
Programming  style 
on the IBM 3090 Vector 
Facility  considering 
both  performance 
and  flexibility 

by H. Sarnukawa 

To obtain  high  performance  from  the IBM 3090 Vector 
Facility,  we  must  investigate  vector  instruction  con- 
structs  in  terms of the  loop  context of the  application 
algorithm. We exemplify the method  by  linear  algebra 
subroutines  for  basic  matrix  operations  and  a  linear 
equation  solver. In these  examples,  we clarify  the 
mathematical  meaning  that  each  loop  is  computed  by 
analyzing the  loops  in  terms  of a  generic  algorithm. 
This  analysis  helps  us to achieve optimal  loop  selec- 
tion. We then  obtain  additional  performance  gain by 
considering  cache  capacity. These  procedures  suggest 
that  there  are  three  levels  of  performance  classifica- 
tion. They also show  that  program structure yields 
great  benefits  in  terms  of  performance  and  generality 
of the program. 

H igh-performance computing is  now a common 
requirement in many engineering and scien- 

tific environments. Vector  processors  have  become 
very popular among engineering and scientific  users, 
because programmers can use  vector  processors  with 
little or no knowledge  of  those  machines. This is due 
to the built-in  capability of vectorizing  compilers. 
However, there are many applications in which  care- 
ful tuning can yield great performance enhance- 
ments. Numerical methods such as linear algebra are 
among these  applications. In such applications, tun- 
ing methods differ  according to the types of vector 
machines,  especially  according to their architecture 
and hardware implementations. 

In this paper, we use  examples of typical and fun- 
damental matrix operation routines to show the 
properties to consider in tuning the IBM 3090 with 
Vector  Facility (vF).' Discussed  first  is the impor- 
tance of examining the possibilities  for  changing the 
calculation sequence.  After  discussing tuning meth- 
ods, we present ways  of separating system-dependent 
properties from the application programming. If  we 
had to develop and maintain programs involving 
such  properties, much effort  would  be  required  for 
further program  modifications or for future hard- 
ware  changes. 

Prior to discussing numerical algorithms, we intro- 
duce the following  vector architecture notation, and 
the instruction notation used in this paper, which we 
hope will be  helpful in providing an intuitive under- 
standing of  how VF works. 

The following  vector architecture concepts are used 
in this paper: 
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Figure 1 Scalar  multiple of a vector  and  dot  product 
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Branch 

VsumPS  VR0,FR 
(PS: Partial Sum) 

The virtual storage (vs) system  discussed  here  has 
3 1-bit  addressing  capability. 
The vector  register in the vector architecture pre- 
sented  here is one of  16 vector  registers, the length 
of w p h  is  described by the vector  section size 
(vss) parameter. 
The instructions for  vector operations can have 
up to three operands, one of which can point to a 
vector in memory as a  source operand. An instruc- 
tion called the compound-operation instruction 
provides  two operations, such as multiplication 
and addition/subtraction or multiplication and 
accumulation. 

In this paper, pseudo-vector instructions are used to 
show  how VF works and to provide  a  rough estimate 
of performance. 

The following are pseudo-instructions used in this 
paper: 

Vload VR, (xi) Load (xi) to VR (vector regis- 
ter),  where (xi) is a  section of 
vector xi in memory. 

Vstore VR, (xi) Store the current value of VR. 
VM&A VR, FR, (xi) Multiply  a  section of xi by FR 

(floating-point  register) and 
add to VR; the result remains 
in VR, i.e., 
VR + VR + FR * (xi). 

(Note that the strict mnemonic codes  such  as VLD, 
VSTD, and VMADS require some associated  scalar 
instructions.') 

A FORTRAN program to compute a  scalar times a 
vector plus a vector-known as DAXPY in the basic 
linear algebra subprogram (BLAS) interface-can  be 
expressed  using  these pseudo-instructions, as  shown 
in Figure 1. Because (xi) and (yi) are only  sections of 
each  vector,  these instructions must be executed 
repeatedly to complete logical  vector  length n, where 
n is greater than vss. The sectioning loop in Figure 
1 is the place  where control is transferred from the 
Branch; this loop is generated by a vs FORTRAN 
compiler. Details of the sectioning loop are discussed 
in Reference 3. 
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Figure 1 also  illustrates another example of the dot 
product: 

9 VM&ACC VRO,VR2, (Xj) Multiply VR2 by (Xi) 
and accumulate the 
successive  products, 
which are called  partial 
sums, in VRO. 

vsumps VRO, FR Sum the partial  sums; 
the result  is in FR. 

vzerops VR Clear the partial sums 
from VRO. 

