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Computerized  seismic prospecting is an  echo-ranging 
technique usually targeted at accurate mapping of oil 
and  gas reservoirs. In seismic  surveys  an impulsive 
source, often an explosive charge, located at the 
earth’s surface generates elastic waves which propa- 
gate in the subsurface; these waves  are scattered by 
the earth’s geological discontinuities back to the sur- 
face,  where  an  array of receivers registers the re- 
flected signals. The data  recorded  are then processed 
in a  complex  sequence of steps.  Among  them,  seismic 
migration and stacking velocity estimation represent 
two characteristic components of the process solving 
the inverse  problem of recovering the structure and the 
physical parameters of the earth’s geologic layers 
from echo  measurements.  A  complementary tool  in re- 
lating seismic data to the earth’s inhomogeneities is 
provided by seismic  numerical  models, which assume 
a  subsurface structure and compute the seismic data 
which would be collected in a field survey,  by solving 
the direct problem of exploration geophysics.  This pa- 
per describes  a  vectorized  and  parallelized  implemen- 
tation of a two-dimensional seismic elastic model on 
the IBM 3090 VF Vector Multiprocessor. An  implemen- 
tation of a parallel seismic migration algorithm is then 
described, The  paper also reports performance data 
for a vectorlparallel implementation on the IBM 3090 of 
some typical seismic  velocity estimation algorithms. 
The three  problems chosen are representative of a 
wide class of geophysical computations, and the re- 
sults summarized in this paper  show their suitability 
for efficient implementation on the IBM 3090 Vector 
Multiprocessor; combined vector/parallel speedups in 
the range 15-25 are in fact observed. 

S eismic  prospecting  for hydrocarbon detection 
seeks to determine the geologic structure of the 

earth from indirect measurements obtained at the 
earth’s  surface. In seismic  prospecting,  elastic wave 

fields (acoustic as  a  first approximation) are gener- 
ated in a controlled fashion at the surface, penetrate 
the earth, and are backscattered by the earth’s in- 
homogeneities to  an array of  receivers,  where they 
are recorded as shown in the model of Figure 1A. 
The structure consists of four layers,  with  propaga- 
tion velocities V equal to 4, 3, 5 ,  and 6 km/s, 
respectively. On the horizontal axis (at the earth’s 
surface), the source-receiver distance is  measured in 
km; on the vertical  axis (pointing down into the 
earth), the depth is measured in km from the surface. 
The seismic interpreters correlate what  is  seen in the 
seismic data (Figure 1B) with the earth’s structure 
through the use of a  complex  sequence of data 
transformations, among which the processes  of  seis- 
mic migration, seismic  velocity estimation, and seis- 
mic  forward  modeling  play  a major role. The three 
hyperbolic  curves are the echoes of the three layer 
interfaces of Figure 1A. On the horizontal axis (at 
the earth’s  surface), the source-receiver distance is 
measured in km; on the vertical  axis, the arrival time 
of the echoes is measured in seconds. 

The purpose of seismic migration‘ is to reconstruct 
the reflectivity map of the earth from the seismic 
data recorded at the surface. The seismic  signal 
recorded by the receivers  is  a superposition of up- 
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Figure 1 (A) Computerized seismic prospection over  a 
multilayer 
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ward-directed  seismic waves originating  from  all of 
the discontinuity surfaces of the subterrain. In the 
migration  process  these  recorded waves are used 
either as initial conditions or as boundary conditions 
for  a wave  field governed by the wave equation. As 
a  result,  these waves are propagated backward and 
in reverse time from the surface to the reflector 
locations, thus allowing the accurate mapping of 
subsurface  geological “anomalies” such as  oil and 
gas  reservoirs. 

The time series  associated  with  a  single shot and 
receiver  is  known  as  a  trace.  Seismic  processing 
techniques have  been  developed  for groups of traces, 
known  as gathers. One such procFssing step preced- 
ing  migration  is termed stacking. It consists of the 
summation of the traces sharing the same source- 
receiver midpoint after correcting them to compen- 
sate for the offset  between  source and receiver. The 
stacking  process is  based upon the accurate estima- 
tion of the average propagation velocities of seismic 
waves in the subsurface  as  a function of  depth-the 
stacking  velocities. Seismic migration and seismic 
velocity estimation represent  two  essential  steps in 
the inverse  process of recovering the structure and 
the physical parameters of the earth’s  subsurface 
from measurements obtained at the surface. 

Figure 1 (B) Seismic gather corresponding to the multilayer 
of Figure I(A) 

- 0 -  lA 

W 
I 
F 

v 

1 -  

2 -  

3 -  
0 1 2 3 
SOURCE-RECENER OFFSET (KM) 

IBM SYSTEMS JOURNAL,  VOL 27, NO 4, 1988 



Additional  insight  is  often obtained by forward-mod- 
efing several  hypothesized  geologic structures with 
the elastic or acoustic wave equation; in this way, 
field  surveys can be simulated numerically, and com- 
puted  results  can  be  compared to field data.3 

The first  section  of this paper  presents  a  vector 
multiprocessor implementation of a  pseudospectral 
2D elastic  model and compares it, from the view- 
point of performance,  with  a conventional 2D finite- 
difference  model, fourth-order accurate in space and 
second-order accurate in time. Both implementa- 
tions exploit the IBM 3090 architecture together  with 
its associated  software.  A  finite-difference  scheme 
has  a  lower operation count per  grid point than a 
pseudospectral  (Fourier) method, but the latter, for 
a  specified  accuracy,  requires  fewer  grid points than 
the finite-difference m e t h ~ d . ~  

In the second  section we deal  with the problem of 
estimating the stacking  velocity  efficiently.  Basic  al- 
gorithms for the e s t imt tp  of stacking  velocity date 
back to the late 1960s. ' The conventional stacking 
velocity  algorithms in the hyperbolic  time-offset  do; 
main can be  generalized to the case  of analytic 
seismic  traces.  Complex-valued  coherency function- 
als  may then be  introduced.* This section reports 
performance data of a  vector/parallel implementa- 
tion on the IBM 3090 of some  characteristic  seismic 
velocity estimation algorithms. 

