Seismic computations
on the IBM 3090 Vector
Multiprocessor

Computerized seismic prospecting is an echo-ranging
technique usually targeted at accurate mapping of oil
and gas reservoirs. In seismic surveys an impulsive
source, often an explosive charge, located at the
earth’s surface generates elastic waves which propa-
gate in the subsurface; these waves are scattered by
the earth’s geological discontinuities back to the sur-
face, where an array of receivers registers the re-
fiected signals. The data recorded are then processed
in a complex sequence of steps. Among them, seismic
migration and stacking velocity estimation represent
two characteristic components of the process solving
the inverse problem of recovering the structure and the
physical parameters of the earth’s geologic layers
from echo measurements. A complementary tool in re-
lating seismic data to the earth’s inhomogeneities is
provided by seismic numerical models, which assume
a subsurface structure and compute the seismic data
which would be collected in a field survey, by solving
the direct problem of exploration geophysics. This pa-
per describes a vectorized and parallelized implemen-
tation of a two-dimensional seismic elastic model on
the IBM 3090 VF Vector Multiprocessor. An implemen-
tation of a parallel seismic migration algorithm is then
described. The paper also reports performance data
for a vector/parallel implementation on the IBM 3090 of
some typical seismic velocity estimation algorithms.
The three problems chosen are representative of a
wide class of geophysical computations, and the re-
sults summarized in this paper show their suitability
for efficient implementation on the IBM 3090 Vector
Multiprocessor; combined vector/parallel speedups in
the range 15-25 are in fact observed.

Seismic prospecting for hydrocarbon detection
seeks to determine the geologic structure of the
earth from indirect measurements obtained at the
earth’s surface. In seismic prospecting, elastic wave

510 KAMEL, KINDELAN, AND SGUAZZERO

by A. Kamel
M. Kindelan
P. Sguazzero

fields (acoustic as a first approximation) are gener-
ated in a controlled fashion at the surface, penetrate
the earth, and are backscattered by the earth’s in-
homogeneities to an array of receivers, where they
are recorded as shown in the model of Figure 1A.
The structure consists of four layers, with propaga-
tion velocities ¥V equal to 4, 3, §, and 6 km/s,
respectively. On the horizontal axis (at the earth’s
surface), the source-receiver distance is measured in
km; on the vertical axis (pointing down into the
earth), the depth is measured in km from the surface.
The seismic interpreters correlate what is seen in the
seismic data (Figure 1B) with the earth’s structure
through the use of a complex sequence of data
transformations, among which the processes of seis-
mic migration, seismic velocity estimation, and seis-
mic forward modeling play a major role. The three
hyperbolic curves are the echoes of the three layer
interfaces of Figure 1A. On the horizontal axis (at
the earth’s surface), the source-receiver distance is
measured in km; on the vertical axis, the arrival time
of the echoes is measured in seconds.

The purpose of seismic migration' is to reconstruct
the reflectivity map of the earth from the seismic
data recorded at the surface. The seismic signal
recorded by the receivers is a superposition of up-

© Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

Figure1 (A)Computerized seismic prospection overa

Figure1 (B) Seismic gather corresponding to the multilayer

multilayer of Figure 1(A)
4 a°
£ w
a =
S 11
_fo 2]
4
13
1 P
] ¥ 1
2 3 4 5 6 W» o

EARTH MODEL

ward-directed seismic waves originating from all of
the discontinuity surfaces of the subterrain. In the
migration process these recorded waves are used
either as initial conditions or as boundary conditions
for a wave field governed by the wave equation. As
a result, these waves are propagated backward and
in reverse time from the surface to the reflector
locations, thus allowing the accurate mapping of
subsurface geological “anomalies” such as oil and
£as reservoirs.

The time series associated with a single shot and
receiver is known as a trace. Seismic processing
techniques have been developed for groups of traces,
known as gathers. One such processing step preced-
ing migration is termed stacking.2 It consists of the
summation of the traces sharing the same source—
receiver midpoint after correcting them to compen-
sate for the offset between source and receiver. The
stacking process is based upon the accurate estima-
tion of the average propagation velocities of seismic
waves in the subsurface as a function of depth—the
stacking velocities. Seismic migration and seismic
velocity estimation represent two essential steps in
the inverse process of recovering the structure and
the physical parameters of the earth’s subsurface
from measurements obtained at the surface.

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

0 1T 2 3 4
SOURCE~RECEVER OFFSET (KM) . = ..

KAMEL, KINDELAN, AND sGUAZZERO §11

Additional insight is often obtained by forward-mod-
eling several hypothesized geologic structures with
the elastic or acoustic wave equation; in this way,
field surveys can be simulated numerically, and com-
puted results can be compared to field data.’

The first section of this paper presents a vector
multiprocessor implementation of a pseudospectral
2D elastic model and compares it, from the view-
point of performance, with a conventional 2D finite-
difference model, fourth-order accurate in space and
second-order accurate in time. Both implementa-
tions exploit the 1BM 3090 architecture together with
its associated software. A finite-difference scheme
has a lower operation count per grid point than a
pseudospectral (Fourier) method, but the latter, for
a specified accuracy, requires fewer grid points than
the finite-difference method.*

In the second section we deal with the problem of
estimating the stacking velocity efficiently. Basic al-
gorithms for the estimation of stacking velocity date
back to the late 1960s.>® The conventional stacking
velocity algorithms in the hyperbolic time-offset do-
main can be generalized to the case of analytic’
seismic traces. Complex-valued coherency function-
als may then be introduced.® This section reports
performance data of a vector/parallel implementa-
tion on the 1BM 3090 of some characteristic seismic
velocity estimation algorithms.

The last section of this paper deals with seismic
migration. Efficient and accurate algorithms have
been developed for downward extrapolation, based
on Fourier transform methods. These frequency-
domain approaches have proven to be more accurate
than conventional finite-difference methods in the
space-time coordinate frame. The seismic migration
section summarizes the results obtained implement-
ing phase-shift plus interpolation (pspI), a frequency-
domain, pseudospectral migration method, on the
1BM 3090 Vector Multiprocessor.

The forward-modeling problem: Elastic modeling

Elastic wave modeling. The basic equations govern-
ing wave propagation in a 2D continuous elastic
medium are the momentum-conservation and the
stress—strain relations.® Following Reference 10, we
make use of a derived set of wave equations which
contain stresses as variables instead of displace-
ments; i.e.,

o= As + Bf, (1)

512 «aMEL, KINDELAN, AND SGUAZZERO

where
Oxx
o=|o0:],
UXZ
A= LDTlD
= 5 D,
B=LDT,
A+ 2u A 0
L= A A+ 2 0],
0 0 i
_[a. 0 .
b= [0 . ax]’
and f = (f) @)

where x and z are, respectively, horizontal and ver-
tical Cartesian coordinates; oy, 6.z, and oy, are the
three stress components; f, and f; represent the body
forces; p(x, z) represents the density; and A = A(x, z)
and p = u(x, z) represent Lame’s elastic parameters.
Here a dot above a variable represents a time de-
rivative and T denotes matrix transposition. In
the direct (modeling) problem, the stresses serve as
the main unknowns, whereas the rock parameters
p, A, and p, as well as the body forces f:(x, z, ¢) and
f(x, z, t), are known quantities. Appropriate initial
and boundary conditions are to be prescribed: In
this work we consider exclusively absorbing bound-
ary conditions.'!

In order to solve Equation (1) numerically, a discre-
tization in time is first performed, using a leapfrog
technique:

ot + At) = 24(t) + o(t — At)
= (at)’[4e(t) + Bf(1)]. (3)

Then a discretization in space is operated, using
either a pseudospectral approach similar to that de-
scribed in Reference 10, or a conventional fourth-
order finite-difference scheme.