Though the vector architecture defines  171  vector 
instructions, these six pseudo-vector  codes are suffi- 
cient  for the scope of this  paper. 

When  these  programs are executed,  vector instruc- 
tions work at a peak rate of one element  per  cycle 
after start-up time has  elapsed.  Two important ele- 
ments should  be  added in a discussion of perfor- 
mance: (1) The execution of  vector instructions does 
not overlap; (2) all  memory  references are made 
through the cache  (high-speed  buffer) in the central 
processor.  Also, the size  of cache and length of  vector 
register are 64K bytes (8K double  words)  for  each 
processor and 128  bytes in the case  of the 3090 
Model E. 

In the following  section,  examples of linear algebraic 
problems are discussed and computation perfor- 
mance is  compared  for  various  orderings of the 
pseudo-code.  Finally,  measured  performance  com- 
parisons are made. The tuning approach mentioned 
in this  paper  might  be  used in applications other 
than linear  algebra  if  they  have  similarities to vector 
tuning, such as loop nesting and triangular matrix. 

Program  loops  and  performance 

The most important characteristic of the 3090 VF as 
a vector  machine  is that it  is a virtual  storage  ma- 
chine (vs) with  vector  registers.  In this section, we 
discuss the relationship  between  program  loops and 
performance that takes  advantage of these  character- 
istics. 

Double-loop  procedure. Programs  with a single  loop 
work  as  described in the Introduction. When  loop 
nesting  occurs, the 3090 VF enhances the million- 
floating-point-operations-per-second (MFLOPS) per- 
formance by eliminating vector loadlstore instruc- 
tions within the innermost loop.  In other words, 
reusing the vector  register enhances performance. 
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For example,  consider the matrix-vector product 
y = y + A $ x, where y is a vector  with m elements, 
A is a matrix  with m rows and n columns, and x is 

When loop nesting  occurs, 
the 3090 VF enhances  performance 

by eliminating  vector  load/store 
instructions  within  the 

innermost  loop. 

~ ~~ 

a vector  with n elements. We write the matrix-vector 
product as a generic  algorithm, as discussed in Ref- 
erence 4: 

d o - = - , -  

d o - = - , -  
yi = y, + a, * xj (1) 

enddo 

enddo 

We can substitute the loop  indices i, j and termina- 
tion points of the loop indices m, n in the underlined 
blanks in Equation (1). Two  choices are possible: 
form i j  or form ji, as illustrated in Figure 2. In this 
figure,  sectioning  loops that result  from the limited 
length  of the vector  registers are considered. (Note 
that the steps introduced by the algorithm are not 
the same as the steps of the FORTRAN program  itself. 
Since vs FORTRAN v2 can  vectorize the outer loop, 
form ij is  changed to form ji automatically.) In this 
paper, we refer to an index that appears on the right 
side and does not appear on the left  (such  as  index j 
in the example)  as a dummy index. The innermost 
loop computes the dot product when a dummy index 
is  used as an index of the innermost loop. On the 
other hand, when a dummy index  is  used as an index 
of the outer loop,  it computes a vector-scalar  prod- 
uct  of the type  known as “two  vector operations and 
one vector-memory  reference.”  In  Figure 2, this 
corresponds to the two  floating-point operations of 
VM&A and one vector-memory  reference (ajj). Both 
form i j  and form j i  have  only one pseudo-vector 
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Figure 2 Matrix-vector multiplication 

(sectioning loop) 
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do]= 1,n 
yi = yi + aq xc xi 

enddo 
- enddo 

I 

do i =  1,m LD FR,Xi 

enddo Branch 
Y/ = Y, + a# * X, VM&A VR,FR,(aJj 

T - enddo L Vstore VR, (yj) 
Branch 

instruction in the innermost loop, but form ij suffers 
performance degradation in the case of large mat- 
rices.  Because the FORTRAN convention of storing 
matrices in column order requires the access pattern 
of aii skipping m elements, the cache cannot be  used 
efficiently. This is  usually  called “stride m.” On the 
other hand, form ji becomes  stride 1 (sequential 
memory reference), and is  faster than form ij. 