The last  section of this paper  deals  with  seismic 
migration.  Efficient and accurate algorithms  have 
been  developed  for  downward extrapolation, based 
on Fourier transform methods.  These  frequency- 
domain approaches  have  proven to be  more accurate 
than conventional finite-difference methods in the 
space-time coordinate frame. The seismic  migration 
section  summarizes the results obtained implement- 
ing phase-shift plus interpolation (PSPI), a  frequency- 
domain, pseudospectral  migration method, on the 
IBM 3090 Vector  Multiprocessor. 

The forward-modeling  problem:  Elastic  modeling 

Elastic wave modeling. The basic equations govern- 
ing wave propagation in a 2D continuous elastic 
medium are the momentum-conservation and the 
stress-strain  relation^.^ Following  Reference 10, we 
make use  of a  derived  set of  wave equations which 
contain stresses as variables  instead  of  displace- 
ments; i.e., 
ii = Aa + B1; (1) 
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where 

1 A = L D T ; i i D ,  

B = LDT, 
X+2p  x 

L = [  X X + 2 p  :I, 
0 0 I . l  

where x and z are,  respectively,  horizontal and ver- 
tical  Cartesian  coordinates; a,,, a,,, and a,, are the 
three  stress components;f, andf, represent the body 
forces;  p(x, z) represents the density; and X = X(x, z )  
and p = p(x, z )  represent  Lame's  elastic  parameters. 
Here  a dot above  a  variable  represents  a time de- 
rivative and T denotes matrix transposition. In 
the direct (modeling)  problem, the stresses  serve  as 
the main unknowns,  whereas the rock parameters 
p, X, and p, as  well as the body forcesf,(x, z, t )  and 
f,(x, z, t ) ,  are known quantities. Appropriate initial 
and boundary conditions are to be prescribed:  In 
this  work we consider  exclusively  absorbing bound- 
ary  conditions. ' ' 
In order to solve Equation (1) numerically,  a discre- 
tization in time is  first  performed,  using  a  leapfrog 
technique: 
a(t + At) - 2 4 t )  + a(t - At) 

= (At)'[Aa(t) + Bf(t)] .  (3) 
Then a discretization in space is  operated,  using 
either a  pseudospectral approach similar to  that de- 
scribed in Reference 10, or a conventional fourth- 
order finite-difference  scheme. 

In the pseudospectral approach, the spatial  deriva- 
tives appearing in Equation (2) are accurately  com- 
puted in the Fourier (spectral) domain. In other 
words, the differential operators d, and a, appearing 
in (2) are represented  with D, and D, respectively, 
where 
D, = F;'iK,F, (y = x, z), (4) 
with F ,  and F;' representing,  respectively, the direct 
and inverse Fourier transform operators [efficiently 
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implemented by the use  of the fast Fourier transform 
(FFT)].” K, is the operator multiplying  each Fourier 
coefficient by its wave number, and i = a. The 
computational cost per time step of the pseudospec- 
tral modeling  algorithm  is 

C - = 20NxNzl~g2(NxNz) + 40NxN, 
Nt 

+ 12N,NSTRIP, + 12NzNSTRIP,, (5) 

where  NSTRIP, and NSTRIP, are absorption strip 
widths in the x and z directions, respectively, intro- 
duced to implement absorbing boundary conditions. 
The first term in Equation (5) accounts for Fourier 
transformations, the second term for time advancing 
with Equation (3), the last  two  for absorption. For a 
medium-size 2D numerical mesh of  N, = N, = 256, 
Nt = 1024, the number of floating-point operations 
performed in a simulation run is of the order of 10”. 

In the finite-difference approach, the spatial deriva- 
tives are computed by approximating the differential 
operators 13, and d, appearing in (2) with d, and d,, 
where 

= D, + O(h3 (7 = x, 4 ,  (6) 

with E, representing the translation operator and h, 
the grid  spacing in the y direction. The computa- 
tional cost per time step of the finite-difference  mod- 
eling  algorithm is 

” 

Nt 
- 80N,Nz + 12N,NSTRIP, 

+ 12NzNSTRIP,. (7) 

With large numerical meshes or  3D modeling, it 
becomes  essential to look  for computing techniques 
that speed up the execution of such  codes. 

Vector/parallel  implementation. The development 
work  discussed  in this paper was primarily camed 
out on the IBM 3090  200  Vector  Facility-later up- 
graded to a 3090 400E”at the IBM European Center 
for  Scientific and Engineering Computing (ECSEC). 

independent serial  processors  which share 128 MB of 
central memory and 256 MB of expanded  storage. 
Each  processor  has a 64-KB memory  cache, a Vector 
Facility  with  sixteen  32-bit  vector  registers 128  ele- 
ments long, and operates at a cycle  of  17.2  ns,  with 
a theoretical peak  speed  of 1 16 million  floating-point 

The IBM 3090  400E c ~ m p u t e r ~ ~ ” ~  at ECSEC has  four 

operations per  second. Additional runs were per- 
formed on the machine of the Systems Evaluation 
Laboratory at the IBM Washington  Systems Center, 
a six-way  3090  600E  with  256 MB of central memory 
and 1024 MB of expanded storage. 

The 3090 VF architecture is well suited to numerical 
schemes  solving evolutionary PDE such as (l), and 
particularly to the pseudospectral algorithm [(3), 
(4)], since it permits very  efficient computation of 
the FFTS using the vector  hardware, and at the same 
time a parallel decomposition of the computation 
using the 3090 multiple processors; similar consid- 
erations hold  for the finite-difference  scheme [(3), 
(6)]. In order to utilize the Vector  Facility effic:&tly, 
we have  used routines from the ESSL library to 
compute the direct and inverse Fourier transforms. 
In addition, we have  used the vs FORTRAN Vectoriz- 
ing Cg3piler  to vectorize the remaining computa- 
tions. 

