes 1.8-5.1 
times shorter than  that with the original  code. 
This reveals  a substantial improvement in total 
turnaround time. 

2. The Elapsed Time/cpu  Time ratio of the SCF step 
is reduced from 5.2-12.8 to less than 2.0. The 
Total Elapsed Time/Total CPU Time ratio is  also 
reduced from 3.0-7.6 to less than 2.0. These 
numbers indicate that the present modification 
has almost removed the 110 bottleneck found in 
the molecular orbital computations. 

We find  from Table 4 that the CPU time is  primarily 
consumed (over 90 percent) in the TEI and SCF step. 
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Figure 6 Total turnaround  time  improvement  through 
Dynamic  Common  utilization  in  the  case of 
phenol  with  large  basis  set 
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2546 (42 MIN) 

We also find that elapsed time in the SCF step with 
the modified  code  has  achieved a 3.8- to 10.2-times 
improvement against the original  code. This indi- 
cates that the first  result  is mainly due  to the im- 
provement in the turnaround time at the SCF step, 
since the elapsed time in the TEI step is  close to the 
CPU time even  with the original  code. 

It is  observed from the computations at the SCF step 
(using the LINK 501 module) that the CPU time per 
one SCF iteration increases  roughly by the 3.4 power 
of the number of basis functions. The Elapsed 
Time/cPu Time ratios of the original  code are ob- 
served to be  over five at the SCF step.  They are 
expected to remain over five even in cases  of much- 
larger-scale computations, in which a greater number 
of basis functions is employed,  for  example, to obtain 
higher  accuracy or  to apply to larger-sized  molecular 
systems. Dynamic Common utilization for the SCF 
step would be more effective for such larger-scale 
computations, because much more turnaround time 
should be  saved by the utilization. 

In this regard, a larger-scale computation has  been 
performed  for :he phenol molecule  using the 6- 
3 1G**  basis  set ( 135 basis functions and 238 prim- 
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itive Gaussian functions). The TEI step generated 
20 63 1 8 16 TEIs, and the SCF step required 24 SCF 
iterations for the convergence. The size  of the Dy- 
namic Common utilization necessary  for storing all 
of the TEIS was 248 megabytes. This computation 
was carried out  on a 3090-400 with  two  Vector 
Facilities. The resultant improvement in the timing 
is illustrated in Figure 6. The results  showed that the 
elapsed time with the DC (2525  seconds) was 3.6 
times shorter than without the DC (9066 seconds). 
Thus, the effectiveness  of the Dynamic Common 
utilization is  confirmed in the numerically intensive 
computations of ab initio molecular orbitals. 

Summary  and  concluding  remarks 

The IBM 3090 introduced a new technology,  called 
Expanded  Storage,  with a capacity up to 2 GB, in the 
group of computers classified as large  processors. It 
is a new  level  of  storage  hierarchy, and the MVSIXA 
operating system  utilizes it as  high-speed  paging 
equipment, allowing a user to hold application data 
in large virtual storage (FORTRAN Dynamic Common 
area). In order to exploit the large virtual storage 
capability of the IBM 3090, we intended to develop a 
new application  technique for  numerically intensive 
computations of ab initio molecular orbitals. We 
modified an application program (GAUSSIAN-82) on 
the 3090 MVS/XA so that it can handle a vast amount 
of intermediate data in large virtual storage com- 
bined  with  Expanded  Storage;  i.e., application data 
were stored in a large virtual storage instead of disk 
file storage. The modification  achieved a 4- to 10- 
fold improvement in turnaround time at a CPU rate- 
determining step (SCF step) in medium-sized  mole- 
cules. Thus, the advantage of  large virtual storage 
combined with  Expanded  Storage was demonstrated. 
The present  modification will be quite effective for 
the computation of larger  molecular  systems.  With 
the use  of  large virtual storage, a similarly  noticeable 
improvement in turnaround time can be  expected 
for other applications where the computations have 
an 110 bottleneck due  to excessive disk access. 
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