In the scalar computation environment, selecting the 
dummy index  as the innermost loop index  elimi- 
nates store instruction from the innermost loop by 
accumulating results on the floating-point  register. 
While in the vector computation environment, be- 
cause the innermost loop is  vectorized,  selecting a 
dummy index as the outer loop index eliminates 
vector  load and vector store instructions by accu- 
mulating results in a vector  register. This can be 
described as VR VR + ’& (ai)j * xj in Figure 2; i.e., 
the double-loop  configuration of form ji is translated 
into the codes  with loop of LD, VM&A, and Branch, 
and carries out double-loop calculations over a sec- 

tion. The first  difference  between a vector and a 
scalar appears here,  when we consider hierarchical 
programming organization. That is, in the scalar 
computation, a large performance difference  may 
not appear if  we call a single-loop subroutine from a 
double-loop procedure as follows: 

do j = l,n 

call DAXPY (m, X(j), A ( 1 , j )  1, Y, 1) 

enddo 

However,  in the vector computation, we cannot take 
advantage of the “two vector operations and one 
vector-memory  reference”  from this programming. 
Thus, we must prepare a double-loop subroutine as 
a stand-alone, lowest-level subroutine. 

Triple-loop procedure. We  now look at  an operation 
in linear algebra, the process of matrix-matrix mul- 
tiplication and addition: 
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m 

cij = cij + ark . b,, 
k= I 

where i = l,Z, j = 1 ,n. 

We  write Equation (2) as a generic algorithm as 
follows: 

do - = -7 - 

do-=- , -  
cij = c,, + aik * bkj 

enddo 

enddo 

enddo 

Figure 3 shows that six (=3!) permutations are pos- 
sible  for arranging the three-loop indices, as dis- 
cussed  in  Reference 4. In Figure  3, operations carried 

double-loop routine in terms of MFLOPS. To be con- 
crete, the progress of loop index k of form jki is 
interrupted when the cache is  filled with the refer- 
enced data ai,, so that the outer-loop index j goes 
forward, as illustrated in Figure 4. 

Memory  hierarchy  and  hierarchical  programming. 
We can enhance this performance of the vector 
machine with  hierarchical memory. Figure 5 
sketches  differences among three memory hierarchy 
and loop configurations. In the sketch, the innermost 
loops compute the same scalar multiple of a vector. 
A single loop requires three vector instructions, 
Vload, VM&A,  and Vstore, but a double loop reduces 
them to one. A comparison of vector-machine op- 
erations is sketched in the right-hand portion of the 
figure.  Solid  arrows  represent an instruction that 
requires one execution cycle per  vector  element. In 
the triple-loop procedure, the operand of the instruc- 
tion can remain in the cache.  However, it is an 
advantage  for the application programmer to be  able 
to compose  his  program without having to consider 
such machine-dependent factors. 

In  the 3090, vector  instruction 
execution  speed  is  faster  when  the 
operand  vector  exists  within  cache 
than  when it  is  absent  and must be 

transferred from  memory. 

out by the inner double loop are illustrated, but the 
sectioning loop is  ignored.  Among  these six forms of 
matrix-matrix multiplication, form jki is the fastest 
because both “two vector operations and one vector- 
memory  reference” and “sequential memory refer- 
ence” are  achieved. That is, form jki in Figure 3 
shows that instruction construction of the inner dou- 
ble loop becomes  the same as  form j i  of the matrix- 
vector product. (We can ensure this by writing ci = 
ci + E, aik * b, and dropping the outermost index j . )  

In the 3090,  vector instruction execution speed  is 
faster  when the operand vector (aik) exists  within 
cache than w h y  it is absent and must be  transferred 
from  memory. By considering this property, we can 
create a triple-loop routine that is faster than a 
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Now let  us introduce an example of matrix-matrix 
multiplication by concealing the properties affected 
by the system.  (See  Figure 6.) We store system- 
dependent parameters in a common SYSTEM, such as 
a vector  register  length and cache  size  available  for 
vectors in memory. Subroutine DMULAD computes 
the same algorithm as the parent subroutine, i.e., C’ 
= C’ + A’ * B’, but this subroutine has no sectioning 
loop at all.  However, the size  of matrix A’ is con- 
trolled by NXM to be NZL, where NZL is  smaller than 
the vector  register  length. The kernel of this subrou- 
tine may  be  written  as follows: 

loopj Vload VR, ( c , ) ~  
loopk LD FR, bk, 

VM&A VR,FR, (ar), where (ai), mostly 

Branch loopk (k  = 1 ,NXM) 
Vstore VR, ( c ~ ) ~  
Branch loopj ( J  = 1 , ~ )  

remain in cache 

The performance gain obtained by this cache  consid- 
eration compared with the form jki without consid- 
ering the cache is about 20 percent in the case  of a 
square matrix of order 1000 using a 3090  Model E. 