In the pseudospectral approach, the spatial deriva-
tives appearing in Equation (2) are accurately com-
puted in the Fourier (spectral) domain. In other
words, the differential operators 3, and d, appearing
in (2) are represented with D, and D, respectively,
where

D, = F;'iKk,F, (y=x, 2), (4)

with F, and F3' representing, respectively, the direct
and inverse Fourier transform operators [efficiently

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

implemented by the use of the fast Fourier transform
(FFT)].'? K, is the operator multiplying each Fourier
coefficient by its wave number, and i = v—1. The
computational cost per time step of the pseudospec-
tral modeling algorithm is

% = 20N:N.log,(N:N;) + 40N, N.
t

+ 12N NSTRIP, + 12N, NSTRIP,, (5)

where NSTRIP, and NSTRIP, are absorption strip
widths in the x and z directions, respectively, intro-
duced to implement absorbing boundary conditions.
The first term in Equation (5) accounts for Fourier
transformations, the second term for time advancing
with Equation (3), the last two for absorption. For a
medium-size 2D numerical mesh of N, = N, = 256,
N, = 1024, the number of floating-point operations
performed in a simulation run is of the order of 10,

In the finite-difference approach, the spatial deriva-
tives are computed by approximating the differential
operators 0, and 9, appearing in (2) with d, and d.,
where

1 {1 1
d, (E;z—iE;‘+ﬁE;——E5)

T 2h,\6 3 3 6

=D, +0H) (v=x12, (6

with E, representing the translation operator and 4,
the grid spacing in the v direction. The computa-
tional cost per time step of the finite-difference mod-
eling algorithm is

C

A 80NN, + 12N, NSTRIP;

+ 12N.NSTRIP,. (7)

With large numerical meshes or 3D modeling, it
becomes essential to look for computing techniques
that speed up the execution of such codes.

Vector/parallel implementation. The development
work discussed in this paper was primarily carried
out on the 1BM 3090 200 Vector Facility—later up-
graded to a 3090 400E—at the 1BM European Center
for Scientific and Engineering Computing (ECSEC).
The 1BM 3090 400E computer'>'* at ECSEC has four
independent serial processors which share 128 MB of
central memory and 256 MB of expanded storage.
Each processor has a 64-KB memory cache, a Vector
Facility with sixteen 32-bit vector registers 128 ele-
ments long, and operates at a cycle of 17.2 ns, with
a theoretical peak speed of 116 million floating-point

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

operations per second. Additional runs were per-
formed on the machine of the Systems Evaluation
Laboratory at the 1BM Washington Systems Center,
a six-way 3090 600E with 256 MB of central memory
and 1024 MB of expanded storage.

The 3090 vF architecture is well suited to numerical
schemes solving evolutionary PDE such as (1), and
particularly to the pseudospectral algorithm [(3),
(4)], since it permits very efficient computation of
the FFTs using the vector hardware, and at the same
time a parallel decomposition of the computation
using the 3090 multiple processors; similar consid-
erations hold for the finite-difference scheme [(3),
(6)]. In order to utilize the Vector Facility efficiently,
we have used routines from the EssL library'>'® to
compute the direct and inverse Fourier transforms.
In addition, we have used the vS FORTRAN Vectoriz-
ipg Cgrgpiler to vectorize the remaining computa-
tions.

With respect to the parallel decomposition of the
algorithms, we have used a simplified domain de-
composition technique. This strategy makes use of
the fact that with computational arrays oriented
along the Cartesian coordinates x and z, space deriv-
atives operate on individual columns/rows inde-
pendently of one another. Thus, the problem domain
can be decomposed into strips, and each processor
handles the operation for its strip. The orientation
of the parallel strips must be switched from row to
column or vice versa when the direction of the partial
derivative is switched. Equivalently, the data arrays
can be transposed and the parallel strips kept always
oriented columnwise, as recommended for faster
execution in FORTRAN. This constitutes an important
difference between pseudospectral and finite-differ-
ence schemes. The pseudospectral schemes are non-
local in the sense that in order to compute derivatives
in the x and z directions at a given point, they must
access all the data corresponding to the row and the
column of the point. Conversely, finite-difference
schemes are local, and for each point, only datain a
relatively small neighborhood need be considered.
This difference has an important implication when
one is trying to parallelize the algorithm. For finite-
difference schemes, the parallel processors can be
permanently assigned a data subdomain, and need
only exchange or share the data at the boundaries of
the subdomains. In Fourier methods, on the con-
trary, the parallel processors must access (for exam-
ple, in the x differentiation), data previously assigned
to other processors (in the z sweep), thus leading to
a greater volume of communication.

KAMEL, KINDELAN, AND SGUAZZERO 513

Figure 2 Pressure wave snapshot for the corner problem (high velocity inside the corner) as computed by the elastic

pseudospectral model

PRESSURE WAVE

VP 4000, M/E. |
Vs 2200, M/S°

AOTHIT

With respect to the software support for paralleliza-
tion, we have examined two alternatives for the
pseudospectral code. The first divides the work
among the available processors with the help of the
VS FORTRAN Multitasking Facility (MTE).'® MTF is
based on DSPTCH/SYNCRO primitives, to allow the
asynchronous execution of subroutines on multiple
processors sharing a common memory. For more
details on this implementation, see Reference 19.
The second alternative makes use of Parallel FOR-
TRAN (1>F)20 constructs, which allow a finer level of
parallelism, down to the grain of a DO loop. To
implement the finite-difference scheme, we have sim-
ply vectorized and parallelized it with PF.

As an example of the numerical results obtained
with the elastic model, Figure 2 shows the response
of a geological model corresponding to a corner

514 KAMEL, KINDELAN, AND SGUAZZERO

structure. In Figure 2, the terms vp and vs refer to
pressure and shear velocities, respectively, and S
indicates the source location. Calculations were
made using a pressure-point source with a high-cut
frequency of 40 Hz for a numerical mesh of 256 X
256 nodes with a grid spacing of 20 m in both x and
z directions and a 0.001-s time step. For a quantita-
tive assessment of the geophysical significance of the
pseudospectral elastic model, refer to Reference 21.

Performance analysis. The sustained performance of
the pseudospectral algorithm is presented in Table
1, which includes the cPU time per step in seconds,
the percentage of time used in computing FFTs, the
sustained performance in millions of floating-point
operations per second (Mflop/s), and the speedup,
for a resolution of 128 x 128 grid points: Here and
consistently through the rest of the paper, all timings

1BM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

Figure3 Time distribution of machine instructions in the
execution of finite-difference elastic modeling code
on the IBM 3090 running in scalar mode

Figure4 Time distribution of machine instructions in the
execution of finite-difference elastic modeling code
on the IBM 3090 running in vector mode

100% = 488 MSEC (SPEED = 10.9 MFLOP/S)

15% SC. NON

14% SC, FL
FL. INSTR. OP(+,%)

39% SC. FL.
OP.&L0AD

32% FL. LOAD/
STORE

IBM 3090 WITHOUT VF

100% = 164 MSEC (SPEED = 32.2 MFLOP/S)

10% SC.
INSTR.

35% VEC, FL.

26% VEC. FL.
LOAD/STORE

29% VEC. FL.
OP.&LOAD

1BM 3090 WITH VF

Table 1 Performance of different implementations of the pseudospectral elastic modeling algorithm for the 128 x 128 grid on the
IBM 3090 200 VF (main storage = 64 MB; expanded storage = 128 MB) using MTF for parallel execution and ESSL
(Release 1) for Fourier transformations.?2 Computations are done in single (32-bit) precision.

