Programming style

on the IBM 3090 Vector
Facility considering
both performance

and flexibility

To obtain high performance from the IBM 3090 Vector
Facility, we must investigate vector instruction con-
structs in terms of the loop context of the application
algorithm. We exemplify the method by linear algebra
subroutines for basic matrix operations and a linear
equation solver. In these examples, we clarify the
mathematical meaning that each loop is computed by
analyzing the loops in terms of a generic algorithm.
This analysis helps us to achieve optimal loop selec-
tion. We then obtain additional performance gain by
considering cache capacity. These procedures suggest
that there are three levels of performance classifica-
tion. They also show that program structure yields
great benefits in terms of performance and generality
of the program.

High-performance computing is now a common
requirement in many engineering and scien-
tific environments. Vector processors have become
very popular among engineering and scientific users,
because programmers can use vector processors with
little or no knowledge of those machines. This is due
to the built-in capability of vectorizing compilers.
However, there are many applications in which care-
ful tuning can yield great performance enhance-
ments. Numerical methods such as linear algebra are
among these applications. In such applications, tun-
ing methods differ according to the types of vector
machines, especially according to their architecture
and hardware implementations.
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In this paper, we use examples of typical and fun-
damental matrix operation routines to show the
properties to consider in tuning the 1BM 3090 with
Vector Facility (vF).! Discussed first is the impor-
tance of examining the possibilities for changing the
calculation sequence. After discussing tuning meth-
ods, we present ways of separating system-dependent
properties from the application programming. If we
had to develop and maintain programs involving
such properties, much effort would be required for
further program modifications or for future hard-
ware changes.

Prior to discussing numerical algorithms, we intro-
duce the following vector architecture notation, and
the instruction notation used in this paper, which we
hope will be helpful in providing an intuitive under-
standing of how vF works.

The following vector architecture concepts are used
in this paper:
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Figure1 Scalar multiple of a vector and dot product

doi=1n
Yy=Y+a*x |: Yi=Yit a*xX
enddo

LD FR,«a
(sectioning loop)
Vicad VR,(y)
VM&A VR,FR,(x)
Vstore VR,(y)
Branch

vss

Solid vector/scalar: update
Blank vector/scalar: reference only

O =17

—>»| vsS |¢— i j

doi=1n
S = IX¥; [ S=8+X*Y
enddo

VzeroPS VRO
(sectioning loop)

Vload VR2,(x)
VM&Acc VRO,VR2,(y)
Branch

VsumPS VRO,FR
(PS: Partial Sum)

¢ The virtual storage (vS) system discussed here has
31-bit addressing capability.

* The vector register in the vector architecture pre-
sented here is one of 16 vector registers, the length
of which is described by the vector section size
(Vss)2 parameter.

¢ The instructions for vector operations can have
up to three operands, one of which can point to a
vector in memory as a source operand. An instruc-
tion called the compound-operation instruction
provides two operations, such as multiplication
and addition/subtraction or multiplication and
accumulation.

In this paper, pseudo-vector instructions are used to
show how VF works and to provide a rough estimate
of performance.

The following are pseudo-instructions used in this
paper:

* Vioad R, (x;) Load (x,) to VR (vector regis-
ter), where (x,) is a section of

vector X, in memory.
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Store the current value of Vr.
Multiply a section of x; by FR
(floating-point register) and
add to VR; the result remains
in VR, i.e.,

VR < VR + FR * (X,).

s Vstore VR, (x;)
* VM&A VR, FR, (X;)

(Note that the strict mnemonic codes such as VLD,
vsSTD, and YMADS require some associated scalar
instructions.”)

A FORTRAN program to compute a scalar times a
vector plus a vector-—known as DAXPY in the basic
linear algebra subprogram (BLAS) interface—can be
expressed using these pseudo-instructions, as shown
in Figure 1. Because (x;) and (y,) are only sections of
each vector, these instructions must be executed
repeatedly to complete logical vector length n, where
n is greater than vss. The sectioning loop in Figure
1 is the place where control is transferred from the
Branch; this loop is generated by a VS FORTRAN
compiler. Details of the sectioning loop are discussed
in Reference 3.
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Figure 1 also illustrates another example of the dot
product:

* VM&ACC  VRO,VR2, (X;) Multiply vrR2 by (x,)
and accumulate the
successive  products,
which are called partial
sums, in VRO.

