ICAP/3090: Parallel
processing for
large-scale scientific

and engineering problems

Described is the ICAP/3090 (for loosely coupled array
of processors) parallel processing system. General
parallel processing performance issues that determine
the success of all multiple-instruction/multiple-data-
stream parallel computing systems are examined in
the context of large-scale scientific and engineering
problems. Experiments with previous ICAP parallel
processing systems that have made possible the pres-
ent design of ICAP/3090 are also described.

In the last several years, it has been generally agreed
that in the future supercomputing and parallel
processing will be to a large extent synonymous. This
is evidenced by the fact that systems such as the 1BM
3090 multiprocessor family and the CRAY-XMP series
are now being increasingly employed in a parallel
mode to solve problems that cannot be feasibly
solved on a single processor. It is also clear that
parallel supercomputers must employ a balanced
approach, using nodes with high-performance scalar
and vector capabilities. In short, as a concept, super-
computing is the union of all approaches that max-
imize performance.

However, there is at present little consensus on the
optimal architecture of parallel processing systems.
Roughly speaking, designers have chosen one of two
broad approaches that can be categorized as either
shared- or distributed-memory systems. Represen-

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

by E. Clementi
D. Logan
J. Saarinen

tative of shared-memory systems are the previously
mentioned products, and representative of distrib-
uted-memory systems are the large number of com-
mercial hypercube offerings. However, more radical
approaches to parallel processing also include sys-
tolic and wavefront array processing; very-long-
word, multiple-instruction machines; and data-flow
systems. Most of these more radical systems have
not been marketed commercially, with the exception
of the Warp machine' (systolic array) and the Mul-
tiflow processing system (very-long-word instruc-
tion).

Another distinction between types of parallel systems
is whether they purport to be general- or special-
purpose systems. The general-purpose systems in-
clude most of the products previously mentioned.
However, many such systems have been built with-
out a clear focus on the types of applications to
which they will be put, and thus the mapping of
applications to machine has often become an exper-
iment in parallel processing after the fact, with little
guarantee of success.

© Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

CLEMENTI, LOGAN, AND SAARNEN 475

The alternative approach, i.e., the design of special-
purpose parallel machines, is targeted to a very lim-
ited class of applications. Included here are a number
of systems tailored to solve problems in fundamental
particle physics (the IBM GF11 machine3) or applica-
tions in fluid dynamics (the Navier-Stokes
machine“). The design process has usually been a
bottom-up approach, with specific layouts of chips,
hard-wired interconnection networks, and special
memory devices. Thus, as with the general-purpose
systems, the elapsed time between design and incep-
tion is large.

An exception to these approaches has been the de-
velopment of the ICAP parallel processing system.
This system was conceived with a clearly defined set
of applications in mind. The goal was to solve these
problems by using parallel processing at a rate com-
parable to, but at a cost less than, that of the fastest
commercial supercomputers of the day. The class of
applications was broad enough not to be considered
as special-purpose usage but, on the other hand,
could not be classified general-purpose usage either.
This area comprised large-scale calculations in the-
oretical chemistry. The approach taken in the design
of this system was to minimize the hardware and
software complexity of the task, and thereby mini-
mize the time needed to build the system, by simply
interconnecting commercially available offerings.
The objective was therefore not to conduct an ex-
periment in parallel processing, but rather to use
parallel processing to solve real problems.

Our goal was quickly achieved;s’6 this was not sur-
prising, because we had realized beforehand the re-
quirements of our applications and their large-grain-
size, parallel structures. Thus we considered the de-
sign of this system obvious and not worthy of a large
treatise on the theory of parallel processing. Indeed,
many results have been published from calculations
performed on the system, often without mentioning
that it was a parallel computer. We were interested
in results rather than means.

Because of this success, we began to explore whether
we might meet with equal success in areas other than
theoretical chemistry. In short, we wanted to see
whether our system, which we call icap (for loosely
coupled array of processors), could be considered a
general-purpose, parallel computer. This meant sur-
veying a large spectrum of applications in science,
engineering, and mathematics and attempting to
adapt them to ICAP. A program for visitors was
instituted to solicit professionals, skilled in areas that

476 CLEMENT, LOGAN, AND SAARINEN

we were interested in studying, to experiment with
parallelism. Toward the same end, our department
was expanded to include personnel with back-
grounds other than theoretical chemistry. This led
10 ICAP evolving, in both hardware and software, into
a general-purpose, parallel computer.

The outcome of our experiments is culminating in

the current development of the ICAP/3090 system. A
brief description of this system and parallel language

The 3090 multiple-processor
systems have been quite successful
in increasing system throughput.

issues is given in the next section. We then discuss
general principles of parallel processing that apply to
all computers of the Multiple Instruction/Multiple
Data stream (MIMD) variety. This classification in-
ludes all parallel computers that have multiple proc-
essors that can execute different instruction streams
or programs, using unique data or otherwise, in the
solution of a single problem. Following this discus-
sion, we describe the experiments in parallel proc-
essing that have led to our 1cApP/3090 efforts. Finally,
we offer our conclusions.

The ICAP/3090 system

The 1BM 3090 vector multiprocessor family encom-
passes a variety of models ranging from a two-
processor system (Model 200) to a six-processor
complex (Model 600). These systems can increase
the throughput of a large workload by using the
multiple processors on independent jobs. This has
been the traditional motivation behind the develop-
ment of such systems. An important corollary of this
approach is that memory must be increased propor-
tionately. This contributed to the development of
expanded storage on the 3090 to alleviate the effect
of paging that occurs when multiple jobs compete
for real memory. Overall, the 3090 multiple-proces-
sor systems have been quite successful in increasing
system throughput.

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

The performance of the 3090 base system exhibits a
marked improvement over its earlier counterpart,
the 1BM 308X system. Scalar computing capability

The ICAP approach is to increase
still further the level of parallelism.

was enhanced not only by reducing cycle time from
approximately 27 to 15 nanoseconds, but by increas-
ing the degree of overlap between instruction fetch,
lookahead, decode, and execute. Also, vector capa-
bilities were introduced in an integrated architectural
manner with the addition of vector registers and 171
instructions. Overall, the design of this system em-
phasizes a balance”® of memory access, 1/0, and
processing capabilities. This has led to a vector ca-
pability that seems to be optimally cost-effective in
addressing problems of an approximately 50-80 per-
cent vector content. This is representative of the
majority of scientific and engineering applications
used in industry and universities.

The performance potential of a 3090 multiprocessor
can also be realized by allowing multiple processors
to work on a single problem. This solution is limited
by the degree of parallelism that exists in scientific
problem codes and the extent to which performance
becomes degraded when processors need to com-
municate. These issues are explored in greater depth
in the section on parallel processing performance.

To address utilization of the multiple processors of
the 3090, a parallel FORTRAN capability, called the
Multitasking Facility (MTF), was initially developed
for these systems. While useful, it was limited in
availability to Mvs installations, and limited func-
tionally in that parallel execution was limited to a
simple fork/join capability. More recently, a much
richer set of paraliel capabilities, including auto-
matic-compiler-generated parallel code, has been de-
veloped. This set of software, called the Parallel
FORTRAN (PF) package, is now proving its worth for
a large variety of applications.

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

The ICAP approach is to increase still further the level
of parallelism. We intend to couple readily available
commercial processors (in this case, 1BM 3090s) to
form a system that is not massively parallel, but
rather is modular and can be expanded to match the
degree of parallelism that a set of applications can
support.

ICAP/3090 architecture. The principal idea of
ICAP/3090 is to couple together clusters of iBM 3090
multiprocessors. We intend this coupling to be ex-
tendable, so that, as faster versions of 1BM multiple-
processor mainframes are introduced, we may cou-
ple them together in a similar fashion. That is,
whatever the current power of the fastest machine,
we would like to be able to increase this arbitrarily
by simple replication and coupling.

The justification for employing more parallel proc-
essors than are currently offered in a single integrated
system is supported by our findings of the large
degree of parallelism that exists in many scientific
and engineering applications and their successful
implementation on our earlier ICAP systems. This
covers, to name a few, calculations in quantum
chemistry, statistical mechanics, many engineering
applications dealing with heat transfer and compu-
tational fluid dynamics, celestial mechanics, and fun-
damental algorithms used in all areas of science and
engineering.

The “degree of parallelism” of a given piece of code
can be characterized by three attributes: (1) how
much of the computation can be run in parallel; (2)
how often communication is required; (3) and how
evenly the work can be divided across multiple proc-
esses. In the following section we consider analyti-
cally how these factors affect performance. Here we
wish to discuss the proposed intersystem coupling of
the ICAP/3090 system in this general framework.

First, there are many applications that are almost
entirely parallel and—when partitioned across a
number of processors—require very infrequent com-
munication. Such applications are said to exhibit
coarse-grain parallelism. For these we do not need a
fast coupling and can use 1BM 4.5-MB/S channels and
channel-to-channel coupling to support interproces-
sor communication. Thus, our initial plan will be to
couple all systems via channels with full point-to-
point connectivity.

These applications are, however, more aptly de-
scribed as subjects for distributed computing, rather

CLEMENTI, LOGAN, AND SAARINEN 477

than for more communication-intensive parallel
processing. For applications with smaller parallel
grain size, i.e., characterized by more frequent com-
munication, we require faster paths, because the
overhead associated with communication can de-
grade performance severely.

Before discussing our requirements, it is important

to define more carefully what we mean by the word
“fast.” In general, whatever the communication

Synchronous communication tends
to ensure correctness of parallel
execution,

path, the time required to complete a transfer of
information from one processor t0 another can be
broken into two parts: latency and transfer speed.
Latency defines the amount of time that must be
spent in initializing the transfer and is (to a first
approximation) independent of the number of bytes
transferred. Transfer speed is characterized by hard-
ware, in which (to first approximation) the amount
of time spent varies linearly with the amount of data
sent. For example, when we say that an 1BM channel
performs at 4.5 MB/s, we are specifying the transfer
speed attribute. This is the asymptotic rate and is
realized in practice only when the amount of data
transferred is very large. For smaller transfers, the
total time may be dominated by the latency, resulting
in transfer speeds that are in the KB/s range. Latency
may be broken again into two components: software
path and hardware initialization. Using the 1BM chan-
nel as an example, it is usually the software compo-
nent that is dominant. Sofiware path, in this case,
implies interaction between the application and the
operating system, through an interrupt to handle yo.

The great majority of applications with smaller par-
allel grain size are characterized by frequent syn-
chronizations and transfers of relatively small
amounts of data. Overall, a single 1BM channel op-
erating at its peak rate would be satisfactory to serve
in this capacity. However, given the large latencies
involved, the resulting effective data rate is inade-

478 CLEMENTI, LOGAN, AND SAARINEN

quate. Thus, to achieve faster coupling we will ex-
plore, through efforts within our laboratory, the use
of two complementary approaches, both of which
can have smaller latencies and have been used suc-
cessfully in our previous ICAP systems (described later
in this paper). The first approach employs shared
memory, and the second utilizes fast message pass-
ing. Each serves different purposes, which we now
consider.