Configuration Processing

CPU Time FFT
per Step %
(s)

Mflop/s Speedup

Scalar-Serial
Scalar-Parallel, MTF
Vectorized
Vector-Parallel, MTF

A 3090 Uniprocessor

B 3090200

C 3090 VF Uniprocessor
D 3090 200 VF

0.99 87.1
0.53 83.5
0.19 66.5
0.12 59.8

1.87 (B/A)
5.21(C/A)
1.58 (D/C)

are taken in standalone mode, with computations
performed in single (32-bit) precision.

The Mflop/s rates are obtained using Equation (5)
to calculate the number of floating-point operations
per time step. Equation (5) for the pseudospectral
method and the companion equation (7) for the
finite-difference method consider only floating-point
additions and multiplications, and therefore neglect
integer arithmetic, transpositions, and loads/stores,
although it is well known that they play a nonnegli-

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

gible role in the balance: Evidence is provided in
Figures 3 and 4 showing the time distribution of 1BM
System/370 machine instructions in the execution
of the finite-difference elastic modeling code [(3),

©6)].

As is shown in Case C in Table 1, running the
vectorized algorithm on the 3090 vF produces very
good performance results, with a 3090 vector/scalar
ratio of 5.21. This ratio is 7 for the computation of
FFTs with the ESSL routines, and ranges from 2.2 to
2.4 for the remaining computations.?

KAMEL, KINDELAN, AND SGUAZZERO §15

In the scalar multitasking implementation of the
decomposition technique (Table 1, Case B), the par-
allelized parts of the code correspond to 96 percent
of the execution time (essentially, Fourier transforms
and time stepping), while matrix transpositions and
computation of the absorption are performed in
serial mode. The speedup (parallel/serial) ranges
from 1.6 to 1.94 for the individual sections of the
algorithm, leading to an overall two-way speedup of
1.87 on the two-way multiprocessor 3090.

In the vectorized and multitasking case (Table 1,
Case D), the speedup is only 1.58, because the par-
allelized portion of the code is also vectorizable, and
the use of the Vector Facility shrinks the parallelized
fraction to 87 percent of the total execution time;
speedups for individual sections range from 1.5 to
1.9. However, as shown in Table 2, with increased
grid sizes one obtains at the same time overall two-
way speedups greater than 1.75 and higher vec-
tor/scalar speedups. This is due to the fact that the
percentage of floating-point operations associated
with FFT computations increases with grid size, and
these computations are very efficiently handled. The
key factor in performance improvement is the in-
creased number of floating-point operations per
memory reference.

It is worth noting that, for the cases in which the
problem size does not fit in real storage (last column
of Table 2), the data are allocated to the expanded
storage of the 3090" (the specific configuration used
in this experiment had 64 MB of real storage and 128
MB of expanded storage). The operating system then
pages the data in and out of real storage at a rate of
approximately 75 us per page fault. This leads to a
degradation in performance, as can be observed from
the results shown in Table 2 for the 1024 x 1024
problem size. Nevertheless, this performance is still
very satisfactory; moreover, since the operating sys-
tem takes care of paging, it is possible to run very
large models without explicit memory management.

The upper portion of Table 3 shows performance
data on the six-way 3090 600E for a grid size of 512
X 512, in the vectorized and parallelized case. Also
shown is the fraction of the code which runs in
paraliel, which in this case corresponds to 92 percent
of the serial time. It is observed that although this
fraction is rather high, the relative weight of the
parallelized fraction decreases rapidly with the num-
ber of processors, so that with six processors it is
only 66 percent. To fully exploit the parallel potential
of the code, therefore, it was necessary also to par-

516 KAMEL, KINDELAN, AND SGUAZZERO

allelize the transpositions and the absorption. This
was achieved quite easily by using the PF constructs
shown in Figure 5. In this case the subroutines
parallelized are SCRFT and SRCFT, performing the FFT

VS FORTRAN Interactive Debug
(IAD) is a very useful tool.

algorithm, and the subroutine WAVE, performing the
multiplication by wavenumbers; loops 20 and 70 are
parallelized. Figure 6 shows, for the elementary ker-
nel of matrix transposition, the synergism between
parallel and vector execution.

Results are given in the lower part of Table 3 and in
Figure 7, which shows the sustained speed, relative
to that of the scalar 3090 uniprocessor, as a function
of the number of processors. Results are presented
for both scalar and vector implementations on the
1BM 3090 600E processor complex, showing a very
significant combined vector/parallel speedup. Dot-
ted lines show the theoretical linear speedup curves.
In the scalar MTF case, where the parallel fraction is
96 percent, the speedup is nearly linear. In the vector
MTF case, where the parallel fraction is only 92
percent, it is clear that to improve the performance
when using four to six processors, it is necessary to
increase the fraction of the code which runs in par-
allel. This has been done by parallelizing the trans-
position and absorption using PF.

The sustained performance of the different versions
of the finite-difference code for different grid sizes is
given in Table 4. Vector/scalar speedups of the order
of 3 are observed, together with an almost linear
speedup when the code is parallelized with pF.

It is worth mentioning that the vS FORTRAN Inter-
active Debug (IAD)23 is a very useful tool that iden-
tifies computation-intensive portions of application
programs, providing statistical analyses and sum-
mary information at subroutine and statement lev-
els. Moreover, the activity can be graphically dis-
played, as shown in Figure 8. Asterisks and the
associated values indicate CPU percentage spent at
the corresponding statement,

BM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

Table 2 Single-precision performance of the pseudospectral elastic code for different grid sizes on the IBM 3090 200 VF (main
storage = 64 MB; expanded storage = 128 MB) using MTF for parallel exegulion and ESSL (Release 1) for FFT
computations. The program data fit in the main memory except in the 1024” case (last column) which requires
approximately 100 MB.

Configuration Grid Size

256°

Speed
(Mflop/s)

3090 Uniprocessor X 5.30
3090 200 10.13
3090 VF Uniprocessor 311
3090 200 VF 54.2

Table 3 Single-precision performance on the IBM 3090 600E VF and on the IBM 3090 400E of the pseudospectral elastic
modeling code for a resolution of 512 x 512, as a function of the number of processors, using MTF and PF for paraliel
execution. Program data (25 MB) fit in main memory.

Contiguration Processors Time Pau;llel Mflop/s Speedup
(s)

3090 600E, MTF 1(1VF) 2.64 92.0 39.7 1.00
3090 600E, MTF 2Q2VF 1.45 84.8 72.6 1.82
3090 600E, MTF 3(3VF) 1.04 79.0 100.7 2.54
3090 600E, MTF 44 VEF) 0.853 73.3 123.1 3.09
3090 600E, MTF 5(5 VF) 0.737 68.8 142.5 3.58
3090 600E, MTF 6 (6 VF) 0.665 66.3 158.0 3.97
3090 400E, PF 1(1 VF) 2.71 38.6 1.00
3090 400E, PF 22 VP 1.38 75.8 1.96
3090 400E, PF 3(3VF) 0.93 112.8 2.89
3090 400E, PF 4(4VF) 0.73 144.2 3.73
3090 600E, PF 5(5 VF) 061 173.7 4.50
3090 600E, PF 6 (6 VF) 0.54 195.6 5.05

Table 4 Single-precision performance of the finite-difference elastic code for different grid sizes using PF for parallel execution
on the IBM 3090 400E VF (main storage = 128 MB; expanded storage = 256 MB) and on the IBM 3090 600E VF (main
storage = 256 MB; expanded storage = 1024 MB).