Sum the partial sums;
the result is in FR.
Clear the partial sums
from VRro.

* VSumPS VRO, FR

® VZEroprs VR

Though the vector architecture defines 171 vector
instructions, these six pseudo-vector codes are suffi-
cient for the scope of this paper.

When these programs are executed, vector instruc-
tions work at a peak rate of one element per cycle
after start-up time has elapsed. Two important ele-
ments should be added in a discussion of perfor-
mance: (1) The execution of vector instructions does
not overlap; (2) all memory references are made
through the cache (high-speed buffer) in the central
processor. Also, the size of cache and length of vector
register are 64K bytes (8K double words) for each
processor and 128 bytes in the case of the 3090
Model E.

In the following section, examples of linear algebraic
problems are discussed and computation perfor-
mance is compared for various orderings of the
pseudo-code. Finally, measured performance com-
parisons are made. The tuning approach mentioned
in this paper might be used in applications other
than linear algebra if they have similarities to vector
tuning, such as loop nesting and triangular matrix.

Program loops and performance

The most important characteristic of the 3090 vF as
a vector machine is that it is a virtual storage ma-
chine (vs) with vector registers. In this section, we
discuss the relationship between program loops and
performance that takes advantage of these character-
istics.

Double-loop procedure. Programs with a single loop
work as described in the Introduction. When loop
nesting occurs, the 3090 vF enhances the million-
floating-point-operations-per-second (MFLOPS) per-
formance by eliminating vector load/store instruc-
tions within the innermost loop. In other words,
reusing the vector register enhances performance.
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For example, consider the matrix-vector product
y =Yy + A x x, where y is a vector with m elements,
A is a matrix with m rows and n columns, and x is

When loop nesting occurs,
the 3090 VF enhances performance
by eliminating vector load/store
instructions within the
innermost loop.

a vector with # elements. We write the matrix—vector
product as a generic algorithm, as discussed in Ref-
erence 4.

yi=yi+aij*xj (1
enddo
enddo

We can substitute the loop indices i, j and termina-
tion points of the loop indices m, n in the underlined
blanks in Equation (1). Two choices are possible:
form jj or form ji, as illustrated in Figure 2. In this
figure, sectioning loops that result from the limited
length of the vector registers are considered. (Note
that the steps introduced by the algorithm are not
the same as the steps of the FORTRAN program itself.
Since VS FORTRAN V2 can vectorize the outer loop,
form #j is changed to form ji automatically.) In this
paper, we refer to an index that appears on the right
side and does not appear on the left (such as index j
in the example) as a dummy index. The innermost
loop computes the dot product when a dummy index
is used as an index of the innermost loop. On the
other hand, when a dummy index is used as an index
of the outer loop, it computes a vector—scalar prod-
uct of the type known as “two vector operations and
one vector-memory reference.” In Figure 2, this
corresponds to the two floating-point operations of
vM&A and one vector-memory reference (a;). Both
form ij and form ji have only one pseudo-vector
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Figure2 Matrix—vector multiplication

2 dj=1n

doj=1n
l: Yi=VYita;X

enddo enddo
enddo enddo

—»| vss e

doi=1m
[ yi=Yita;*X

~(sectioning loop)
Vioad VR,(y)

[ LD FR,XI'

VM&A VR,FR,(a);
Branch

Vstore VR,{y)

L— Branch

instruction in the innermost loop, but form jj suffers
performance degradation in the case of large mat-
rices. Because the FORTRAN convention of storing
matrices in column order requires the access pattern
of a,; skipping m elements, the cache cannot be used
efficiently. This is usually called “stride ».” On the
other hand, form ji becomes stride 1 (sequential
memory reference), and is faster than form ij.