In general, message-passing and shared-memory
communication have the following characteristics.
Message passing is most simply realized by a bus
interconnect and the specification of synchronous
communication protocols. Shared-memory com-
munication is done asynchronously and is imple-
mented in its simplest form by a multiported mem-
ory that is mapped into the same address space of
the cooperating processors. Both communication
methods have advantages and disadvantages. Syn-
chronous communication tends to ensure correct-
ness of parallel execution, because programs that use
this mode are rigidly constrained by the data de-
pendencies defined by message passing. The disad-
vantages are that a bus interconnect is limited by
topological constraints, a tendency of the facility to
become saturated when many processors attempt to
use it, and also by substantial latencies because of
the necessity for some type of handshaking protocol.
Alternatively, a shared memory tends to have faster
data-access rates, smaller latencies, and fewer con-
nectivity restrictions. However, this requires more
careful programming of accesses to guarantee pro-
gram correctness, because implicit synchronization
is lacking. 1CAP/3090 will thus emphasize synchroni-
zation by message passing and data transfer by
shared memory.

Two alternative 1CAP/3090 systems are shown in Fig-
ures | and 2. In Figure 1, five 3090 Model 300s (each
with three processors with vector attachments) are
coupled by a large (several hundred megabytes)
global shared memory and a fast-message-passing
bus configured as a ring. Also shown is a full point-
to-point connectivity implemented by channel-to-
channel coupling. We expect that accesses to our
shared memory will not be much slower than ac-
cesses to an expanded storage of any one of the 3090
clusters. In addition, we are investigating the possi-
bility of permitting segments of this memory to
support “read-modify-write” operations (such as test
and set or fetch and add). In Figure 2, a similar
system using Model 400s (four processor complexes)
is illustrated. This simpler system differs from the

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

Figure1 ICAP/3090 Model 300-based system

IBM CHANNEL-
TO—-CHANNEL
ADAPTER

SHARED
DATA
PATH

1BM 3090
MODEL 300

IBM DISK

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

CLEMENTI, LOGAN, AND SAARNEN 479

Figure2 ICAP/3090 Model 400-based system

W

3090/400

EXTENDED
MEMORIES

480 CLEMENTI, LOGAN, AND SAARINEN IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

first in that multiple duai-ported shared memories
are used to couple the clusters in a nearest-neighbor
ring structure; further, it lacks a fast-bus message-
passing capability. Also indicated in Figures 1 and 2
are large shared “disk farms” that can be imple-
mented with existing technology. Disk farms serve
as a secondary level of shared storage to greatly
enhance the size of problems that can be addressed.

At present we have four 1BM 3090s (Model 400s),
each with vector capabilities and coupled by chan-
nels. Initial efforts in permitting multiple clusters to
collectively work on a single problem, exhibiting
large grain parallelism, have proven successful. To
address smaller grain size problems we will require
the development of shared memories (or fast buses)
which are currently under study.

ICAP/3090 software. A discussion of parallel soft-
ware must address two areas: operating systems and
languages/compilers. From our experience with the
earlier ICAP systems, we anticipate that we can extend
the parallel operating systems software used on those
systems to work on iCAP/3090. There, both the mvs
and the vM operating systems were employed, using
task-level parallelism in MVS and cooperating virtual
machines (VMs) in the VM operating systems.” Of the
two, VM seems to be the more expedient solution
because of the potential ease of facilitating intersys-
tem communication (via channels) between vMs,
through either the Virtual Machine Communication
Facility (vMcF) or the Inter User Communication
Vehicle (tucv). For a more detailed discussion of
these issues, see Reference 10.

Communication through the bus and shared mem-
ory will require extensions to operating-system func-
tions, although it is clear that latency effects must be
minimized to achieve acceptable performance. The
incorporation of these paths will proceed in an evo-
lutionary manner as we explore the capabilities that
our channel connections allow.

The language/compiler software is intended to be a
superset of the existing Parallel FORTRAN (PF) soft-
ware developed for single-system parallel program-
ming. Reference 11 gives a comprehensive descrip-
tion of the PF software; in the following, we highlight
several features of this software.

The PF compiler can be used to automatically par-
allelize code for multiple processors in which specific
attention is paid to DO loops. Here, single or nested

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

DO loops are analyzed to determine whether the code
is parallelizable; if so, a cost analysis is performed to
determine whether it is profitable to do so. In the

Parallel algorithms are critical for
parallel engineering calculations.

event that the analysis is hindered by run-time con-
siderations, compiler directives may be inserted in
line to aid in this analysis. In this regard the compiler
is similar to vectorizing compilers.

Alternatively, the PF software offers a rich set of
extensions to the FORTRAN language that permits the
programmer to control the parallel operation of his
code. The two constructs that are used most fre-
quently are the following. The first, called PARALLEL
LOOP, is used to implement parallel loops that have
the additional abilities (beyond those of the auto-
matic parallel loops) to define private variables for
each processor and permit the creation of critical
sections within the loop. The flexibility offered by
these features makes this construct ideal for parallel
algorithm development. Parallel algorithms are crit-
ical for parallel engineering calculations, where par-
tial differential equations are typically solved by
finite-difference or finite-element techniques.

The second construct is one for defining and execut-
ing parallel tasks. Tasks take the form of subroutines.
A parallel program using this ability defines a master
task that forks off a number of parallel tasks and
upon their completion collects or joins the resuits,
prior to perhaps more fork/join processes. Commtu-
nication is achieved through subroutine argument
passing as well as COMMON blocks and synchroniza-
tion through locks and events.

PF may be used without modification for multiple
clusters of 3090s when we employ extensions of our
initial ICAP software to support intersystem com-
munication through shared memory. For example,
parallel loop implementation may be achieved by
dedicated counters in shared memory that are ac-

CLEMENTI, LOGAN, AND SAARINEN 481

cessed with mutual exclusion. Because we must do
this as efficiently as possible, it is important that
locked access be achieved on a hardware basis rather
than through software spin locks. This implies a set
of dedicated registers that support read-modify-write
operations (such as fetch and add or test and set).

Alternatively, if we wish to use fork-and-join paral-
lelism, we must allocate to one particular processor
the role of master. Thereafter, forks can be achieved
by synchronizations over the fast bus to user-defined
interrupt handlers that are “spinning.” Then, de-
pending on the data transferred, these handlers can
branch to the appropriate parallel tasks. In this sce-
nario, the master serves and collects all data through
the shared memory.

However, the development of the ICAP/3090 system is
at a very early stage, from both hardware and soft-
ware viewpoints. Before describing early ICAP sys-
tems, we digress briefly to discuss general and im-
portant performance issues.

Parallel processing performance issues

The fundamental reason for using parallel processing
is to speed up the elapsed time of an application. We
mentioned in the preceding section that the best
performance is bounded by the degree of parallelism
that our code exhibits, characterized by three attri-
butes: (1) the fraction of the code that is paralleliza-
ble, (2) the amount of communication required, and
(3) load imbalancing when we partition the problem
across multiple processors. In fact, while we list these
as separate factors, they are all interrelated. For
simplicity, however, we consider each factor sepa-
rately, pointing out, where appropriate, the subtleties
that exist.

Fraction of parallel code. The most fundamental
factor in determining parallel performance is the
fraction of the code that is parallel. We define this
fraction to be that of the total time required for the
job. Consider a problem with that fraction equal to
X. The remainder, 1 — X, is sequential. Suppose that
we have P processors over which the parallel portion
can be distributed equally without any overhead.
The sequential portion can be executed by only one
of the P processors. Then the best we can expect,
compared to running the entire problem on only
one processor, is realized by a speedup factor S, of

1
T 1-X+X/P

Sp

(1

482 CLEMENTI, LOGAN, AND SAARINEN

If X is unity, i.e., all of the code is parallel, then the
speedup is equal to the number of processors (linear
speedup). Otherwise, this limiting expression, known
as Amdahl’s law, applies. It generalizes, beyond the
narrow concern of parallel processing performance,
to describe the limiting behavior of any system that
can exist in either of the following two fractional
states: one that “performs” at a rate of unity (or
normalized to unity), and the other at a normalized
rate of P. For example, if we are describing the
possible enhancements of vector processing com-
pared to scalar processing, the same expression holds,
except that in this case P means how much faster
the vector processing is, and X is the fraction of code
that is vectorizable.

It is evident that the application of Amdahl’s law
results in speedups that are very sensitive to the
fraction of the code that is parallelizable. Shown in
Figure 3 are speedups, for differing values of X, as a
function of P. As X becomes smaller, speedups more
rapidly approach asymptotic values near which the
addition of more processors is not cost-effective. This
observation is the one most frequently cited in neg-
ative assessments for the prospects of massive par-
allelism (i.e., the use of massive numbers of proces-
sors).

However, the situation is a little more subtle than
this. First, how do we determine the fraction X for
an application? Consider a simple example of solving
a system of N linear equations involving N un-
knowns. We may write this problem in matrix form
as follows:

AXy=b, 03

where A is a matrix of size N by N, y is a vector of
N elements that we wish to find, and b is a vector of
N elements that is given as the right-hand side of our
problem. Then, if the construction of A is nominally
the only sequential part of the problem (e.g., it is
read in from some sequential device), the amount of
sequential time spent is of the order of N°[O(N .
Assume that the solution phase is parallelizable, and,
if we use Gaussian elimination, this takes O(N 3)
operations (multiplications and additions) or time.
Then the fraction of the code that is parallel is the
following:

3

rN

X =T ©)

Here we have identified the coefficients (» and s) that
give the exact correspondence to actual time instead

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

Figure3 Speedup constraints of Amdahl’s law

'SPEEDUP “RATIOS

1
NUMBER OF PROCESSORS

PARALLEL CONTENT = X
SPEEDUP = 1 / (1 ~ X + X/P)

of the vague “order-of” expression. The important
point is that as N becomes large, the fraction of this
application that is parallel approaches unity. Thus,
it is not sufficient simply to quote Amdahl’s law as
predicting whether parallel processing supports mas-
sive parallelism. Problem size and the dependent
relationship of the sequential and parallel part deter-
mine how many processors may be gainfully em-
ployed.

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

However, this example has been oversimplified. The
solution of our set of simultaneous equations is not
perfectly parallel, because we must consider the de-
grading effects of load balancing and communica-
tion. Considering load balancing, it is clear that the
assumption that the parallel part is equally divisible
for all values of P ignores the reality that any com-
putation consists of a fixed number of discrete op-
erations and cannot be so divided. This may be

CLEMENT!, LOGAN, AND SAARINEN

further compounded when we consider in more de-
tail the structure of the application and the role that
communication can play in defining the fraction of
parallel code.

Because of the structure of an application, it is
possible that the fraction of parallel code can change
as the job proceeds. For example, considering our
solution of a set of linear equations, it is true that
the total computation complexity is O(N 3). How-
ever, this total amount comprises the execution of N
separate parallel stages, each of complexity O(mz),
where m starts at N and goes to 1. Each stage must
be completed before the next can begin. This imposes
the need for synchronization and possibly the pas-
sage of data between processors. Both add an effec-
tively sequential time of O(P) or O(m * P) before
the present stage can begin, and thus each stage has
associated with it its own parallel fraction. This
fraction is initially large and becomes progressively
smaller as the solution proceeds. This implies that
one can start with a large number of processors but
thereafter discard them appropriately, until it makes
sense to finish with only one processor. So here we
have a (not atypical) problem that cannot be char-
acterized by a single parameter of parallel-fraction
content.