Configuration Grid Size | Memory (MB)

1272 1.28 2552 || 5.12 5112 || 20.48 10232 | 81.52

Time (ms) | Speed (Mflop/s)

3090 400E (1 scalar processor) 1151114 488 | 10.9

3090 400E (1 VF) 40.0 | 32.7 164 | 32.2 682 | 31.0 2767 | 30.6
3090 400E (2 VF) 22.1159.4 84.7)|62.4 351160.3 1454 | 58.2
3090 400E (3 VF) 59.7 | 88.5 2371 89.2 970 | 87.2
3090 400E (4 VF) 46.6 | 113.2 182 116.2 746 | 113.5
3090 600E (6 VF) 132} 159.4 537.6 | 157.5

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988 KAMEL, KINDELAN, AND sGuazzero 517

Figure 5 Using the PF constructs SCHEDULE and WAIT and directives to parallelize the execution of subroutine calls and
transposition loops in the pseudospectral elastic code

C Differentiate F with respect to x and save in FX
c
c (1) Transpose F, store in FT
c
c

$PARA IGNORE RECRDEPS
DO 20 K=1,NPROC
C$PARA PREFER VECTOR
DO 10 J=1,NX
DO 10 I=(K-1)*CHUN+1,K*CHUN

10 FT(J,I)=F(1,J)
20 CONTINUE

C

c (2) Fourier transform
C

DO 30 I=2,NPROC
SCHEDULE ANY TASK ITASK(I),
* CALLING SRCFT{0,FT(1,YINIT(I)),MX,DFX(1l,1,YINIT(I)),
STR,NX,NYH,!,1.,
* ADX1(1,I),NDX1,ADX2(1,1),NDX2,ADX3(1,1),NDX3)
30 CONTINUE
CALL SRCFT(0,FT(1,1),MX,DFX(1,1,1),STR,NX,NYH,1,1.,
* ADX1(1,1),NDX1,ADX2(1,1),NDX2,ADX3(1,1),NDX3)
WAIT FOR ALL TASKS

*

(3) Multiply by wave numbers

aaon

DO 40 I=2,NPROC
SCHEDULE ANY TASK ITASK(I),
* CALLING WAVE(MXHI,MY,NXH1,YINIT(I),YFIN(I),DFX,CSKX)
40 CONTINUE
CALL WAVE (MXH1,MY,NXH1,YINIT(1),YFIN(1),DFX,CSKX)
WAIT FOR ALL TASKS

(4) Inverse Fourier transform

a0

DO 50 1=2,NPROC
SCHEDULE ANY TASK ITASK(I),
* CALLING SCRFT(0,DFX(1,1,YINIT(I)),STR,FT(1,YINIT(I)),MX,
NX,NYH,-1,INX,
* AIX1(1,I),NIX1,ATX2(1,1),NIX2,AIX3(1,T),NIX3)
50 CONTINUE
CALL SCRFT(0,DFX(1,1,1),STR,FT(1,1),MX,NX,NYH,-1,INX,
* AIX1(1,1),NIX1,AIX2(1,1),NIX2,AIX3(1,1),NIX3)
WAIT FOR ALL TASKS

*

(5) Transpose the result and store in FX

loNoNeNe!

$PARA IGNORE RECRDEPS
DO 70 K=1,NPROC
C$PARA PREFER VECTOR

DO 60 J=1,NX
DO 60 I=(K~1)*CHUN+1,K*CHUN
60 FX(J,1)=FT(1,J)
70 CONTINUE
RETURN
END

518 KAMEL, KINDELAN, AND SGUAZZERO IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

Figure 6 Synergism between parallel and vector execution in the matrix transposition kernel compiled with PF

C$DIR IGNORE RECRDEPS

PARA 4=—memm DO 10 IPROC=1,NPROC
| C$DIR PREFER VECTOR
VECT |4=mmmm DO 20 J=1,NY
ELIG [[4mmm= DO 20 I=(IPROC-1)*NCHUNK+1,IPROC*NCHUNK

FT(J,1)=F(1,J)

Figure 7 Sustained speed on the IBM 3090 600E multiprocessor, for vector and scalar processing, relative to the
scalar uniprocessor for the elastic pseudospectral code ??

)

RELATIVE SPEED

196 MFLOP/S

158 MFLOP/S

39 MFLOP/S 28 MFLOP/S

I l
1 2 3 4 5 6

NUMBER OF PROCESSORS

——QO——0 LINEAR SPEEDUP

€@ PF VECTOR EXECUTION

{} {1 MTF VECTOR EXECUTION %PAR = 92
L fll MTF SCALAR EXECUTION %PAR = 96

|l Ne)
| sl Ne)

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988 KAMEL, KINDELAN, AND sauazzero 5§19

Figure 8 1AD annotated listing (with sampling option) of a part of the 2-D finite difference elastic code

DO 1 J=3,NX~2
DO 1 I=3,NY-2

+C2Y(SYY(I+1,J)-SYY(I~1,J))
+C1X(SXY(1,J-2)~SXY(I,J+2))
+c2x(sxx(1 J+1)-8XX(1, J—l))
+CIY(SXY(I—2 J)~SXY(I+2 J))

1 CONTINUE

FY(I,J)=(CIY#*(SYY(I-2,J)~SY¥(I+2,J))

+C2X(SXY(I,J+1)~SXY(1,J~1)))*FIDEN(I,J)
FX(I,J)= (crx*(sxx(x J-Z)—SXX(I J+2))

+C2Y(SXY(I+1,J)~SXY(I~1,J)))*FIDEN(I,J)

14,73 ddcdickihk
14,45 *akkasnn

0.28

The inverse problem: Seismic velocity
estimation

Problem formulation. Conventionally, the stacking
velocity estimation is performed directly in the off-
set-time domain (x, £) on one or more gathers,

p=px, 1), t))

where x is the source-receiver offset, ¢ is the two-way
travel time, and p is the observed wavefield; basically,
the physical domain (x, ¢) is scanned with the two-
parameter family of curves,

2

X
TXx; to, v) = 15 + =)

looking for hyperbolic alignments of the data p(x, 7).
From the algorithmic viewpoint, the velocity esti-
mation procedure consists of two steps, to be re-
peated for every stacking velocity v:

1. The nonzero-offset data p are transformed into
zero-offset data p by a hyperbolic coordinate
transformation consisting of a time-variable shift,
the Normal Move-Out (NMO) correction

D = P(x, ty; v) = plx, T(x; £y, v)], (10)

where T(x) is given by Equation (9). In this way
the data p, originally characterized by hyperbolic
alignments (9), are transformed into data p with
straight-line patterns f, = const.

2. For each travel time ¢,, the uniformity of the data
P(x, ty; v), NMO-corrected with the stacking veloc-
ity », is quantitatively evaluated by means of some
coherency functional F and assigned to the veloc-
ity spectrum F(v, t,).

520 KAMEL, KINDELAN, AND SGUAZZERO

Coherency functionals. Numerous functionals have
been proposed to evaluate quantitatively the good-
ness of fit obtained on a given gather with a certain
stacking velocity ». The most common functionals
measure the similarity of the traces of the NMO-
corrected gather, and are based on either the sum-
mation of the traces or the correlation of the traces
with various choices of normalization. A widely used
coherency measure’ is the semblange

to+5/2 [1 § ()]
~ & Py
t=1026/2 N X X=Xp

to+5/2 X) (11)

S = 3 [;o)

t=1p—8/2 * " x x=xp

S'(V, 1) =

All the coherency functionals can immediately be
generalized, following Reference 7, to the case of
complex-valued gathers

Wx, 1) = p(x, 1) + ig(x, 1), (12)
where p(x, t) is an ordinary real-valued gather an-i
g(x, 1) is obtained from p(x,) by the application of
the Hilbert transform with respect to time ¢. To this
new class belongs, by example, the statistically nor-
malized complex-correlation functional

2
N-D 2 2

xX=xg z>x

I',) =

to+8/2

T P LWz)

=ty—8/2

1o+8/2 120 go+72 1/2°
[) |$(x,z;v)|2] [) |$(z,t;u)|2]

t=ty~8/2 t=19—5/2

(13)

where * denotes complex conjugation.

