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Described  is the ICAP/3090 (for  loosely  coupled  array 
of processors) parallel  processing  system. General 
parallel  processing performance issues that determine 
the success of all multiple-instruction/multiple-data- 
stream parallel computing  systems are examined  in 
the context of largescale scientific  and  engineering 
problems.  Experiments with previous ICAP parallel 
processing  systems that have made possible the pres- 
ent  design of ICAP/3090 are also  described. 

I n the last  several  years, it has  been  generally  agreed 
that in the future supercomputing and parallel 

processing  will  be to a large extent synonymous. This 
is evidenced by the fact that systems such as the IBM 
3090 multiprocessor  family and the CRAY-XMP series 
are now  being  increasingly  employed in a parallel 
mode to solve  problems that cannot be  feasibly 
solved on a single  processor. It is  also  clear that 
parallel supercomputers must employ a balanced 
approach, using  nodes  with  high-performance  scalar 
and vector  capabilities. In short, as a concept, super- 
computing is the union of all approaches that max- 
imize performance. 

However, there is at present little consensus on the 
optimal architecture of parallel  processing  systems. 
Roughly  speaking,  designers  have  chosen one of two 
broad approaches that can be  categorized as either 
shared- or distributed-memory systems.  Represen- 

tative of shared-memory systems are the previously 
mentioned products, and representative of distrib- 
uted-memory systems are the large number of com- 
mercial  hypercube  offerings.  However, more radical 
approaches to parallel  processing  also include sys- 
tolic and wavefront array processing;  very-long- 
word, multiple-instruction machines; and data-flow 
systems.  Most of these more radical  systems  have 
not been marketed coymercially, with the exception 
of the Warp machine (systolic array) and the Mul- 
tiflow  processing  system  (very-long-word instruc- 
tion).* 

Another distinction between  types  of  parallel  systems 
is whether they purport to be general-  or  special- 
purpose  systems. The general-purpose  systems in- 
clude most of the products previously mentioned. 
However, many such systems  have  been built with- 
out a clear  focus on the types of applications to 
which  they  will  be put, and  thus the mapping of 
applications to machine has often become an exper- 
iment in parallel  processing  after the fact,  with little 
guarantee of  success. 
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The alternative approach, i.e., the design  of  special- 
purpose  parallel  machines, is targeted to a very lim- 
ited class  of applications. Included here are a number 
of systems tailored to solve problems inpdamenta l  
particle  physics (the IBM GFl l  machine ) or applica- 
tions iq  fluid dynamics (the Navier-Stokes 
machine ). The design  process  has  usually  been a 
bottom-up approach, with  specific layouts of chips, 
hard-wired interconnection networks, and special 
memory  devices. Thus, as  with the general-purpose 
systems, the elapsed time between  design and incep- 
tion is  large. 

An  exception to these approaches has  been the de- 
velopment of the lCAP parallel  processing  system. 
This system  was  conceived  with a clearly  defined  set 
of applications in mind. The goal  was to solve  these 
problems by using  parallel  processing at a rate com- 
parable to, but at a cost less than, that of the fastest 
commercial supercomputers of the day. The class  of 
applications was broad enough not to be  considered 
as special-purpose usage but, on the other hand, 
could not be  classified  general-purpose usage either. 
This area comprised large-scale calculations in the- 
oretical  chemistry. The approach taken in the design 
of this system  was to minimize the hardware and 
software  complexity of the task, and thereby mini- 
mize the time needed to build the system, by simply 
interconnecting commercially  available  offerings. 
The objective was therefore not to conduct an ex- 
periment in parallel  processing, but rather to use 
parallel  processing to solve  real  problems. 

Our goal  was  quickly this was not sur- 
prising,  because we had realized beforehand the re- 
quirements of our applications and their large-grain- 
size,  parallel structures. Thus we considered the de- 
sign  of this system obvious and not worthy of a large 
treatise on the theory of parallel  processing. Indeed, 
many results  have  been  published  from calculations 
performed on the system, often without mentioning 
that it was a parallel computer. We  were interested 
in results rather than means. 

Because  of this success, we began to explore  whether 
we might  meet  with equal success in areas other than 
theoretical chemistry. In short, we wanted to see 
whether our system,  which we call lcAP (for  loosely 
coupled array of  processors), could be  considered a 
general-purpose,  parallel computer. This meant sur- 
veying a large spectrum of applications in science, 
engineering, and mathematics and attempting to 
adapt them to ICAP. A program  for  visitors was 
instituted to solicit  professionals,  skilled in areas that 
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we  were interested in studying, to experiment with 
parallelism.  Toward the same end, our department 
was expanded to include personnel  with  back- 
grounds other than theoretical chemistry. This led 
to 1c.m evolving, in both hardware and software, into 
a general-purpose,  parallel computer. 

The outcome of our experiments is culminating in 
the current development of the ~ C A P / ~ O ~ O  system. A 
brief description of this system and parallel  language 

The 3090 multiple-processor 
systems  have  been  quite  successful 

in  increasing  system  throughput. 

issues  is  given in the next section. We then discuss 
general  principles of parallel  processing that apply to 
all computers of the Multiple Instruction/Multiple 
Data stream (MIMD) variety. This classification in- 
ludes  all  parallel computers that have multiple proc- 
essors that can  execute  different instruction streams 
or programs,  using unique data or otherwise, in the 
solution of a single problem. Following this discus- 
sion, we describe the experiments in parallel  proc- 
essing that have  led to our I c A P / ~ o ~ ~  efforts.  Finally, 
we  offer our conclusions. 

The ICAP/3090 system 

The IBM 3090  vector  multiprocessor  family encom- 
passes a variety of models  ranging  from a two- 
processor  system  (Model 200) to a six-processor 
complex (Model 600). These systems can increase 
the throughput of a large  workload by using the 
multiple processors on independent jobs. This has 
been the traditional motivation behind the develop- 
ment of such systems.  An important corollary of this 
approach is that memory must be  increased propor- 
tionately. This contributed to the development of 
expanded storage on the 3090 to alleviate the effect 
of  paging that occurs when multiple jobs compete 
for  real memory. Overall, the 3090  multiple-proces- 
sor  systems  have  been quite successful in increasing 
system throughput. 
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The performance of the 3090 base  system  exhibits a 
marked improvement over its earlier counterpart, 
the IBM 308X system.  Scalar computing capability 

The C A P  approach  is to increase 
still  further  the level of  parallelism. 

was enhanced not only  by  reducing  cycle time from 
approximately 27 to 15 nanoseconds, but by increas- 
ing the degree  of  overlap  between instruction fetch, 
lookahead,  decode, and execute.  Also,  vector  capa- 
bilities  were introduced in an integrated architectural 
manner with the addition of vector  registers and 17 1 
instructions. Overall, the design  of  this  system em- 
phasizes a balance7.* of memory  access, 110, and 
processing  capabilities.  This  has led to a vector  ca- 
pability that seems to be  optimally  cost-effective in 
addressing  problems of an approximately 50-80 per- 
cent vector content. This is  representative of the 
majority of scientific and engineering  applications 
used  in  industry and universities. 

The performance  potential of a 3090 multiprocessor 
can  also  be  realized by allowing  multiple  processors 
to work on a single  problem. This solution is  limited 
by the degree of parallelism that exists in scientific 
problem  codes and the extent to which  performance 
becomes  degraded  when  processors  need to com- 
municate. These  issues are explored in greater depth 
in the section on parallel  processing  performance. 

To address  utilization of the multiple  processors  of 
the 3090, a parallel FORTRAN capability,  called the 
Multitasking  Facility (MTF), was initially  developed 
for  these  systems.  While  useful, it was limited in 
availability to MVS installations, and limited  func- 
tionally in that parallel  execution was limited to a 
simple  fork/join  capability.  More  recently, a much 
richer  set of parallel  capabilities,  including auto- 
matic-compiler-generated  parallel  code,  has  been  de- 
veloped. This set of software,  called the Parallel 
FORTRAN (PF) package,  is  now  proving its worth  for 
a large  variety  of  applications. 

IBM SYSTEMS JOURNAL, VOL 27. NO 4, 1988 

The ]CAP approach is to increase  still further the level 
of parallelism. We intend to couple  readily  available 
commercial  processors (in this  case, IBM 3090s) to 
form a system that is not massively  parallel, but 
rather is modular and can  be  expanded to match the 
degree  of parallelism that a set  of applications  can 
support. 

1CAP/3090 architecture. The principal  idea of 
I C A P / ~ O ~ O  is to couple  together  clusters  of IBM 3090 
multiprocessors. We intend this coupling to be  ex- 
tendable, so that, as  faster  versions of IBM multiple- 
processor  mainframes are introduced, we may  cou- 
ple  them  together in a similar  fashion. That is, 
whatever the current power of the fastest  machine, 
we would  like to be  able to increase this arbitrarily 
by simple  replication and coupling. 

The justification  for  employing more parallel  proc- 
essors than are currently  offered in a single  integrated 
system  is supported by our findings of the large 
degree  of  parallelism that exists in many  scientific 
and engineering  applications and their successful 
implementation on our earlier lCAP systems. This 
covers, to name a few, calculations in quantum 
chemistry,  statistical  mechanics,  many  engineering 
applications  dealing  with  heat  transfer and compu- 
tational fluid  dynamics,  celestial  mechanics, and fun- 
damental algorithms  used in all  areas of  science and 
engineering. 

The “degree  of  parallelism” of a given  piece  of  code 
can  be  characterized by three attributes: (1) how 
much of the computation can be run in parallel; (2) 
how often communication is  required; (3) and how 
evenly the work  can be divided  across multiple proc- 
esses. In the following  section we consider  analyti- 
cally  how  these  factors  affect  performance. Here we 
wish to discuss the proposed  intersystem  coupling of 
the I C A P / ~ O ~ O  system in this general  framework. 

First, there are  many  applications that are almost 
entirely  parallel  and-when partitioned across a 
number of  processors-require  very infrequent com- 
munication. Such  applications are said to exhibit 
coarse-grain parallelism. For these we do not need a 
fast  coupling and can use IBM ~ . ~ - M B / s  channels and 
channel-to-channel  coupling to support interproces- 
sor communication. Thus, our initial plan will be to 
couple  all  systems  via  channels  with  full point-to- 
point  connectivity. 

These  applications  are,  however, more aptly  de- 
scribed  as  subjects  for distributed computing, rather 
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than for  more communication-intensive parallel 
processing.  For  applications  with  smaller  parallel 
grain  size,  i.e.,  characterized  by  more frequent com- 
munication, we require  faster  paths,  because the 
overhead  associated  with communication can  de- 
grade  performance  severely. 

Before  discussing our requirements, it is important 
to define more carefully  what we mean by the word 
“fast.”  In  general,  whatever the communication 

Synchronous  communication  tends 
to  ensure  correctness of parallel 

execution. 

~ ~ 

path, the time required to complete  a  transfer of 
information from one processor to another can  be 
broken into two  parts:  latency and transfer  speed. 
Latency defines the amount of time that must be 
spent in initializing the transfer and is (to a  first 
approximation) independent of the number of bytes 
transferred. Transfer speed is  characterized by hard- 
ware,  in  which (to first approximation) the amount 
of time spent  varies  linearly  with the amount of data 
sent. For example,  when we  say that  an IBM channel 
performs at 4.5 MB/S, we are specifying the transfer 
speed attribute. This is the asymptotic rate and is 
realized in practice  only  when the amount of data 
transferred is very  large. For smaller  transfers, the 
total time may  be dominated by the latency,  resulting 
in  transfer  speeds that are in the KB/S range.  Latency 
may  be broken  again into two components: software 
path and hardware initialization. Using the IBM chan- 
nel  as an example,  it  is  usually the software  compo- 
nent that is dominant. Software path, in this  case, 
implies interaction between the application and the 
operating  system, through an interrupt to handle I/O. 