Another subtlety that may occur is that, for a fixed
problem size, the fractional content X may depend
on the number of processors used. To illustrate this,
consider the problem of adding N numbers. Whereas
it is not necessarily optimal in terms of minimizing
the number of concurrent elementary operations
involved, the most straightforward way of doing this
is to allow each processor to compute a partial sum
(of approximately the same number of elements)
and give to one of these processors the remaining
task of adding up the partial sums. The first part is
the parallel portion and the latter the sequential
stage. The fraction of parallel content of the algo-
rithm is thus approximately

N-P
S T @)

If we substitute this expression in Equation 1 and
plot the speedup as a function of P, we find that
there exists some critical value of P beyond which
the addition of more processors increases solution
time. In this case, we have an analytic solution for
the optimal number of processors, which is vN.
Although this example may seem somewhat artifi-
cial, in practice a good many applications exhibit

484 CLEMENTI, LOGAN, AND SAARINEN

the property of having the sequential fraction in-
crease with the number of processors.

In summary, the fraction of parallel code is the
primary factor that determines whether parallel proc-
essing is profitable, and if so, determines the number
of processors which is optimally cost-effective. In
practice, it is found that the parallel content of most
applications grows as problem size increases. Thus
the answer to the question of the optimal number of
processors depends on the size of the problem. How-
ever, this must be further refined in terms of the
details of implementation and the structure of the
calculation.

Communication. While the fraction of parallel code
is the primary consideration in determining how
profitable it is to use parallel processing, it is by no
means the final consideration. This is because, as we
have seen previously, we must account for the extra
time required for our processors to communicate as
this overhead increases the effective sequential frac-
tion of the code.

The degradation that communication can cause may
be seen, perhaps in a simpler fashion, by examining
the expression for the total time spent in solving our
problem with a set of P processors. If the parallel
execution time to be partitioned equally among our
P processors is T, and the sequential time is T, the
total execution time is given as follows:

TP
T =T, + 5 +/P) ®)

The extra term f(P) represents the additional time
spent in communication, and at minimum can be
some constant or a positive function of the number
of processors. By ignoring some of the subtleties
discussed in the previous section (assume that 7, and
T, do not depend on P and to first approximation P
divides 7, more or less evenly over a large range
of P), the following account holds. If f(P) is a con-
stant, we can expect the minimum total execution
time or maximum speedup to be asymptotically
bounded. If f(P) is a positive increasing function of
P, the total time can be decomposed into two parts,
one increasing and the other decreasing monotoni-
cally with P. In this case, we may expect that there
is some optimal value of P for which the execution
time is minimized and beyond which the total exe-
cution time actually increases as we add more pro-
cessors. Using a little calculus, we may solve for this

optimum value, P_,, from the following equation:

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

P f'(Py) = XT,,, 6)

where X is the fraction of the code that is paralleliz-
able and T is the total time of our problem exe-
cuted in sequential mode. f'(P) is the derivative of
f(P) with respect to P. Solving for P, then provides
the following straightforward algebraic equation for
the maximum speedup:

1
Sp = (1 -X)+X/P,, + f(P)T,,

(7

To illustrate the effects that arise, consider the fol-
lowing example. Suppose we have an application
that has a repeating structure wherein we first per-
form the parallel portion with P processors, and then
one of these (call it the master) executes a sequential
section. We require synchronizations between the
P — 1 processors and the master before the sequential
part can be done, and prior to the next parallel
execution. The communication time for synchroni-
zation—given that serialization is implicit in one
processor reading, receiving or issuing P — 1 mes-
sages or interrupts—scales as P — 1 and can be
written

S(P)=aP - 1) +b, ®)

where the magnitude of a depends on how the syn-
chronization is done (e.g., shared memory, bus, or
network) and b is a latency term that is included for
completeness. Using this expression, the optimal
number of processors (using Equation 6) is given as
follows:

P, =vXT_/a.)
This simple example shows that the optimal number
decreases quadratically as a function of decreasing
communication speed. Thus it is imperative that
communication be achieved as rapidly as possible.
This effect can be made less restrictive by increasing
the problem size (7). Additionally, because X usu-
ally increases with problem size, this beneficial effect
is multiplicative.

This simple model may be extended to include more
complicated forms of communication, e.g., synchro-
nization followed by data passing, where the quantity
of data passed may in turn be a function of P. The
model may also be extended by redefining the opti-
mal number of processors, not simply in terms of
minimizing the total elapsed time, but rather in a
more realistic cost-effective sense, by solving for the
maximum number of processors beyond which some
marginal increment of additional speedup is not met.

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

(In the example previously cited, this leads to a
complicated quartic equation for P_,.) However, it
is not our intent to explore all the complex deriva-
tions that can occur. Also, as discussed in the pre-
vious section, the fraction of the code that is parallel
(i.e., X) may also be a (decreasing) function of the

The performance degradation can
be nonlinear, as we impose
a greater connectivity
and communication
between cooperating tasks.

number of processors employed. This further com-
plicates matters and makes the above analytic opti-
mality expressions the upper bounds on perfor-
mance. The important point is that the performance
degradation can be nonlinear, as we impose a greater
connectivity and communication between cooper-
ating tasks.

Load balancing. The basic goal of parallel processing
is to keep all processors busy all of the time. Devia-
tions from this ideal are called load-balancing prob-
lems. It is clear that load balancing is faced with the
following dilemmas. First, for a given problem size,
there is only so much work to be performed, and
thus we are limited to some maximum number of
processors. Second, because of the discrete nature of
any parallel calculation, the division of labor is more
evenly balanced for certain numbers of processors
than others. These constraints may be compounded
if, as suggested previously, the amount of parallel
work changes as the job proceeds and communica-
tion is required.

However, additional complications may arise. Thus
far, we have been implicitly describing a single-user
parallel processing system and applications that con-
sist of a fixed number of operations. This allows us
a tractable static determination of the number of
processors to use. If either of these conditions is not
met, we must look more carefully at load-balancing
degradation.

CLEMENT, LOGAN, AND SAARNEN 485

Figure 4 Statistical parameters that govern performance in
time-shared systems

8
% ‘
Z
td
(=)
E
=
m
&
[+
14
a.
To Tavg Trnax
TIME
SPEEDUP = P * Toyg/Trnax D (1)

The basic aspect of parallel computation that we
wish to examine is what happens when the elapsed
time to execute a task is not precisely determined,
i.e., execution time is randomly distributed. This
situation typifies the elapsed time of a job executed
by a general time-shared system wherein large num-
bers of jobs compete for resources. The heavier the
demand for system resources, obviously the longer
the turnaround time will be for a sequential job. If,
however, we wish to determine the performance of
a parallel job in such an environment, the degrada-
tion to performance (i.e., elapsed time) can become
more complex. We illustrate this with the following
rudimentary example.

Consider a job that is entirely parallel and is executed
on a P-multiple-processor, time-shared system. As-
sume further that we may partition the job into P
equal tasks that require no communication and as-
sign them to specific processors. In the absence of
any other jobs in the system, each task finishes at an
identical point in time, and the speedup is equal to
P (linear speedup). Now consider the effects of a
number of other jobs competing in an unbiased
manner for processors. The result is that the time for
the completion of any one of our tasks will be
variable. More precisely, we can say that the time
for the completion of any task is randomly and
identically distributed and is characterized by a prob-
ability distribution. This distribution is lower-

486 CLEMENT, LOGAN, AND SAARINEN

bounded by the time the tasks take in the empty
system. The width of the distribution depends on
many factors, including the dispatching policy of the
operating system, the number of jobs competing for
processors, and the job service and arrival time dis-
tributions.

The best that we can do in predicting performance
under these conditions is to determine the average
or expected speedup. To do this, we need to estimate
two quantities. The first is the average time 7, at
which the tasks complete. The second, T,,,, is the
expected value of the time for the last task to com-
plete. The time for the last task defines when our
parallel job is finished. With these two quantities,
the following equation defines the average speedup
of our parallel job relative to the sequential job
executed in the same environment:

PT,,
Sp=7". (10)

max

To see this, it is necessary to observe that the ratio
of Equation 10 is simply the fraction of the proces-
sors that are busy during the total job completion
time. Equivalently, we may recognize this as simply
the ratio of the expected elapsed times of the sequen-
tial-to-parallel implementations. Here, the expected
sequential time is estimated as the sum of the ex-
pected times of running the P tasks on one processor.
Thus, to predict performance, we must be able to
evaluate these two parameters. We can do this if we
know our underlying probability distribution.

Assuming that we know this distribution D(¢), the
estimation of average time T, is straightforward. It
is simply the average of our distribution and is
indicated for a sample distribution in Figure 4. Sim-
ilarly, the expected maximum 7, can be estimated
using a theory of statistics known as “order statis-
tics.” Typically, this theory is used to study sampling
problems. In our case, we are sampling from a dis-
tribution P times and we wish to estimate the ex-
pected maximum value we will observe. One ap-
proximation to this value is a quantity known as the
“characteristic maximum.” This is calculated by per-
forming a definite integral over the distribution from
zero to some upper limit and requiring that the result
equal the fraction (P — 1)/P. The upper limit is the
characteristic maximum (Equation 11), as illustrated
in Figure 4 for a case in which P is equal to 8:

Tmex P—1
fo D(t) di = ———. (11)

1BM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

It is clear that the average speedup exhibits the
following dependencies. As more jobs are intro-
duced, competition for processors increases. This
may increase the width of our underlying probability
distribution. As width increases, the difference be-
tween the average and expected maximum times
increases, resulting in poorer performance and lower
speedups for a parallel application using P proces-
sors. Increasing the number of processors over which

The motivation behind ICAP was
initially limited to solving large
problems in theoretical chemistry.

our application is partitioned is subject to two com-
peting influences. On the one hand, the underlying
distribution tends to be narrower and shifted to
shorter times (because the amount of work is less in
each parallel task). However, the expected maximum
increases (because the integration is over a distribu-
tion to a fraction that is closer to unity). Whether
performance is enhanced or degraded depends in
this case upon the relative magnitudes of these ef-
fects.

This method of estimation of speedup is overly
simplistic, however, because the assumption that the
underlying distribution is static may be invalid. That
is, the method ignores the fact that as some of our
parallel tasks complete, the total number of jobs in
the system decreases. Similarly, a more accurate
prediction of speedup would require that we estimate
the expected elapsed time of our sequential job from
a probability distribution that takes into account
that there are P — | fewer jobs in the system than
under our parallel scenario. Thus our estimation that
the sequential time is P times 7, (the numerator in
Equation 10) is too large, and the predicted speedup
is overly optimistic.

In summary, this analysis is meant to show only that
load-balancing issues that arise in time-shared par-
allel processing systems can give rise to additional
performance degradation beyond that due to the

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

fraction of parallel content, communication, and
static load-balancing problems. Although it is some-
what theoretical and cannot be used in a simple
fashion to predict exact performance (because the
exact nature of the underlying distributions is gen-
erally unknown), the analysis points out the essential
statistical factors that influence performance.