1BM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

TIME (S)
~ o o o » > S “ “ N
=} o =3 o =3 o [=] o o wn
o =} S =} o =3 =3 < =1 o
I I } J]
o] |]
[=}
=}

A
L Lt
B i dh A e e e e e aal ,4(1‘((‘%((«11({(((1%((({(}((({%(({52(((‘1{ o y——————{

e Y Y Y Y e e Y ey W W Y g e e e v v Y v e e e ey

(WM) 13S440

e A il Seatnatiuds Rttt At e am 2 et e S A e e bad ek e e A
b W T e Ay e Y A Y e ey e e Y g e g e e e ey o Y A A e v WY
o | (1((('((((5“w<(.l<,<(((5‘(«.((((\((t.\((f(jt«((((((((k(((l((({d((%(gf_?((f},ﬁaf
m aitd L4 an 'l «ff((t((..\l«r?}\((tl(((ﬁﬂi.ﬁﬂi‘c.%((#i E«fi«({(({«(}‘{«{({é ,%‘
(}.(4((.()..((\}.}((,.(4(.,?2((...}(((((,\(5,.(z?«i«?(fé«(«i(((g,_?sz({& A
o YV Y Vv e Y Y Y Y ey W e W Y e WY W ey e Y ey ey
l}.«,‘?ﬁ‘)‘_,%15\((((1(4(;4.{{(/4((()J(f(d(l‘/-,‘(.c(,}((ﬂtx((t{(,‘(f(((g{(«‘fiﬂw

8861 ‘¥ ON 'Zg TOA "TYNHNOr SW3LSAS Wl

e ¥ N Y e ey e Y e Y e Yy e e e ey UABAAMMAAMS A AL aaaama At
\J\(c)\((\-\.(éf(‘.\.(%I(é,}%(<(.<«({((,.((faf{,i(((.72(., (fx??((((,\«./.?f(l(,, !
e W Y A Wi Y e A g e Y Y o e e Yy ey NN Y Y Yy
b e YAy W e i e e AT Y Y Y Y VY Y i e e v A e

1;\({f).gffzfzﬂfzr}%(flizf(}fftfﬁ‘(r(J\im””%.f(((((é\r?\?!\i,, i~
el dad At e e A e et A L e e I Mt A A R haaaane 4 T’I‘
w \fé(fif!iﬂ.««ii?%?é,((é{gz VY W YWY Y ey %I}I“l

u

b Y Sy ey ,4((11((((1(&(((.((((4(({,(‘((‘(({(}((,. VY W VY Yy el
?Eéf_lg_‘éggng(fi/%a{fkﬁ «(((((((,\(/.\7((1.24,,
R)] ﬂs((}‘((‘«(((fiﬁ?((?(((fflé IV NV Yy
R AdAd Al Aasan d Seamand A desd A et At MAM ALMAS A dn Adadd] I VWV WYY Yy
o qz\((((, (fff(((e(,<?¢((t(}\<(£(<(§<(((>$‘.((<(¢f<‘.q\((.{(.)‘((,, A\ v <,<<(<(J{
(..4.1((((,(82..(«4((1 s (<<<<<((<((((.S\a<<(«(f,4)374,(1‘.(. W <YV ry Y

; A | («fl((é((ﬁ&(«flf«(/i({t, <<1((<<<<<,£2<<<(.(<. —]
[V 9 e Y e YN Y Y Y VY Y Y Y e ey P I Y ey]
Pl Mt & il abatt o LA AR A | NV AYVY Y W gy e i e s W e e ey Yy

R R 2t s N A 11 Rt At Aa SLANSE T Lhn
(z

g W Wy Ay e e Yy e e WY e e Y Y e e e WY e Y ey ey Y ey
[y &lﬂ(x«(&?(«k((z?«f\(‘((f(&(((((((‘(&(ifﬁ(!(ll{((} <4(.<(1<(<.(5 .
‘,‘,?(fé«i},«,ﬁ/)fa«(l(f ?t%?xf,&iff(ﬁf}\.ﬁ VY ey (?e(«(é

Al Auaieded's .<§(,4?(($4<<f(x((ﬂ<,<<(0 ha hatmaet L anban 1] Y Y Y Yy |
.(1((((4/‘\1?15(4 P Y Y VY o e ey e e Y Y v e]
S YA Y Y e Y e N W W e A YA Y ey S
by "y Wy ,...((((14«1(([:&4(2(1(?(((%«((({({,« <>(f(.<<((t<<<r<(f(,€>t<4<(<(——————
13\1(ce((.,‘f(((((cf(\((s«éqeg%{(_gt{(/qf{,}i(ff(((f(«((x((} SR
N W r W e v e e e VY Ny e WY e e e e Y e e e ey ey e

N
o e A e A MAdt CA A AGE AL AAstach A ab i ot S A v S —
=V e ey W Y Y Y Y W e ey e e WY el Ti
MAAARE A Adet it Sa' N IRl] Aash M At MMM ALA edasdad'l 2 AT BeeetAa A Y t e
A aacay |

((((((1,(((((((.,4((42&((,?(((((?%(((«((\(({(2(«‘ YWYy

R e A L Al b Abad A add At il a2 1?.(/ |
o A et '
7(?5(((((‘(((«(i(%.ff:((g(‘{}(f((tﬂg(vy

v %&q

A Y VY Y 1Y A ey N Y ey ey e ey e

LA Abt 2 at A Lad o Y YV ey e AaA4
g et Rl ae PR et ?iéckféf«fﬁfﬁ? el

G Ty Y P Y Yl e Y ey VY Y AV e ey e Y Y Y Y Y A W vy (e
2((?(?(({((() é.%}z((f_?}(f(;qléfuﬁn‘ v~
Landtal hadtiadadd et LA IS e M et A A At R e et AN 2 o] iy

Ay [BAISIUI UR YIIM pajdues st A1100]

-3A UL 8 OUIIRIY Ul PILIOSIP anbIuydd] Juisss
-001disod 2y} Yum paduBYUD SI PUe (¢]) UCHEB[BLIOD

's/w Gl
-SSOI0 [BOTISTIBIS 9Y) SISN [RUOIIOUNJ AOUAIAYOD YL

‘01 g1 ur umoys st ‘(g1) I01ewnss ay) jo dpy
Y1 i paindwrod ‘winIioads ANdo1aA Surpuodsariod
AU L "BIEp SULIBW JO Jayjes STWSIS B SMOUS ¢ SIn31

1v st [ensalul Buiidwes ayy :(eag yoejg) elep auliew jo Jayieb dwo 6 anbig

0 (0001
4\) wafqoid azis-wnipawl © 10

wog si buloeds asesp oy} ‘sw §

-STp sno1ad1d 9y} UI PIIBdIPUI SV "UONNIAXd Ay} dn

paads yey3 sanbruyose) Sunnduwod I0j JOO[01 [BIIUSSSI
‘uonEWS? £)120[3A-SupPe)s 10§ swWy)LIos[e [d[jered

$OUI03q 11 ‘PAPIAU ST AJATIOBINUI IO ‘PIssaoold dq
1snut s10y1es jo 1squinu J3xe] e J1 'sdogy 01 JO I9p10

a1 JO ST UOTIBWTSY AJI00[A B JO 1500 9

'N ‘0S =N ‘001

128 onazzvnos ONY ‘NvTIONDI TNV

Figure 10 Velocity spectrum of the marine CMP gather of cussions, the stacking velocity estimation algorithms