In the scalar computation environment, selecting the
dummy index as the innermost loop index elimi-
nates store instruction from the innermost loop by
accumulating results on the floating-point register.
While in the vector computation environment, be-
cause the innermost loop is vectorized, selecting a
dummy index as the outer loop index eliminates
vector load and vector store instructions by accu-
mulating results in a vector register. This can be
described as VR <= VR + ¥ (a,), + x; in Figure 2; i.e.,
the double-loop configuration of form ji is translated
into the codes with loop of LD, vM&A, and Branch,
and carries out double-loop calculations over a sec-
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tion. The first difference between a vector and a
scalar appears here, when we consider hierarchical
programming organization. That is, in the scalar
computation, a large performance difference may
not appear if we call a single-loop subroutine from a
double-loop procedure as follows:

doj=1,n

call paxpy (m, X(j), A(1,j) 1,7, 1)
enddo
However, in the vector computation, we cannot take
advantage of the “two vector operations and one
vector-memory reference” from this programming.
Thus, we must prepare a double-loop subroutine as
a stand-alone, lowest-level subroutine.
Triple-loop procedure. We now look at an operation

in linear algebra, the process of matrix-matrix mul-
tiplication and addition:

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988




m

c,=c,+ X a,- b,
k=1

wherei= 1/, j=1,n

We write Equation (2) as a generic algorithm as
follows:

C,=c¢,;ta,: bkj
enddo
enddo
enddo
Figure 3 shows that six (=3!) permutations are pos-

sible for arranging the three-loop indices, as dis-
cussed in Reference 4. In Figure 3, operations carried

In the 3090, vector instruction
execution speed is faster when the
operand vector exists within cache
than when it is absent and must be

transferred from memory.

out by the inner double loop are illustrated, but the
sectioning loop is ignored. Among these six forms of
matrix-matrix multiplication, form jki is the fastest
because both “two vector operations and one vector-
memory reference” and “sequential memory refer-
ence” are achieved. That is, form jki in Figure 3
shows that instruction construction of the inner dou-
ble loop becomes the same as form ji of the matrix-
vector product. (We can ensure this by writing ¢, =
¢, + 2, a, * b, and dropping the outermost index j.)

In the 3090, vector instruction execution speed is
faster when the operand vector (a,,) exists within
cache than when it is absent and must be transferred
from memory.’ By considering this property, we can
create a triple-loop routine that is faster than a
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double-loop routine in terms of MFLOPS. To be con-
crete, the progress of loop index k of form jki is
interrupted when the cache is filled with the refer-
enced data a,,, so that the outer-loop index j goes
forward, as illustrated in Figure 4.

Memory hierarchy and hierarchical programming.
We can enhance this performance of the vector
machine with hierarchical memory. Figure 5
sketches differences among three memory hierarchy
and loop configurations. In the sketch, the innermost
loops compute the same scalar multiple of a vector.
A single loop requires three vector instructions,
Vload, vM&A, and Vstore, but a double loop reduces
them to one. A comparison of vector-machine op-
erations is sketched in the right-hand portion of the
figure. Solid arrows represent an instruction that
requires one execution cycle per vector element. In
the triple-loop procedure, the operand of the instruc-
tion can remain in the cache. However, it is an
advantage for the application programmer to be able
to compose his program without having to consider
such machine-dependent factors.

Now let us introduce an example of matrix—matrix
multiplication by concealing the properties affected
by the system. (See Figure 6.) We store system-
dependent parameters in a common SYSTEM, such as
a vector register length and cache size available for
vectors in memory. Subroutine DMULAD computes
the same algorithm as the parent subroutine, i.e., C’
=C’ + A’ » B’, but this subroutine has no sectioning
loop at all. However, the size of matrix A’ is con-
trolled by NxM to be NZL, where NZL is smaller than
the vector register length. The kernel of this subrou-
tine may be written as follows:

loopj Vload VR, (¢;);
loopk LD FR, b, ;
VM&A VR,FR, (a,), where (a,), mostly
remain in cache
loopk (k = 1,NXM)
VR, (c,),
loopj (J = 1,N)

The performance gain obtained by this cache consid-
eration compared with the form jki without consid-
ering the cache is about 20 percent in the case of a
square matrix of order 1000 using a 3090 Model E.

Branch
Vstore
Branch

Though the computation order—considering both
loop and cache capacity—seems to be rather com-
plicated, as shown in Figure 4, we can write the
program as a simple algorithm of submatrix-sub-
matrix multiplication by constructing a hierarchical
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Figure4 Method with cache consideration

program structure. In addition to this, we can cause
this routine to manage changes in vector register
length or cache capacity by initializing the common
SYSTEM. We can also cause it to manage the scalar
environment by replacing the low-level subroutine
DMULAD with a scalar tuned routine. Note that the
consideration of the cache capacity gives us increased
performance, even in the scalar environment.