Early ICAP systems

To introduce the earlier ICAP systems and their influ-
ence in defining ICAP/3090, it is appropriate to begin
by discussing the applications that led to their design.
The motivation behind ICAP was initially limited to
solving large problems in theoretical chemistry. This
area includes quantum chemistry calculations em-
ploying self-consistent field methods, and statistical
mechanics calculations using Monte Carlo and mo-
lecular dynamics methods. Although it is not our
intent here to go into detail about these areas, several
comments might be helpful.

The reason for performing such calculations is to
gain insight into the behavior of matter. Quantum
chemistry calculations can be used to understand the
properties of isolated molecules, i.e., their energy
states, spectroscopic properties, etc. Alternatively,
they may be used to describe the interaction of one
molecule with one or more other molecules, i.e.,
two- or many-body potentials. Statistical mechanics
calculations deal with large ensembles of molecules
and can be used to predict the thermodynamic prop-
erties of gases, liquids, and solids, such as heat con-
ductivity, free energy, etc. An essential ingredient for
statistical calculations is the intermolecular poten-
tials that may be calculated ab initio by quantum
chemistry theory. Thus there is a natural and sym-
biotic relationship between the two fields. In terms
of paraliel processing, all applications share the fol-
lowing important properties.

The first attribute of these calculations is that the
parallelism within each is obvious. For example,
considering a molecular dynamics calculation, the
problem consists in studying the time evolution of
an ensemble of particles for which we know an
expression that describes how one body attracts or
repels another, e.g., a two-body potential. Then, at
each time step, we wish to calculate the total force
on each body and move it to a new position on the
basis of this force. The parallelism is evident in that
the forces on each body can be calculated in a
cumulative parallel manner as each processor or
process calculates the independent two-body terms.

CLEMENTI, LOGAN, AND SAARINEN 487

All that needs to be done at the end of this period is
have a synchronization followed by a global addition
of all contributions from each processor.

The selection of master and slaves
was made from those available
at the time the project began
in early 1983.

Again considering the same example, the second
attribute concerns the complexity of each individual
two-body computation. A long-range two-body po-
tential, derived from quantum chemistry calcula-
tions for some complex molecular species, is typi-
cally a very complicated expression. It therefore re-
quires a large amount of time to perform all the two-
body calculations before the final global sum is per-
formed, followed by the projection of the new posi-
tions. This is even more true when we consider
potentials for three-or-more-body interactions. In
short, we are describing what has come to be known
as an application with very-large-grain-size parallel-
ism. This implies a great deal of computation prior
to any required communication between processors.

A third attribute, inferrable in part from the discus-
sion just given, is that the amount of code that is
parallelizable is very close to 100 percent. The only
sequential section involves the global summation
and the prediction of the new coordinates. Thus, the
limitation imposed by Amdahl’s law on the number
of processors that may be gainfully employed in
parallel computation is not severe for these calcula-
tions. That is, for problem sizes of interest, tens to
hundreds of processors can be employed before the
sequential portion of the calculation begins to dom-
inate the total solution time. Moreover, load balanc-
ing is typically easy to achieve. The most important

constraint is the minimization of the overhead that -

arises in communicating partial forces and broad-
casting new positions at the end and beginning of
each time step. This additionally limits the number
of processors we may employ.

Given these characteristics of our applications, it was
obvious what type of parallel computer we could

488 CLEMENTI, LOGAN, AND SAARINEN

assemble to perform these types of calculations. All
that we required was an elementary master/slave
system in which the slaves would, for example, cal-
culate the two-body contributions at each step and
send the results to the host or master. The host would
then add them up, predict the new positions, and
send these back to the slaves for the next period of
computation. The example given has thus far been
that for a typical molecular dynamics calculation,
but analogous operations also pertain to the remain-
der of the applications. We now describe the archi-
tecture of the initial ICAP system.

Architecture. Because we wanted to assemble such a
system in a short period of time and move toward
the main goal of solving large problems, the selection
of master and slaves was made from those available
at the time the project began in early 1983. The
slaves or attached processors (APs) had to satisfy the
following requirements. Because of cost, space, and
complexity of the overall system, the total number
of attached processors was limited to approximately
10. This demanded-—given our goal of supercom-
puting performance—that an AP be a powerful proc-
essor in its own right and have 64-bit precision
floating-point hardware, as was required by our ap-
plications. Additionally, each AP needed a real mem-
ory of the order of a megaword (64-bit words) and
several hundred megawords of disk space. Given
these considerations, the optimal choice was a Float-
ing Point Systems Model 164 (Fps-164).

The Fps-164 has a peak performance of 11 million
floating-point operations per second (MFLOPS) and
comprises multiple functional units, including a
floating-point adder and multiplier, that may be
executed during each machine cycle. Up to nine
other operations may additionally be performed dur-
ing each machine cycle (182 nanoseconds), including
memory fetch and register-to-register transfers. The
FPS-164 is supported by a number of FORTRAN cross-
compilers for a corresponding number of host ma-
chines. These compilers do a good job of producing
optimized object code that packs many instructions
into a given macro- or long-word-length instruction.
The floating-point units are pipelined and support
chaining with one another. The machine has a 24-
bit addressing capability and supports standard y0
to its own disk system.

The choice of host was based on the following con-
siderations. First, because data transfer between
slaves and host represents overhead in our parallel
computations, we required superior transfer rates to

BM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

the extent possible. Second, we required a host that
had superior 1/0 capability and offered an easy-to-
use operating environment. On the basis of these
considerations, an 1BM 43XX mainframe was se-
lected. For example, a dyadic 4381 can have up to
24 independent channels, any number of which can
be coupled to a corresponding AP. Each channel can
operate at a maximum transfer rate of 3 megabytes
per second (MB/s) and the channels can be driven in
parallel with one another, For ease of use, the 43XX
offers ,§he Virtual Machine (VM/SP) operating
system = for which Fps offers all the intersystem
support software as a standard product.

With these choices, the system was incremented
gradually over approximately two years to include
10 rps-164s coupled to two 1BM hosts, as shown in
Figure 5. As indicated, one host was a dyadic 1BM
4381 that could couple to up to all ten APs, and the
other host was an 1BM 4341 that could couple to up
to three Aps. The 3088 switching units allowed the
latter three APs to be configured to either host. Ad-
ditionally, a third iBm 4341 was placed in the system
and served as a graphics station attached to a number
of graphics terminals. All of the 43XX systems had
channel-to-channel coupling. Finally, large amounts
of external storage in the form of 1BM 3350 and 3380
disk systems were included, totaling approximately
25 gigabytes systemwide. This system was called
ICAP/1.

In parallel with the development of 1CAP/1, we assem-
bled a similar but more powerful ICAP system called
ICAP/2. Like the 1CAP/1 system, it was a master-slave
system, but it differed in that the host was a single
dyadic 1BM 3081 that coupled to a number of the
Floating Point Systems Fps-264s. The FPs-264 is very
similar architecturally to the Fps-164, but it is ap-
proximately three to four times faster, with a cycle
time of 52 nanoseconds. Again, IBM 3-MB/s channels
were employed to couple host to slaves. Each slave
had its own disk subsystem (each with approximately
one gigabyte), and the host a separate large comple-
ment of disk storage. Eventually, as with icap/1, this
system included ten attached processors. One further
distinction between the two systems was that the 1BM
3081 ran under the 1BM Mvs operating system13 rather
than the vM/SP operating system.

Both 1CAP/1 and ICAP/2 were essentially single-user
systems in the following sense. A parallel job initiated
on a host was assigned a number of attached proces-
sors that would be retained until job completion.
There was no dynamic switching of a given attached

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

Table 1 Applications performance on ICAP/1

Job Elapsed Time for ICAP/1
(minutes)
1AP 3 APs 6 APs 10 APs CRAY-

Xmp
Integrals (27 atoms) 71.7 240 123 7.8 7.6
SCF (27 atoms) 252 94 59 49 3.6
Integrals (42 atoms) 203.7 689 383 212 232
SCF (42 atoms) 730 260 143 106 8.7
Monte Carlo 162.1 57.8 320 220 204
Molecular dynamics 99.6 346 193 137 170
Seismic 338 11.8 66 4.3 5.6

Table 2 Applications performance on ICAP/2

Job Elapsed Time for ICAP/2
(minutes)
1AP 3 APs 6 APs 10 APs CRAY-

XMP
Integrals (27 atoms) 19.1 6.5 33 23 7.6
SCF (27 atoms) 10.6 5.2 3.7 34 3.6
Integrals (42 atoms) 550 18.7 9.3 6.1 23.2
SCF (42 atoms) 24.1 9.1 56 4.7 8.7
Monte Carlo 600 209 114 77 204

Molecular dynamics 29.6 10.6 59 4.2 17.0

processor among multiple parallel jobs. This was
consistent with the main goal of the system: perfor-
mance of large-scale production calculations. It also
eliminated from consideration the performance deg-
radation of statistical load imbalancing previously
discussed. One exception, however, was in effect for
1cAP/1. The three processors attached to the 1BM 4341
permitted AP allocation and deallocation among
multiple parallel jobs and thus served as a tool for
parallel program and algorithm development prior
to migration to the production environment.

Performance. The initial goal of achieving supercom-
puter performance was achieved almost immedi-
ately. This is indicated in Tables 1 and 2, where
elapsed times for a set of applications are compared
on ICAP/1 and ICAP/2, respectively (as a function of
the number of slaves used in parallel) versus a single-
processor CRAY-XMP, The applications cited are an
integrals-generating program used to construct ma-
trix elements for a self-consistent field (SCF) calcula-
tion, for the iterative SCF code, and for illustrative
many-body-interaction molecular dynamics and
Metropolis Monte Carlo codes. It is important to
note that the codes were not optimized for any of

CLEMENTI, LOGAN, AND SasrneN 489

Figure5 Early, loosely coupled array of processors (ICAP/1)

3203

3088

3380

AP AP AP
3830
3350

3803
3705
NETWORK
GRAPHICS
GRAPHICS

TERMINALS

3203 3411

490 CLEMENT, LOGAN, AND SAARINEN

BM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

the systems, and thus these measurements cannot be
used as anything like a definitive comparison. How-
ever, they do serve to indicate roughly the aggregate
computing power of the machines for these appli-
cations.

With this qualification, Tables 1 and 2 show that for
these applications, ICAP/1, with eight to eleven proc-
essors, and ICAP/2, with three to four processors, each
roughly equal the computing power of a single CRAY-
XMP processor. No data were available for compari-
son of these jobs running in parallel on an XMP.

The success in applying ICAP to these application
areas was attributable to their large parallel grain
sizes. The amount of time spent computing was large
compared to the amount of interprocessor commu-
nication required. A representative but more detailed
description of a number of parallel applications in
theoretical chemistry executed on the ICAP system
may be found in Reference 14. This characteristic
was found to apply to many other applications,
including the analysis of high-energy physics data,
the determination of protein structures, seismic mi-
gration analysis, and circuit simulation. Typical per-
formance results are indicated in Figure 6 for several
such applications. Here the speedup factor is plotted
versus the number of parallel attached processors
used. Speedup is defined as the ratio of the times a
given application took to run on P processors com-
pared to that running sequentially on one processor.