Though the computation order-considering both 
loop and cache  capacity-seems to be rather com- 
plicated, as shown in Figure 4, we can write the 
program as a simple algorithm of submatrix-sub- 
matrix multiplication by constructing a hierarchical 
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Figure 3 Six  permutations  for  multiplication 
~~ 

k OUTERMOST 

k MIDDLE 

k INNERMOST 
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Figure 4 Method with cache consideration 

memory 
r 

B i I  I I 
J 

I 
I 

cache + r. 

program structure. In addition to this, we can cause 
this routine to manage  changes in vector  register 
length or cache  capacity by initializing the common 
SYSTEM. We can also  cause it to manage the scalar 
environment by replacing the low-level subroutine 
DMULAD with a scalar tuned routine. Note that the 
consideration of the cache  capacity gives  us increased 
performance,  even  in the scalar environment. 

Let  us summarize here the way to work  with  vector 
machines. In the scalar computation environment, 
we may compose our program  directly to translate a 
given formula into FORTRAN language statements. 
While in the vector mode, we may  achieve super 
vector performance4 if  we can find optimal codes by 
investigating  possible  reorderings of the computation 
sequence. This investigation step is important in the 
vector mode and, if  possible, it would  be  useful in 
separating the properties affected by the system  from 
application algorithms. 

It  may  be  most  practical to solve the problem of the 
coexistence of program performance and generality 
by separating the program into routines of more 
primitive functions that resolve the differences 
caused by architecture or hardware. In the routines 
of more complicated functions, matrix-matrix mul- 
tiplication routines are lower-level subroutines. 

Linear  equations 

We  now turn  to the problem of solving  systems of 
linear equations, using an algorithm usually  called 
triangular  decomposition, which  is  based on Gaus- 
sian elimination. 

As in the previous  discussion of matrix-matrix mul- 
tiplication, we discuss loop selection  first and then 
consider  cache  capacity. Gaussian elimination usu- 
ally transforms the original square matrix A into the 
product of  two  matrices L and U: 
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Figure 5 Memory  hierarchy  and loop context 
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Figure 6 Subroutine DMPYAD example 

Subroutine  DMPYAD (A,lda,B,ldb,C,ldc,l,rn,n) 

(DMPYAD  computes C = C t A * B) 

double  precision A(lda,rn),B(Idb,n),C(ldc,n) 

common  /SYSTEM/  /vs,ncache 

nz = min(Ivs,l) 

nx = ncachelnz 

nii = (I - l)/nz t 1 

njj= ( r n  - l)/nx t 1 

-do ii = 1 ,nii 

I 
i =  (ii- 1) * nz t  1 

NZL = min(nz,I - it 1) 

do jj = 1,njj 

j =  (jj- 1) * n x t  1 

NXM = min(nx,rn - j t 1) 

call DMULAD (A(i,j),Ida,B(j,l),Idb,C(i,l),ldc,NZL,NXM,n) 

enddo  (DMULAD  computes C' = C' t A' * B') 

- enddo 

return 

C A B 

nn 
t * 

" 

A * LU. (4) 

The matrices L and U have the same dimension as 
A; the matrix L is a unit lower triangular matrix, 
and U is an upper triangular matrix. The algorithm 
that produces L and U from A, in general,  overwrites 
the information in the space that A occupied,  thereby 
saving  memory. The algorithm, when  given the ma- 
trix in an array A, produces in the upper triangular 
portion of the array A the information describing U, 
and in the lower triangular portion below the diag- 
onal the information describing L. 

Loop selection. As in matrix multiplication, the al- 
gorithm for Gaussian elimination can be written in 

generic form4 as follows: 

do - = -9 - 

do-=- , -  

do - = -9  - 

a. .  = 8 . .  - aik : akj/akk 
11 11 ( 5 )  

enddo 

enddo 

enddo 

In this algorithm, we have omitted the partial pivot- 
ing step to retain clarity. The procedure seems to 
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resemble  matrix-matrix multiplication, but is com- 
plicated by the fact that the ranges  where loop indices 
( i ,  j ,   k )  move are described by other indices. We  first 
investigate the meaning of the dummy index k, then 
consider the possibility  of loop selection. For this 
purpose, we digress to describe the elimination al- 
gorithm, using an elementary similarity transfor- 
mation matrix. 