Let us summarize here the way to work with vector
machines. In the scalar computation environment,
we may compose our program directly to translate a
given formula into FORTRAN language statements.
While in the vector mode, we may achieve super
vector performance® if we can find optimal codes by
investigating possible reorderings of the computation
sequence. This investigation step is important in the
vector mode and, if possible, it would be useful in
separating the properties affected by the system from
application algorithms.
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It may be most practical to solve the problem of the
coexistence of program performance and generality
by separating the program into routines of more
primitive functions that resolve the differences
caused by architecture or hardware. In the routines
of more complicated functions, matrix—matrix mul-
tiplication routines are lower-level subroutines.

Linear equations

We now turn to the problem of solving systems of
linear equations, using an algorithm usually called
triangular decomposition, which is based on Gaus-
sian elimination.

As in the previous discussion of matrix—matrix mul-
tiplication, we discuss loop selection first and then
consider cache capacity. Gaussian elimination usu-
ally transforms the original square matrix A into the
product of two matrices L and U:
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Figure 5 Memory hierarchy and loop context

Vioad
VM&A
Vstore

do

doi=1n

[ Yi=VYit X;*a; VM&A VR,FR,(a);
enddo

enddo

— do
do

doi=1,n
|: Cj=C;+ by = ay VM&A VR,FR,(a)x
enddo (in cache)
enddo
— enddo
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Figure 6 Subroutine DMPYAD example

common /SYSTEM/ Ivs,ncache
nz = min(lvs,/)
nx = ncache/nz
nii=(I-1)/nz + 1
njj=(m-1)/nx+1
—do ii = 1,nii
i=@i-1)*nz+1
NZL = min(nz,/ — i+ 1)
—do jj = 1,njj
j=i-1)=nx+1
NXM = min(nx,m — j + 1)

Subroutine DMPYAD (A, /lda,B,ldb,C,Idc,|,m,n)
(DMPYAD computes C = C + A = B)
double precision A(/da,m),B(ldb,n),C(ldc,n)

call DMULAD (A(i,f),/Ida,B(j,1),/db,C(i,1),Idc,NZL,NXM,n)

50 |

— enddo (DMULAD computes C’' = C' + A’ = B')
L— enddo
return
A = LU. 4) generic form* as follows:

The matrices L and U have the same dimension as
A; the matrix L is a unit lower triangular matrix,
and U is an upper triangular matrix. The algorithm
that produces L and U from A, in general, overwrites
the information in the space that A occupied, thereby
saving memory. The algorithm, when given the ma-
trix in an array A, produces in the upper triangular
portion of the array A the information describing U,
and in the lower triangular portion below the diag-
onal the information describing L.

Loop selection. As in matrix multiplication, the al-
gorithm for Gaussian elimination can be written in

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

do =,
a;=a;—a;*a,/a, (%)
enddo
enddo
enddo

In this algorithm, we have omitted the partial pivot-
ing step to retain clarity. The procedure seems to
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resemble matrix-matrix multiplication, but is com-
plicated by the fact that the ranges where loop indices
(1, J, k) move are described by other indices. We first
investigate the meaning of the dummy index k, then
consider the possibility of loop selection. For this
purpose, we digress to describe the elimination al-
gorithm, using an elementary similarity transfor-
mation matrix.

Elementary similarity transformation matrix. Gaus-
sian elimination can be achieved by multiplying the
elementary similarity transformation matrix P, re-
peatedly by matrix A. Matrix P, is identical to the
identity matrix except for the kth column, which is

(0, O; ceey L= Py — Drasgr »v s~ pn,k)’

Given the n by n matrix A, choosing p,, = a,/a,,
enables us to eliminate the first column as follows:
PA= A"

where the first column of A"’ consists of zeros, except
for the first row, which is (X, 0, 0, - - ., 0). Successive
manipulations of the form

P_P,_, - PPA=A"" (6)
give an upper triangular factor [A(n b = U).

P, has the following important properties:

e The inverse of P, can be obtained simply by
changing signs in the off-diagonal elements.