Figure 9 consist essentially of nested loops, running over the
velocities v, the offsets x, and the time samples . The
NMO transformation accounts for more than 50 per-
cent of the cost (see Figure 11) and consists of an
offset-dependent stretching of the time axis of the
traces. The rest of the computations comprise sam-
ple-by-sample additions or multiplications of the
traces, in particular as required by the normalization
of formulae (11) and (13). Therefore, the velocity
estimation algorithms are ideal candidates for imple-
mentation on a vector computer architecture where
the trace operations are mapped into vector instruc-
tions. Furthermore, all vector operations appear in
an outer loop running over the trial stacking veloci-
ties. Since the computations associated with different
velocities » are totally independent, these algorithms
are also good candidates for a parallel computer
implementation. An optimal performance can be
achieved on a vector multiprocessor by splitting the
outer parallel loop on several processors which exe-
cute the innermost loops over the trace samples in
vector mode. Table 5 summarizes the timing results
of a FORTRAN-coded implementation of the velocity
algorithms (11) and (13) on the 1BM 3090 vF Vector
Multiprocessor, with the parallelization and vector-
ization criteria emerging from the previous discus-
sion; for more details, see Reference 8.

TIME (S)

3.00 —

3.50 ~

4.00 &

450

5.00

It is easily observed that a g-fold speedup is effectively
measured when executing on g processors of the IBM
3090 vector multiprocessor g identical tasks gener-
ating 1/q of the spectrum. The g tasks are completely
independent and must synchronize only at the end
of the computation; therefore, the interprocessor
communication and the parallelization overhead are
virtually zero. This linear speedup is attributed to
the large granularity of the problem and is achieved
by modifying the serial code using MTF.

5.50

6.00 —

6.50

The inverse problem: Seismic migration

Wave-equation migration. Migration can be formu-
lated as a numerical solution to the partial differen-
tial equations which govern the back-propagation of
1.'40 1.60 1.80 2.00 the recorded signals from the surface to the reflector
VELOCITY (KM/S) locations in reverse time. This approach, generally
referred to as wave-equation migration, consists of
two steps: wave extrapolation and imaging. The the-
ory of wave extrapolation is based on the assumption
that the zero-offset pressure data, defined in the (x,
1) domain, satisfy the scalar wave equation

Fp_A4dp_9p
8z »? arr ax®

7.00 —

(14)

522 KAMEL, KINDELAN, AND SGUAZZERO IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

Figure 11 Sampling analysis of the velocity estimation code using the estimator (13)

=AFF0101 VS FORTRAN VERSION 2 RELEASE 3 INTERACTIVE DEBUG

=AFFO111 5668-806 (C) COPYRIGHT IBM CORP. 1985, 1988

=AFF0131 LICENSED MATERIALS~PROPERTY OF IBM

=AFF9331 THE AFFON FILE WAS PROCESSED WITH 0 ERRORS

=AFF9951 WHERE: VELANT.15

=% ENDDEBUG SAMPLE(4) CALLED

=AFF3061 PROGRAM HAS TERMINATED; RC (0)

=% ANNOTATE (COPRO,ANRZK,ITP2Cl) SAMPLING ALL

=AFF5611 ANNOTATING LISTING FOR PROGRAM UNIT "COPRO"

=AFF5611 ANNOTATING LISTING FOR PROGRAM UNIT "ANRZK"

=AFF5611 ANNOTATING LISTING FOR PROGRAM UNIT "ITP2CL"

=AFF2241 481 LINES OF OUTPUT WRITTEN TO AFFPRINT

=% LISTSAMP * SUMMARY ALL

=AFF5501 PROGRAM SAMPLING INTERVAL WAS 4 MS; TOTAL NUMBER OF SAMPLES WAS 3465.
=AFF5521 SUM OF DIRECT AND CALLED SAMPLES:
=AFF5561 PROGRAM UNIT SAMPLES
=AFF5581 VELANT 3465
=AFF5581 QUADR (get analytic signal) 27
=AFF5581 COPRO (estimator (13)) 3399
=AFF5581 ITP2Cl (trace interp. in NMO) 1469
=AFF5581 ANRZK (normalization) 778
=AFF5581 V#SQRT (square root) 579

%#TOTAL
100.00 *kkkkkkkkkkkhkkhkkkk

0.78

98,10 HFkdkkdkkdhikkhkidhdkk
42 40 *ikEkRik

22,45 #hkk

16.71 %**%

Table 5 Single-precision performance of two stacking velocity algorithms on the IBM 3090 Vector Multiprocessor operating on a
gather consisting of 100 traces (1024 samples per trace) and generating a spectrum consisting of 60 trial velocities and
256 travel times.

Algorithm F Scalar Vector Two-processor Six-processor
Uniprocessor Time Uniprocessor Time Time Time

s) S (s {s)

S 16.6 6.0 3.0 10
E)) 410 19.2 9.6 3.2

with p = p(x, t, z), where x is the horizontal variable,
z is depth, ¢ is two-way travel time, and » = »(X, 2) is
the velocity. The corresponding one-way wave equa-
tion in terms of the variable P(x, w, z) obtained from
px, t, z) with a Fourier transform with respect to
time, reads

. kx 27172
op _ 2o F;‘[l - (——”)] F.P,

0z v 2w (s)

where k, is the wavenumber with respect to x, w is
the temporal frequency, and F, and F;! represent
the direct and inverse complex Fourier transform
operators with respect to the direction x. Equation

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

(15) is the fundamental equation for downward ex-
trapolation of zero-offset data. It is expressed in the
wavenumber-frequency domain (k,), and does not
have an explicit representation in the physical do-
main (x, #). In the absence of horizontal velocity
dependence, Equation (15), which governs the ex-
trapolation of the zero-offset seismic data, has a
simple analytic solution (essentially a phase shift).*
For velocity fields with lateral variations, the square-
root pseudodifferential operator appearing in Equa-
tion (15) must be approximated in some form, for
instance with the approach described in Reference
24, the phase-shift plus interpolation (psp1) method.

KAMEL, KINDELAN, AND SGUAZZERO 523

Table 6 Performance of the PSPl code on the IBM 3090 600E Vector Multiprocessor (single precision) with ESSL Release 1.

Scalar Vector Vector-Parallel Vector-Parallel
Code (uniprocessor) Code (uniprocessor) (2 processors) (6 processors)
[CPU (s)] (FFT %) [CPU (s)] (FFT %) [CPU (s)] [CPU (s)]
21150 61.8 457.3 39.1 236.0 87.2

Parallel decomposition of seismic migration algo-
rithms. All frequency-domain methods begin with
the Fourier transform of the seismic data in time,
thus replacing the independent variable ¢ with w.
Due to the linearity of the migration problem, the
calculations carried out for different w are simply
superimposed to obtain the complete solution. Fur-
thermore, these calculations are completely inde-
pendent, with virtually no interprocess communi-
cation. When all the harmonic components P(x, w,
Z) have been processed, the migrated section is com-
pleted. As a particular case, the pPsp1 migration algo-
rithm consists essentially of three nested loops, and
the proposed decomposition partitions the outer-
most loop (in w); the vectorization of the innermost
loop (in x or k) is ensured by its structure.”® The
intermediate loop (in z) is sequential, representing a
downward continuation process, and cannot be par-
allelized except for the particular case of a horizon-
tally stratified medium. All considerations that hold
for the two-dimensional case are also valid for algo-
rithms designed for the migration of three- and four-
dimensional data, e.g., migration before stack”” and
3D migration.28

Performance measurements of the PSPI code. The
vectorizability and speedup characteristics of the psp1
code have been studied by running it and measuring
execution times on the 3090 in scalar and vector
mode. The problem under consideration” consists
of the migration of a synthetic zero-offset section of
size 512°. Table 6 summarizes the results of our
measurements by showing the CPU time, in seconds,
for the main part of the code. A speedup of 7.3 in
performing FFTs combined with a 2.9 speedup in
performing add/multiply operations leads to the ob-
served 4.6 vector/scalar speedup.