Elementary similarity transformation matrix. Gaus- 
sian elimination can be  achieved by multiplying the 
elementary similarity transformation matrix Pk re- 
peatedly  by matrix A. Matrix Pk is identical to the 
identity matrix except  for the kth column, which  is 

('3 * ' 9   ' 9  - P k + l , k ,  - Pk+Z,k,  * - Pn,k)* 

Given the n by n matrix A, choosing p i l  = a i l / a l l  
enables  us to eliminate the first column as follows: 

PIA + A('), 

where the first column of A(') consists of zeros,  except 
for the first  row,  which  is (X,  0,  0, - , 0). Successive 
manipulations of the form 

Pn-lP,,.-2 . . . P2P,A e A@-') (6 )  

give an upper triangular factor [A""" = VI. 

Pk has the following important properties: 

The inverse of Pk can be obtained simply by 

No products of thy elements pij  occur in the prod- 
changing  signs in the off-diagonal  elements. 

uct Pi'P;' . . . Pi-', which  is equal to L: 

p;'p;' . . . pi:, = [ I  p 3 2  ! ] = L . ( 7 )  

Thus, we can obtain triangular factors by multiplying 
L on both sides of Equation 6: 

L . Pn-IP,,-2 . . . P,P,A + L . U; 
that is, 

A LU. 

. .  . .  
P n 1   P n 2  * 1 

Form kji. The most popular algorithm, called  Gaus- 
sian elimination, can be  expressed  by substituting kji 
or kij into Equation 5 as  shown in Figure 7. Index k 
is  considered to be the subscript of the elementary 
transformation matrix Pk. Since k is outermost, the 
procedure of form kji or kij appears as follows: 
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Outermost loop picks Pk. 
Inner double-loop procedure operates to update 
the square matrix of order n - k in the bottom 
right corner of A, 

pk . A(k-1) I$ A(k) 

As in matrix-matrix multiplication, the three indices 
i ,  j ,  k represent  row, column, and  dummy indices, 
respectively.  Since the dummy index  is outermost, 
the innermost (vectorized)  scalar multiple of a vec- 
tor, (y = y + a x), requires the extra step of a 
vector load/store operation. 

Form jki. Figure 8 shows the procedure of form jki, 
which  satisfies  two  criteria: location of the dummy 
index in the middle loop, and sequential memory 
reference.  Since the column index ( j )  is outermost, 
it becomes  a  vector  from  a matrix that each outer 
loop updates. The inner double-loop procedure up- 
dates the j th column of A(') to that of A'"') using  a 
trapezoidal matrix that consists of nonzero columns 
of PI to Pi-', i.e., a"-') + a zk (pi)k * a@. Though 
the dummy index  is in the middle loop, an efficient 
loop construct (two  vector operations and one vec- 
tor-memory reference) is not generated,  because the 
updated vector  changes its beginning and length  with 
respect to the second loop index  progression. This is 
shown by the expression i = k + 1, n; i.e., the 
innermost loop index  move  is  described by the next 
outer loop index (k).  This is why triangular decom- 
position  is more complicated than matrix-matrix 
multiplication. (If VF had vector instructions both to 
compute from the middle of the vector  register and 
to extract an element from the vector  register to store 
in the floating-point  register, the k loop could be 
carried out, leaving the jth column of A resident in 
the vector  register. The latter is  provided but the 
former is not.) 

Loop unrolling. There exists  a technique called loop 
unrolling, which  rectifies  a triangular matrix to ac- 
cumulate results on the vector  register.  Figure 9 
shows  three-way  unrolling. This operates the three 
columns (Pk,  Pk+',  Pk+J together  with thejth column 
of A (which  resides on the vector  register). The 
number of k loops is  reduced by two thirds. The 
deeper the loop unrolling, the faster the processing 
rate.  Figure 10 illustrates computation 6density, 
which can be  defined  as the following  ratio: 

computation density = 

(0) - 

total operation performed 
total data items required in  and  out of memory ' 
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Figure 7 Form kji 

- enddo L 

L 

\ 
pik G 

In  the case  of  n-way unrolling, computational density 
is  expressed as follows: 

computational density = 
(n-way) : 2 
(n-way) + 2 

’ 

Even  if the n of  n-way becomes  large, the loop 
unrolling technique has  several  disadvantages: 

As shown in Figure  10, computation density  is 
still less than 2.0, which  is the maximum of  which 
the 3090 Vector  Facility is capable. 
A portion of the scalar calculation that is required 
to rectify  a triangular matrix becomes  large. 
Programming becomes  extensive and compli- 
cated. 

Form jki can be considered an attractive selection if 
loop unrolling is carried out automatically by the 
compiler. 