These examples include (going from left to right, top
to bottom, and indicating, where appropriate, collab-
orators and their affiliations) molecular energy de-
terminations, molecular dynamics studies of water,
oil reservoir seismic analysis, predictions of protein
structure (Professor H. A. Scheraga at Cornell Uni-
versity); determination of the wavefunction for
HeH" employed in predicting the mass of the neu-
trino (Professor W. Kolos at the University of Flor-
ida); electronic circuit simulation,"’ high-energy
physics data analysis (Drs. F. Carminati, R. Mount,
H. Newman, and H. Pohl at CERN); chemical reac-
tivity determination through electron density calcu-
lations (Professor R. F. W. Bader at McMaster Uni-
versity, Ontario, Canada); stochastic simulations of
fluids, study of the liquid-solid silicon interface (Dr.
E. Gawlinsky at Temple University), silicon crystal
growth (Professor K. Kaski at Tampere University
of Technology, Finland); and the indexing of biolog-
ically active chemicals (Professor G. Richards at
Oxford University, England).

1BM SYSTEMS JOURNAL, VOL 27, NO 4, 1988 CLEMENTI, LOGAN, AND sasAnen 491

Figure 6 Speedup for typical large parallel grain size applications

MOLECULAR SIMULATION MOLECULAR DYNAMICS SEISMIC MIGRATION
IBM KINGSTON IBM KINGSTON IBM ROME
0
2
g 10
5 8
o
[
g e
a 847% 4 82%
2—
0
3—D STRUCTURE OF PROTEINS NEUTRINO MASS DETERMINATION ASTAP (EXECUTION PHASE)
CORNELL UNIVERSITY UNIVERSITY OF FLORIDA 1BM FISHKILL
10 -
8_
6_.
o 79% 79% 85%
2-1 '
[}
HIGH—ENERGY PHYSICS MOLECULAR DISPLAY METROPOLIS MONTE CARLO
CERN MCMASTER UNIVERSITY 1BM KINGSTON
10 —
8_
6] ;
71% 74%
4)
2—4
[}
MOLECULAR DYNAMICS MONTE CARLO CRYSTAL GROWTH PHARMACOLOGICAL TESTING
TEMPLE UNIVERSITY TAMPERE UNIVERSITY OXFORD UNIVERSITY
10 -
8 4
6...
4_—
2_
0 1 | ! i i i i | 1 1 i I i 1§ |
0 2 4 6 8 10 4 6 8 10 2 4 6 10
NUMBER OF PROCESSORS

492 CLEMENTI, LOGAN, AND SAARINEN

1BM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

However, the ICAP systems did not do as well for
applications characterized by medium- or small-
grain parallelism. That is, the burden of interproces-
sor communication through a host intermediary us-
ing 3-MB/s channels was often too great. This was
the case particularly for engineering applications,
where partial differential equations are typically
solved following standard discretization techniques
such as finite differencing or finite elements. Here,
the basic algorithms'® that are required to solve large
linear sets of equations or that perform matrix dia-
gonalization are not characterized by large parallel
grain sizes. These algorithms require more efficient
interprocessor communication. This concern gave
impetus to attempting to improve communication
on ICAP.

Communication. The extensions made to the initial
ICAP systems dealt primarily with enhancing com-
munication. Two hardware additions sought to
achieve this.

The first was the inclusion of a number of shared
memories developed by Professor Martin Schultz of
Yale University and Scientific Computing Associates
(scA). These memories were fast solid-state disks that
were coupled to the 170 ports of the FPS machines
and were directly addressable by the attached proc-
essors. This configuration is illustrated in Figure 7
for the ICAP/1 system; ICAP/2 was identically extended.
Shown are five memories, each multiplexed four
ways and each being 32 MB in size, linked in a double-
ring structure around the ten processors. Each
processor has two independent paths to a separate
memory. A processor transmits data to or from a
memory at a nominal peak rate of 44 MB/S on ICAP/1
(one word per machine cycle) and 38 MB/S on ICAP/2
(one word every fourth machine cycle). Additionally,
one large, bulk-shared memory developed by sca of
size 512 MB (sectioned into four independent banks
of 128 MB and multiplexed 12 ways) was coupled to
all ten processors. The 12-way multiplexing was
distributed by three independent buses, each capable
of peak transfer rates of 44 MB/s on ICAP/1 and 38
MB/S on ICAP/2. The peak aggregate transfer rates
(132 MB/S on 1CAP/1 and 114 MB/S on ICAP/2) were
realizable if three processors using different buses
addressed separate memory banks. Software to em-
ploy these memories was developed by sca'” and
extended within our laboratory to include functions
such as synchronization between processors and
locks supporting critical sections.

The second hardware addition to the ICAP clusters
was a 32-bit-wide fast bus (built by Floating Point

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

Systems) that linked all attached processors. This is
also illustrated in Figure 7, showing each processor
attached to a node on the bus. The nominal peak
speeds were 22 MB/s from AP to node and approxi-
mately 32 MB/s between nodes, for both icap/1 and

The partitioning of a parallel
program and its communication is
dictated by operational and data
dependencies.

IcAP/2. Software to use this facility was developed by
rps'® and included the ability for any non-nearest-
neighbor communication, as well as for broadcasting
from one to all.

As is also evident from Figure 7, each ICAP cluster
was hosted by a single master—a dyadic 1BM 3081
on ICAP/1 and a four-processor IBM 3084 on ICAP/2.
The greater computing power of the 18BM 3081 elim-
inated the need for a dual-host system on ICAP/1,
which had previously employed 18BM 43XX systems.
As before, 1cAP/1 allocated a number of dedicated
attached processors specifically for parallel program
development and the remainder for production.
However, icap/2 was used exclusively for production.
Again, the 1BM 3081 and the 3084 ran under the
vM/sp and MVS operating systems, respectively.

An appreciation for the demands imposed by com-
munication can be gathered from the following. The
partitioning of a parallel program and its required
communication structure is dictated by the opera-
tional and data dependencies imbedded within the
physics of the application. For example, a single-
dimensional fast Fourier transform exhibits a butter-
fly type of data flow graph. When partitioned among
a number of parallel processors, the resulting code
requires that the interprocessor connect network
mimic this graph well to achieve useful eﬁiciency.19
Another example could be the solution of time-
dependent partial differential equations, often solved

CLEMENT,, LOGAN, AND SAARNEN 493

Figure7 Extended ICAP/1 (VM)

FPS—164 FPS

WITH DISKS BUS

AND MAX (22 MB/s)
BOARDS

SCA SCA

BULK SHARED DATA PATH
MEMORY (44 MB/s)
(32 ™B)

GRAPHICS NN ERIC
WORK~— #
STATIONS % TERMINALS

494 CLEMENT!, LOGAN, AND SAARINEN IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

by explicit time-marching schemes. Such problems
may be cast in a parallel form by dividing the region
of solution equally among different processors (do-
main decomposition) and requiring synchronization
between strictlyzgeighboring processors at the end of
every time step.” Both of these examples require the
ability of some network or shared memory to achieve
a variety of fast 1:1 processor intercommunication
paths.

Thus, for example, a hypercube multiprocessor sys-
tem may be effective at performing in parallel a
SCA : . . .

BULK SHARED single-dimensional fast Fourier transform because
MEMORY

the butterfly network is implicitly imbedded within
its structure. Similarly, any multiprocessor configu-
ration that manifests a line, ring, or grid intercon-
nection may be effective for the second example.

3081
(512 MB) (3 MB/s CHANNELS)

On the other hand, an application for which parallel
decomposition requires frequent global communi-
cation may provide a more demanding test of the
efficiency of the interconnection scheme. The re-
quirement for global communication is evident in
such applications as molecular dynamics, where one
processor is responsible for receiving partial forces
“”"IIIIIHIII"I from all others (i.e._, a receive-fto'm-all operation)

‘ and then broadcasting new positions to all slave
processors. A broadcast ability is also crucial in many
other applications such as celestial mechanics
calculations” or basic algorithms involving House-
holder reductions.”” The latter are typically used in
QR factorization for linear least-squares problems or
reduction to tridiagonal forms for eigenvalue deter-
mination of symmetric systems. Thus, for purposes
of illustration, we consider the performance of
broadcasting on the 1CAP/1 system as a function of
communication path and the identity of the broad-
caster [i.e., host-to-AP(s) through 1BM channels; AP-
to-AP(s) by the use of shared memory; and AP-to-
AP(s) by the Fps bus]. The conclusions based on these
comparisons will hold in an analogous manner for
the 1CAP/2 cluster.

First, we consider the host-to-AP paths via the 1BM
channels. Shown in Figure 8 is the measured broad-
cast bandwidth in MB/s versus the number of MB
received in total by the slaves. Broadcast bandwidth
is defined as the rate at which this quantity of data
is transferred. Illustrated are representative cases
where the host broadcasts to one, two, three, four,
and eight attached processors. The smooth lines
through the data points represent a performance
model discussed in detail in Reference 23, for which
the agreement with experiment was good.

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988 CLEMENT], LOGAN, AND SAARINEN 495

Figure8 Channel broadcast performance

MB/S
7.5
6.5 a.
- q :
a
¢ o
° 1 1 1 T T | 1 T 1 T
0 2 6 10 14 18 22
MB
N = NUMBER OF PROCESSORS
N=1 N=4 ¢——d(

N = 2 Oy N =8 frmmeeiy

N=3 b

Several observations may be made from a cursory
examination of this figure. First, the broadcast band-
width increases with an increase in number of
processors. This is a consequence of employing in-
dependent channels for each processor, and thus part
of the broadcast operation proceeds in parallel. It is
also evident that between approximately 6 and 11
MB of total data sent (in going from 2 to 8 Aps), a
severe degradation in performance occurs. This be-
havior was found to be due to paging on the host
system. Performance is relatively poor for small
transfers. This behavior is attributable to latency

496 CLEMENT, LOGAN, AND SAARINEN

effects in initiating the transfers. As data size in-
creases, the transmission rates approach superior
asymptotic values prior to the point at which paging
degradation occurs.

Next we consider the same operation, but now pro-
ceeding by one attached processor, designated as a
master, broadcasting to N other attached processors
by way of one shared memory. We recall that a
shared memory is multiplexed rather than being
multiported, and thus it can be accessed by only one
processor at a time. Accesses consist of fetching or

1BM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

storing blocks of contiguous words. Such accesses,
once started, cannot be interrupted by another proc-
essor. The measured performance for this operation
is shown in Figure 9, where the abscissa is the
broadcast bandwidth and the ordinate is the total of
the MB received. The smooth lines represent a model
discussed in detail,23 for which agreement with ex-
periment was excellent. Indicated are representative
cases for broadcasting to 1, 2, 3, 4, and 8 processors.

Several observations may be made regarding this
broadcast path. First, compared with channel broad-
casting, latency effects, although still present, are of

less significance as transfer rates approach their
asymptotic values more rapidly for smaller amounts
of data. Further, it is clear that bandwidth increases
as the number of receivers increases. This is because
the number of accesses to bulk memory increases as
N+ 1, where N is the number of receiving processors,
and the total data transferred increases as N. As time
is roughly proportional to N + 1, we expect as N
becomes large that the cumulative rate will approach
that at which a single processor can access memory,
1.e., nominally 44 MB/S. For a broadcast to one
processor, we expect the order of one-half this value,
and the observed rates support this expectation.