As mentioned earlier, the data and the computations
associated with different frequencies are indepen-
dent. We take advantage of this fact to run the loop
over the frequencies in parallel on the six CPUs of
the 3090 vr. The software tool used is the vs FOR-
TRAN Version 2 Multitasking Facility. The same
effect could have been achieved had we used PF.
Figure 12 shows a piece of the code with MTF, while

524 KAMEL, KINDELAN, AND SGUAZZERO

Figure 13 is a summary of the most computation-
intensive sections of the code as given by 1AD. When
we dispatch six identical tasks that process one sixth
of the frequencies each, using the vector structure
and the parallelism inherent in the problem, we
obtain an effective speedup of above 20 compared
to the scalar uniprocessor version.

Concluding remarks

The first section of this paper has presented vector
multiprocessor implementations of elastic modeling
algorithms based on pseudospectral (Fourier) as well
as finite-difference methods. The algorithms are very
well suited to vector multiprocessors, on which sig-
nificant performance improvements are obtained by
simultaneously vectorizing the innermost loops and
parallelizing the outer loops. In the last section, an
analysis of the suitability for parallel processing of
frequency-domain seismic migration methods has
been presented. The frequency-domain methods are
easily decomposable into parallel tasks having large
granularity, and require very limited interprocessor
communication. Among the frequency-domain
methods, optimal results (in terms of accuracy) can
be obtained by the psp1 method. This algorithm can
be adapted conveniently to the 1BM 3090 Vector
Multiprocessor architecture. Frequency-domain
methods lend themselves most conveniently to par-
allel formulation, since there is no interdependence
among data associated with different temporal fre-
quencies. Similar considerations hold for the prob-
lem dealt with in the second section of this paper,
namely, seismic velocity estimation.

The seismic computations presented in this paper
share some common characteristics: large amounts
of data to be handled, high floating-point content,
and heavy use of arrays. Furthermore, each problem
can be naturally decomposed into a set of indepen-
dent tasks which require minimum synchronization.

These three characteristic problems indicate that in
seismic computations there is a very large potential
for coarse-grain parallelism at the algorithmic level,

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

Figure 12 Part of the migration code using the MTF primitives DSPTCH and SYNCRO

SUBROUTINE KPSPIV
read input data (time section)
CALL TSIN(P,NT,NX,IUUMIG,TSTCSE)
Fourier transform in time the input data and transpose
CALL TRFTRP(P,POM,NT,NX,NT2,W,L2NT)
read velocity field and transpose
CALL CIN(C,NZ,NX,IUC,TSTCSE)
CALL RTRAP(CT,NX,NZ,C)
C transform velocity field into normalized refraction index
CALL CTRAN(CT,NX,NZ,REMN,REMX,CREF)
9 compute the negative of the squares of wavenumbers
CALL NGSQA(ALFA2,NX,DX)
C zero output matrix
CALL VZIMVS$$(QT,NX*NZ,1)
=smam=s====== begin parallel migration in the frequency domain
number of frequencies per process
NOMBLK=NOMEFF /NPROC
C e e loop over blocks of layers (sequential)
DO 3000 I1z=1,NZEFF,NZBLK
loop over frequency bands {(parallel)-——-—-
DO 1024 IBLKS=1,NPROC-1
IAMIN(IBLKS)=1+(IBLKS-1)*NOMBLK
JAM=IAMIN(IBLKS)+NOMBLK-1
fork
CALL DSPTCH ('FDMGAV',
NT,NX,NZ,DT,DX,DZ,NOMEFF ,NZEFF, IDZDZC,
L2NX,W(1,1,IBLKS),CREF,REMN(I1Z),REMX(1Z),
POM(1,IAMIN(IBLKS)),CT(1,1Z),
QTO(1,1,IBLKS),NOM, IAMIN(IBLKS),
NOMBLK ,NZBLK ,PZ(1,IBLKS),PZDZ(1,IBLKS),
ALFA2,1Z,FRCSTR,LNEAR, INTRIG,EPSRFI,
CLOA,NZBLM)

1024 CONTINUE

c
TAMIN(NPROC)=1+(NPROC~1)*NOMBLK
NOMBL2=NOMEFF-1AMIN(NPROC)+1
CALL FDMGAV(

NT,NX,NZ,DT,DX,DZ,NOMEFF ,NZEFF , IDZDZC,
L2NX,W(1,1,NPROC) ,CREF ,REMN(1Z) ,REMX(IZ),
POM(1,TAMIN(NPROC)),CT(1,12),
qQro(1,1,NPROC),NOM, IAMIN(NPROC),
NOMBL2,NZBLK,PZ(1,NPROC),PZDZ(1,NPROC),
ALFA2,1Z,FRCSTR,LNEAR, INTRIG,EPSRFI,
CLOB,NZBLM)

join
CALL SYNCRO
add harmonic images
DO 1025 IBLKS=1,NPROC
CALL F$ADD(LOCK,QT(1,12),QT0(l,IZ,IBLKS),NX*NZBLK,1,1)

JAM=TAM+NOMBLK~1
JBM=IBM+NOMBLK-1
3000 CONTINUE
C============= end of parallel migration in the frequency domain
C transpose migrated section
CALL RTRAP(Q,NZ,NX,QT)
[+ write output data (depth migrated section)
CALL ZSOUT(Q,NZ,NX,IUMIG,TSTCSE)
RETURN
END

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988 KAMEL, KINDELAN, AND SGUAZZERQO 525

Figure 13 Sampling analysis of the seismic migration code

=AFF9951 WHERE: PSPIT.15
=* ENDDEBUG SAMPLE(4) CALLED

=% LISTSAMP * SUMMARY ALL

=AFF5561 PROGRAM UNIT

=AFF5581 PSPIT

=AFF5581 KPSPIV (program kernel)
=AFF5581 CITP (complex interpol.)
=AFF5581 SCFT (Fourier transform)
=AFF5581 VC#ABS (complex modulus)
=% QUIT

=AFF0101 VS FORTRAN VERSION 2 RELEASE 3 INTERACTIVE DEBUG
=AFF011I 5668-~806 (C) COPYRIGHT IBM CORP. 1985, 1988
=AFFO0131 LICENSED MATERIALS~PROPERTY OF IBM

=AFF9331 THE AFFON FILE WAS PROCESSED WITH O ERRORS

=AFF112E INTERVAL TIMER WAS RESET BY USER PROGRAM, THUS CANCELLING SAMPLING.
=AFF3061 PROGRAM HAS TERMINATED; RC (0)

=% ANNOTATE (PSPIT,KPSPIV,FDMGAV,PSPIVT,CITP,CMPTF) SAMPLING ALL
=AFF5611 ANNOTATING LISTING FOR PROGRAM UNIT “PSPIT"

=AFF5611 ANNOTATING LISTING FOR PROGRAM UNIT "KPSPIV"

=AFF5611 ANNOTATING LISTING FOR PROGRAM UNIT "CITP"

=AFF2241 746 LINES OF OUTPUT WRITTEN TO AFFPRINT

=AFF5501 PROGRAM SAMPLING INTERVAL WAS 4 MS; TOTAL NUMBER OF SAMPLES WAS 23704

=AFF5521 SUM OF DIRECT AND CALLED SAMPLES:

SAMPLES %TOTAL
23704 100,00 *%kkkkikkikkkhhrhhks

21969 92.68 kkkkkkkkkkkkihhihik
10477 44.20 *®kkkdkkkk

8573 36.17 #kkkkkk

5916 24.96 *kkik

which can be enhanced by one or more suitable
integral transformations (for example, Fourier trans-
forms). Parallelism appears at multiple levels which
can be exploited simultaneously, rendering possible
and useful the application of parallel decomposition
techniques such as domain decomposition and (at
the lowest level of parallelism) vectorization. More-
over, the combination of a tuned library (i.e., ESSL),
vector (VS FORTRAN) and parallel (PF) compilers, and
expanded storage (rendering memory management
transparent to the application developer) simplifies
the task of tuning scalar seismic codes to the IBM
3090 Vector Multiprocessor, thus rendering possible
combined vector/parallel speedups in the range 15~
25,

Acknowledgments

The authors wish to thank Kevin Goin and Alan
Karp of the 1BM Washington Systems Center for
providing the 600E performance data reported in
this paper.