Form ijk. Because i is outermost, the outermost loop 
updates the row  vector (ith row of A‘’’), and because 

the dummy index is innermost, the innermost loop 
computes the dot product. As shown in Figure 11, 
form ijk appears as follows: 

For the elements of the lower triangular factor, 
j -  I 

80  * 8jj P i k a k j  
(1-1) (0) - (k- I ) 

k==l 

For the elements of the upper triangular factor, 
i- I 

ai j  Pik  akj  * 
( j -1)  (0) - (k-1) 

k- I 

The advantage of form ijk is that, for the upper 
triangular elements,  because the ( p i l ,  pi2,  . ., pli-J 
vector remains unchanged  within the double-loop 
context, this vector can be  kept in the vector  register. 
However,  for the lower triangular factor, computa- 
tion must be performed by touching the triangular 
portion of a matrix, since the range  where the inner- 
most loop index (k)  moves  is  described by the next 
outer loop index ( j  ). Summation must be  carried 
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Figure 8 Form jki 
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Figure 9 Loop  unrolling  applied to form jki 

n-way = 3 
- d o j  = 1,n 

n-loop = ( j  - l)/n-way 
n-left = ( j  - 1) - n-loop * n-way 
- do k = 1,n-loop * n-way,n-way 

a k t  I,, = a k t  I,, + ak, j  * a k t  l,k 

a k t 2 , j  = a k t ~ , ,  t ak,, * a k t 2 , k  + & t i , ,  * a k t   2 , k t  1 

I do i = k t n-way,n 

I i 

t k t 2  * a k t 2 , j  

P k P k t   i P k t 2  1 * +  

1 
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Figure 10 Computation  density 

out from 1 to j - 1, which  is the index of the middle 
loop. 

Comparison of six permutations and  other selections. 
Figure 12 shows  six permutations of the triple-loop 
procedure  for i, j ,   k .  Among  these  six permutations, 
form jki with  loop  unrolling  is the fastest.  Among 
these  six, the latter part of form jki (where the 
elements of the lower triangular factor are created) 
and the latter part of form ijk (where  elements of the 
upper triangular factor are created)  satisfy the follow- 
ing  two  criteria: (1) two  vector operations and one 
vector-memory  reference, and (2) sequential mem- 
ory reference.  Choosing  loop  selections  indepen- 
dently  for the upper and lower  factors to combine 
these  two attractive portions, we can obtain a new 
form,  form ijk for the upper triangular factor and 
form jki for the lower triangular factor.  Figure  13 
illustrates this method, in which elements of uij are 
created  row-wise, then elements of l,, are created 
column-wise  alternatively. We call this methodform 
ijkljkc it is  also  known as “Crout decomposition.” 

Since the expressions  of the ranges  where innermost 
loop indices  move are described by the next-next 
outer-loop indices  (leaping one loop), the inner dou- 
ble-loop context touches the rectangular  matrix. 

Either the subroutine for computing consecutive dot 
products or the subroutine for computing the trans- 
posed matrix product with a vector can be adapted 
to compute uij. 
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The subroutine for computing the matrix product 
with a vector  can  be adapted for computing l,,. That 
is, a building-block approach for  program  construc- 
tion can  be  applied,  which  may  yield the benefit that 
this computation-intensive part of the process can 
be  passed to subroutines of more primitive  functions. 

Two popular methods from the conventional scalar 
computation environment, Gaussian elimination 
and Crout decomposition,  have the property that 
they  can be broken  down into hierarchical  blocks, 
adding  algorithmic  elegance and program  portability 
to the process. 

Up to this point, we  have investigated the possibility 
of  selecting i ,  j ,  k permutations of the triple-loop 
procedure  for triangular decomposition. The aim of 
this  discussion  is to find the selection that gives an 
efficient  loop construction in which the key  vector 
could  remain in the vector  register-i.e.,  two  vector 
operations and one vector-memory  reference.  In the 
discussion  of  matrix-matrix multiplication, the six 
permutations produced  from the generic  algorithm 
in Equation 3 are enough to search  for  efficient  loop 
constructs.  However, permutations in addition to 
those  six  (i.e., permutations produced from the ge- 
neric  algorithm  in Equation 5 )  may  also  be  used to 
realize  efficient  loop constructs with triangular de- 
composition. This is a noteworthy  consequence 
when  we  have to deal  with the triangular/trapezoidal 
portion of a matrix. 

We  now  go to the next  step to consider the capacity 
of the cache, so that one vector-memory  reference 
remains in cache. 