The great  majority of applications  with smaller par- 
allel grain size are characterized by frequent syn- 
chronizations and transfers of relatively  small 
amounts of data. Overall,  a  single IBM channel op- 
erating at its  peak  rate  would  be  satisfactory to serve 
in this  capacity.  However,  given the large  latencies 
involved, the resulting  effective data rate is inade- 
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quate. Thus, to achieve  faster  coupling we will ex- 
plore,  through  efforts  within our laboratory, the use 
of two  complementary  approaches, both of  which 
can  have  smaller  latencies and have  been  used  suc- 
cessfully in our previous lcAP systems  (described later 
in this  paper). The first approach employs  shared 
memory, and the second  utilizes  fast  message  pass- 
ing.  Each  serves  different  purposes,  which  we  now 
consider. 

In  general,  message-passing and shared-memory 
communication have the following  characteristics. 
Message  passing is  most  simply  realized by a  bus 
interconnect and  the specification  of synchronous 
communication protocols.  Shared-memory com- 
munication is done asynchronously and is  imple- 
mented in its  simplest  form  by  a multiported mem- 
ory that is mapped into  the same address  space of 
the cooperating  processors.  Both communication 
methods  have  advantages and disadvantages.  Syn- 
chronous communication tends to ensure  correct- 
ness of parallel  execution,  because  programs that use 
this  mode are rigidly  constrained by the data de- 
pendencies  defined by  message  passing. The disad- 
vantages are that a bus interconnect is  limited by 
topological constraints, a  tendency of the facility to 
become saturated when  many  processors attempt to 
use it, and also by substantial latencies  because  of 
the necessity  for  some  type  of  handshaking  protocol. 
Alternatively,  a  shared  memory tends to have  faster 
data-access  rates,  smaller  latencies, and fewer  con- 
nectivity  restrictions.  However, this requires more 
careful  programming of  accesses to guarantee pro- 
gram  correctness,  because  implicit synchronization 
is  lacking. I C A P / ~ O ~ O  will thus emphasize  synchroni- 
zation by  message  passing and data transfer by 
shared  memory. 

Two alternative I C A P ~ O ~ O  systems are shown in Fig- 
ures 1 and 2. In Figure  1,  five 3090 Model 300s (each 
with three processors  with  vector attachments) are 
coupled  by  a  large  (several hundred megabytes) 
global  shared  memory and a  fast-message-passing 
bus  configured  as  a  ring.  Also  shown  is  a  full point- 
to-point connectivity implemented by channel-to- 
channel coupling. We  expect that accesses to our 
shared  memory will not be  much  slower than ac- 
cesses to  an expanded  storage of any one of the 3090 
clusters.  In addition, we are investigating the possi- 
bility  of permitting segments  of this memory to 
support “read-modify-write” operations (such  as  test 
and set or fetch and add). In  Figure 2, a  similar 
system  using  Model 400s (four  processor  complexes) 
is illustrated. This simpler  system  differs  from the 
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Figure 1 ICAPl3090 Model  300-based system 
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first in that multiple dual-ported shared  memories 
are used to couple the clusters  in a nearest-neighbor 
ring structure; further, it lacks a fast-bus message- 
passing  capability. Also indicated in  Figures 1 and 2 
are  large shared “disk  farms’’ that can be imple- 
mented with  existing  technology.  Disk farms serve 
as a secondary level  of shared  storage to greatly 
enhance the size  of problems that can be  addressed. 

At present we have  four IBM 3090s (Model 400s), 
each  with  vector  capabilities and coupled by chan- 
nels.  Initial  efforts in permitting multiple clusters to 
collectively  work on a single problem, exhibiting 
large  grain  parallelism,  have  proven  successful. To 
address  smaller  grain  size  problems we  will require 
the development of shared memories (or fast  buses) 
which are currently under study. 

1CAP/3090 software. A discussion of parallel  soft- 
ware must address two areas: operating systems and 
languages/compilers. From our experience  with the 
earlier ICAP systems, we anticipate that we can extend 
the parallel operating systems  software  used on those 
systems to work on I C A P / ~ O ~ O .  There, both the MVS 
and the VM operating systems were employed,  using 
task-level  parallelism in MVS and cooperating virtual 
machines (VMS) in the VM operating systems.’  Of the 
two, VM seems to be the more expedient solution 
because of the potential ease  of  facilitating  intersys- 
tem communication (via channels) between VMS, 
through either the Virtual Machine Communication 
Facility (VMCF) or the Inter User Communication 
Vehicle (IUCV). For a more detailed discussion of 
these  issues,  see  Reference 10. 

Communication through the bus and shared mem- 
ory will require extensions to operating-system  func- 
tions, although it is clear that latency effects must be 
minimized to achieve  acceptable performance. The 
incorporation of these paths will proceed in an evo- 
lutionary manner as we explore the capabilities that 
our channel connections allow. 

The language/compiler  software is intended to be a 
superset of the existing  Parallel FORTRAN (PF) soft- 
ware  developed  for  single-system  parallel  program- 
ming.  Reference 1 1 gives a comprehensive  descrip- 
tion of the PF software; in the following, we highlight 
several features of this software. 

The PF compiler can be  used to automatically par- 
allelize  code  for multiple processors in which  specific 
attention is paid to DO loops. Here, single or nested 
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DO loops are  analyzed to determine whether the code 
is parallelizable; if so, a cost  analysis is performed to 
determine whether it is profitable to  do so. In the 

Parallel  algorithms are critical for 
parallel  engineering  calculations. 

event that the analysis is hindered by run-time con- 
siderations, compiler directives  may  be  inserted in 
line to aid in this analysis. In this regard the compiler 
is similar to vectorizing  compilers. 

Alternatively, the PF software offers a rich  set of 
extensions to the FORTRAN language that permits the 
programmer to control the parallel operation of his 
code. The two constructs that are used  most  fre- 
quently are the following. The first,  called PARALLEL 
LOOP, is  used to implement parallel loops that have 
the additional abilities  (beyond  those of the auto- 
matic parallel loops) to define private variables  for 
each  processor and permit the creation of critical 
sections  within the loop. The flexibility  offered  by 
these features makes this construct ideal  for  parallel 
algorithm development. Parallel algorithms are crit- 
ical  for  parallel  engineering  calculations,  where  par- 
tial  differential equations are typically  solved by 
finite-difference  or  finite-element techniques. 

The second construct is one for  defining and execut- 
ing  parallel  tasks.  Tasks take the form of subroutines. 
A parallel  program  using this ability  defines a master 
task that forks off a number of parallel  tasks and 
upon their completion collects or  joins the results, 
prior to perhaps more fork/join processes. Commu- 
nication is achieved through subroutine argument 
passing  as  well as COMMON blocks and synchroniza- 
tion through locks and events. 

PF may  be  used without modification  for multiple 
clusters of 3090s when we employ extensions of our 
initial ICAP software to support intersystem com- 
munication through shared memory. For example, 
parallel loop implementation may  be  achieved by 
dedicated counters in shared memory that  are ac- 
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cessed with mutual exclusion.  Because we must do 
this as  efficiently  as  possible, it is important that 
locked  access  be  achieved on a hardware  basis rather 
than through software  spin  locks. This implies a set 
of dedicated registers that support read-modify-write 
operations (such as fetch and add or test and set). 

Alternatively, if  we  wish to use fork-and-join  paral- 
lelism, we must allocate to one particular processor 
the role of master. Thereafter, forks can be  achieved 
by synchronizations over the fast bus to user-defined 
interrupt handlers that  are “spinning.” Then, de- 
pending on the data transferred, these handlers can 
branch to the appropriate parallel  tasks. In this sce- 
nario, the master serves and collects  all data through 
the shared memory. 

However, the development of the ~ C A P ~ O ~ O  system  is 
at a very early  stage, from both hardware and soft- 
ware  viewpoints.  Before  describing  early lcAP sys- 
tems, we digress  briefly to discuss  general and im- 
portant performance issues. 

Parallel  processing  performance  issues 

The fundamental reason  for  using  parallel  processing 
is to speed up the elapsed time of an application. We 
mentioned in the preceding  section that the best 
performance is bounded by the degree of parallelism 
that  our code  exhibits, characterized by three attri- 
butes:  (1) the fraction of the code that is paralleliza- 
ble, (2) the amount of communication required, and 
(3) load imbalancing when we partition the problem 
across multiple processors. In fact,  while we list  these 
as separate factors,  they are all interrelated. For 
simplicity,  however, we consider each factor sepa- 
rately, pointing out, where appropriate, the subtleties 
that exist. 

Fraction of parallel  code. The most fundamental 
factor in determining parallel performance is the 
fraction of the code that is  parallel. We define this 
fraction to be that of the total time required for the 
job. Consider a problem with that fraction equal to 
X .  The remainder, 1 - X ,  is sequential. Suppose that 
we have P processors  over  which the parallel portion 
can be distributed equally without any overhead. 
The sequential portion can be  executed by only one 
of the P processors. Then the best we can expect, 
compared to running the entire problem on only 
one processor, is  realized  by a speedup factor S, of 

1 s, = 
1 - X +  X / P ‘  (1) 
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If X is unity, i.e., all of the code is parallel, then the 
speedup  is equal to the number of processors (linear 
speedup).  Otherwise, this limiting expression,  known 
as Amdahl’s  law,  applies. It generalizes,  beyond the 
narrow concern of parallel  processing performance, 
to describe the limiting behavior of any system that 
can exist in either of the following  two fractional 
states: one that “performs” at a rate of unity (or 
normalized to unity), and the other at a normalized 
rate of P. For example, if  we are describing the 
possible enhancements of vector  processing com- 
pared to scalar  processing, the same expression  holds, 
except that in this case P means how much faster 
the vector  processing  is, and X is the fraction of code 
that is vectorizable. 

It is evident that the application of  Amdahl’s  law 
results in speedups that are very sensitive to the 
fraction of the code that is parallelizable.  Shown in 
Figure 3 are speedups,  for  differing  values of X ,  as a 
function of P. As X becomes  smaller,  speedups more 
rapidly approach asymptotic values near which the 
addition of more processors is not cost-effective. This 
observation  is the one most frequently cited in neg- 
ative  assessments  for the prospects of  massive par- 
allelism (i.e., the use  of  massive numbers of  proces- 
sors). 

However, the situation is a little more subtle than 
this.  First, how do we determine the fraction X for 
an application? Consider a simple example of  solving 
a system  of N linear equations involving N un- 
knowns. We may  write this problem in matrix form 
as follows: 

A x y = b ,  ( 2 )  

where A is a matrix of  size N by N ,  y is a vector of 
N elements that we  wish to find, and b is a vector of 
N elements that is  given  as the right-hand side of our 
problem. Then, if the construction of A is nominally 
the only sequential part of the problem (e.g., it is 
read in from some sequential device), the apount of 
sequential time spent is of the order of N [ U ( N 2 ) ] .  
Assume that the solution phase  is  parallelizable, an!, 
if  we use  Gaussian elimination, this takes U ( N  ) 
operations (multiplications and additions) or time. 
Then the fraction of the code that is  parallel is the 
following: 

rN X =  
rN3 + sNz  * 

Here we have  identified the coefficients ( r  and s) that 
give the exact correspondence to actual time instead 
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Figure 3 Speedup constraints of Amdahl’s law 

NUMBER OF PROCESSORS 
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of the vague “order-of” expression. The important 
point is that as N becomes  large, the fraction of this 
application that is parallel approaches unity. Thus, 
it is not sufficient  simply to quote Amdahl’s law as 
predicting  whether  parallel  processing supports mas- 
sive parallelism.  Problem  size and the dependent 
relationship of the sequential and parallel part deter- 
mine how many processors  may  be  gainfully em- 
ployed. 

However, this example has  been  oversimplified. The 
solution of our set of simultaneous equations is not 
perfectly  parallel,  because we must consider the de- 
grading effects  of load balancing and communica- 
tion. Considering  load  balancing, it is  clear that the 
assumption that the parallel part is equally  divisible 
for  all  values of P ignores the reality that any com- 
putation consists of a fixed number of discrete op- 
erations and cannot be so divided. This may  be 
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further compounded when we consider in more de- 
tail the structure of the application and the role that 
communication can play in defining the fraction of 
parallel  code. 