Figure9 Shared-memory broadcasting performance

MB/S

- 7 B £ -
4 4 4
A P
| | i 1 | | | i | 1 |
25 3.5 4.5 5.5 6.5 7.5
N = NUMBER OF PROCESSORS
N =1 [R Y — |
N = 2 OO N = 8 Or————eey
N=3 &———e—tfs

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

CLEMENT), LOGAN, AND SAARNEN 497

Second, the broadcast operation has been performed
by using one memory only. This is a worst-case
constraint, as performance may be enhanced signif-
icantly by the host broadcasting to several shared
memories and letting the recipients receive the data
parallel in time from different memories. The present
method dictates that only one processor can access
the memory at a time, and thus requires, as stated,
N + 1 memory operations following sequentially in
time.

We retain this method for simplicity of comparison
with the other communication paths, but it must be

The broadcast bandwidth increases
nearly linearly with the number of
receiving processors.

borne in mind that distributed shared-memory
broadcasting may be considerably faster.

Third, we need to consider in more detail the actual
implementation of the broadcast operation. The
bulk shared memories are passive devices. They have
no hardware capability for synchronization. We re-
quire, however, that our receiving processors per-
form their fetch operation only after the broadcaster
has completed its store. Thus, we require a synchro-
nization between these operations, which we have
effected by a software barrier synchronization that
employs dedicated shared-memory addresses for this
purpose. This overhead is included in the perfor-
mance measurements.

Finally, we compare the broadcast performance of
the shared-memory route versus that of the host-to-
slave-channels path. This is illustrated in Figure 10,
where we plot the ratio of times for the slave-chan-
nels path over that for the shared memory, as deter-
mined from the models, as a function of the loga-
rithm of the total number of bytes received for
differing numbers of receiving processors.

498 CLEMENT, LOGAN, AND SAARINEN

Figure 10 shows that in the asymptotic regions the
shared-memory route is roughly ten to five times
faster than channel broadcasting, as the number of
receivers increases from one to eight. However, in
this regime, the order of millions of bytes of data are
being transferred. The region that is more important
in terms of normal parallel applications deals with
transfers of words to kilobytes of data. Here it is seen
that the rates favor the shared-memory path by a
factor of 300 to 50 over the same range of number
of receivers. An examination of the performance
models indicates that these superior rates are due
almost entirely to significantly smaller latencies in
accessing shared memory compared to channel ini-
tiation. It is this performance differential that has
made the shared memories suitable for much-
smaller-grain parallel processing, where the channel
communication was previously marginal or inade-
quate.

Finally, we consider the fast bus. The measured
performance of the broadcast bandwidth is plotted
in Figure 11 for one to five processors. Again, the
lines represent a model discussed in detail in Refer-
ence 23, for which agreement with experiment was
excellent.

Asymptotically, as expected, the broadcast band-
width increases nearly linearly with the number of
receiving processors. However, the low rates for
small packets of data indicate latency effects. Also,
packets cannot exceed 32 768 words, and transfers
exceeding this limit are sent in separate packets. This
is responsible for the zigzag behavior observed in the
model, to which the data points fit quite well.

Figures 8, 9, and 11 show that the bus has much
better performance than the channels over all data
sizes, and performance is somewhat better than the
shared-memory path in the asymptotic region where
very large transfers are performed. However, in the
small-transfer region of words to kilobytes of data,
Figure 12 shows that the shared-memory path is
roughly an order of magnitude faster than the bus.
Here is plotted the ratio of times for broadcasting
via the bus over that for the shared memory path
(calculated by the models) as a function of the loga-
rithm of the total number of bytes received for
differing numbers of receiving processors. Again, the
superior rates using the shared memory for small
transfers were attributable to its smaller access la-
tency. Overall, the shared-memory path is deemed
superior for the larger part of parallel applications
that require the broadcast function.

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

Figure 10 Ratio of broadcast times — channel per shared memory

&
1

i

CHANNEL / SHARED MEMORY
»

o

o

| |

R R RS R
4] 0.4 1.2 2.0
LOG 10 OF THE NUMBER OF BYTES

N = NUMBER OF PROCESSORS

Although we have singled out the broadcast function
for comparison between different communication
paths, the conclusions reached hold for other com-
munication structures. They include receive-by-one-
processor from all others and any individual proces-
sor-to-processor transfers and synchronizations. We
have also found that software spin locks of either
Pcte/rson’s24 or Lamport’s25 form can be effectively
implemented by use of shared memory. This latter
function is crucial for applications that require dy-
namic load balancing through the use of critical,

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

locked paths for task assignments. From the per-
formance results for small data transfers, it may be
appreciated that latency factors are of paramount
importance in communication for practical parallel
applications. That is, asymptotic performance—al-
though important—is a secondary consideration
when dealing with limited amounts of interprocessor
transfer.

Finally, to bear witness to the effect improved com-
munication plays in executing parallel programs of

CLEMENTI, LOGAN, AND saarineN 499

Figure 11 Fast bus broadcasting performance

o MB/S

N = NUMBER OF PROCESSORS

3.4 3.8 4.2

N=1 N-QG—-—-——.-—Q
N =2 OO N=35
N = 3 A

smaller parallel grain size, consider a simple Metrop-
olis Monte Carlo application. Here we simulate the
behavior of 512 water molecules, confined in a
periodic box and subject to short-range two- and
three-body potentials. The portion of the code that
is parallelized is the determination of the change in
energy when a randomly selected molecule is ran-
domly moved. Each parallel task computes an in-
dependent contribution to the energy change and
then transmits it to the master task, which then
performs the summation over these contributions

500 cLemenT, LOGAN, AND SAARINEN

and accepts or rejects the move. The master then
broadcasts the conditionally new coordinates of the
molecule for a new cycle on a new randomly chosen
molecule. The function of the master may be as-
sumed by the host, in which case communication
proceeds via channels, or it may be assumed by one
of the attached processors, where communication is
performed using either shared memory or the fast
bus. In the latter case, the master processor, before
assuming that role, also performs one of the parallel
tasks.

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

Figure12 Ratio of broadcast times — fast bus per shared memory

FAST BUS / SHARED MEMORY

1 T 1T 1 1 1

N=4 ¢——~q

1 | i 1 | | | | [1
0 04 1.2 2.0 2.8 3.6 44 5.2 6.0 6.8
LOG 10 OF THE NUMBER OF BYTES
N = NUMBER OF PROCESSORS N=1 N=5
N=2 O————p0 N=6
N=3 A a N=7

N=8 g———n

Given that the potential is of short range, the amount
of parallel computation is quite small. Further, the
quantity of data transmitted back and forth is of the
order of tens of words. This description of the pro-
gram and its expected performance is consistent with
the observed speedup curves shown in Figure 13,
indicating the superiority of the shared-memory
path. Thus, where the channel path (using the faster
1BM 3081 as master) gave only marginal improve-
ment for two processors and thereafter actually
slowed down, the shared memory permitted reason-

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

able speedup over the entire range of processors. The
performance of the bus is better than that of the

- channel path, but it is inferior to that of the shared

memories. This 1s also consistent with the small data
transfers involved.

It is important to point out that none of these
communication paths is mutually exclusive. Indeed,
transfer to and from the host is of course imperative
for program initiation and often optimal for the
storage of results. In the latter case, it often occurs

CLEMENTI, LOGAN, AND saaRNEN 501

Figure13 Metropolis Monte Carlo performance

1

SPEEDUP RATIOS

1—

I I | 1
0 1 3
NUMBER OF PROCESSORS

LIQUID WATER (2-BODY AND 3-BODY)

IDEAL

SHARED MEMORY A&——a&

FAST BUS O~———0

CHANNEL ¢—

that very large data structures must periodically be
saved, and, in this case, the asymptotic capabilities
of the channels are wholly adequate. Similarly, the
bus can prove to be optimal when very large transfers
are required between attached processors, although
in reality most of today’s applications do not require
this ability. As we begin to attack much larger prob-
lems, this capability will become more important.

Applications. With these improvements in commu-
nication, all of the programs that exhibited marginal
to poor performance on the early ICAP systems per-

502 cLemEN, LOGAN, AND SAARNEN

formed adequately. The following is a partial listing
of application areas for which codes have been suc-
cessfully parallelized on either the initial or the ex-
tended systems. References are included where more
detailed descriptions of implementation may be
found. All of these applications obtained from 60
percent to 95 percent of linear speedup, when parti-
tioned on up to ten processors for problem sizes of
interest.

o Celestial mechanics—asteroid tgacking and colli-
sional probabilities with planets®'

IBM SYSTEMS JOURNAL, VOL 27. NO 4, 1988

o Molecular dynamics—polymer 51mu1at10n ther-
modynamics of fluids and solutions™™*

o Electronic structure—properties of molecules, new
materials, organic semlconductor529’3°

o Fluid dynamics—turbulence, chaotic behavior'”
Micro-hydrodynamics—basis of Navier-Stokes
equations”>**
Monte Carlo—Metropohs quantum Monte
Carlo, circuit simulation'*
Circuit analysis—equivalent capacnance

s Protein structure—interferon, membrane mecha-
nisms, DNA studies'®
High-energy physics—data analysis, detector
simulation®®

s Neutron transport—reactors

o Atmospheric studies—pollution mlgratlon

s Seismic migration—oil exploratlon

s QOceanography—current flow™*

[]

[]

L]

1,32

Circuit optzmzzatton—‘tglmulated anneahng
Graphics—ray tracing

I ma}ge processing—parameter estimation, smooth-
s 4

ing

The same statement may be made with respect to a
large number of parallel algorithms that follow.
These are of critical importance in being able to
parallelize engineering applications, but they also are
of general use in many scientific areas.

s Linear system solvers—LU decomposition, Cho-
lesky decomposition, conjugate gradient (precon-
ditioning)?***
PDE solution methods—Alternating Direction Im-
plicit (Ap1), MultiColor or Line Successive Over
Relaxation (MCSOR and LSOR), multigrid’>*>
FEigenvalue solvers—Jacobi and Householder
reductions
Factorization—QRrR (Givens reductions), QR
(Hc)‘u‘sehglggr reductions), singular value decom-
position™
Fast Fourzer transforms—mixed radix, Cooley-
Tukey

s Linear programmmg—Slmplex

o Statistical database analyszs

The parallel scheduler. As stated previously, an ICAP
cluster was essentially a single-user system. That is,
there existed no efficient means of dynamically shar-
ing processors among multiple parallel jobs. To
make the system more responsive to a general-user
environment, we developed a parallel scheduler to
perform the sharing. The experience gained in this
effort was important in predicting the parallel per-
formance that we could expect with ICAP/3090.

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

The specification of a parallel job scheduler had to
address the following points. First, although context
switching between multiple jobs on an FPS processor
is permitted by standard Fps operating system soft-
ware, the time required for state saving is large. The
reason is that the memory management system is a
real and not a virtual system. Thus, when a context
switch occurs, the entire memory allocated to a
specific job must be rolled out onto the disk subsys-
tem. For our parallel scheduler, this dictated to a
large extent the size of a task’s time slice that could
be profitably assigned to an attached processor with-
out degrading performance by continually rolling in
and out parallel jobs.