Cache  consideration. In the discussion  of  matrix- 
matrix multiplication, we obtained performance im- 
provement by dividing the original  matrix into sev- 
eral  submatrices. This is the technique by  which the 
progress  of three indices, i ,  j ,  k, which  move  from 1 
to 1, n, rn, respectively, are interrupted and interlaced 
so as to keep the vectors  from the inner double-loop 
procedure in the cache.  Since the order of subma- 
trices  can  be  selected arbitrarily, we select  them in a 
way that is  suitable  for the Vector  Facility  system, 
i.e., vss or NX, as  shown by Figure 4. In  this  section, 
we discuss the possibility of adapting the same ap- 
proach to decomposition. Prior to this  discussion, 
we detour to analyze the structure of triangular 
decomposition. 

Structure of triangular decomposition matrices. We 
show the relations  between  various  submatrices of 

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1983 



Figure 11 Form ijk 

do i = 2,n 

L enddo 

(for  lower  triangular  elements) (for  upper  triangular  elements) 

J 
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Figure 12 Six permutations for decomposition 
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k MIDDLE 
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t i  
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Figure 13 Form ijkljki 

do jj= l ,n  

- d o j =  i,n 
j =  jj 

[ 

[ 

do k =  1,j- 1 

at = a# + aik * aw - 
enddo 

- enddo 
je jj 

- d O i = j +  l,n 
a# = -aqdj - enddo 

- d o k =  l j -  1 
d o i = j +   l , n  

aii = a# + aik * akj 

enddo - enddo 

6 
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A('), p, A(n-') and intermediate A'". Considering the 
completion of decoyposition, A") = LU is  described 
by partitioned form as follows: 

Equating the last partitions, we have 
A(') 

n-r,n-r = Ln-r,rUr,n-r + Ln-r,n-rUn-r,n-r* (8) 

From the first r major  steps of Gaussian elimination 
(Equation 6 )  we obtain the equation 

PrPFI . P2PIA(') = A'", 

giving 

A'" = p;'p;' . . . P~~,P;'A'r) 

L r r  o U r r   U p - r  = [ G r i d  * [+zl, 
where Wn-r,n-.r is the square matrix of order (n  - r) 
in the bottom right corner of A'". 

From the last partitions we obtain the equation 

A(') - 
n-r,n-r - Ln-r,rUr,n--I + W n - r , n - r *  (9) 

Equations 8 and 9 give the following  two important 
pieces  of information: 

Wn-r,n-r can be obtained by subtracting  from 
AL?r,n-, a product of submatrices  created  after the 
first  major r steps: w,-,,-, = A"' n-r,n-r- Ln-r,rUr,n-r* 

LH-r,n-rU,,-r,n-r is  again the triangular decomposi- 
tion of Wn-r,n-r: Wn-,,-, = 

Recursive block elimination. We can exploit  recur- 
sive  block elimination by using  these  two  equations. 
Each  block step of this  method  comprises  two  phases: 

Crout elimination with termination after r major 

Matrix multiplication and subtraction 

After the completion of the Crout elimination phase, 
the square  matrix of order (n  - r) in the bottom 
right  corner remains A"), but other partitions have 
been  already  completed,  as  follows: 

steps 
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Here we compute in the latter phase 
- A'') 

Wn-r,n--r - n-r,n--r - Ln-r,rUr,n-r; 

the problem  shrinks  from order n to n - r. We then 
move  forward to the next  block step to solve 

Wn-r ,n - r  * Ln-r,n-rUn-r,n-r* 

Computing these  two  phases,  using Crout decom- 
position  with termination and multiplica- 
tion/subtraction recursively, we can obtain the final 
triangular factors. Fortunately, these  two  compo- 
nents are almost at hand; i.e.,  for the Crout decom- 
position part, form ijk/jki with termination can  eas- 
ily  be  created by adding arguments that specify  range 
r; for the multiplication/subtraction part, the multi- 
plication subroutine considering  cache  capacity 
mentioned in the section on memory  hierarchy and 
hierarchical  programming  can  be  used.  Both  com- 
ponents,  especially the latter, can run fast. 

Figure 14 shows  a  sample  of  this method, which  is 
mathematically  similar to the method used in the 
conventional scalar computation called  block  elim- 
ination. 

The aim of this classical method is to overcome the 
limited  size  of  memory  available  by  allocating matrix 
data to secondary  storage  (file). As a  result,  restric- 
tions appeared  caused by the matrix format in the 
file.  Now,  however,  we can  hold  a  large-scale  matrix 
in memory  using vs capability.  Block elimination 
based  on  large  memory  is  free  from  this  restriction, 
so we can select an appropriate size  for matrix block- 
ing.  In  fact, we can  select the matrix size  independ- 
ently, on the one hand, of decomposition  with ter- 
mination and, on the other hand, of multiplica- 
tion/subtraction, in the example of  coding. 