Because  of the structure of an application, it is 
possible that the fraction of parallel  code can change 
as the job proceeds. For example, considering our 
solution of a set  of linear equations, it is true  that 
the total computation complexity  is O(N ). How- 
ever, this total amount comprises the execution of N 
separate parallel  stages,  each of complexity O(m2), 
where m starts at Nand goes to 1. Each  stage must 
be completed before the next can begin. This imposes 
the need  for synchronization and possibly the pas- 
sage  of data between  processors.  Both add an effec- 
tively sequential time of O(P) or O(m * P) before 
the present  stage can begin, and  thus each  stage  has 
associated  with it its own  parallel fraction. This 
fraction is initially large and becomes  progressively 
smaller as the solution proceeds. This implies that 
one can start with a large number of processors but 
thereafter discard them appropriately, until it makes 
sense to finish  with  only one processor. So here we 
have a (not atypical) problem that  cannot be char- 
acterized by a single parameter of parallel-fraction 
content. 

Another subtlety that may occur is that, for a fixed 
problem  size, the fractional content X may depend 
on the number of processors  used. To illustrate this, 
consider the problem of adding N numbers. Whereas 
it is not necessarily optimal in terms of minimizing 
the number of concurrent elementary operations 
involved, the most  straightforward way  of doing this 
is to allow  each  processor to compute a partial sum 
(of approximately the same number of elements) 
and give to  one of these  processors the remaining 
task of adding up the partial sums. The first part is 
the parallel portion and the latter the sequential 
stage. The fraction of parallel content of the algo- 
rithm is thus approximately 

N - P  x=- 
N ’  

If  we substitute this expression in Equation 1 and 
plot the speedup as a function of P, we find that 
there exists some critical value of P beyond  which 
the addition of more processors  increases solution 
time. In this case, we have an analytic solution for 
the optimal number of processors,  which  is a. 
Although this example  may  seem somewhat artifi- 
cial, in practice a good many applications exhibit 
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the property of having the sequential fraction in- 
crease  with the number of processors. 

In summary, the fraction of parallel  code is the 
primary factor that determines whether  parallel  proc- 
essing is  profitable, and if so, determines the number 
of processors  which  is optimally cost-effective. In 
practice, it is found that the parallel content of most 
applications grows as problem size  increases. Thus 
the answer to the question of the optimal number of 
processors depends on the size  of the problem.  How- 
ever, this must be further refined in terms of the 
details of implementation and the structure of the 
calculation. 

Communication. While the fraction of parallel  code 
is the primary consideration in determining how 
profitable it is to use parallel  processing, it is  by no 
means the final consideration. This is  because, as we 
have  seen  previously, we must account for the extra 
time required  for our processors to communicate as 
this overhead  increases the effective sequential frac- 
tion of the code. 

The degradation that communication can cause  may 
be  seen, perhaps in a simpler fashion, by examining 
the expression  for the total time spent in solving our 
problem  with a set of P processors. If the parallel 
execution time to be partitioned equally among our 
P processors  is T, and the sequential time is  T,, the 
total execution time is  given  as  follows: 

TP T,, = T, + - + f(P). P 

The extra term f(P) represents the additional time 
spent in communication, and at  minimum can be 
some constant or a positive function of the number 
of processors. By ignoring some of the subtleties 
discussed in the previous  section (assume that T, and 
T, do not depend on P and  to first approximation P 
divides  Tp more or less  evenly  over a large  range 
of P), the following account holds. Iff(P) is a con- 
stant, we can expect the minimum total execution 
time or maximum speedup to be  asymptotically 
bounded. Iff(P) is a positive  increasing function of 
P, the total time can be decomposed into two  parts, 
one increasing and the other decreasing monotoni- 
cally  with P. In this case, we may  expect that there 
is some optimal value of P for  which the execution 
time is minimized and beyond  which the total exe- 
cution time actually  increases  as we add more pro- 
cessors.  Using a little calculus, we may  solve  for this 
optimum value, Po,, from the following equation: 
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p:ptfvopt) = XT,,, ( 6 )  

where X is the fraction of the code that is paralleliz- 
able and T, is the total time of our problem exe- 
cuted in sequential mode. f ’ ( P )  is the derivative of 
f(P) with  respect to P. Solving  for Pop! then provides 
the following  straightforward  algebraic equation for 
the maximum speedup: 

To illustrate the effects that arise,  consider the fol- 
lowing  example.  Suppose we have an application 
that has a repeating structure wherein we first  per- 
form the parallel portion with P processors, and then 
one of these  (call it the master)  executes a sequential 
section. We require synchronizations between the 
P - 1 processors and the master before the sequential 
part can  be done, and prior to the next  parallel 
execution. The communication time for synchroni- 
zation-given that serialization is implicit in one 
processor  reading,  receiving or issuing P - 1 mes- 
sages or intenupts-scales  as P - 1 and can  be 
written 

f ( P )  = a(P - 1) + b, (8) 
where the magnitude of a depends on how the syn- 
chronization is done (e.g.,  shared memory, bus, or 
network) and b is a latency term that is  included  for 
completeness.  Using this expression, the optimal 
number of processors  (using Equation 6 )  is  given  as 
follows: 

Pop, = -. 
This simple example shows that the optimal number 
decreases quadratically as a function of decreasing 
communication speed. Thus it is imperative that 
communication be  achieved as rapidly  as  possible. 
This effect can be  made  less  restrictive by increasing 
the problem  size ( T,). Additionally,  because X usu- 
ally  increases  with  problem  size, this beneficial  effect 
is  multiplicative. 

This simple  model  may  be  extended to include more 
complicated forms of communication, e.g., synchro- 
nization  followed by data passing,  where the quantity 
of data passed  may  in turn be a function of P. The 
model  may  also  be  extended by redefining the opti- 
mal number of processors, not simply in terms of 
minimizing the total elapsed time, but rather in a 
more realistic  cost-effective  sense, by solving  for the 
maximum number of processors  beyond  which  some 
marginal increment of additional speedup is not met. 

(In the example  previously  cited, this leads to a 
complicated quartic equation for Popt.) However, it 
is not our intent  to explore  all the complex  deriva- 
tions that can occur. Also, as  discussed in the pre- 
vious  section, the fraction of the code that is parallel 
(i.e., X )  may  also  be a (decreasing) function of the 

The  performance  degradation  can 
be nonlinear, as we  impose 

a  greater connectivity 
and  communication 

between  cooperating  tasks. 

number of processors  employed. This further com- 
plicates matters and makes the above analytic opti- 
mality  expressions the upper bounds on perfor- 
mance. The important point is that the performance 
degradation can be nonlinear, as we impose a greater 
connectivity and communication between  cooper- 
ating tasks. 

Load  balancing. The basic  goal of parallel  processing 
is to keep  all  processors  busy  all of the time. Devia- 
tions from this ideal are called  load-balancing prob- 
lems. It is clear that load  balancing  is  faced  with the 
following dilemmas. First, for a given problem size, 
there is only so much work to be performed, and 
thus we are limited to some maximum number of 
processors.  Second,  because  of the discrete nature of 
any parallel calculation, the division of labor is more 
evenly  balanced  for certain numbers of processors 
than others.  These constraints may  be compounded 
if,  as  suggested  previously, the amount of parallel 
work changes  as the job proceeds and communica- 
tion is required. 

However, additional complications may  arise. Thus 
far, we have  been  implicitly  describing a single-user 
parallel  processing  system and applications that con- 
sist of a fixed number of operations. This allows  us 
a tractable static determination of the number of 
processors to use. If either of these conditions is not 
met, we must look more carefully at load-balancing 
degradation. 
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Figure 4 Statistical parameters that govern performance in - 
time-shareb  systems 

TIME 

The basic  aspect of parallel computation that we 
wish to examine is  what happens when the elapsed 
time  to execute a task is not precisely determined, 
i.e.,  execution time is randomly distributed. This 
situation typifies the elapsed time of a job executed 
by a general  time-shared  system  wherein  large num- 
bers of jobs compete for resources. The heavier the 
demand for  system  resources,  obviously the longer 
the turnaround time will  be  for a sequential job. If, 
however, we  wish to determine the performance of 
a parallel job in such an environment, the degrada- 
tion to performance (i.e., elapsed time) can become 
more complex. We illustrate this with the following 
rudimentary example. 

Consider a job that is entirely parallel and is  executed 
on a P-multiple-processor,  time-shared  system. As- 
sume further that we may partition the job into P 
equal tasks that require no communication and as- 
sign them to specific  processors. In the absence of 
any other jobs in the system,  each  task  finishes at  an 
identical point in time, and the speedup is equal to 
P (linear speedup).  Now consider the effects  of a 
number of other jobs competing in an unbiased 
manner for  processors. The result is that the time for 
the completion of any one of our tasks will  be 
variable. More precisely, we can say that the time 
for the completion of any task is randomly and 
identically distributed and is characterized by a prob- 
ability distribution. This distribution is  lower- 
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bounded by the time the tasks take in the empty 
system. The width of the distribution depends on 
many factors, including the dispatching policy of the 
operating system, the number of jobs competing for 
processors, and the job service and  amval time dis- 
tributions. 

The best that we can do in predicting performance 
under these conditions is to determine the average 
or expected  speedup. To  do this, we need to estimate 
two quantities. The first  is the average time Tavg at 
which the tasks complete. The second, T,,, is the 
expected  value of the time for the last  task to com- 
plete. The time for the last  task  defines  when our 
parallel job is  finished. With these  two quantities, 
the following equation defines the average speedup 
of our parallel job relative to the sequential job 
executed in the same environment: 

PTW, S , = - .  
‘ma, 

To see  this, it is  necessary to observe that the ratio 
of Equation 10 is simply the fraction of the proces- 
sors that are  busy during the total job completion 
time. Equivalently, we may  recognize this as simply 
the ratio of the expected  elapsed times of the sequen- 
tial-to-parallel implementations. Here, the expected 
sequential time is estimated as the sum of the ex- 
pected times of running the P tasks on one processor. 
Thus, to predict performance, we must be  able to 
evaluate these  two  parameters. We can do this if  we 
know our underlying  probability distribution. 

Assuming that we know this distribution D(t),  the 
estimation of  average time Tavg  is  straightforward. It 
is simply the average  of our distribution and is 
indicated for a sample distribution in Figure 4. Sim- 
ilarly, the expected maximum Tm,, can be estimated 
using a theory of statistics known  as “order statis- 
tics.”  Typically, this theory is  used to study sampling 
problems. In our case, we are sampling from a dis- 
tribution P times and we  wish to estimate the ex- 
pected maximum value we  will observe. One ap- 
proximation to this value  is a quantity known as the 
“characteristic maximum.’’ This is  calculated by  per- 
forming a definite  integral  over the distribution from 
zero to some upper limit and requiring that the result 
equal the fraction (P - l)/P.  The upper limit is the 
characteristic maximum (Equation 1 l), as illustrated 
in Figure 4 for a case in which P is equal to 8: 

P- 1 D(t)  dt = - P *  
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It  is  clear that the average  speedup  exhibits the 
following  dependencies. As more jobs are intro- 
duced, competition for  processors  increases. This 
may  increase the width of our underlying  probability 
distribution. As width  increases, the difference  be- 
tween the average and expected maximum times 
increases,  resulting in poorer  performance and lower 
speedups for a parallel  application  using P proces- 
sors. Increasing the number of  processors  over  which 

The  motivation  behind CAP was 
initially  limited  to  solving  large 

problems  in  theoretical  chemistry. 

~~ 

our application  is partitioned is  subject to two  com- 
peting  influences.  On the one hand, the underlying 
distribution tends to be narrower and shifted to 
shorter times (because the amount of  work  is  less in 
each  parallel  task).  However, the expected maximum 
increases  (because the integration is  over a distribu- 
tion to a fraction that is  closer to unity).  Whether 
performance  is enhanced or degraded  depends in 
this  case  upon the relative  magnitudes  of  these ef- 
fects. 