Second, given that we are rolling in and out parallel
jobs, it will (in general) be unprofitable to roll out
only one or several processors and leave others to
continue for a given job. This is because the parallel
tasks within a job are typically constrained in time
by the need to communicate. Rolling out one task
usually results in all the other tasks remaining idle
while attempting to communicate with a task that is
not there. Thus, an important design criterion for
the scheduler was that if a job was designated to be
rolled out, all parallel tasks within that job were to
be deallocated from their processors at the same
time.

With these two constraints, the remainder of the
scheduler specification concerned that usually asso-
ciated with traditional operating systems. We re-
quired a priority system that would assign to jobs
the preemptive abilities needed to roll out other jobs
with lower priority. For our system we decided that,
all things being equal, priority would be assigned
solely on the user-specified, anticipated execution
time. Lower times were assigned higher priority.
Thus the scheduler uses a fixed number of priority
queues corresponding to certain intervals of user-
specified anticipated running time. Penalties were
enforced for jobs that exceeded their specified run
intervals by placing them in the lowest priority
queue. Some fine-tuning was introduced so as not to
allow roll-out of lower-priority jobs if they were
within a certain fraction of completion of their spec-
ified run time. A more detailed description of the
scheduler and the scheduling policy may be found
in References 10 and 51.

The scheduler resided in a program that ran on a
separate virtual machine on the host, through which
all parallel jobs were initially assigned resources and
thereafter monitored. It had a continuously updated

CLEMENTI, LOGAN, AND SAsRNEN 503

Figure 14 ICAP/3: coupling of ICAP clusters

ICAP/1 (VM)

g

504 CLEMENTI LOGAN, AND SAARINEN IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

ICAP/2 (MVS)

IBM 3090

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988 CLEMENT), LOGAN, AND SAARNEN 505

picture of the demands on the system and performed
all accounting information. With the inception of
the scheduler, it was found that production and
parallel program development jobs could coexist
quite well.

Extendability. A natural concern that arises upon
proof that a parallel architecture works well across a
wide spectrum of applications is extendability. How
can we make the system more powerful, so that we
can address even larger problems? Two (not neces-
sarily mutually exclusive) approaches can be taken.
First, we can attempt to replicate and couple these
systems together in some efficient manner. Second,
we may attempt to replace the nodes or processors

Wherever a point-by-point
multiplication is required in the
traditional algorithm, in the block
algorithm this corresponds to a
matrix-by-matrix multiplication.

with more powerful nodes, contingent upon the
resulting system’s retaining a high efficiency within
the bounds imposed by communication degradation.
Both approaches have been explored with the ICAP
systems, and the lessons learned have had a strong
bearing on the design of 1CAP/3090.

First, an attempt to link the two ICAP clusters was
effected by linking the hosts of each system to a
super-host, which was an 1BM 3090-200 with two
processors and vector attachments. Linkage was
achieved by channel-to-channel connections. This
coupling served a supervisory function for initiating
separate clusters. The coupling was made closer by
additionally assigning to the 3090 its own subset of
attached processors from within each cluster. Later,
still closer coupling was achieved by allowing proc-
essors from within one cluster to connect to the
global shared memory of the other cluster. The peak
processing rate of the entire complex was over a
gigaflop, with over a gigabyte of memory. A sample
configuration, called ICAP/3, is shown in Figure 14,

506 CLEMENT, LOGAN, AND SAARNEN

Several efforts to apply the system to a single problem
have met with reasonable success. However, this was
achieved at the expense of considerable effort in
programming, principally because of the heteroge-
neity of the system. That is, within the complex there
are nodes with large differences in computing power.
The requirement of load balancing (i.e., keeping all
the nodes busy all of the time) was difficult. An
important conclusion was that if extendability is to
be achieved by a geometric increase in the system, it
is important that all nodes be of equal power. Ho-
mogeneity is essential.

We considered the alternative strategy of increasing
the computing power of the nodes within a cluster.
To a certain extent this issue had already been ex-
amined within ICAP/1 and ICAP/2 by replacing FPs-
164s with FPs-264s in ICAP/2. We explored this issue
further by focusing exclusively on ICAP/t and incre-
menting the power of the Fps-164s by adding on
arithmetic accelerator boards. More specifically, we
incorporated two FpS MAX boards with each proces-
sor. The MAX board, designed and marketed by Fps,
contains two floating-point multipliers and two float-
ing-point adders that may be operated concurrently
with the basic processor. Each board thus adds a
potential increase in peak processing power of 22
MFLOPS, and up to 16 boards may be added to each
processor. The higher-level software to use these
boards was written by Fps and addressed one capa-
bility in particular—the ability to perform matrix-
matrix multiplication.

While this might seem to be an overly isolated im-
provement for general performance, it is worth not-
ing that this operation is critical for a broad category
of parallel applications. This deals primarily with
block algorithms for the solution of important linear-
algebraic problems. Block algorithms differ from
traditional algorithms in that they operate with sub-
matrix blocks instead of by a datum-by-datum proc-
ess. Thus, wherever a point-by-point multiplication
is required in the traditional algorithm, in the block
algorithm this corresponds to a matrix-by-matrix
multiplication.

The use of these boards for several parallel-block
algorithms was explored on the 1CAP/1 system by
C. Van Loan and C. Bischof of Cornell University.
They studied block versions for symmetric eigen-
value problems, singular value decompositions,47
and QR factorization.*® They met with marked im-
provement in solution times with little additional
degradation due to now relatively slower communi-

BM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

cation. In all cases, the shared memories were em-
ployed. For example, Bischof found the parallel ex-
ecution of a two-sided block-Jacobi, singular value
decomposition performed at a sustained rate of over
160 MFLOPS on large problems with eight processors,
each equipped with two MAX boards. This was con-
siderably faster than running the same algorithm
without these accelerators.

Concluding remarks

The potential of using parallel processing to solve
large-scale problems in science and engineering has
been realized with IcAP-type systems. The idea of
coupling commercially available processors with
simple interconnects has proven successful and can
be implemented in a short period of time. This top-
down approach has significant advantages compared
to inventing new hardware and software.

It is important when constructing a parallel process-
ing system that the applications to be adapted to it
are fully understood. There are three factors that
degrade parallel performance. The first is the parallel
content of the application. Amdah!’s law limits the
number of concurrent processes that can be effec-
tively applied. The second concerns communication.
The speed of communication must be adequate, so
that the required communication does not severely
degrade performance. This means that the parallel
grain size of the problem, its dependence on problem
size, and the number of parallel processing elements
employed must be fully understood. The third factor
concerns load balancing. It is important to have all
processors busy all of the time. This requires a careful
study of the physics of the application to determine
a parallel-task-scheduling policy. The latter can be
dynamic or static, but it must make sense in terms
of the parallel grain size and the communication
capabilities. All three factors must be carefully ex-
amined in developing a parallel processing system.

The development of the ICAP/3090 system is a natural
outgrowth of our previous experiments. We had
proved that a large fraction of important scientific
and engineering calculations could be characterized
by large- or medium-grain parallelism and could be
effectively executed on loosely coupled or shared-
memory-based parallel processing systems. Further,
the coupling of clusters seems to be an expedient
manner in which to extend the power of the system.
Overall, the unmatched reliability of the 3090 system
combined with its superior scalar, vector, and par-
allel capabilities makes this an optimal building

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

block for assembling a large-scale parallel processing
system.

Cited references and notes

1. M. Annaratone, E. Arould, T. Gross, H. T. Kung, M. Lam,
O. Menzilcioglu, and J. A, Webb, “The Warp computer:
Architecture, implementation, and performance,” IEEE
Transactions on Computers C-36, No. 12, 1523-1538 (1987).

2. J. A. Fisher, “Very long instruction word architecture: Super-
computing via overlapped execution,” Proceedings of the Sec-
ond International Conference on Supercomputing 1, 353-361
(1987).

3. J. Beetem, M. Denneau, and D. Weingarten, “The GF11
parallel computer,” Special Topics in Super Computing, Vol.
1, Experimental Parallel Computing Architectures, J. J. Don-
garra, Editor, Elsevier Science Publishers, New York (1987).

4. D. M. Nosenchuck, M. G. Littman, and W. Flannery, “Two
dimensional nonsteady viscous flow simulation on the Navier
Stokes Computer MiniNode,” Journal of Scientific Computa-
tion 1, No. 1, 53-74 (1986).

5. E. Clementi, G. Corongiu, J. Detrich, S. Chin, and L. Dom-
ingo, “Parallelism in computational chemistry: Hydrogen
bond study in DNA base pair as an example,” International
Journal of Quantum Chemistry Symposium 18, 601-618
(1984); IBM Technical Research Report POK-39 (1984);
available from Clementi, Logan, or Saarinen.

6. J. H. Detrich, G. Corongiu, and E. Clementi, “Monte Carlo
liquid water simulation with four-body interactions included,”
Chemical Physics Letters 112, 426-430 (1984); IBM Technical
Research Reports POK-37 (1984) and KGN-03 (1984); avail-
able from Clementi, Logan, or Saarinen.

7. D. H. Gibson, D. W. Rain, and H. F. Walsh, “Engineering
and scientific processing on the IBM 3090,” IBM Systems
Journal 25, No. 1, 36-50 (1986).

8. Y. Singh, G. M. King, and J. W. Anderson, “IBM 3090
performance: A balanced system approach,” IBM Systems
Journal 25, No. 1, 20-35 (1986).

9. D. L. Meck, Parallelism in Executing FORTRAN Programs
on the 308X: System Considerations and Applications, IBM
Technical Report POK-38 (1984); available from Clementi,
Logan, or Saarinen. For another set of FORTRAN-callable
communication subroutines to support parallel execution on
the IBM 308X under MVS, see IBM Program Offering 5798-
DNL, developed by P. R. Martin; the Program Description
Operations Manual for this program offering is Order No.
SB21-3124; IBM Corporation, available through IBM branch
offices.

10. J. Detrich, D. Folsom, and L. Rosenzweig, “ICAP/3090 at
IBM Kingston: Evolution of software to support parallel exe-
cution,” Proceedings of the 3rd International Conference on
Supercomputers 1, 99-108 (May 1988).

11. Parallel FORTRAN Language and Library Reference, SC23-
0431-0, IBM Corporation; available through IBM branch of-
fices. ‘

12. Virtual Machine/System Product System Programmer’s
Guide, Third Edition (August 1983), SC19-6203-2, IBM Cor-
poration; available through IBM branch offices.

13. MVS/System Product, Version 2, Release 1, General Infor-
mation, GC28-1118, IBM Corporation; available through IBM
branch offices.

14. Lecture Notes in Chemistry 44, M. Dupuis, Editor, Springer-
Verlag, Berlin (1986); Structure and Dynamics of Nucleic
Acids, Proteins and Membranes, E. Clementi and S. Chin,
Editors, Plenum Publishing Company, New York (1986).

CLEMENT), LOGAN, AND SAARNEN 507

20.

21,

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

. ASTAP is an IBM Installed User Program (IUP), Program

No. 5796-PBH.

. J. M. Ortega and R. G. Voigt, Solution of Partial Differential

Equations on Vector and Parallel Computers, SIAM Press,
Philadelphia (1985).

. Shared Bulk Memory System Sofiware Manual, Version 2.0,

Scientific Computing Associates, Yale University, New Ha-
ven, CT (1987).