Another  benefit  is that the major portion, which 
affects  performance (and is  affected  by hard- 
ware/system),  can  be computed by more primitive 
subroutines. 

One of the most  practical ways to resolve the prob- 
lem  of the coexistence  of  program  performance and 
generality  is to write  a  program  using the building- 
block approach. Figure 15 shows this hierarchy.  Each 
subroutine works  with  submatrices,  illustrated by the 
solid  line, and updates the shaded  areas. 

Performance  comparison. For the performance  esti- 
mation, we count the number of operations done by 
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Figure 14 Form ijk/jki with  cache  consideration 

Subroutine DlJKlC (A,lda,n,ipvt) 
double  precision A(Ida,n) 
integer ipvt(n) 
common  /system/ - 

mr = r 
- do m = 1,mstep 

17 = ( m - l ) * m r t l  
p = min(n, j 7  + mr - 1 )  
call DlJKlT (A,/da,n,ipvt,jl,j2) 

_""""" 1 

I 
I 

call DMPYSB (A(j2t l , j 7 ) ,  Ida, A(j7, j2 t l ) ,  Ida, A(j2 t 1 ,  j2 + l ) ,  Ida, 
n - j 2 , j 2 - j 7 t   1 , n - j 2 )  

(DMPYSB computes A e A - L * U) "_"""" 1 
I 

- enddo 
return 
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Figure 15 Building block construction for form ijk/jki with cache consideration 

IC 

- DMPYSB  DMULSB 
(assembler) 
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the multiplication/subtraction routine. Assuming 
n= 1000 and choosing a ninefold  reduction  with r = 
100, we find that 85 percent  of the operations can 
be  carried out by the matrix-matrix  multiplication 
routine. This percentage  is  expressed by the ratio 

2 . 2 ( n  - k . Y? . r/(2/3n3). 

The higher this percentage  becomes, the faster the 
processing rate that can  be  expected. 

Figure 16 shows the relative  performance  compari- 
son of the three methods-form jki, form ijk/jki, 
and the method using  cache  considerations. The 
order of matrix  is  less than 1000.  The  difference 
between  form jki and form ijk/jki is obtained from 
the loop  procedure (“two vector operations and three 
vector-memory  references” and “two  vector  opera- 
tions and one vector-memory  reference”). An addi- 
tional performance improvement of about 20 per- 
cent obtained from  cache  consideration  can  be  eval- 
uated  between  form ijk/jki and the method  with 
cache  consideration. The highest  performance 
reaches about 70 MFLOPS on the 3090 Model E, when 
n = Ida = 1000 and r = 40. 

Concluding  remarks 

In order to obtain high  performance  from the IBM 
3090 Vector  Facility, we must  modify the way in 
which we construct our numerical  method  programs. 
We  have  investigated  vector instruction constructs 
in terms of the loop performance of a matrix-matrix 
multiplication  algorithm in which  relations  between 
loop  method and performance  are  classified in three 
levels. This classification  corresponds to the argu- 
ments discussed in References 8-10. We have  given 
examples of triangular decomposition, in which  we 
applied the tuning technique at the start with  loop 
analysis and searched the method  to obtain addi- 
tional performance improvement. Fortunately, we 
have  obtained this improvement with minimal mod- 
ifications to the program in this  example.  If  we had 
had to extract  high  performance  from both vector 
and parallel  processing, we would  have  required 
different kinds of formulations, such as those  given 
in Reference 10. 

Since the methods of augmenting  engineering and 
scientific computing power are trending  toward the 
use  of more complicated  mechanisms, we think it 
better to establish  some  interface  between  machine- 
dependent routines and independent routines. A 
building-block  approach  based on this interface will 

9 

k = l  
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Figure 16 Relative  performance  comparison 

give us not only  high  performance but also  flexibility 
to deal  with  possible  changes in hardware/systems. 
The interface  suggested  by BLAS would  be a candidate 
for  this kind of interface. 

Since  this  study  was initiated during the benchmark- 
ing  phase  of a project to create a fast  matrix  inversion 
routine, we built our program  based on Release 1 of 
that program, the Engineering and Scientific  Subrou- 
tine Library (ESSL) interface. We  now have  Release 
2 of ESSL, which  provides a wider menu of functions. 
The experience we gained  through  this study tells  us 
that there exists  something  sensitive to leading  di- 
mension A (LDA) of the given  matrix A. It suggests 
that, even  for the routines of primitive  functions, 
elaborate tuning is  necessary. For this reason, we 
recommend the ESSL interface  for  rebuilding our 
numerical  method routines. 
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