With  respect to the parallel decomposition of the 
algorithms, we have  used a simplified domain de- 
composition technique. This strategy  makes  use  of 
the fact that with computational arrays oriented 
along the Cartesian coordinates x and z, space  deriv- 
atives operate on individual columns/rows inde- 
pendently of one another. Thus, the problem domain 
can be  decomposed into strips, and each  processor 
handles the operation for its strip. The orientation 
of the parallel strips must  be  switched from row to 
column or vice  versa  when the direction of the partial 
derivative is  switched.  Equivalently, the data arrays 
can be transposed and the parallel strips kept  always 
oriented columnwise,  as recommended for  faster 
execution in FORTRAN. This constitutes an important 
difference  between  pseudospectral and finite-differ- 
ence  schemes. The pseudospectral  schemes are non- 
local in the sense that in order to compute derivatives 
in the x and z directions at a given point, they must 
access  all the data corresponding to the row and the 
column of the point. Conversely,  finite-difference 
schemes are local, and for  each point, only data in a 
relatively  small  neighborhood  need  be  considered. 
This difference  has an  important implication when 
one is trying to parallelize the algorithm. For finite- 
difference  schemes, the parallel  processors can be 
permanently assigned a data subdomain, and need 
only  exchange or share the data at the boundaries of 
the subdomains. In Fourier methods, on the con- 
trary, the parallel  processors  must  access  (for  exam- 
ple, in the x differentiation), data previously  assigned 
to other processors (in the z sweep), thus leading to 
a greater  volume of communication. 
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Figure 2 Pressure wave snapshot for the corner problem (high velocity inside the corner) as computed by the elastic 
~ ~~~ 

pseudospectral model 
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With respect to the software support for  paralleliza- 
tion, we have examined two alternatives for the 
pseudospectral  code. The first  divides the work 
among the available  processors  with the hyip  of the 
vs FORTRAN Multitasking  Facility (MTF). MTF is 
based on DSPTCH/SYNCRO primitives, to allow the 
asynchronous execution of subroutines on multiple 
processors sharing a common memory. For more 
details on this implementation, see  Reference 19. 
The secoyf alternative makes use  of Parallel FOR- 
TRAN (PF) constructs, which  allow a finer  level of 
parallelism,  down to the grain of a DO loop. To 
implement the finite-difference  scheme, we have  sim- 
ply vectorized and parallelized it with PF. 

As an example of the numerical results obtained 
with the elastic  model,  Figure 2 shows the response 
of a geological  model corresponding to a corner 

structure. In Figure 2, the terms VP and vs refer to 
pressure and shear  velocities,  respectively, and S 
indicates the source location. Calculations were 
made  using a pressure-point source with a high-cut 
frequency of 40 Hz  for a numerical mesh of  256 X 
256 nodes  with a grid  spacing of  20 m in both x and 
z directions and a 0.00 1 -s time step. For a quantita- 
tive  assessment of the geophysical  significance  of the 
pseudospectral  elastic  model,  refer to Reference 2 1. 

Performance analysis. The sustained performance of 
the pseudospectral algorithm is presented in Table 
1, which includes the CPU time per step in seconds, 
the percentage of time used  in computing FFTS, the 
sustained performance in millions of floating-point 
operations per second  (Mflop/s), and the speedup, 
for a resolution of  128 X 128 grid  points: Here and 
consistently through the rest of the paper, all timings 
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Figure 3 Time distribution of machine instructions in the 
execution  of  finite-difference  elastic  modeling  code 
on the IBM 3090 running in scalar  mode 

Figure 4 Time distribution of  machine instructions in the 
execution of finite-difference  elastic  modeling  code 
on  the IBM 3090 running in vector  mode 
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Table 1 Performance of different  implementations of the  pseudospectral  elastic  modeling  algorithm  for  the 128 x 128 grid on  the 
IBM 3090 200  VF (main  storage = 64 MB expanded  storage = 128 MB) using MTF for  parallel  execution  and ESSL 
(Release 1) for  Fourier  Computations  are  done in single  (32-bit)  precision. 

Configuration  Processing CPU  Time  FFT Mfiop/s  speedup 
per  Step w 

(4 

A 3090 Uniprocessor Scalar-Serial 0.99 87.1 5.31 
B 3090200 Scalar-Parallel, MTF  0.53  83.5  9.96 1.87 (B/A) 
C 3090  VF Uniprocessor Vectorized 0.19  66.5  28.3 5.21 (C/A) 
D 3090  200  VF Vector-Parallel, MTF  0.12 59.8 45.4 1.58 (D/C) 

are  taken  in  standalone  mode,  with computations 
performed  in  single  (32-bit)  precision. 

The Mflop/s  rates  are  obtained  using  Equation ( 5 )  
to calculate the number of floating-point  operations 
per time step.  Equation ( 5 )  for the pseudospectral 
method and the companion equation (7) for the 
finite-difference  method  consider  only  floating-point 
additions and multiplications, and therefore  neglect 
integer arithmetic, transpositions, and loads/stores, 
although it is  well  known that they  play  a  nonnegli- 

gible  role in the balance:  Evidence  is  provided  in 
Figures  3 and 4  showing the time  distribution of IBM 
System/370  machine instructions in the execution 
of the finite-difference  elastic  modeling  code  [(3), 
(6)l. 

As is  shown  in  Case  C  in  Table 1, running the 
vectorized  algorithm on the 3090 VF produces very 
good  performance  results,  with  a  3090  vector/scalar 
ratio of  5.2 1. This ratio is  7  for the computation of 
FFTS with the ESSL routines, and ranges  from  2.2 to 
2.4  for the remaining  computations.22 
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In the scalar multitasking  implementation of the 
decomposition  technique  (Table 1, Case B), the par- 
allelized  parts of the code  correspond to 96 percent 
of the execution time (essentially,  Fourier  transforms 
and time  stepping),  while  matrix  transpositions and 
computation of the absorption  are  performed in 
serial  mode. The speedup  (parallel/serial)  ranges 
from 1.6 to 1.94  for the individual  sections of the 
algorithm,  leading to an overall  two-way speedup  of 
1.87 on the two-way multiprocessor  3090. 

In the vectorized and multitasking  case  (Table 1, 
Case  D), the speedup  is  only 1.58, because the par- 
allelized  portion of the  code  is  also  vectorizable, and 
the use  of the Vector  Facility  shrinks the parallelized 
fraction to 87 percent of the total execution  time; 
speedups  for  individual  sections  range  from 1.5 to 
1.9.  However,  as  shown in Table  2,  with  increased 
grid  sizes  one  obtains at the same time overall  two- 
way speedups  greater than 1.75 and higher  vec- 
tor/scalar  speedups.  This  is due to the fact that the 
percentage of floating-point  operations  associated 
with FIT computations increases  with  grid  size, and 
these computations are very  efficiently handled. The 
key factor in performance  improvement  is the in- 
creased number of floating-point  operations  per 
memory  reference. 