. FPSBUS Sofitware Manual, Release G, Publication No. 860-

7313-004A, Floating Point Systems Inc., Beaverton, OR
(1986).

. Z. D. Christidis, V. Sonnad, and D. Logan, Parallel Imple-

mentation of a 2D Fast Fourier Transform on a Loosely
Coupled Array of Processors, IBM Technical Report KGN-68
(1986); may be obtained from Clementi, Logan, or Saarinen.

R. Herbin, W. D. Gropp, D. E. Keyes, and V. Sonnad, 4
Domain Decomposition Technique on a Loosely Coupled Ar-
ray of Processors, IBM Technical Report KGN-124 (1987);
may be obtained from Clementi, Logan, or Saarinen.

A. Milani, M. Carpino, and D. Logan, Parallel Computation
of Planet Crossing Orbits, IBM Technical Report KGN-161
(1987); may be obtained from Clementi, Logan, or Saarinen.

E. Clementi, D. Logan, and V. Sonnad, “Parallel solution of
fundamental algorithms using a loosely coupled array of proc-
essors,” Numerical Algorithms for Modern Parallel Computer
Architectures, M. Schultz, Editor, Springer-Verlag, Berlin
(1988).

D. Logan, J. Saarinen, and E. Clementi, “ICAP/3090: Genesis
and evolution of a parallel processing system,” Proceedings of
the 3rd International Conference on Supercomputers 1, 79-98
(May 1988).

G. L. Peterson, “Myths about the mutual exclusion problem,”
Information Processing Letters 12, No. 3, 115-116 (1981).

L. Lamport, 4 Fast Mutual Exclusion Algorithm, System
Research Report, Digital Equipment Corporation, Systems
Research Center, 130 Lytton Ave., Palo Alto, CA, 94301
(1985).

M. Bishop, D. Logan, and J. P. J. Michels, “Application of a
parallel computer system to polymer calculations,” Theoretica
Chimica Acta 72, 291-295 (1987).

M. W. Evans, G. C. Lie, and E. Clementi, Molecular Dynamics
Computer Simulation of Water From 10 K 10 1273 K, IBM
Technical Report KGN-115 (1987); may be obtained from
Clementi, Logan, or Saarinen.

M. Migliore, G. Corongiu, E. Clementi, and G. C. Lie, Free
Energy for Hydration of Li*, Na*, K*, F~, and CI~ With Ab
Initio Potentials, IBM Technical Report KGN-165 (1987);
may be obtained from Clementi, Logan, or Saarinen.

H. O. Villar, M. Dupuis, J. D. Watts, G. J. B. Hurst, and E.
Clementi, Structure, Vibrational Spectra and IR Intensities of
Polyenes From Ab Initio SCF Calculations, IBM Technical
Report KGN-87 (1987); may be obtained from Clementi,
Logan, or Saarinen.

M. Dupuis, H. O. Villar, and E. Clementi, Quantum Mechan-
ical Simulations of Polymers for Molecular Electronics and
Photonics, IBM Technical Report KGN-112 (1987); may be
obtained from Clementi, Logan, or Saarinen.

M. Mansour, A. Garcia, G. C. Lie, and E. Clementi, “Fluc-
tuating hydrodynamics in a dilute gas,” Phys. Review Letters
58 (9), 874-877 (1987); IBM Technical Report KGN-67
(1986); may be obtained from Clementi, Logan, or Saarinen.

L. Hannon, G. C. Lie, E. Clementi, and V. Yakhot, Fluid-
Wall Interactions in Shear Flows: Violation of No-Slip Bound-
ary Conditions, IBM Technical Report KGN-128 (1987); may
be obtained from Clementi, Logan, or Saarinen.

D. C. Rapaport and E. Clementi, “Eddy formation in ob-

508 cLEMENT, LOGAN, AND SAARINEN

34.

3s.

36.

37.

38.

39.

40.

41.

42,

43,

44,

45.

46.

47.

48.

structed fluid flow: A molecular dynamics study,” Physical
Review Letters 57 (6), 695-698 (1986); IBM Technical Report
KGN-63 (1986); may be obtained from Clementi, Logan, or
Saarinen.

L. Hannon, G. Lie, and E. Clementi, “Molecular dynamics
simulation of flow past a plate,” Journal of Scientific Compu-
tation 1, No. 2, 145-150 (1986); IBM Technical Report
KGN-66 (1986); may be obtained from Clementi, Logan, or
Saarinen.

K. N. Swamy and E. Clementi, “Hydration structure and the
dynamics of B-DNA and Z-DNA,” Biopolymers 26, 1901~
1927 (1987); IBM Technical Report KGN-94 (1987); may be
obtained from Clementi, Logan, or Saarinen.

F. Carminati, R. Mount, H. Newman, and H. Pohl, CERN
Technical Report L3-313 (1984), EP Division, 1211 Geneva
23, Switzerland.

Z. D. Christidis and V. Sonnad, Parallel Implementation of a
Pseudospectral Method on a Loosely Coupled Array of Proces-
sors, IBM Technical Report KGN-143 (1987); may be ob-
tained from Clementi, Logan, or Saarinen.

L. Domingo and E. Clementi, Parallel Computation of Migra-
tion of Seismic Data on ICAP, IBM Technical Report KGN-
17 (1985); may be obtained from Clementi, Logan, or Saari-
nen.

A. Capotondi, R. Signell, R. Beardsley, and V. Sonnad, 7ide-
Induced Residual Circulation Simulated on a Parallel Com-
puter, IBM Technical Report KGN-132 (1987); may be ob-
tained from Clementi, Logan, or Saarinen.

H. M. Hsu and V. Sonnad, Parallelization of a Numerical
Model for Ocean Circulation, IBM Technical Report KGN-
134 (1987); may be obtained from Clementi, Logan, or Saar-
inen.

Circuit layout optimization on chips has been studied and
wiring optimization is also under study.

W. Luken, N. Liang, R. Caltabiano, E. Clementi, E. Bacon,
J. M. Warren, and W. F. Beausoleil, Application of Parallel
Processing to Molecular Modelling Graphics, IBM Technical
Report KGN-111 (1987); may be obtained from Clementi,
Logan, or Saarinen.

Parallel application of simulated annealing for image process-
ing has been investigated. The same technique has been ap-
plied to Ising model studies of ferromagnetic and antiferrom-
agnetic materials in external fields.

G. Brussino and V. Sonnad, “A comparison of preconditioned
iterative techniques for sparse, indefinite, unsymmetric sys-
tems of linear equations,” accepted for publication in Int.
Journal for Numerical Methods in Engineering (1988); IBM
Technical Report KGN-102 (1987); may be obtained from
Clementi, Logan, or Saarinen.

P. Leca, “Programming loosely coupled multi-FPS system
with message passing primitives: Experiment in implementing
ADI method on ICAP/1 system,” Proceedings of the Second
International Conference on Supercomputing 2, 385-391
(1987).

R. Herbin, S. Gergi, and V. Sonnad, Parallel Implementation
of a Multigrid Method on the ICAP Supercomputer, IBM
Technical Report KGN-144 (1987);, may be obtained from
Clementi, Logan, or Saarinen.

C. Bischof, Computing the Singular Value Decomposition on
a Distributed System of Vector Processors, Computer Science
Technical Report TR86-798, Cornell University, Ithaca, NY
(1987).

C. Van Loan, “A block QR factorization scheme for loosely
coupled systems of array processors,” Numerical Algorithms
for Modern Parallel Computer Architectures, M. Schultz, Ed-
itor, Springer-Verlag, Berlin (1988).

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

49. Revised simplex-employing explicit inverses have been ex-
plored. Karmarkar’s algorithm is currently being studied for
parallel implementation, necessitating the development of ef-
ficient updating in weighted least-squares problems.

50. P. Hopke and L. Kaufman, “An introduction to supercom-
puters,” Trends in Analytical Chemistry 6, No. 1, 1-2 (1987).

51. M. Russo, A. Perez-Ambite, R. Caltabiano, J. Detrich, and D.
Folsom, An Approach to Parallel Scheduling for the ICAP
System, IBM Technical Report KGN-135 (1987); may be
obtained from Clementi, Logan, or Saarinen.

Enrico Clementi /BM Data Systems Division, P.O. Box 100,
Kingston, New York 12401. Dr. Clementi received his Ph.D. in
chemistry from the University of Pavia, Italy, in 1954. He did
extensive postdoctoral work in experimental and theoretical chem-
istry with, among others, Nobel Laureates G. Natta at the Poly-
technic Institute of Milan (1955) and R. S. Mulliken at the
University of Chicago (1960). In 1961 Dr. Clementi joined the
IBM Research Division at San Jose, and was responsible for atomic
calculations and the publication of atomic tables. From 1967
through 1974 he was manager of a large-scale scientific computa-
tion department at IBM San Jose and in 1969 became an IBM
Fellow. Dr. Clementi is currently manager of the Scientific and
Engineering Computations Department at IBM Kingston, where
he has been responsible for research and development in parallel
computer architecture, artificial intelligence, and fundamental re-
search in chemistry, biophysics, and fluid dynamics. He has been
arecipient of many awards, including nomination as Distinguished
Research Professor at Rensselaer Polytechnic Institute, Troy, New
York (1986) and the DIRAC golden medal from the World
Association of Theoretical Organic Chemists (1987). He has au-
thored and coauthored over 350 papers and is among the top 300
Contemporary Scientists most cited from 1965-1978, according
to E. Garfield in Current Contents 9, 5 (1982). Dr. Clementi is a
member of many professional societies and a Fellow of the Amer-
ican Physical Society (1984).

Douglas R. Logan [IBM Data Systems Division, P.O. Box 100,
Kingston, New York 12401. Dr. Logan received his B.Sc. degree
in chemistry from McGill University, Montreal, Quebec, in 1969
and his Ph.D. in nuclear chemistry from Columbia University,
New York, in 1975. Following postdoctoral work in fundamental
nuclear reaction research at Carnegie Mellon University, he joined
the Advanced Computer Architecture Laboratory at the Lawrence
Berkeley Laboratory, Berkeley, California, where he worked as
head of applications development for parallel processing on the
MIDAS parallel computer. In 1985 Dr. Logan joined the Scientific
and Engineering Computations Department at IBM Kingston,
where he has worked primarily on parallel algorithm development
and performance analysis of parallel architectures. He is an author
and coauthor of over 60 papers in nuclear and computer science
and was co-winner of the award for best presentation at the 1983
and 1984 International Conferences of Parallel Processing.

Jukka P. Saarinen IBM Data Systems Division, P.O. Box 100,
Kingston, New York 12401. Mr. Saarinen is currently completing
his Ph.D. in computer science from the Tampere University of
Technology, Finland, while he is engaged in research on parallel
architectures and their use in numerically intensive engineering
applications at the Scientific and Engineering Computations De-
partment at IBM Kingston. His research interests include digital

1BM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

signal processing, pattern recognition, image processing and Monte
Carlo simulations. Mr. Saarinen is a member of the Electrical
Engineering Society of Finland, the Finnish Technical Society, the
Pattern Recognition Society of Finland, and the Institute of Elec-
trical and Electronics Engineers.

Reprint Order No. G321-5339.

CLEMENT, LOGAN, AND SAARNeN 509