This method of estimation of speedup  is  overly 
simplistic,  however,  because the assumption that the 
underlying distribution is  static  may  be  invalid. That 
is, the method  ignores the fact that as  some of our 
parallel  tasks  complete, the total number of jobs in 
the system  decreases.  Similarly, a more  accurate 
prediction of speedup  would  require that we estimate 
the expected  elapsed time of our sequential job from 
a probability distribution that takes into account 
that there are P - 1 fewer jobs in the system than 
under our parallel  scenario. Thus our estimation that 
the sequential time is P times Tavg (the numerator in 
Equation 10)  is too large, and the predicted  speedup 
is  overly  optimistic. 

In summary, this  analysis  is meant to show  only that 
load-balancing  issues that arise in time-shared  par- 
allel  processing  systems can give  rise to additional 
performance  degradation  beyond that due to the 
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fraction of  parallel content, communication, and 
static  load-balancing  problems.  Although  it  is  some- 
what  theoretical and cannot be  used in a simple 
fashion to predict  exact  performance  (because the 
exact nature of the underlying distributions is  gen- 
erally  unknown), the analysis points out the essential 
statistical  factors that influence  performance. 

Early CAP systems 

To introduce the earlier lCAP systems and their influ- 
ence in defining I c ~ ~ l 3 0 9 0 ,  it is appropriate to begin 
by discussing the applications that led to their design. 
The motivation  behind lcAP was initially  limited to 
solving  large  problems  in  theoretical  chemistry. This 
area  includes quantum chemistry  calculations em- 
ploying  self-consistent  field  methods, and statistical 
mechanics  calculations  using Monte Carlo and mo- 
lecular  dynamics  methods.  Although it is not our 
intent here to go into detail about these  areas,  several 
comments might  be  helpful. 

The reason  for  performing  such  calculations  is to 
gain  insight into the behavior of matter. Quantum 
chemistry  calculations  can  be  used to understand the 
properties of isolated  molecules,  i.e., their energy 
states,  spectroscopic  properties,  etc.  Alternatively, 
they  may  be  used to describe the interaction of one 
molecule  with one or more other molecules,  i.e., 
two- or many-body  potentials.  Statistical  mechanics 
calculations  deal  with  large  ensembles of molecules 
and can be  used to predict the thermodynamic prop- 
erties of  gases, liquids, and solids,  such  as  heat  con- 
ductivity,  free  energy,  etc.  An  essential  ingredient  for 
statistical  calculations is the intermolecular poten- 
tials that may  be  calculated ab initio by quantum 
chemistry  theory. Thus there is a natural and sym- 
biotic  relationship  between the two  fields.  In terms 
of  parallel  processing,  all  applications  share the fol- 
lowing important properties. 

The first attribute of these  calculations  is that the 
parallelism  within  each  is  obvious. For example, 
considering a molecular  dynamics  calculation, the 
problem  consists  in  studying the time evolution of 
an ensemble of particles  for  which we know an 
expression that describes  how one body attracts or 
repels another, e.g., a two-body  potential. Then, at 
each time step, we  wish to calculate the total force 
on each  body and move it to a new  position on the 
basis  of this force. The parallelism is evident in  that 
the forces on each  body  can  be  calculated in a 
cumulative  parallel manner as  each  processor or 
process  calculates the independent two-body  terms. 
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All that needs to be done at the end of this period  is 
have  a synchronization followed by a  global addition 
of all contributions from each  processor. 

The  selection of master  and  slaves 
was  made from  those  available 
at  the  time  the  project  began 

in early 1983. 

Again considering the same example, the second 
attribute concerns the complexity of each individual 
two-body computation. A long-range  two-body  po- 
tential, derived  from quantum chemistry  calcula- 
tions for  some  complex  molecular  species, is typi- 
cally  a  very  complicated  expression.  It  therefore  re- 
quires a  large amount of time to perform  all the two- 
body calculations before the final  global sum is per- 
formed,  followed by the projection of the new  posi- 
tions. This is  even more true when we consider 
potentials for  three-or-more-body interactions. In 
short, we are  describing  what  has come to be  known 
as an application with  very-large-grain-size  parallel- 
ism. This implies  a  great deal of computation prior 
to any required communication between  processors. 

A third attribute, inferrable in part from the discus- 
sion just given,  is that the amount of code that is 
parallelizable is  very  close to 100  percent. The only 
sequential  section  involves the global summation 
and the prediction of the new coordinates. Thus, the 
limitation imposed by Amdahl's  law on the number 
of  processors that may be gainfully  employed in 
parallel computation is not severe  for  these  calcula- 
tions. That is,  for  problem  sizes  of interest, tens to 
hundreds of processors can be  employed  before the 
sequential portion of the calculation begins to dom- 
inate the total solution time. Moreover,  load  balanc- 
ing  is  typically  easy to achieve. The most important 
constraint is the minimization of the overhead that 
arises  in communicating partial forces and broad- 
casting new positions at the end and beginning of 
each time step. This additionally limits the number 
of processors we may  employ. 

Given  these  characteristics of our applications, it was 
obvious  what  type of parallel computer we could 
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assemble to perform these  types of calculations. All 
that we required was an elementary master/slave 
system in which the slaves  would,  for  example,  cal- 
culate the two-body contributions at each step and 
send the results to the host or master. The host  would 
then add them up, predict the new positions, and 
send  these  back to the slaves  for the next  period  of 
computation. The example given  has thus far been 
that for  a  typical  molecular dynamics calculation, 
but analogous operations also pertain to the remain- 
der of the applications. We  now describe the archi- 
tecture of the initial lCAP system. 

Architecture. Because we wanted to assemble such a 
system in a short period of time and move  toward 
the main goal of solving  large  problems, the selection 
of master and slaves  was made from those  available 
at the time the project  began in early  1983. The 
slaves  or attached processors (AB) had to satisfy the 
following requirements. Because  of  cost,  space, and 
complexity  of the overall  system, the total number 
of attached processors was limited to approximately 
10. This demanded-given our goal of supercom- 
puting performance-that an AP be a  powerful  proc- 
essor in its own right and have  64-bit  precision 
floating-point  hardware,  as was required by our ap- 
plications.  Additionally,  each AP needed  a  real mem- 
ory  of the order of a  megaword  (64-bit  words) and 
several hundred megawords  of  disk  space.  Given 
these considerations, the optimal choice was a  Float- 
ing Point Systems  Model  164 (FPS-164). 

The FPS-164 has  a  peak performance of  11 million 
floating-point operations per  second (MFLOPS) and 
comprises multiple functional units, including a 
floating-point adder and multiplier, that may  be 
executed during each machine cycle. Up  to nine 
other operations may additionally be  performed dur- 
ing  each machine cycle (1 82  nanoseconds), including 
memory  fetch and register-to-register  transfers. The 

compilers for  a corresponding number of host  ma- 
chines.  These compilers do a  good job of producing 
optimized object  code that packs many instructions 
into a  given macro- or long-word-length instruction. 
The floating-point units are pipelined and support 
chaining with one another. The machine has  a  24- 
bit addressing  capability and supports standard I/O 
to its own  disk  system. 

The choice of host  was  based on the following con- 
siderations. First, because data transfer between 
slaves and host  represents  overhead in our parallel 
computations, we required superior transfer rates to 

FPS-164 is supported by a number Of FORTRAN cross- 
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the extent  possible.  Second, we required  a  host that 
had  superior 110 capability and offered an easy-to- 
use operating  environment. On the basis of these 
considerations, an IBM 43XX mainframe was se- 
lected.  For  example,  a  dyadic 4381 can have up to 
24 independent  channels,  any number of  which can 
be  coupled to a  corresponding AP. Each  channel  can 
operate at a  maximum  transfer  rate of 3 megabytes 
per  second (MBIS) and the  channels  can be  driven  in 
parallel  with  one another. For  ease of use,  the 43XX 
offers  I;he Virtual  Machine (VMISP) operating 
system  for  which FPS offers  all the intersystem 
support  software as a  standard  product. 

With  these  choices,  the  system was incremented 
gradually  over  approximately  two  years to include 
10 ~ p S - 1 6 4 ~  coupled to two IBM hosts, as shown in 
Figure 5 .  As indicated, one host was a  dyadic IBM 
4381 that could  couple to up to all  ten APS, and the 
other  host was an IBM 4341 that could  couple to  up 
to three APS. The 3088 switching units allowed the 
latter three A P ~  to be  configured to either host.  Ad- 
ditionally,  a third IBM 4341 was  placed in the system 
and served  as  a  graphics  station  attached to a number 
of graphics  terminals. All of the 43XX systems  had 
channel-to-channel  coupling.  Finally,  large amounts 
of external  storage  in  the  form of IBM 3350 and 3380 
disk  systems  were included,  totaling  approximately 
25 gigabytes  systemwide. This system  was  called 
]CAP/ 1. 

In parallel  with the development of ICAP/I, we assem- 
bled  a  similar but more  powerful ICAP system  called 
I c A P / ~ .  Like the ICAP/I system, it was a  master-slave 
system, but it differed in that the host was a  single 
dyadic IBM 3081 that coupled to a number of the 
Floating  Point  Systems FPS-264s. The F P S - ~  is  very 
similar  architecturally to the FPS-164, but it is  ap- 
proximately  three to four  times  faster,  with  a cycle 
time of 52 nanoseconds.  Again, IBM ~-MB/s channels 
were  employed to couple  host to slaves.  Each  slave 
had its own  disk  subsystem  (each  with approximately 
one  gigabyte), and the  host  a  separate  large  comple- 
ment of disk  storage.  Eventually, as with ICAPII, this 
system  included  ten  attached  processors.  One  further 
distinction  between  the  two  systems was thatlJhe IBM 
308 1 ran  under the IBM MVS operating  system  rather 
than the VM/SP operating  system. 

Both ICAP/i and ICAP/Z were  essentially  single-user 
systems  in the following  sense. A parallel job initiated 
on a  host was  assigned a number of  attached  proces- 
sors that would be retained until job completion. 
There was no dynamic  switching of a  given  attached 
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Table  1  Applications  performance  on ICAP/l 

Job Elapsed Time  for  ICAP/1 
(minutes) 

1 AP 3 APs 6 APs 10 APs  CRAY 
XMP 

Integrals(27  atoms) 71.7 24.0 12.3 7.8 7.6 
SCF  (27 atoms) 25.2 9.4 5.9 4.9 3.6 
Integrals (42  atoms) 203.7 68.9 38.3 21.2 23.2 
SCF (42 atoms) 73.0 26.0 14.3 10.6 8.7 
Monte  Carlo 162.1 57.8 32.0 22.0 20.4 
Molecular dynamics 99.6 34.6 19.3 13.7 17.0 
Seismic 33.8 11.8 6.6 4.3 5.6 

Table 2 Applications  performance  on  ICAP/2 

Job Elapsed Time for ICAP/2 
(minutes) 

I 1 AP 

Integrals  (27 atoms) 19.1 
1 SCF  (27  atoms)  10.6 

Integrals (42 atoms) 55.0 
SCF (42 atoms)  24.1 
Monte  Carlo 60.0 

~ Molecular  dynamics 29.6 

3 APs 6 APS 10 APS  CRAY. 
XMP 

6.5 3.3 2.3 7.6 
5.2 3.7 3.4 3.6 

18.7 9.3 6.1 23.2 
9.1 5.6 4.7 8.7 

20.9 11.4 7.7 20.4 
10.6 5.9 4.2 17.a 

processor  among  multiple  parallel  jobs.  This was 
consistent  with the main  goal of the system:  perfor- 
mance of  large-scale production  calculations.  It  also 
eliminated  from  consideration  the  performance deg- 
radation of statistical  load  imbalancing  previously 
discussed.  One  exception,  however, was in effect  for 
ICAP/l. The  three  processors  attached to the IBM 434 1 
permitted AP allocation and deallocation  among 
multiple  parallel jobs and thus served as a  tool  for 
parallel  program and algorithm  development  prior 
to migration to the production environment. 