526 KAMEL, KINDELAN, AND SGUAZZERO

Cited references and note

1. J. Gazdag and P. Sguazzero, “Migration of seismic data,”
Proceedings of the IEEE T2, 1302-1315 (1984).

2. W. A. Schneider, “The common depth point stack,” Proceed-
ings of the IEEE 72, 1238-1254 (1984).

3. C. B. Wason, J. J. Black, and G. A. King, “Seismic modeling
and inversion,” Proceedings of the IEEE 72, 1385-1393
(1984).

. B. Fornberg, “The pseudospectral method: Comparisons with
finite difference for the elastic wave equation,” Geophysics 52,
483-501 (1987).

. T. M. Taner and F. Koehler, “Velocity spectra—digital com-
puter derivation and application of velocity functions,” Geo-
physics 34, 859-881 (1969).

. N. S. Neidell and M. T. Taner, “Semblance and other coher-
ency measures for multichannel data,” Geophysics 36, 482-
497 (1971).

. M. T. Taner, F. Koehler, and R. E. Sheriff, “Complex seismic
trace analysis,” Geophysics 44, 1041-1063 (1979).

. P. Sguazzero and A. Vesnaver, “A comparative analysis of
algorithms for stacking velocity estimation,” Deconvolution
and Inversion, M. Bernabini et al., Editors, Blackwell, London
(1987), pp. 267-286.

. J. D. Achenbach, Wave Propagation in Elastic Solids, North-
Holland Publishing Company, Amsterdam (1975).

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

10. D. Kosloff, M. Reshef, and D. Loewenthal, “Elastic wave
calculations by the Fourier method,” Bulletin of the Seismo-
logical Society of America 74, 875-899 (1984).

11. R. Clayton and B. Enquist, “Absorbing boundary conditions
for acoustic and elastic wave equations,” Bulletin of the Seis-
mological Society of America 67, 1529-1540 (1977).

12. J. W. Cooley and J. W, Tukey, “An algorithm for the machine
calculation of complex Fourier series,” Mathematics of Com-
putation 19, 297-301 (1965).

13. S. G. Tucker, “The IBM 3090 system: An overview,” IBM
Systems Journal 25, 4~19 (1986).

14. W. Buchholz, “The IBM System/370 vector architecture,”
IBM Systems Journal 25, 51-62 (1986).

15. R. C. Agarwal and J. W. Cooley, “Fourier transform and
convolution subroutines for the IBM 3090 Vector Facility,”
IBM Journal of Research and Development 30, 145-162
(1986).

16. Engineering and Scientific Subroutine Library, General Infor-
mation, GC23-0182, IBM Corporation; available through IBM
branch offices.

17. R. G. Scarborough and H. G. Kolsky, “A vectorizing Fortran
compiler,” IBM Journal of Research and Development 30,
163-171 (1986).

18. VS FORTRAN Version 2, General Description, GC26-4219,
IBM Corporation; available through IBM branch offices.

19. M. Kindelan, P. Sguazzero, and A. Kamel, “Elastic modeling
with Fourier methods on the IBM 3090 vector multiproces-
sor,” Scientific Computing on IBM Vector Multiprocessors,
R. Benzi and P. Sguazzero, Editors, IBM European Center for
Scientific and Engineering Computing, Rome (1987), pp. 635-
674,

20. Parallel FORTRAN Language and Library Reference, SC23-
0431, IBM Corporation, available through IBM branch offices.

21. M. Kindelan, G. Seriani, and P. Sguazzero, “Pseudo-spectral
modeling and its application to amplitude versus angle inter-
pretation,” to appear in Geophysical Prospecting.

22. Scalar timings reported in Tables 1, 2, and 6 have been
obtained using ESSL Release 1 for the scalar FFT computa-
tions. In the current Release 2 of ESSL, such scalar compu-
tations are performed with a speed increase of about 30
percent.

23. VS FORTRAN Version 2, Interactive Debug Guide and Ref-
erence, SC26-4223-1, IBM Corporation; available through
IBM branch offices.

24, J. Gazdag, “Wave equation migration with the phase shift
method,” Geophysics 43, 1342-1351 (1978).

25. J. Gazdag and P. Sguazzero, “Migration of seismic data by
phase shift plus interpolation,” Geophysics 49, 124-131
(1984).

26. A. Dubrulle and J. Gazdag, “Migration by phase shift—An
algorithmic description for array processors,” Geophysics 44,
1661-1666 (1979).

27. P.S. Schultz and J. W. C. Sherwood, “Depth migration before
stack,” Geophysics 45, 376-393 (1980).

28. C. C. Hsiung and W. Butscher, “A new numerical seismic 3-
D migration model on the Cray X-MP,” presented at the
SIAM Conference on Parallel Processing and Scientific Com-
puting, Norfolk, VA (November 1983).

29. J. Gazdag, G. Radicati, P. Sguazzero, and H. H. Wang,
“Seismic migration on the IBM 3090 Vector Facility,” IBM
Journal of Research and Development 30, 172-183 (1986).

Aladin Kamel IBM Bergen Scientific Center, Allegaten 36, 5007
Bergen, Norway. Dr. Kamel received his Ph.D. in electrical engi-
neering from the Polytechnic Institute of New York in 1981, and
from 1981 to 1983 was an assistant professor of electrical engi-

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

neering there. He joined IBM in 1983 at the Kuwait Scientific
Center, of which he became manager in 1986; he is currently with
the Bergen Scientific Center. Dr. Kamel’s current research interest
is in the area of seismic exploration.

Manuel Kindelan European Center for Scientific and Engineering
Computing, Via Giorgione 159, 00147 Rome, Italy. Dr. Kindelan
received his Ph.D. in applied mathematics from the University of
California at San Diego in 1975. From 1975 to 1977 he worked
with INTA (the Spanish Institute of Aerospace Technique) in
Madrid, doing research in combustion modeling. In 1978 he joined
the IBM Madrid Scientific Center, working in thermal modeling
and image processing. Since 1986 Dr. Kindelan has been on
assignment at ECSEC in Rome, where he manages the scientific
applications group. His current interests are in the areas of seismic
data processing and vector and parallel computing.

Piero Sguazzero European Center for Scientific and Engineering
Computing, Via Giorgione 159, 00147 Rome, Italy. Dr. Sguazzero
received his doctorate in mathematics from the University of
Trieste in 1969. Since 1970 he has been with the IBM Scientific
Centers, first in Venice, then in Palo Alto and in Rome, where he
worked in the areas of numerical hydrodynamics and seismic data
processing. His current research interest is the development of
algorithms and software for vector and parallel machines, with
special attention to seismic applications. Dr. Sguazzero is a mem-
ber of the Society of Exploration Geophysicists.

Reprint Order No. G321-5340.

KAMEL, KNDELAN, AND SGuazzero 527