It  is  worth  noting that, for the cases  in  which the 
problem  size  does not fit in  real  storage  (last  column 
of Table 2), the da$ are  allocated to the expanded 
storage of the 3090 (the specific  configuration  used 
in  this  experiment  had  64 MB of  real  storage and 128 
MB of expanded  storage). The operating  system then 
pages the data in and out of real  storage at a  rate of 
approximately 75 ps per  page fault. This leads to a 
degradation  in  performance, as can be  observed  from 
the results  shown  in  Table  2  for the 1024 X 1024 
problem  size.  Nevertheless, this performance  is  still 
very  satisfactory;  moreover,  since  the  operating sys- 
tem  takes  care of  paging, it is  possible to run very 
large  models  without  explicit  memory  management. 

The  upper  portion of Table  3  shows  performance 
data on the six-way  3090  600E  for  a  grid  size of 5 12 
X 5 12, in the vectorized and parallelized  case.  Also 
shown  is the fraction of the code  which runs in 
parallel,  which in this case  corresponds to 92  percent 
of the serial time. It is  observed that although this 
fraction  is rather high, the relative  weight of the 
parallelized  fraction  decreases  rapidly  with the num- 
ber of processors, so that with  six  processors it is 
only  66  percent. To fully  exploit the parallel  potential 
of the code,  therefore, it was  necessary also to par- 
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allelize the transpositions and the absorption.  This 
was achieved quite easily  by  using the PF constructs 
shown  in  Figure 5 .  In this case the subroutines 
parallelized  are SCRFT and SRCFT, performing the FFT 

VS FORTRAN Interactive  Debug 
(IAD) is a  very  useful tool. 

algorithm, and the subroutine WAVE, performing the 
multiplication by wavenumbers;  loops  20 and 70 are 
parallelized.  Figure  6  shows,  for the elementary  ker- 
nel  of matrix  transposition,  the  synergism  between 
parallel and vector  execution. 

Results  are  given in the lower part of Table  3 and in 
Figure 7, which  shows the sustained  speed,  relative 
to that of the  scalar  3090  uniprocessor, as a  function 
of the number of  processors.  Results  are  presented 
for both scalar and vector  implementations on the 
IBM 3090  600E  processor  complex,  showing  a  very 
significant  combined  vector/parallel  speedup.  Dot- 
ted  lines  show the theoretical  linear  speedup  curves. 
In the scalar MTF case,  where the parallel  fraction  is 
96  percent, the speedup  is  nearly  linear.  In the vector 
MTF case,  where the parallel  fraction  is  only  92 
percent, it is  clear that to improve the performance 
when  using  four to six  processors, it is  necessary to 
increase the fraction  of the code  which runs in  par- 
allel. This has  been done by parallelizing  the  trans- 
position and absorption  using PF. 

The  sustained  performance of the different  versions 
of the finite-difference  code  for  different  grid  sizes  is 
given  in  Table 4. Vector/scalar  speedups of the order 
of 3  are  observed,  together  with an almost  linear 
speedup  when the code  is  parallelized  with PF. 

It is  worth  mentioging that the vs FORTRAN Inter- 
active  Debug (IAD) is  a  very  useful  tool that iden- 
tifies  computation-intensive portions of application 
programs,  providing  statistical  analyses and sum- 
mary information at subroutine and statement lev- 
els.  Moreover, the activity  can be  graphically  dis- 
played, as shown  in  Figure 8. Asterisks and the 
associated  values  indicate CPU percentage  spent at 
the corresponding statement. 
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Table 2 Single-precision  performance  of  the  pseudospectral  elastic  code  for  different grid sizes  on  the IBM 3090 200 VF (main 

computations.  The  program  data tit in the  main  memory  except in the 1024 case (last column)  which  requires 
storage = 64 MB expanded  storage = 128 MB) using MTF for  parallel exqution and ESSL (Release 1) for FFT 

approximately 100 MB. 

Configuration Grid Size 

64'  128'  256'  51 2' 1024' 

Speed 
(Mflop/s) 

3090  Uniprocessor 
3090  200 

4.6 5.31 5.30 5.52  4.54 
8.1 9.96  10.13 10.38  8.02 

3090 VF Uniprocessor  21.5 28.3  31.1 34.3  26.9 
3090  200 VF 28.5 45.4  54.2 61.3  43.2 

Table 3 Single-precision  performance  on  the IBM 3090 600E VF and  on  the IBM 3090 400E of  the  pseudospectral  elastic 

execution.  Program data (25 MB) fit in main  memory. 
modeling  code  for a resolution of 512 x 512, as a function of the  number of processors,  using MTF and  PF for  parallel 

I I 

3090  600E, MTF 
3090  600E, MTF 
3090 600E, MTF 
3090  600E, MTF 
3090 W E ,  MTF 
3090  600E, MTF 
3090  400E, PF 
3090  400E, PF 
3090 W E ,  PF 
3090 W E ,  PF 
3090  600E, PF 
3090  600E, PF 

2.64 
1.45 
1.04 
0.853 
0.737 
0.665 
2.71 
1.38 
0.93 
0.73 
0.61 
0.54 

92.0  39.7 
84.8  72.6 
79.0  100.7 
73.3  123.1 
68.8  142.5 
66.3  158.0 

38.6 
75.8 
112.8 
144.2 
173.7 
195.6 

1 .00 
1.82 
2.54 
3.09 
3.58 
3.97 
1 .oo 
1.96 
2.89 
3.73 
4.50 
5.05 

Table 4 Single-precision  performance  of  the  finite-difference  elastic  code  for  different grid sizes  using PF for  parallel  execution 
on the IBM 3090 400E VF (main  storage = 128 MB expanded  storage = 256 MB) and  on  the IBM 3090 600E VF (main 
storage = 256 MB expanded  storage = 1024 MB). 