* No products of the elements p,; occur in the prod-
uct P, P . P, which is equal to L:

n—-13

1
py 1
by 1 =L.(7)

Py Ppp - 1
Thus, we can obtain triangular factors by multiplying
L on both sides of Equation 6:

L.P_P,_,.--PPASL .U
that is,
A= LU.

Form kji. The most popular algorithm, called Gaus-
sian elimination, can be expressed by substituting kji
or kij into Equation 5 as shown in Figure 7. Index &
is considered to be the subscript of the elementary
transformation matrix P,. Since k is outermost, the
procedure of form kji or kij appears as follows:
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* Outermost loop picks P,.

* Inner double-loop procedure operates to update
the square matrix of order n — k in the bottom
right corner of A,

k— k;
P, - A“Y = AP

As in matrix-matrix multiplication, the three indices
i, j, k represent row, column, and dummy indices,
respectively. Since the dummy index is outermost,
the innermost (vectorized) scalar multiple of a vec-
tor, (y = y + a - X), requires the extra step of a
vector load/store operation.

Form jki. Figure 8 shows the procedure of form jki,
which satisfies two criteria: location of the dummy
index in the middle loop, and sequential memory
reference. Since the column index () is outermost,
it becomes a vector from a matrix that each outer
loop updates. The inner double-loop procedure up-
dates the jth column of A9 to that of AV using a
trapezoidal matrix that consrsts of nonzero columns
of P, toP,_,,ie., " V=" — 3, () * . Though
the dummy index is in the middle loop, an efficient
loop construct (two vector operations and one vec-
tor-memory reference) is not generated, because the
updated vector changes its beginning and length with
respect to the second loop index progression. This is
shown by the expression { = k + 1, n; ie., the
innermost loop index move is described by the next
outer loop index (k). This is why triangular decom-
position is more complicated than matrix—-matrix
multiplication. (If vr had vector instructions both to
compute from the middie of the vector register and
to extract an element from the vector register to store
in the floating-point register, the k£ loop could be
carried out, leaving the jth column of A resident in
the vector register. The latter is provided but the
former is not.)

Loop unrolling. There exists a technique called loop
unrolling, which rectifies a triangular matrix to ac-
cumulate results on the vector register. Figure 9
shows three-way unrolling. This operates the three
columns (P,, P,.,, P,,,) together with the jth column
of A (which resides on the vector register). The
number of k loops is reduced by two thirds. The
deeper the loop unrolling, the faster the processing
rate. Figure 10 illustrates computation density,
which can be defined as the following ratio:®

computation density =

total operation performed
total data items required in and out of memory
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Figure7 Form kji

~dok=1n-1
~doi=k+ 1,n
A = — A/ ° -Pik= - agllr(q)/ag(ll((_ﬂ
— enddo
~doj=k+ 1,n
doi=k+ 1,n forj=k+1,n
[ 8= 8+ 2+ ay - - aff = aff Y - pyalf
enddo
- enddo
- enddo aglg-u
O—>
Pi
—_

In the case of n-way unrolling, computational density
is expressed as follows:

(n-way) = 2

computational density = (mway) £ 2

Even if the n of n-way becomes large, the loop-
unrolling technique has several disadvantages:

s As shown in Figure 10, computation density is
still less than 2.0, which is the maximum of which
the 3090 Vector Facility is capable.

~ A portion of the scalar calculation that is required
to rectify a triangular matrix becomes large.

» Programming becomes extensive and compli-
cated.

Form jki can be considered an attractive selection if
loop unrolling is carried out automatically by the
compiler.

Form ijk. Because i is outermost, the (9utermost loop
updates the row vector (ith row of A" )), and because

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

the dummy index is innermost, the innermost loop
computes the dot product. As shown in Figure 11,
form ijk appears as follows:

» For the elements of the lower triangular factor,

j-1
U-1 © )
a; ea; — 2 Py ay
k=1

« For the elements of the upper triangular factor,

i-1
a3 peal”
k=1

The advantage of form {jk is that, for the upper
triangular elements, because the (p,, py, -+, ;)
vector remains unchanged within the double-loop
context, this vector can be kept in the vector register.
However, for the lower triangular factor, computa-
tion must be performed by touching the triangular
portion of a matrix, since the range where the inner-
most loop index (k) moves is described by the next
outer loop index (). Summation must be carried
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Figure 8 Form jki