Performance. The initial  goal of achieving  supercom- 
puter  performance was achieved  almost  immedi- 
ately.  This  is  indicated  in  Tables 1 and 2, where 
elapsed  times  for  a  set of applications are compared 
on and ICAP/Z, respectively  (as  a  function of 
the number of  slaves  used in  parallel)  versus  a  single- 
processor CRAY-XMP. The applications  cited  are an 
integrals-generating  program  used to construct  ma- 
trix  elements  for  a  self-consistent field (SCF) calcula- 
tion, for  the  iterative SCF code, and for  illustrative 
many-body-interaction  molecular  dynamics and 
Metropolis Monte Carlo  codes. It is important to 
note that the codes  were not optimized  for  any  of 
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the systems, and thus these measurements cannot be 
used as anything like a definitive comparison. How- 
ever, they do serve to indicate roughly the aggregate 
computing power  of the machines for  these  appli- 
cations. 

With this qualification, Tables 1 and 2 show that for 
these applications, ICAP/1, with  eight to eleven  proc- 
essors, and ICAPIZ, with three to four processors,  each 
roughly equal the computing power  of a single CRAY- 
XMP processor. No data were available  for compari- 
son of these jobs running in parallel on an XMP. 

The success in applying lCAP to these application 
areas was attributable to their large  parallel  grain 
sizes. The  amount of time spent computing was  large 
compared to the amount of interprocessor commu- 
nication required. A representative but more detailed 
description of a number of parallel applications in 
theoretical  chemistry  executed on the ]CAP system 
may  be found in Reference 14. This characteristic 
was found to apply to many other applications, 
including the analysis of  high-energy  physics data, 
the determination of protein structures, seismic  mi- 
gration analysis, and circuit simulation. Typical  per- 
formance results are indicated in Figure 6 for  several 
such applications. Here the speedup factor is plotted 
versus the number of parallel attached processors 
used. Speedup is  defined  as the ratio of the times a 
given application took to run on P processors com- 
pared to that running sequentially on one processor. 

These  examples include (going  from  left to right, top 
to bottom, and indicating, where appropriate, collab- 
orators and their affiliations)  molecular  energy de- 
terminations, molecular dynamics studies of water, 
oil  reservoir  seismic  analysis, predictions of protein 
structure (Professor H. A. Scheraga at Cornel1 Uni- 
versity); determination of the wavefunction  for 
HeH employed  in  predicting the mass  of the neu- 
trino (Professor W. Kolos at the Uniyy-sity of Flor- 
ida); electronic  circuit simulation, high-energy 
physics data analysis  (Drs. F. Carminati, R. Mount, 
H. Newman, and  H. Pohl at CERN); chemical  reac- 
tivity determination through electron density calcu- 
lations (Professor R. F. W.  Bader at McMaster Uni- 
versity, Ontario, Canada); stochastic simulations of 
fluids,  study  of the liquid-solid  silicon interface (Dr. 
E. Gawlinsky at Temple University), silicon  crystal 
growth  (Professor K. Kaski at Tampere University 
of Technology, Finland); and the indexing of  biolog- 
ically  active  chemicals  (Professor G. Richards at 
Oxford  University,  England). 
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Figure 6 Speedup  for  typical  large  parallel  grain  size  applications 
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However, the lCAP systems did not do as well for 
applications characterized by medium- or small- 
grain  parallelism. That is, the burden of interproces- 
sor communication through a  host intermediary us- 
ing ~ - M B / S  channels was often too great. This was 
the case particularly  for  engineering applications, 
where partial differential equations are typically 
solved  following standard discretization techniques 
such  as  finite differyxing  or finite  elements. Here, 
the basic algorithms that are required to solve  large 
linear sets  of equations or that perform matrix dia- 
gonalization are not characterized by large  parallel 
grain sizes. These  algorithms require more efficient 
interprocessor communication. This concern gave 
impetus to attempting to improve communication 
on ICAP. 

Communication. The extensions made to the initial 
ICAP systems dealt primarily  with enhancing com- 
munication. Two  hardware additions sought to 
achieve  this. 

The first  was the inclusion of a number of shared 
memories  developed by  Professor Martin Schultz of 
Yale  University and Scientific Computing Associates 
(SCA). These  memories were  fast  solid-state  disks that 
were coupled to the 110 ports of the FPS machines 
and were directly  addressable by the attached proc- 
essors. This configuration  is illustrated in Figure 7 
for the 1CAP/1 system; I C A P / ~  was identically  extended. 
Shown are five memories,  each  multiplexed four 
ways and each  being 32 MB in size, linked in a  double- 
ring structure around the ten processors.  Each 
processor  has  two independent paths to a  separate 
memory. A processor transmits data to  or from  a 
memory at a nominal peak rate of 44 MB/S on ICAP/ I 
(one word  per machine cycle) and 38 MB/S on ICAPIZ 
(one word  every fourth machine cycle). Additionally, 
one large,  bulk-shared memory developed by SCA of 
size 5 12 MB (sectioned into four independent banks 
of  128 MB and multiplexed 12  ways)  was coupled to 
all ten processors. The 12-way multiplexing was 
distributed by three independent buses,  each  capable 
of  peak transfer rates of 44 MB/S on ICAP/I and 38 
MB/S on ICAP/Z. The peak  aggregate transfer rates 
( 132 MB/S on 1cAP/1 and 1 14 MB/S on I C A P ~ )  were 
realizable if three processors  using  different  buses 
addressed separate memory  banks.  Software !y em- 
ploy  these memories was developed by SCA and 
extended  within our laboratory to include functions 
such as synchronization between  processors and 
locks supporting critical  sections. 

The second  hardware addition to the ICAP clusters 
was a  32-bit-wide  fast bus (built by Floating Point 
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Systems) that linked  all attached processors. This is 
also illustrated in Figure 7, showing each processor 
attached to a node on the bus. The nominal peak 
speeds were  22 MB/S from AP to node and approxi- 
mately  32 MB/S between  nodes,  for both ICAP/I and 

The  partitioning of a  parallel 
program  and  its  communication is 
dictated by operational  and  data 

dependencies. 

ICAP/Z. Software to use this facility was developed by 
FPS'~ and included the ability for any non-nearest- 
neighbor communication, as well as for  broadcasting 
from one to all. 

As is  also evident from Figure 7, each ICAP cluster 
was hosted by a  single  master-a  dyadic IBM 3081 
on ICAPII and a  four-processor IBM 3084 on ICAPIZ. 
The greater computing power of the IBM 308 1 elim- 
inated the need  for  a  dual-host  system on ICAPII, 
which  had  previously  employed IBM 43XX systems. 
As before, ICAP/I allocated  a number of dedicated 
attached processors  specifically  for  parallel  program 
development and the remainder for production. 
However, ~CAP/Z was used  exclusively  for production. 
Again, the IBM 3081 and the 3084 ran under the 
VM/SP and MVS operating systems,  respectively. 

An appreciation for the demands imposed by com- 
munication can be gathered  from the following. The 
partitioning of a  parallel  program and its required 
communication structure is dictated by the opera- 
tional and data dependencies imbedded within the 
physics  of the application. For example,  a  single- 
dimensional fast Fourier transform exhibits a butter- 
fly type of data flow graph.  When partitioned among 
a number of parallel  processors, the resulting  code 
requires that the interprocessor connect network 
mimic this graph well to achieve  useful efficiency. 
Another example could be the solution of time- 
dependent partial differential equations, often solved 
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by explicit time-marching schemes.  Such  problems 
may  be  cast in a parallel form by dividing the region 
of solution equally among different  processors  (do- 
main decomposition) and requiring synchronization 
between strictly2teighboring processors at the end of 
every time step.  Both of these  examples require the 
ability of some  network or shared memory to achieve 
a variety of  fast 1: 1 processor intercommunication 
paths. 

Thus, for  example, a hypercube  multiprocessor sys- 
tem may  be  effective at performing in parallel a 
single-dimensional  fast Fourier transform because 
the butterfly  network is implicitly imbedded within 
its structure. Similarly, any multiprocessor  configu- 
ration that manifests a line, ring, or grid intercon- 
nection  may  be  effective  for the second  example. 

On the other hand, an application for  which  parallel 
decomposition requires frequent global communi- 
cation may  provide a more demanding test of the 
efficiency of the interconnection scheme. The re- 
quirement for  global communication is  evident in 
such applications as  molecular  dynamics,  where one 
processor  is  responsible  for  receiving partial forces 
from  all others (i.e., a receive-from-all operation) 
and then broadcasting new positions to all  slave 
processors. A broadcast  ability is also  crucial  in many 
other applications such as  celestial  mechanics 
calculations21 or basic algorithms involving  House- 
holder reductions.22 The latter are typically used in 
QR factorization  for linear least-squares  problems or 
reduction to tridiagonal forms for  eigenvalue deter- 
mination of symmetric systems. Thus, for  purposes 
of illustration, we consider the performance of 
broadcasting on the lcAP/I system as a function of 
communication path and the identity of the broad- 
caster  [i.e.,  host-to-AP(s) through IBM channels; AP- 
to-AP(s)  by the use of shared memory; and AP-to- 
AP(S) by the FPS bus]. The conclusions based on these 
comparisons will  hold in an analogous manner for 
the ICAP/Z cluster. 

First, we consider the host-to-AP paths via the IBM 
channels. Shown in Figure 8 is the measured broad- 
cast bandwidth in MB/S versus the number of MB 
received in total by the slaves. Broadcast bandwidth 
is defined  as the rate at which this quantity of data 
is transferred. Illustrated are representative  cases 
where the host  broadcasts to one, two, three, four, 
and eight attached processors. The smooth lines 
through the data points represent a performance 
model  discussed in detail in Reference 23, for  which 
the agreement  with experiment was good. 
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Figure 8 Channel  broadcast  performance 

N = NUMBER OF PROCESSORS 

Several observations may  be made from a  cursory 
examination of this figure. First, the broadcast band- 
width  increases  with an increase in number of 
processors. This is  a consequence of employing in- 
dependent channels for  each  processor, and  thus part 
of the broadcast operation proceeds in parallel. It is 
also evident that between approximately 6 and 1 1 
MB of total data sent (in going  from 2 to 8 APS), a 
severe degradation in performance occurs. This be- 
havior was found to be due to paging on the host 
system. Performance is  relatively poor for  small 
transfers. This behavior is attributable to latency 

effects in initiating the transfers. As data size in- 
creases, the transmission rates approach superior 
asymptotic values prior to the point at which  paging 
degradation occurs. 

Next we consider the same operation, but now pro- 
ceeding by one attached processor,  designated  as  a 
master,  broadcasting to N other attached processors 
by  way  of one shared memory. We  recall that a 
shared memory is  multiplexed rather than being 
multiported, and thus  it can be  accessed by only one 
processor at a time. Accesses consist of fetching or 
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storing  blocks of contiguous  words.  Such  accesses, 
once started, cannot be interrupted by another proc- 
essor. The measured  performance  for this operation 
is  shown in Figure 9, where the abscissa  is the 
broadcast  bandwidth and the ordinate is the total of 
the MB received. The smooth lines  represent  a  model 
discussed in detail:3 for  which  agreement  with  ex- 
periment was excellent.  Indicated are representative 
cases  for  broadcasting to 1,2, 3,4,  and 8 processors. 

Several  observations  may  be  made  regarding  this 
broadcast path. First,  compared  with channel broad- 
casting,  latency  effects,  although  still  present, are of 

less  significance  as  transfer  rates approach their 
asymptotic  values  more  rapidly  for  smaller amounts 
of data. Further, it is clear that bandwidth  increases 
as the number of  receivers  increases. This is  because 
the number of accesses to bulk  memory  increases  as 
N + 1, where Nis the number of receiving  processors, 
and the total data transferred  increases as N. As time 
is  roughly proportional to N + 1 ,  we expect as N 
becomes  large that the cumulative rate will approach 
that at which  a  single  processor  can  access  memory, 
i.e.,  nominally 44 MB/S. For a  broadcast to one 
processor, we expect the order of one-half this value, 
and the observed  rates support this expectation. 