Configuration Grid Size 11 Memory (MB) 

127' 11 1.28  255' 11 5.12  51 l2 11 20.48  1023' 11 81 52 

I Time (rns) I Speed (Mflop/s) I 
3090  400E ( 1 scalar processor) 115 111.4  488 
3090  400E ( 1 VF) 40.0 I 32.7  164 
3090 W E  (2 VF) 
3090 W E  (3 VF) 

22.1 I 59.4  84.7 
59.7 

3090 W E  (4 VF) 
3090 600E  (6 VF) 

46.6 

10.9 
32.2  682 
62.4  35 1 
88.5  237 
113.2  182 

132 

31.0 2767 
60.3 1454 
89.2 970 
116.2 146 
159.4 537.6 

I 30.6 
I 58.2 
I 87.2 
I 113.5 
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Figure 5 Using the PF constructs SCHEDULE and WAIT and directives to parallelize the execution of subroutine calls and 
transposition loops in the pseudospectral elastic code 

C Differentiate  F  with  respect  to x and  save  in  FX 

C (1) Transpose F, store  in  FT 
C 

C 
C$PARA  IGNORE  RECRDEPS 

CSPARA  PREFER  VECTOR 
DO 20 K=l,NPROC 

DO  10  J=l,NX 
DO 10  I=(K-l)*CHUN+l,K*CHUN 

10 FT(J,I)-F(I,J) 
20 CONTINUE 
C 
C 
C 

(2) Fourier  transform 

DO 30 I=2,NPROC 
SCHEDULE  ANY  TASK  ITASK(I), 

* CALLING SRCFT(O,FT(l,YINIT(I)),MX,DFX(l,l,YINIT(I)), * STRyNX~N!iHylyl.y 
* ADXl(l,I),NDXl,ADX2(1,1),NDX2,ADX3(1,I),NDX3) 

30 CONTINUE 
CALL SRCFT(O,FT(1,1),MX,DFX(1,1,1),STR,NX,NYH,1,1., 

WAIT  FOR  ALL  TASKS 
* ADX1(1,1),NDXl,ADX2(1,1),NDX2,ADX3(1,1),NDX3) 

C 

C 
C (3) Multiply by  wave  numbers 

DO 40 I=2,NPROC 
SCHEDULE  ANY  TASK ITASK(I), 

* CALLING  WAVE(MXH1  ,MY,NXHl  ,YINIT(I)  ,YFIN(I)  ,DFX,CSKX) 
40 CONTINUE 

CALL WAVE(MXHl,MY,NXHl,YINIT(l),YFIN(l),DFX,CSKX) 
WAIT  FOR  ALL  TASKS 

C 
C 

(4) Inverse  Fourier  transform 

DO 50 1=2,NPROC 
SCHEDULE ANY TASK ITASK(1) , 

* CALLING SCRFT(O,DFX(l,l,YINIT(I)),STR,FT(~,~INIT(I)),~, * NX,NYH,-l,INX, 
* AIXl(l,I),NIXl,AIX2(1,I),NIX2,AIX3(1,I),NIX~~ 

* AIXl(1,1),NIX1,AIX2(l~l~~NIX2,AIX3~lyl~~NIX3~ 

50 CONTINUE 
CALL SCRFT(O,DFX(l,l,l),STR,FT(l,l),MX,NX,NYH,-l,INX, 

WAIT  FOR  ALL  TASKS 
C 

C 
C$PARA IGNORE  RECRDEPS 

C$PARA  PREFER  VECTOR 

C (5) Transpose  the  result  and  store  in  FX 

DO 70 K-1,NPROC 

DO 60 J=l,NX 
DO 60 I=(K-l)*CHUN+l,K*CHUN 

60 FX(J,I)=FT(I,J) 
70 CONTINUE 

RETURN 
END 
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Figure 6 Synergism between parallel and vector  execution in the matrix transposition kernel compiled with PF 

C$DIR  IGNORE  RECRDEPS 
PARA +""" DO 10 IPROC=l,NPROC 

I C$DIR  PREFER  VECTOR 
VECT I +----- DO 20 J=l,NY 
ELIG I I+---- DO 20 I=(IPROC-l)*NCHUNK+l,IPROC*NCHUNK 

I l l -  FT(J,I)=F(I,J) 
I I- 
I- 

Figure 7 Sustained  speed on the IBM 3090 600E multiprocessor,  for  vector and scalar processing, relative  to the 
scalar  uniprocessor  for the elastic pseudospectral code'22' 

0"O"O" 0 LINEAR  SPEEDUP 

0-a PF VECTOR  EXECUTION 

0-E-G-n MTF  VECTOR  EXECUTION XPAR = 92 

u-m MTF  SCALAR  EXECUTION  %PAR = 96 
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Figure 8 IAD annotated listing (with sampling option) of a part of the 2-D finite difference elastic code 

DO 1 513  ,NX-2 
W 1 Ia3,NY-2 

FY(I,J)P(CIY*(SUY(I-~,J)-SYY(I+~,J)) 
*+C2Y*(SYY(I+IaJ)-SYY(I-1,J)) 
*+ClX*(SXY(I,J-2)-SXY(I,J+2)) 
*+C2X*(SXY(I,J+l)-SXY(I,J-I)))*FIDEN(I,J) 

*+C2X*(SXX(I,J+l)-SXX(I,J-l)) 
*+ClY*(SXY(I-2,3)-SXY(1+2,J)) 
*+C~Y*(SXY(I+l,J)-SXY(I-l,J)))*FIDEN(I,J) 

FX(I,J)=(CIX*(SXX(I:,J-2)-SXX(I,J.t.2]) 

1 CONTINUE 

The  inverse  problem:  Seismic  velocity 
estimation 

Problem  formulation. Conventionally, the stacking 
, velocity estimation is performed directly in the off- 

set-time domain (x ,   t )  on  one  or more gathers, 

P = P ( X ,  t ) ,  (8) 
where x is the source-receiver  offset, t is the two-way 
travel time, and p is the observed  wavefield;  basically, 
the physical domain (x ,   t )  is  scanned  with the two- 
parameter family of curves, 

T2(x;  to, v) = t i  + - X 2  

v 2  ’ (9) 

looking  for  hyperbolic alignments of the data p(x,  t).  
From the algorithmic viewpoint, the velocity  esti- 
mation procedure consists of  two  steps, to be  re- 
peated  for  every  stacking  velocity v: 

1. The nonzero-offset data p are transformed into 
zero-offset data f i  by a hyperbolic coordinate 
transformation consisting of a time-variable  shift, 
the Normal  Move-Out (NMO) correction 

f i  = m ,  to; v) = P b ,  T(x; to, v ) l ,  (10) 

where T(x) is  given  by Equation (9). In this way 
the data p,  originally characterized by hyperbolic 
alignments (9), are transformed into  data f i  with 
straight-line patterns to = const. 