~doj=1n
dok=1j-1
doi=k+ 1n

enddo

enddo

k=j
doi=k+1,n
Ay = — Ay By
enddo

~enddo

- o fork=1

k1 Kk~ 1
aj=a;+ax*ag- - - - - af=alf" - pyralf?
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Figure @ Loop unrolling applied to form jki

n-way = 3
—doj=1,n
n-loop = (j — 1)/n-way
n-left = (j — 1) — n-loop * n-way
do k = 1,n-loop * n-way,n-way
Qpi1j = Qpitj T Ak * a1k
Qpioj = A2t pj* Arroh T Aps1j* At 2641
do i= k + n-way,n
l-__ a;=a;+ a,* a;

+ Qpr1 * i

+ Qjpeo * Ao

Z

[‘ A1)
j— 7‘ L Qui2

-]

alk-1) |

a2 < PPt 1Pri2 * 4+
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Figure10 Computation density

out from [ toj — 1, which is the index of the middle
loop.

Comparison of six permutations and other selections.
Figure 12 shows six permutations of the triple-loop
procedure for i, j, k. Among these six permutations,
form jki with loop unrolling is the fastest. Among
these six, the latter part of form jki (where the
elements of the lower triangular factor are created)
and the latter part of form ijk (where elements of the
upper triangular factor are created) satisfy the follow-
ing two criteria: (1) two vector operations and one
vector-memory reference, and (2) sequential mem-
ory reference. Choosing loop selections indepen-
dently for the upper and lower factors to combine
these two attractive portions, we can obtain a new
form, form jjk for the upper triangular factor and
form jki for the lower triangular factor. Figure 13
illustrates this method, in which elements of u;; are
created row-wise, then elements of 1, are created
column-wise alternatively. We call this method form
ijk/jki; it is also known as “Crout decomposition.”

Since the expressions of the ranges where innermost
loop indices move are described by the next-next
outer-loop indices (leaping one loop), the inner dou-
ble-loop context touches the rectangular matrix.

Either the subroutine for computing consecutive dot
products or the subroutine for computing the trans-
posed matrix product with a vector can be adapted
to compute u,;.
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The subroutine for computing the matrix product
with a vector can be adapted for computing 1, . That
is, a building-block approach for program construc-
tion can be applied, which may yield the benefit that
this computation-intensive part of the process can
be passed to subroutines of more primitive functions.

Two popular methods from the conventional scalar
computation environment, Gaussian elimination
and Crout decomposition, have the property that
they can be broken down into hierarchical blocks,
adding algorithmic elegance and program portability
to the process.

Up to this point, we have investigated the possibility
of selecting i, j, k permutations of the triple-loop
procedure for triangular decomposition. The aim of
this discussion is to find the selection that gives an
efficient loop construction in which the key vector
could remain in the vector register—i.e., two vector
operations and one vector-memory reference. In the
discussion of matrix—matrix multiplication, the six
permutations produced from the generic algorithm
in Equation 3 are enough to search for efficient loop
constructs. However, permutations in addition to
those six (i.e., permutations produced from the ge-
neric algorithm in Equation 5) may also be used to
realize efficient loop constructs with triangular de-
composition. This is a noteworthy consequence
when we have to deal with the triangular/trapezoidal
portion of a matrix.

We now go to the next step to consider the capacity
of the cache, so that one vector-memory reference
remains in cache.

Cache consideration. In the discussion of matrix—
matrix multiplication, we obtained performance im-
provement by dividing the original matrix into sev-
eral submatrices. This is the technique by which the
progress of three indices, I, j, k, which move from 1
to [, n, m, respectively, are interrupted and interlaced
s0 as to keep the vectors from the inner double-loop
procedure in the cache. Since the order of subma-
trices can be selected arbitrarily, we select them in a
way that is suitable for the Vector Facility system,
i.e., vss or Nx, as shown by Figure 4. In this section,
we discuss the possibility of adapting the same ap-
proach to decomposition. Prior to this discussion,
we detour to analyze the structure of triangular
decomposition.