Figure 9 Shared-memory  broadcasting  performance 
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Second, the broadcast operation has  been  performed 
by using one memory only. This is  a  worst-case 
constraint, as performance may be enhanced signif- 
icantly by the host  broadcasting to several  shared 
memories and letting the recipients  receive the data 
parallel in time from different  memories. The present 
method dictates that only one processor can access 
the memory at a time, and thus requires, as stated, 
N + 1 memory operations following  sequentially in 
time. 

We retain this method for  simplicity of comparison 
with the other communication paths, but it must be 

The  broadcast  bandwidth  increases 
nearly  linearly  with  the  number of 

receiving  processors. 

borne in mind that distributed shared-memory 
broadcasting  may  be  considerably  faster. 

Third, we need to consider in more detail the actual 
implementation of the broadcast operation. The 
bulk  shared memories are passive  devices.  They  have 
no hardware  capability  for synchronization. We re- 
quire, however, that our receiving  processors  per- 
form their fetch operation only  after the broadcaster 
has  completed its store. Thus, we require a  synchro- 
nization  between  these operations, which we have 
effected  by a  software barrier synchronization that 
employs  dedicated shared-memory addresses  for this 
purpose. This overhead  is included in the perfor- 
mance measurements. 

Finally, we compare the broadcast performance of 
the shared-memory route versus that of the host-to- 
slave-channels path. This is illustrated in Figure 10, 
where we plot the ratio of times for the slave-chan- 
nels path over that for the shared memory, as  deter- 
mined from the models,  as  a function of the loga- 
rithm of the total number of bytes  received  for 
differing numbers of receiving  processors. 
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Figure 10 shows that in the asymptotic regions the 
shared-memory route is  roughly ten to five times 
faster than channel broadcasting, as the number of 
receivers  increases from one to eight.  However, in 
this regime, the order of millions of bytes of data are 
being transferred. The region that is more important 
in terms of normal parallel applications deals  with 
transfers of words to kilobytes of data. Here it is seen 
that the rates favor the shared-memory path by a 
factor of 300 to 50 over the same range of number 
of  receivers.  An examination of the performance 
models indicates that these superior rates are due 
almost entirely to significantly  smaller  latencies in 
accessing shared memory compared to channel ini- 
tiation. It is this performance differential that has 
made the shared memories suitable for much- 
smaller-grain  parallel  processing,  where the channel 
communication was previously  marginal or inade- 
quate. 

Finally, we consider the fast  bus. The measured 
performance of the broadcast bandwidth is plotted 
in Figure 11 for one to five  processors.  Again, the 
lines  represent  a  model  discussed in detail in Refer- 
ence 23, for  which agreement with experiment was 
excellent. 

Asymptotically,  as  expected, the broadcast band- 
width  increases  nearly  linearly  with the number of 
receiving  processors.  However, the low rates for 
small  packets of data indicate latency effects.  Also, 
packets cannot exceed 32 768 words, and transfers 
exceeding this limit are sent in separate packets. This 
is responsible  for the zigzag behavior  observed in the 
model, to which the data points fit quite well. 

Figures 8, 9, and 11 show that the bus has much 
better performance than the channels over  all data 
sizes, and performance is somewhat better than the 
shared-memory path in the asymptotic region  where 
very  large transfers are performed.  However, in the 
small-transfer  region of words to kilobytes of data, 
Figure 12 shows that the shared-memory path is 
roughly an order of magnitude faster than the bus. 
Here  is plotted the ratio of times for  broadcasting 
via the bus over that for the shared memory path 
(calculated by the models)  as  a function of the loga- 
rithm of the total number of bytes  received  for 
differing numbers of  receiving  processors.  Again, the 
superior rates  using the shared memory for  small 
transfers were attributable to its smaller access  la- 
tency.  Overall, the shared-memory path is deemed 
superior for the larger part of parallel applications 
that require the broadcast function. 
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Figun, 10 Ratio of broadcast  times-  channel per shared  memory 
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Although we have  singled out the broadcast  function 
for  comparison  between  different communication 
paths,  the  conclusions  reached  hold  for other com- 
munication  structures.  They  include  receive-by-one- 
processor  from  all others and any  individual  proces- 
sor-to-processor  transfers and synchronizations. We 
have  also found that software  spin  locks  of either 
PetersonP or   am port's'' form can be effectively 
implemented by  use  of shared  memory. This latter 
function  is  crucial  for  applications that require  dy- 
namic load  balancing  through the use  of  critical, 

locked paths for  task  assignments.  From the per- 
formance  results  for  small data transfers, it may  be 
appreciated that latency  factors  are of paramount 
importance in communication for  practical  parallel 
applications. That is,  asymptotic  performance-al- 
though  important-is  a  secondary  consideration 
when dealing  with  limited amounts of interprocessor 
transfer. 

Finally, to bear  witness to the effect  improved  com- 
munication  plays  in  executing  parallel  programs of 
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smaller  parallel  grain  size,  consider  a  simple  Metrop- 
olis Monte Carlo  application.  Here we simulate the 
behavior of 5 12 water  molecules,  confined  in  a 
periodic  box and subject to short-range  two- and 
three-body  potentials. The portion  of the code that 
is  parallelized  is the determination of the change in 
energy  when  a  randomly  selected  molecule  is ran- 
domly  moved.  Each  parallel  task  computes an in- 
dependent contribution to the energy  change and 
then transmits it to the master  task,  which  then 
performs the summation over  these contributions 

and accepts or rejects the move. The master then 
broadcasts the conditionally new coordinates of the 
molecule  for  a new  cycle on a new randomly  chosen 
molecule. The function of the  master  may  be  as- 
sumed by the host, in which  case communication 
proceeds  via  channels, or it may  be  assumed  by one 
of the  attached  processors,  where communication is 
performed  using either shared  memory or the fast 
bus. In the latter  case, the master  processor,  before 
assuming that role,  also  performs one of the parallel 
tasks. 
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Figure 12 Ratio of  broadcast  times - fast  bus  per  shared  memory 
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Given that the potential  is of short  range, the amount 
of  parallel computation is quite small. Further, the 
quantity of data transmitted back and forth is of the 
order of tens of  words. This description of the pro- 
gram and its  expected  performance  is  consistent  with 
the observed  speedup  curves  shown  in  Figure 13, 
indicating the superiority of the shared-memory 
path. Thus, where the channel path  (using the faster 
IBM 3081 as  master)  gave  only  marginal  improve- 
ment for  two  processors and thereafter  actually 
slowed down, the shared  memory  permitted  reason- 

able  speedup  over the entire range  of  processors. The 
performance of the bus  is  better than that of the 
channel path, but it  is  inferior to  that of the shared 
memories. This is  also  consistent  with the small data 
transfers  involved. 

It is important to point out that none of these 
communication paths is mutually  exclusive.  Indeed, 
transfer to and from the host  is of course imperative 
for  program initiation and often optimal for the 
storage of results. In the latter case,  it  often  occurs 



Figure 13 Metropolis  Monte  Carlo  performance 
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that very  large data structures must periodically  be 
saved, and, in this case, the asymptotic capabilities 
of the channels are wholly adequate. Similarly, the 
bus can prove to be optimal when  very  large transfers 
are required  between attached processors, although 
in reality  most  of  today's applications do not require 
this ability. As we begin to attack much larger  prob- 
lems, this capability will become more important. 

Applications. With these improvements in commu- 
nication, all of the programs that exhibited  marginal 
to poor performance on the early ICAP systems  per- 

formed  adequately. The following  is  a partial listing 
of application areas  for  which  codes  have  been  suc- 
cessfully parallelized on either the initial or the ex- 
tended systems.  References are included where more 
detailed descriptions of implementation may  be 
found. All of these applications obtained from 60 
percent to 95 percent of linear speedup, when parti- 
tioned on up to ten processors  for problem sizes  of 
interest. 

Celestial mechanics-asteroid t;pcking and colli- 
sional probabilities  with planets 
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Molecular dynamics-polymer simulation, ther- 
modynamics of  fluids and 
Electronic  structure-properties of molecules, new 
materials,  organic s e m i c o n d u ~ t o r ~ ~ ’ ~ ~  
Fluid dynamics-turbulence, chaotic 
Micro-hydrodynamics-basis  of  Navier-Stokes 

Monte Carlo-Metropol$ quantum Monte 

Circuit  analysis-equivalent capacitance 
Protein structure-,igFrferon, membrane mecha- 

High-energy physics-data analysis, detector 

Neutron  transport-reactors 
Atmospheric  studies-pollution migration37 
Seismic migration-oil exp~oration~~ 
Oceanography-current 
Circuit  optimization-simulated annealing4‘ 
Graphics-ray  tracing42 
Zmageprocessing-parameter estimation, smooth- 

 equation^^^'^^ 

Carlo, circuit simulation 
22 

nisms, DNA studies 

simulation36 

ing43 

The same statement may  be made with  respect to a 
large number of parallel algorithms that follow. 
These are of critical importance in being  able to 
parallelize  engineering applications, but they  also are 
of general  use in many scientific  areas. 

Linear system solvers-Lu decomposition, Cho- 
lesky decomposition, conjugate gradient (precon- 
d i t i ~ n i n g ) ~ ” ~ ~  
PDE solution  methods-Alternating Direction Im- 
plicit (ADI), MultiColor or Line  Succes;&,4)ver 
Relaxation (MCSOR and LSOR), multigrid 
EigenvaluS2 solvers-Jacobi and Householder 
reductions 
Factorization-QR (Givens reductions), QR 
(Householder  reductions),  singular  value  decom- DOSition22,47.48 
Fast Fourier transforms-mixed  radix,  Cooley- 

Linear programming-~implex~~ 
Statistical database analysis” 

Tukey’’ 

The parallel scheduler. As stated previously, an ]CAP 
cluster was  essentially  a  single-user  system. That is, 
there existed no efficient means of dynamically shar- 
ing  processors among multiple parallel jobs. To 
make the system more responsive to a  general-user 
environment, we developed  a  parallel  scheduler to 
perform the sharing. The experience  gained in this 
effort  was important in predicting the parallel  per- 
formance that we could expect  with 1 ~ ~ ~ / 3 0 9 0 .  
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The specification of a  parallel job scheduler had to 
address the following points. First, although context 
switching  between multiple jobs on  an FPS processor 
is permitted by standard FPS operating system  soft- 
ware, the time required for state saving  is  large. The 
reason is that the memory management system  is  a 
real and not a virtual system. Thus, when  a context 
switch  occurs, the entire memory  allocated to a 
specific job must be  rolled out onto the disk  subsys- 
tem. For our parallel  scheduler, this dictated to a 
large extent the size  of a  task‘s time slice that could 
be  profitably  assigned to  an attached processor  with- 
out degrading performance by continually rolling  in 
and  out parallel jobs. 

Second,  given that we are rolling in and  out parallel 
jobs, it will (in general)  be unprofitable to roll out 
only one or  several  processors and leave others to 
continue for  a  given job. This is  because the parallel 
tasks within a job are typically constrained in time 
by the need to communicate. Rolling out one task 
usually  results in all the other tasks remaining idle 
while attempting to communicate with  a  task that is 
not there. Thus, an important design criterion for 
the scheduler was that if a job was designated to be 
rolled out, all  parallel  tasks  within that job were to 
be  deallocated  from their processors at the same 
time. 