2. For each  travel time to, the uniformity of the data 
fi(x, to; v), NMO-Corrected with the stacking veloc- 
ity v, is quantitatively evaluated by means of some 
coherency functional F and assigned to the veloc- 
ity spectrum F(v, to). 
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Coherency  functionals. Numerous functionals have 
been  proposed to evaluate quantitatively the good- 
ness  of fit obtained on a given gather with a certain 
stacking  velocity v. The most common functionals 
measure the similarity of the traces of the NMO- 
corrected gather, and are  based on either the sum- 
mation of the traces or the correlation of the traces 
with  various choice!  of normalization. A widely  used 
coherency  measure is the semblance 

&? to) = 10+6/2 ( 1  1) 
l X  e - c [B(x,  t;  4 1 2  

t=t0-6/2 Nx x=xo 

All the coherency functionals can immediately  be 
generalized,  following  Reference 7, to the case  of 
complex-valued gathers 
$(x,  t) = P ( X ,  t )  + iq(x, 0 ,  (12) 
where p(x ,   t )  is an ordinary real-valued gather and 
q(x,  t)  is obtained from p(x,   t )  by the application af 
the Hilbert transform with  respect to time t. To t’lis 
new  class  belongs,  by  example, the statistically nor- 
malized complex-correlation functional 

,. x x  

to+6/2 

2 i*(X,  t; v m z ,  t; v) 

Lt=t0-6/2 J 

where * denotes complex conjugation. 
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Figure 10 Velocity spectrum of the marine CMP gather of 
Figure 9 
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cussions, the stacking  velocity estimation algorithms 
consist  essentially  of  nested  loops, running over the 
velocities u, the offsets x, and the time samples t. The 
NMO transformation accounts for more than 50 per- 
cent of the cost (see Figure 11) and consists of an 
offset-dependent stretching of the time axis of the 
traces. The rest of the computations comprise  sam- 
ple-by-sample additions or multiplications of the 
traces, in particular as  required by the normalization 
of formulae ( I  1) and (1 3). Therefore, the velocity 
estimation algorithms  are  ideal candidates for  imple- 
mentation on a vector computer architecture where 
the trace operations are mapped into vector instruc- 
tions. Furthermore, all  vector operations appear in 
an outer loop running over the trial stacking  veloci- 
ties.  Since the computations associated  with  different 
velocities u are  totally independent, these algorithms 
are  also  good candidates for a parallel computer 
implementation. An optimal performance can be 
achieved on a vector  multiprocessor by splitting the 
outer parallel loop on several  processors  which  exe- 
cute the innermost loops over the trace samples in 
vector  mode. Table 5 summarizes the timing results 
of a FORTRAN-Coded implementation of the velocity 
algorithms (1 1) and ( 13) on the IBM 3090 VF Vector 
Multiprocessor,  with the parallelization and vector- 
ization criteria emerging from the previous  discus- 
sion; for more details, see Reference 8. 

It is  easily  observed that a q-fold speedup is  effectively 
measured  when  executing on q processors of the IBM 
3090 vector  multiprocessor q identical tasks  gener- 
ating l/q of the spectrum. The q tasks are completely 
independent and must synchronize only at the end 
of the computation; therefore, the interprocessor 
communication and the parallelization  overhead are 
virtually  zero. This linear speedup is attributed to 
the large granularity of the problem and is achieved 
by modifying the serial  code  using MTF. 

The  inverse  problem:  Seismic  migration 

Wave-equation  migration. Migration can be formu- 
lated  as a numerical solution to the partial differen- 
tial equations which  govern the back-propagation of 
the recorded  signals from the surface to the reflector 
locations in reverse time. This approach, generally 
referred to as  wave-equation migration, consists of 
two  steps: wave  extrapolation and imaging. The the- 
ory of  wave extrapolation is  based on the assumption 
that the zero-offset  pressure data, defined in the (x, 
t )  domain, satisfy the scalar wave equation 

a2p 4 e'p a2p 
az2 v 2  at2 ax2' 
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Figure 11 Sampling  analysis of the  velocity  estimation  code  using  the  estimator (13) 

=AFFOlOI  VS  FORTRAN  VERSION  2  RELEASE  3  INTERACTIVE  DEBUG 
=AFFOllI  5668-806  (C)  COPYRIGHT  IBM  CORP.  1985, 1988 
=AFF013I  LICENSED  MATERIALS-PROPERTY  OF  IBM 
=AFF933I  THE  AFFON  FILE  WAS  PROCESSED  WITH 0 ERRORS 
=AFF995I  WHERE:  VELANT.15 
=* ENDDEBUG  SAMPLE(4)  CALLED 
=AFF306I  PROGRAM HAS TERMINATED;  RC ( 0) 
=* ANNOTATE  (COPRO,ANRZK,ITP2Cl)  SAMPLING  ALL 
=AFF561I  ANNOTATING  LISTING  FOR  PROGRAM  UNIT  "COPRO" 
=AFF561I  ANNOTATING  LISTING  FOR  PROGRAM  UNIT  "ANRZK" 
=AFF561I  ANNOTATING  LISTING  FOR  PROGRAM  UNIT  "ITP2Cl" 
=AFF2241  481  LINES  OF  OUTPUT  WRITTEN  TO  AFFPRINT 
=* LISTSAMP * SUMMARY  ALL 
=AFF550I  PROGRAM  SAMPLING  INTERVAL  WAS 4 MS;  TOTAL  NUMBER  OF  SAMPLES  WAS 3465. 
=AFF552I  SUM  OF  DIRECT  AND  CALLED  SAMPLES: 
=AFF556I  PROGRAM  UNIT  SAMPLES  %TOTAL 
=AFF558I  VELANT 
=AFF5581  QUADR (get analytic  signal) 27  0.78 
mAFF558I  COPRO (estimator (13) ) 3399 98.10 .................... 
mAFF5581  ITP2Cl (trace interp. in NMO) 1469  42.40 ******** 
=AFF558I  ANRZK (normalization) 778 22.45 **** 
=UP5581 V#SQRT (square  root) 579  16.71 *** 

3465 100.00 *************X****** 

Table 5 Single-precision  performance of two stacking  velocity  algorithms  on  the IBM 3090 Vector  Multiprocessor  operating  on  a 
gather  consisting of 100  traces  (1024  samples  per  trace)  and  generating  a  spectrum  consisting of 60 trial  velocities  and 
256  travel  times. 