Structure of triangular decomposition matrices. We
show the relations between various submatrices of
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Figure 11 Form ijk

~doi=2,n
~doj=2,i
k=j-1
ax= —a/8
dok=1j~1 (for lower triangular elements)
aj=a;+ax+ay - -+ -pj " =(@f - paa) - pieal) - - - -pi-sal) /el
enddo o
- enddo
-doj=i+1,n
dok=1i-1 (for upper triangular elements)
aj=a;+ax+ag - - - aj " =al - ppal) - paf) - - - -pi-sals)
enddo
- enddo
- enddo
\ Ay Ay
@ N
a;
ax(= — P ax(= -pw \@j
(for lower triangular elements) (for upper triangular elements)

j~1 0 : i-1 0
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Figure12 Six permutations for decomposition

k OUTERMOST

k MIDDLE

AM & P Ak

L]

k INNERMOST

oo ]
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Figure 13 Form ijki/jki

~do jj=1,n

i=Jj
~doj=in
dok=1,j-1

i-1
aj=a;tag*ay © u,~j=ai,~-—kz1l,~k*ukj

enddo

- enddo

j=if
~doi=j+1n
a;= —a;a;
L. enddo
rdok=1j-1
doi=j+1,n

j-1
a;= aii +ag*dy ¢ ¢ I'I = (a,-j - k21 b » ukj)/uj,-

enddo
- enddo
L. enddo
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A P, A"" and intermediate A(') Considering the
completion of decomposmon A = LU is described
by partitioned form’ as follows:

A(O) A(Or:—r er 0 Urr Ur,n—r
A(O) A(O) N Ln-r,r Ln-r,n—r ) O Un-—r,n—J.

n—r,r n-r.n-r

Equating the last partitions, we have

A(O) =L U Un-—r,n—r ‘ (8)

n—r,n—r n—=r,yy = ra-r n—r,n—r

From the first » major steps of Gaussian elimination
(Equation 6) we obtain the equation

PP_ ... PL,PA? = A",

- PPTAY

r—1%r

_ er 0 Urr Ur,n—r
“lL_ 1|0 |w ’

n—r,r n—r,n—r.

where W, is the square matnx of order (n — 1)

in the bottom right corner of A”.

From the last partitions we obtain the equation

A =L

n—r.n—r n=r,r

Urn—r + Wn-r,n—-r' (9)

Equations 8 and 9 give the following two important
pieces of information:

* W,_,.,—, can be obtained by subtracting from
AQ, . a product of submatrices created after the
first major rsteps: W, _ = A;O_), wr— Ly Uy

* L, U,_.,is again the triangular decomposi-
tion Of wn—r,n-r: Wn—r,n—r = Ln—r,n—r'

Recursive block elimination. We can exploit recur-

sive block elimination by using these two equations.

Each block step of this method comprises two phases:

¢ Crout elimination with termination after r major
steps
¢ Matrix multiplication and subtraction

After the completion of the Crout elimination phase,
the square matrix of order (n — r) in the bottom
right corner remains A, but other partitions have
been already completed, as follows:
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Here we compute in the latter phase

Wn—-r,n—r = A;O—)r n—r - Ln—r I'U n—r;
the problem shrinks from order » to » — r. We then
move forward to the next block step to solve

Wn—r,n—r = Ln—r,n—rUn—-r,n-—r .

Computing these two phases, using Crout decom-
position with termination and multiplica-
tion/subtraction recursively, we can obtain the final
triangular factors. Fortunately, these two compo-
nents are almost at hand; i.e., for the Crout decom-
position part, form jjk/jki with termination can eas-
ily be created by adding arguments that specify range
r; for the multiplication/subtraction part, the multi-
plication subroutine considering cache capacity
mentioned in the section on memory hierarchy and
hierarchical programming can be used. Both com-
ponents, especially the latter, can run fast.

Figure 14 shows a sample of this method, which is
mathematically similar to the method used in the
conventional scalar computation called block elim-
ination.

The aim of this classical method is to overcome the
limited size of memory available by allocating matrix
data to secondary storage (file). As a result, restric-
tions appeared caused by the matrix format in the
file. Now, however, we can hold a large-scale matrix
in memory using vs capability. Block elimination
based on large memory is free from this restriction,
so we can select an appropriate size for matrix block-
ing. In fact, we can select the matrix size independ-
ently, on the one hand, of decomposition with ter-
mination and, on the other hand, of multiplica-
tion/subtraction, in the example of coding.