With  these  two constraints, the remainder of the 
scheduler  specification concerned that usually  asso- 
ciated  with traditional operating systems.  We  re- 
quired a priority system that would  assign to jobs 
the preemptive  abilities  needed to roll out other jobs 
with  lower  priority. For our system we decided that, 
all  things  being equal, priority would  be  assigned 
solely on the user-specified, anticipated execution 
time. Lower times were  assigned  higher priority. 
Thus the scheduler uses a fixed number of priority 
queues corresponding to certain intervals of  user- 
specified anticipated running time. Penalties were 
enforced  for jobs that exceeded their specified run 
intervals by placing them in the lowest priority 
queue. Some  fine-tuning was introduced so as not to 
allow  roll-out of lower-priority jobs if they were 
within  a certain fraction of completion of their spec- 
ified run time. A more detailed description of the 
scheduler and the scheduling  policy  may be found 
in References 10 and 5 1. 

The scheduler  resided in a  program that ran on a 
separate virtual machine on the host, through which 
all  parallel jobs were initially assigned  resources and 
thereafter monitored. It  had  a continuously updated 
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picture of the demands on the system and performed 
all  accounting  information.  With the inception of 
the scheduler, it was found that production and 
parallel  program  development jobs could  coexist 
quite well. 

Extendability. A natural  concern that arises  upon 
proof that a  parallel  architecture  works well across  a 
wide spectrum  of  applications is extendability. How 
can we make the system  more  powerful, so that we 
can  address  even  larger  problems?  Two (not neces- 
sarily  mutually  exclusive)  approaches  can  be taken. 
First, we can attempt to replicate and couple  these 
systems  together in some  efficient manner. Second, 
we may attempt to replace the nodes or processors 

Wherever  a  point-by-point 
multiplication  is  required  in  the 

traditional  algorithm,  in  the  block 
algorithm  this  corresponds to a 
matrix-by-matrix  multiplication. 

with  more  powerful  nodes,  contingent upon the 
resulting  system’s  retaining  a  high  efficiency  within 
the  bounds  imposed by communication  degradation. 
Both  approaches  have  been  explored  with the ]CAP 
systems, and the  lessons  learned  have  had  a  strong 
bearing on the design  of I C A P / ~ O ~ O .  

First,  an attempt to link the two ICAP clusters was 
effected  by linking the hosts of each  system to a 
super-host,  which was an IBM 3090-200 with  two 
processors and vector  attachments.  Linkage was 
achieved  by channel-to-channel  connections. This 
coupling  served  a  supervisory  function  for  initiating 
separate  clusters. The coupling was made  closer by 
additionally  assigning to the 3090 its  own  subset  of 
attached  processors  from  within  each  cluster.  Later, 
still  closer  coupling was achieved by allowing  proc- 
essors  from  within  one  cluster to connect to the 
global  shared  memory of the other cluster. The peak 
processing  rate of the entire complex was over  a 
gigaflop,  with  over  a  gigabyte  of  memory.  A  sample 
configuration,  called ICAP/~,  is  shown  in  Figure 14. 
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Several  efforts to apply the system to a  single  problem 
have  met  with  reasonable  success.  However, this was 
achieved at the expense  of  considerable  effort in 
programming,  principally  because  of the heteroge- 
neity of the system. That is,  within the complex  there 
are  nodes  with  large  differences  in  computing  power. 
The requirement of load  balancing  (i.e.,  keeping  all 
the nodes  busy  all of the time) was difficult. An 
important conclusion was that if  extendability  is to 
be achieved by a  geometric  increase  in the system,  it 
is important that all  nodes  be  of  equal  power.  Ho- 
mogeneity  is  essential. 

We considered  the  alternative  strategy of increasing 
the computing  power of the nodes  within  a  cluster. 
To a  certain  extent this issue  had  already  been  ex- 
amined  within ICAPII and ICAP/Z by replacing FPS- 
164s with FPS-264s in ICAP/Z. We explored this issue 
further by  focusing  exclusively on ICAP/I and incre- 
menting the power  of the FPS-164s by adding on 
arithmetic accelerator  boards.  More  specifically, we 
incorporated  two FPS MAX boards  with  each  proces- 
sor. The MAX board,  designed and marketed by FPS, 
contains two  floating-point  multipliers and two  float- 
ing-point  adders that may  be operated  concurrently 
with the basic  processor.  Each  board thus adds  a 
potential  increase  in  peak  processing  power of 22 
MFLOPS, and up to 16 boards  may  be  added to each 
processor. The higher-level  software to use  these 
boards was written by FPS and addressed  one  capa- 
bility  in  particular-the  ability to perform  matrix- 
matrix  multiplication. 

While this might  seem to be an overly  isolated  im- 
provement  for  general  performance, it is  worth  not- 
ing that this operation  is  critical  for  a  broad  category 
of parallel  applications. This deals  primarily  with 
block  algorithms  for the solution of important linear- 
algebraic  problems.  Block  algorithms  differ  from 
traditional  algorithms in that they  operate  with  sub- 
matrix  blocks  instead of  by a datum-bydatum proc- 
ess. Thus,  wherever  a  point-by-point  multiplication 
is  required  in the traditional algorithm, in the block 
algorithm this corresponds to a  matrix-by-matrix 
multiplication. 

The use  of  these  boards  for  several  parallel-block 
algorithms was explored on the IcAP/l system  by 
C.  Van  Loan and C. Bischof  of  Cornel1  University. 
They  studied  block  versions  for  symmetric eige;; 
value  problems,  singular  value  decompositions, 
and QR factorization!* They  met  with  marked  im- 
provement  in  solution  times  with  little  additional 
degradation due to now  relatively  slower communi- 
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cation. In all  cases, the shared memories were em- 
ployed. For example,  Bischof found the parallel ex- 
ecution of a two-sided  block-Jacobi,  singular  value 
decomposition performed at a sustained rate of over 
160 MFLOPS on large  problems  with  eight  processors, 
each equipped with  two MAX boards. This was con- 
siderably  faster than running the same algorithm 
without these  accelerators. 

Concluding remarks 

The potential of  using  parallel  processing to solve 
large-scale problems in science and engineering  has 
been  realized  with IcAP-type systems. The idea of 
coupling  commercially  available  processors  with 
simple interconnects has proven successful and can 
be implemented in a short period  of time. This top- 
down approach has  significant  advantages compared 
to inventing new  hardware and software. 

It is important when constructing a parallel  process- 
ing  system that the applications to be adapted to it 
are fully understood. There are three factors that 
degrade  parallel  performance. The first  is the parallel 
content of the application. Amdahl’s  law limits the 
number of concurrent processes that can be  effec- 
tively  applied. The second concerns communication. 
The speed  of communication must be adequate, so 
that the required communication does not severely 
degrade performance. This means that the parallel 
grain  size of the problem, its dependence on problem 
size, and the number of parallel  processing elements 
employed must be  fully understood. The third factor 
concerns load  balancing. It is important  to have  all 
processors  busy  all of the time. This requires a careful 
study of the physics of the application to determine 
a parallel-task-scheduling  policy. The latter can  be 
dynamic or static, but it must make sense in terms 
of the parallel  grain  size and the communication 
capabilities. All three factors must be  carefully  ex- 
amined in developing a parallel  processing  system. 

The development of the 1 ~ ~ ~ 1 3 0 9 0  system  is a natural 
outgrowth of our previous experiments. We had 
proved that a large fraction of important scientific 
and engineering calculations could be  characterized 
by large- or medium-grain  parallelism and could be 
effectively executed on loosely  coupled or shared- 
memory-based  parallel  processing  systems. Further, 
the coupling of clusters  seems to be an expedient 
manner in which to extend the power  of the system. 
Overall, the unmatched reliability of the 3090 system 
combined with its superior scalar,  vector, and par- 
allel  capabilities  makes this an optimal building 

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988 

1.  M. Annaratone, E. Amould, T. Gross, H. T. Kung, M. Lam, 
0. Menzilcioglu, and J. A. Webb, “The Warp computer: 
Architecture, implementation, and performance,” IEEE 
Transactions on Computers C-36, No. 12, 1523-1538  (1987). 

2. J. A. Fisher,  “Very long instruction word architecture: Super- 
computing via overlapped execution,” Proceedings of the Sec- 
ond  International  Conference on Supercomputing 1, 353-361 
(1987). 

3. J. Beetem,  M. Denneau, and D.  Weingarten, “The GFI 1 
parallel computer,” Special  Topics in Super Computing, Vol. 
I ,  Experimental Parallel Computing Architectures, J. J. Don- 
garra, Editor, Elsevier  Science  Publishers,  New  York (1987). 

4. D. M. Nosenchuck, M. G. Littman, and W. Flannery, “Two 
dimensional nonsteady viscous flow simulation on the Navier 
Stokes Computer MiniNode,” Journal of Scientif2c Computa- 
tion 1, No. 1, 53-74 (1986). 

5. E. Clementi, G. Corongiu, J. Detrich, S. Chin, and L. Dom- 
ingo, “Parallelism in computational chemistry:  Hydrogen 
bond study in DNA  base pair as an example,” International 
Journal of Quantum Chemistry Symposium 18, 601-618 
(1984); IBM Technical Research Report POK-39  (1984); 
available from Clementi, Logan, or Saarinen. 

6. J. H. Detrich, G. Corongiu, and E. Clementi, “Monte Carlo 
liquid water simulation with  four-body interactions included,” 
Chemical Physics Letters 112,426-430 ( 1984); IBM Technical 
Research Reports POK-37 (1984) and KGN-03 (1984); avail- 

7.  D. H. Gibson, D.  W. Rain, and H. F. Wdsh, “Engineering 
able  from Clementi, Logan, or Saarinen. 

and scientific  processing on  the IBM 3090,” IBM Systems 
Journal 25, No. 1,  36-50 (1986). 

8. Y.  Singh, G. M.  King, and J. W. Anderson, “IBM  3090 
performance: A balanced  system approach,” IBM Systems 
Journal 25, No. I ,  20-35 (1986). 

9. D. L. Meck, Parallelism in Executing FORTRAN Programs 
on the 308X: System Considerations and Applications, IBM 
Technical Report POK-38 (1984); available from Clementi, 
Logan, or Saarinen. For another set of FORTRAN-callable 
communication subroutines to support parallel execution on 
the IBM 308X under MVS,  see  IBM Program Offering  5798- 
DNL, developed by  P. R. Martin; the Program Description 
Operations Manual for this program  offering  is Order No. 
SB2  1-3  124;  IBM Corporation, available through IBM branch 
offices. 

10. J. Detrich, D. Folsom, and L.  Rosenzweig, “lCAP/3090 at 
IBM Kingston: Evolution of  software to support parallel  exe- 
cution,” Proceedings of the 3rd International  Conference on 
Supercomputers 1,99-108 (May 1988). 

11. Parallel FORTRAN Language  and Library Reference, SC23- 
043 1-0, IBM Corporation; available through IBM branch of- 
fices. 

12. Virtual MachinelSystem Product System Programmer> 
Guide, Third Edition (August  1983),  SC19-6203-2,  IBM  Cor- 
poration; available through IBM branch offices. 

13. MVSISystem Product,  Version 2, Release 1 ,  General  Infor- 
mation, GC28- 1 1 18, IBM Corporation; available through IBM 
branch offices. 

14. Lecture Notes in Chemistry 44, M. Dupuis, Editor, Springer- 
Verlag,  Berlin (1986); Structure and Dynamics of Nucleic 
Acids, Proteins  and Membranes, E. Clementi and S. Chin, 
Editors, Plenum Publishing Company, New York (1986). 

CLEMENTI, LOGAN, AND W I N E N  507 



16. J. M. Ortega and R. G. Voigt, Solution  of Partial Dlflerential 
Equations on Vector and Parallel Computers, SIAM  Press, 
Philadelphia ( 1985). 

17. Shared Bulk Memory System Software Manual, Version 2.0, 
Scientific Computing Associates,  Yale University, New Ha- 
ven, CT (1987). 

18. FPSBUS  Software Manual, Release G, Publication No. 860- 
7313-004A, Floating Point Systems Inc., Beaverton, OR 
(1986). 