Algorithm f 
~~ ~~ ~~~ 

Scalar  Vector  Two-processor  Six-processor 
Uniprocessor  Time  Uniprocessor  Time  Time  Time 

( 4  (SI ( 9  (SI 

$(11)  16.6 6.0 3.0 1 .o 
r (13) 47.0 19.2  9.6 3.2 

with p = p(x, t ,  z), where x is the horizontal  variable, 
z is depth, t is two-way travel time, and v = v(x, z )  is 
the velocity. The corresponding  one-way  wave  equa- 
tion in terms of the variable P(x, o, z) obtained from 
p(x,  t ,  z)  with  a Fourier transform with  respect to 
time, reads 

= F;'[ 1 - (I;) ] FxP, 
k,v ' I2 

- 
az v 
where k, is the wavenumber  with  respect to x, o is 
the temporal frequency, and F, and F;' represent 
the direct and inverse  complex Fourier transform 
operators  with  respect to the direction x. Equation 

( 1  5) is the fundamental equation for  downward  ex- 
trapolation of  zero-offset data. It is  expressed in the 
wavenumber-frequency domain (kx, a), and does not 
have an explicit  representation in the physical  do- 
main (x,  t).  In the absence of horizontal velocity 
dependence, Equation (13, which  governs the ex- 
trapolation of the zero-offset  seismic data, has  a 
simple  analytic solution (essentially  a phase 
For  velocity  fields  with  lateral  variations, the square- 
root  pseudodifferential operator appearing in Equa- 
tion (15) must  be approximated in some form, for 
instance  with the approach described in Reference 
24, the phase-shift plus interpolation (PSPI) method. 

IBM SYSTEMS JOURNAL,  VOL 27. NO 4, 1W KAMEL. KINELAN. AND SGUAZZERO 523 



Table 6 Performance of the  PSPI  code  on  the  IBM 3090 600E Vector  Multiprocessor  (single  precision)  with ESSL Release 1. 

Scaler Vector  Vector-Parallel  Vector-Parallel 
Code  (uniprocessor)  Code  (uniprocessor) (2 processors) (6 processors) 

[CPU (SI1 (FFT %) [CPU (SI1 (FFT %) rcpu (SI1 [CPU ( 9 1  
1 

I 2115.0 61.8 457.3 39. I 236.0 87.2 I 

Parallel  decomposition of seismic migration algo- 
rithms. All frequency-domain methods begin  with 
the Fourier transform of the seismic data in time, 
thus replacing the independent variable t with w. 
Due to the linearity of the migration problem, the 
calculations carried out for  different w are simply 
superimposed to obtain the complete solution. Fur- 
thermore, these calculations are completely inde- 
pendent, with  virtually no interprocess communi- 
cation. When  all the harmonic components P(x, w, 
z )  have  been  processed, the migrated  section is com- 
pleted. As a particular case, the PSPI migration algo- 
rithm consists  essentially of three nested  loops, and 
the proposed decomposition partitions the outer- 
most loop (in w);  the vectorization of the i n n p o s t  
loop (in x or kx) is ensured by its structure. The 
intermediate loop (in z) is sequential, representing a 
downward continuation process, and cannot be par- 
allelized  except  for the particular case  of a horizon- 
tally  stratified medium. All considerations that hold 
for the two-dimensional case are also  valid  for  algo- 
rithms designed  for the migration of three- an47fOu" 
dimensional dfJa,  e.g.,  migration  before  stack and 
3D migration. 

Performance  measurements  of  the PSPI code. The 
vectorizability and speedup characteristics of the PSPI 
code  have  been studied by running it and measuring 
execution times on the 3090  in  scalar agd vector 
mode. The problem under consideration consists 
of the migation of a synthetic zero-offset  section of 
size 5 12 . Table 6 summarizes the results of our 
measurements by showing the CPU time, in seconds, 
for the main part of the code. A speedup of  7.3 in 
performing FFTS combined with a 2.9 speedup in 
performing add/multiply operations leads to the ob- 
served 4.6 vector/scalar speedup. 

As mentioned earlier, the data and the computations 
associated  with  different  frequencies w are indepen- 
dent. We take advantage of this fact to run the loop 
over the frequencies in parallel on the six CPUS of 
the 3090 VF. The software tool used is the vs FOR- 
TRAN Version 2 Multitasking Facility. The same 
effect could have  been  achieved had we used PF. 
Figure 12 shows a piece  of the code  with MTF, while 
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Figure  13  is a summary of the most computation- 
intensive  sections of the code  as  given by IAD. When 
we dispatch six identical tasks that process one sixth 
of the frequencies  each,  using the vector structure 
and the parallelism inherent in the problem, we 
obtain an effective speedup of above 20 compared 
to the scalar  uniprocessor  version. 

Concluding remarks 

The first  section of this paper  has  presented  vector 
multiprocessor implementations of elastic  modeling 
algorithms based on pseudospectral (Fourier) as well 
as  finite-difference methods. The algorithms are very 
well suited to vector multiprocessors, on which  sig- 
nificant performance improvements are obtained by 
simultaneously vectorizing the innermost loops and 
parallelizing the outer loops. In the last  section, an 
analysis of the suitability for  parallel  processing of 
frequency-domain seismic migration methods has 
been presented. The frequency-domain methods are 
easily decomposable into parallel  tasks  having  large 
granularity, and require very limited interprocessor 
communication. Among the frequency-domain 
methods, optimal results (in terms of accuracy) can 
be obtained by the PSPI method. This algorithm can 
be adapted conveniently to the IBM 3090  Vector 
Multiprocessor architecture. Frequency-domain 
methods lend  themselves  most conveniently to par- 
allel formulation, since there is no interdependence 
among data associated  with  different temporal fre- 
quencies.  Similar considerations hold  for the prob- 
lem dealt with  in the second  section of this paper, 
namely,  seismic  velocity estimation. 

The seismic computations presented in this paper 
share some common characteristics:  large amounts 
of data to be handled, high  floating-point content, 
and heavy  use  of arrays. Furthermore, each problem 
can  be naturally decomposed into a set of indepen- 
dent tasks  which require minimum synchronization. 