Another benefit is that the major portion, which
affects performance (and is affected by hard-
ware/system), can be computed by more primitive
subroutines.

One of the most practical ways to resolve the prob-
lem of the coexistence of program performance and
generality is to write a program using the building-
block approach. Figure 15 shows this hierarchy. Each
subroutine works with submatrices, illustrated by the
solid line, and updates the shaded areas.

Performance comparison. For the performance esti-
mation, we count the number of operations done by
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Figure 14 Form jjk/jki with cache consideration

Subroutine DIJKIC (A, lda,n,ipvt)
double precision A(lda,n)

integer ipvi(n)
common /system/ - - -

mr=r
— do m = 1,m-step
Cjp=m-1)xmr+1
j2 = min(n,j1+ mr-1)
call DIJKIT (A,/da,n,ipvt,j1,j2)
(DIJKIT decomposes rows from j1 to j2)

i

|
|
|
I
|
|
|
|
I
|
|
L

call DMPYSB (A(j2+ 1, j1), Ida, A(j1, j2 + 1), lda, A(j2 + 1, j2 + 1), Ida,
n-j2,2-j1+1,n-,2)
(DMPYSB computes A & A - L = U)

L enddo
return
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Figure 15 Building block construction for form jjk/jki with cache consideration

DGEMX
(ESSL)

— DGEMTX
(ESSL)

e DMPYSB DMULSB
(assembler)
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the multiplication/subtraction routine. Assuming
n=1000 and choosing a ninefold reduction with r =
100, we find that 85 percent of the operations can
be carried out by the matrix-matrix multiplication
routine. This percentage is expressed by the ratio

9
2. % (n—k.n . rsn).
k=1

The higher this percentage becomes, the faster the
processing rate that can be expected.

Figure 16 shows the relative performance compari-
son of the three methods—form jki, form ijk/jki,
and the method using cache considerations. The
order of matrix is less than 1000. The difference
between form jki and form ijk/jki is obtained from
the loop procedure (“two vector operations and three
vector-memory references” and “two vector opera-
tions and one vector-memory reference”). An addi-
tional performance improvement of about 20 per-
cent obtained from cache consideration can be eval-
uated between form ijk/jki and the method with
cache consideration. The highest performance
reaches about 70 MFLOPS on the 3090 Model E, when
n = lda = 1000 and r = 40.

Concluding remarks

In order to obtain high performance from the 1BM
3090 Vector Facility, we must modify the way in
which we construct our numerical method programs.
We have investigated vector instruction constructs
in terms of the loop performance of a matrix—matrix
multiplication algorithm in which relations between
loop method and performance are classified in three
levels. This classification corresponds to the argu-
ments discussed in References 8—10. We have given
examples of triangular decomposition, in which we
applied the tuning technique at the start with loop
analysis and searched the method to obtain addi-
tional performance improvement. Fortunately, we
have obtained this improvement with minimal mod-
ifications to the program in this example. If we had
had to extract high performance from both vector
and parallel processing, we would have required
different kinds of formulations, such as those given
in Reference 10.

Since the methods of augmenting engineering and
scientific computing power are trending toward the
use of more complicated mechanisms, we think it
better to establish some interface between machine-
dependent routines and independent routines. A
building-block approach based on this interface will
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Figure 16 Relative performance comparison

RELATIVE PERFORMANCE

o 500 1000

give us not only high performance but also flexibility
to deal with possible changes in hardware/systems.
The interface suggested by BLAS would be a candidate
for this kind of interface.

Since this study was initiated during the benchmark-
ing phase of a project to create a fast matrix inversion
routine, we built our program based on Release 1 of
that program, the Engineering and Scientific Subrou-
tine Library (EssL) interface. We now have Release
2 of EssL, which provides a wider menu of functions.
The experience we gained through this study tells us
that there exists something sensitive to leading di-
mension A (LDA) of the given matrix A. It suggests
that, even for the routines of primitive functions,
elaborate tuning is necessary. For this reason, we
recommend the ESSL interface for rebuilding our
numerical method routines.
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