19. 2. D. Christidis, V. Sonnad, and D. Logan, Parallel Imple- 
mentation of a 2D Fast  Fourier  Transform on a Loosely 
Coupled Array of  Processors, IBM Technical Report KGN-68 
(1986):  may be obtained from Clementi, Logan, or Saarinen. 

20.  R. Herbin, W. D. Gropp, D. E.  Keyes, and V. Sonnad, A 
Domain Decomposition Technique on a Loosely Coupled Ar- 
ray of  Processors, IBM Technical Report KGN-124 (1987); 
may be obtained from Clementi, Logan, or Saarinen. 

2 I. A. Milani, M. Carpino, and D. Logan, Parallel Computation 
of  Planet  Crossing Orbits, IBM Technical Report KGN-161 
(1987);  may  be obtained from Clementi, Logan, or Saarinen. 

22.  E. Clementi, D. Logan, and V. Sonnad, “Parallel solution of 
fundamental algorithms using a loosely coupled array of  proc- 
essoqn Numerical Algorithms for Modern  Parallel Computer 
Architectures, M. Schultz, Editor, Springer-Verlag,  Berlin 
(1988). 

23. D. Logan, J. Saarinen, and E. Clementi, “ICAP/3090: Genesis 
and evolution of a parallel  processing  system,” Proceedings of 
the  3rd  International  Conference on Supercomputers 1, 79-98 
(May  1988). 

24. G. L. Peterson, “Myths about the mutual exclusion problem,” 
Information  Processing Letters 12, No. 3, 1 15- 1 16 ( 198 1). 

25. L. Lamport, A Fast  Mutual  Exclusion Algorithm, System 
Research Report, Digital Equipment Corporation, Systems 
Research Center, 130 Lytton Ave.,  Palo  Alto,  CA,  94301 
(1985). 

26.  M.  Bishop,  D.  Logan, and J. P. J. Michels, “Application of a 
parallel computer system to polymer calculations,” Theoretica 
Chimica Acta 12,291-295 (1987). 

27. M. W. Evans, G. C.  Lie, and E. Clementi, Molecular Dynamics 
Computer Simulation of Water From 10 K to 1273 K, IBM 
Technical Report KGN-115 (1987); may be obtained from 
Clementi, Logan, or Saarinen. 

28.  M.  Migliore, G. Corongiu, E. Clementi, and G. C. Lie, Free 
Energy for Hydration of Li’, Na’. K+,  F-.  and CI- With Ab 
Initio Potentials, IBM Technical Report KGN-165 (1987); 
may be obtained from Clementi, Logan, or Saarinen. 

29. H. 0. Villar, M. Dupuis, J. D. Watts, G. J. B. Hurst, and E. 
Clementi, Structure,  t7ibrational  Spectra and IR Intensities of 
Polyenes  From Ab Initio SCF Calculations, IBM Technical 
Report KGN-87 (1987): may  be obtained from Clementi, 
Logan, or Saarinen. 

30.  M. Dupuis, H. 0. Villar, and E. Clementi, Quantum  Mechan- 
ical Simulations of Polymers for Molecular  Electronics and 
Photonics, IBM Technical Report KGN-112 (1987);  may be 
obtained from Clementi, Logan, or Saarinen. 

31.  M. Mansour, A. Garcia, G. C. Lie, and E. Clementi, “Fluc- 
tuating hydrodynamics in a dilute gas,” Phys. Review Letters 
58 (9), 874-877 (1987); IBM Technical Report KGN-67 
(1986): may be obtained from Clementi, Logan, or Saarinen. 

32. L. Hannon,  G. C. Lie,  E. Clementi, and V. Yakhot, Fluid- 
Wall Interactions  in  Shear  Flows: Violation of No-Slip Bound- 
ary Conditions, IBM Technical Report KGN-128 (1987); may 
be obtained from Clementi, Logan, or Saarinen. 

33. D. C. Rapaport and E. Clementi, “Eddy formation in ob- 

508 CLEMENTI. LOGAN, AND SAARINEN 

KGN-63 (1 986);  may  be obtained from Clementi, Logan, or 
Saarinen. 

34.  L. Hannon,  G. Lie, and E. Clementi, “Molecular dynamics 
simulation of  flow past a plate,” Journal of Scientiftc Compu- 
tation 1, No. 2, 145-150  (1986);  IBM Technical Report 
KGN-66 (1 986); may be obtained from Clementi, Logan, or 
Saarinen. 

35. K. N.  Swamy and E. Clementi, “Hydration structure and the 
dynamics of  B-DNA and Z-DNA,” Biopolymers 26, 1901- 
1927  (1987); IBM Technical Report KGN-94 (1987); may be 
obtained from Clementi, Logan, or Saarinen. 

36. F. Carminati, R. Mount, H. Newman, and H. Pohl, CERN 
Technical Report L3-3  13 (1 984), EP  Division, 12 1 1 Geneva 
23, Switzerland. 

37. 2. D. Christidis and V. Sonnad, Parallel Implementation of a 
Pseudospectral Method on a Loosely Coupled Array of  Proces- 
sors, IBM Technical Report KGN-143 (1987);  may  be ob- 
tained from Clementi, Logan, or Saarinen. 

38.  L. Doming0 and E. Clementi, Parallel Computation ofMigra- 
tion of Seismic Data on ICAP, IBM Technical Report KGN- 
17 (1985);  may be obtained from Clementi, Logan, or Saari- 
nen. 

39. A. Capotondi, R. Signell, R. Beardsley, and V. Sonnad, Tide- 
Induced Residual Circulation Simulated on a Parallel Com- 
puter, IBM Technical Report KGN-132 (1987);  may be ob- 
tained from Clementi, Logan, or Saarinen. 

40. H. M. Hsu and V. Sonnad, Parallelization of a Numerical 
Model for Ocean Circulation, IBM Technical Report KGN- 
134 (1987); may  be obtained from Clementi, Logan, or Saar- 
inen. 

41. Circuit layout optimization on chips has been studied and 
wiring optimization is  also under study. 

42. W. Luken, N.  Liang, R. Caltabiano, E. Clementi, E. Bacon, 
J. M. Warren, and W. F. Beausoleil, Application of Parallel 
Processing to Molecular Modelling Graphics, IBM Technical 
Report KGN-111 (1987);  may be obtained from Clementi, 
Logan, or Saarinen. 

43.  Parallel application of simulated annealing for image  process- 
ing has been  investigated. The same technique has been ap- 
plied to Ising model studies of ferromagnetic and antiferrom- 
agnetic materials in external fields. 

44.  G.  Brussino and V. Sonnad, “A comparison of preconditioned 
iterative techniques for  sparse, indefinite, unsymmetric sys- 
tems of linear equations,” accepted  for publication in Int. 
Journal for Numerical Methods in Engineering ( 1988); IBM 
Technical Report KGN-102 (1987);  may be obtained from 
Clementi, Logan, or Saarinen. 

45.  P.  Leca, “Programming loosely coupled multi-FF’S system 
with  message  passing  primitives: Experiment in implementing 
AD1 method on ICAP/l system,” Proceedings of the  Second 
International  Conference on Supercomputing 2,  385-39 1 
( 1987). 

46. R. Herbin, S. Gergi, and V. Sonnad, Parallel Implementation 
of a Multigrid Method on the ICAP Supercomputer, IBM 
Technical Report KGN-144 (1987);  may be obtained from 
Clementi, Logan, or Saarinen. 

47.  C.  Bischof, Computing the  Singular  Value Decomposition on 
a Distributed System of  Vector  Processors, Computer Science 
Technical Report TR86-798, Cornell University, Ithaca, NY 
(1987). 

48. C. Van Loan, “A block QR factorization scheme for loosely 
coupled systems of array processors,” Numerical Algorithms 
for Modern Parallel Computer Architectures, M. Schultz, Ed- 
itor, Springer-Verlag,  Berlin (1988). 

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988 



49.  Revised  simplex-employing  explicit  inverses  have  been  ex- signal  processing, pattern recognition, image  processing and Monte 
plored. Karmarkar’s algorithm is currently being studied for Carlo simulations. Mr. Saarinen is a member of  the Electrical 
parallel implementation, necessitating the development of  ef- Engineering  Society  of Finland, the Finnish Technical Society, the 
ficient updating in weighted  least-squares problems. Pattern Recognition Society  of Finland, and the Institute of  Elec- 

50. P. Hopke and L. Kaufman, “An introduction to supercom- trical and Electronics Engineers. 
puters,” Trends in Analytical Chemistry 6, No. 1, 1-2 (1987). 

5 I .  M. Russo, A. Perez-Ambite, R. Caltabiano, J. Detrich, and D. 
Folsom, An Approach to Parallel Scheduling for the ICAP 
System, IBM Technical Report KGN-135  (1987);  may be Rep,.int Order N ~ .  ~321-5339, 
obtained from Clementi, Logan, or Saarinen. 

Enrico  Clementi IBM Data Systems Division, P.O. Box 100, 
Kingston, New York 12401. Dr. Clementi received  his  Ph.D. in 
chemistry from the University  of  Pavia,  Italy,  in  1954. He did 
extensive postdoctoral work in experimental and theoretical chem- 
istry  with, among others, Nobel Laureates G. Natta at the Poly- 
technic Institute of  Milan  (1955) and R. s. Mulliken at the 
University  of  Chicago (1960). In 1961 Dr. Clementi joined the 
IBM Research  Division at San Jose, and was responsible  for atomic 
calculations and  the publication of atomic tables. From 1967 
through 1974  he  was manager of a large-scale  scientific computa- 
tion department at IBM San Jose and in  1969 became an IBM 
Fellow. Dr. Clementi is currently manager of the Scientific and 
Engineering Computations Department at IBM Kingston, where 
he has been  responsible  for  research and development in  parallel 
computer architecture, artificial  intelligence, and fundamental re- 
search  in chemistry, biophysics, and fluid dynamics. He has been 
a recipient of many awards, including nomination as  Distinguished 
Research  Professor at Rensselaer Polytechnic Institute, Troy, New 
York (1986) and  the DIRAC  golden medal from the World 
Association  of Theoretical Organic Chemists (1987). He has au- 
thored and coauthored over  350  papers and is among the  top 300 
Contemporary Scientists most cited from 1965-  1978, according 
to E. Garfield  in Current Contents 9, 5 (1 982).  Dr. Clementi is a 
member of many professional  societies and a Fellow  of the Amer- 
ican  Physical  Society (1984). 

Douglas R. Logan IBM Data  Systems Division, P.O. Box 100, 
Kingston, New York 12401. Dr. Logan  received  his B.Sc. degree 
in chemistry from McGill University, Montreal, Quebec, in  1969 
and his Ph.D. in nuclear chemistry from Columbia University, 
New York, in 1975.  Following postdoctoral work in fundamental 
nuclear reaction research at Carnegie  Mellon  University, he joined 
the Advanced Computer Architecture Laboratory at the Lawrence 
Berkeley Laboratory, Berkeley, California, where  he  worked as 
head  of applications development for  parallel  processing on the 
MIDAS  parallel computer. In 1985 Dr. Logan joined the Scientific 
and Engineering Computations Department at IBM Kingston, 
where he has worked primarily on parallel algorithm development 
and performance analysis  of  parallel architectures. He is an  author 
and coauthor of  over 60 papers  in nuclear and computer science 
and was  co-winner  of the award  for  best presentation at the 1983 
and 1984 International Conferences  of  Parallel  Processing. 

Jukka P. Saarinen IBM Data  Systems Division, P.O. Box 100, 
Kingston, New York 12401. Mr. Saarinen is currently completing 
his  Ph.D. in computer science from the Tampere University of 
Technology, Finland, while  he  is  engaged in research on parallel 
architectures and their use in numerically intensive engineering 
applications at the Scientific and Engineering Computations De- 
partment at IBM Kingston. His research interests include digital 

IBM SYSTEMS XWRNAL, VOL 27, NO 4, 1988 CLEMENn, I XGAN, AND SAARINEN 509 