These three characteristic problems indicate that in 
seismic computations there is a very  large potential 
for coarse-grain parallelism at the algorithmic level, 
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Figure 12 Part of the migration code using the MTF primitives DSPTCH and SYNCRO 

SUBROUTINE  KPSPIV 
C read  input  data  (time  section) 

CALL TSIN(P,NT,NX,IUUMIG,TSTCSE) 
c Fourier  transform  in  time the  input data and  transpose 

CALL TRFTRP(P,POM,NT,NX,NT2,W,LZNT) 
C read  velocity  field  and  transpose 

CALL  CIN(C,NZ,NX,IUC,TSTCSE) 
CALL RTRAP(CT,NX,NZ,C) 

CALL CTRAN(CT,NX,NZ,REMN,REMX,CREF) 
c transform  velocity  field  into  normalized  refraction  index 

C compute  the  negative of the  squares of wavenumbers 

C zero output  matrix 

c============= begin  parallel  migration  in  the  frequency  domain 

CALL  NGSQA(ALFAz,NX,DX) 

CALL  VZMV $ $ ( QT , NX*NZ  ,1) 

C number of frequencies  per  process 

c """""""_ loop over  blocks of layers (sequential) 

c """""""" loop  over  frequency  bands (parallel)---- 

NOMBLK=NOMEFF/NPROC 

DO 3000  IZ=l,NZEFF,NZBLK 

DO  1024  IBLKS=l,NPROC-1 
IAMIN(IBLKS)=l+(IBLKS-1)"NOMBLK 
JAM=IAMIN(IBLKS)+NOMBLK-~ 

c============= fOrk=====================f================~-== 
CALL  DSPTCH  ('FDMGAV', * NT,NX,NZ,DT,DX,DZ,NOMEFF,NZEFF,IDZDZC, 

$ L~Nx,w(~,~,IBLKS),CREF,REMN(IZ),REM~(IZ), 
$ POM(~,IAMIN(IBLKS)),CT(~,IZ), 
$ QTO(l,l,IBLKS),NOM,IAMIN(IBLKS), 
$ NOMBLK,NZBLK,PZ(l,IBLKS),PZDZ(l,IBLKS), 
$ ALFA2,1Z,FRCSTR,LNEARR,INTRIG,EPSRFI, 
$ CLOA,NZBLM) 

1024  CONTINUE 
C 

IAMIN(NPROC)=l+(NPROC-l)*NOMBLK 
NOMBLZ=NOMEFF-IAMIN(NPROC)+l 
CALL  FDMGAV ( * NT.NX.NZ.DT.DX,DZ,NOMEFF,NZEFF,fDZDZDZC, 

$ . LZNX;W(l,l,NPROC),CREF,REMN(IZ),REMX(IZ), 
$ POM(l,IAMIN(NPROC)),CT(l,IZ), 
$ QTO(l,l,NPROC),NOM,IAMIN(NPROC), 
$ NOMBL~,NZBLK,PZ(~,NPROC),PZDZ(~,NPROC), 
$ ALFA~,IZ,FRCSTR,LNEAR,INTRIG,EPSRFI, 
$ CLOB,NZBLM) c""""""- ............................................ 

add harmonic  images """"""""""" 
CALL  SYNCRO 

c """"""" 
DO 1025 IBLKS=l,NPROC 

1025 CALL F$ADD(LOCK,QT(~,IZ),QTO(~,IZ,IBLKS),NX*NZBLK,~,~) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
JAM=IAM+NOMBLK-1 
JBM=IBM+NOMBLK-l 

3000  CONTINUE 
C============= end  of  parallel  migration in the  frequency domain 
C transpose  migrated  section 

c write  output  data  (depth  migrated  section) 
CALL  RTRAP(Q,NZ,NX,QT) 

CALL ZSOUT(Q,NZ,NX,IUMIG,TSTCSE) 
RETURN 
END 
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Figure 13 Sampling analysis of the seismic migration code 

4FFOlOI VS  FORTRAN  VERSION  2  RELEASE  3  INTERACTIVE  DEBUG 
=AFFOllI  5668-806  (C)  COPYRIGHT  IBM  CORP.  1985,  1988 
oAFFOl31  LICENSED  MATERIALS-PROPERTY  OF  IBM 
mAFF9331  THE  AFFON  FILE  WAS  PROCESSED  WITH 0 ERRORS 
=AFF995I WtlERE: PSPIT.  15 
** ENDDEBUG  SAMPLE(4)  CALLED 
=AFF112E  INTERVAL  TIMER  WAS  RESET  BY  USER  PROGRAM,  THUS  CANCELLING  SAMPLING. 
mAFF306I  PROGRAM HAS TERMINATED;  RC ( 0) 
=* ANNOTATE (PSPIT,KPSPIV,FDMGAV,PSPIVT,CITP,CMPTF) SAMPLING  ALL 
sAFF561I  ANNOTATING  LISTING  FOR  PROGRAM  UNIT  “PSPIT” 
=AFF561I  ANNOTATING  LISTING  FOR  PROGRAM  UNIT  “KPSPIV” 
=AFF561I  ANNOTATING  LISTING  FOR  PROGRAM  UNIT  “CITP” 
=AFF224I  746  LINES OF OUTPUT  WRITTEN  TO  AFFPRINT 
-* LISTSAMP * SUMMARY  ALL 
=AFF550I  PROGRAM  SAMPLING  INTERVAL  WAS 4 MS;  TOTAL  NUMBER  OF  SAMPLES  WAS  23704 

1AFF5521 SUM OF  DIRECT AND CALLED  SAMPLES: 
=AFF556I  PROGRAM  UNIT  SAMPLES  %TOTAL 
-AFF558I  PSPIT  23704 100.00 ***********X******** 

mAFF5581  KPSPIV ( p r o g r a m   k e r n e l )  21969  92.68 *****************X* 

=AFF558I  CITP ( c o m p l e x   i n t e r p o l . )  10477  44.20 X******** 

=AFF558I  SCFT (Fourier t r a n s f o r m )  8573 36.17 * * * X * * *  

4FF558I VC#ABS (complex  modulus)  5916  24.96 ***** 
5* QUIT 

which can be enhanced by one or more suitable 
integral transformations (for example, Fourier trans- 
forms). Parallelism appears at multiple levels  which 
can be  exploited simultaneously, rendering possible 
and useful the application of parallel decomposition 
techniques such  as domain decomposition and (at 
the lowest  level  of parallelism) vectorization. More- 
over, the combination of a tuned library  (i.e., ESSL), 
vector (vs FORTRAN) and parallel (PF) compilers, and 
expanded  storage (rendering memory management 
transparent to the application developer)  simplifies 
the task of tuning scalar  seismic  codes to the IBM 
3090 Vector  Multiprocessor, thus rendering possible 
combined vector/parallel  speedups in the range 15- 
25. 
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