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An instruction-level simulator is used to study the pro- 
gram locality of large scientific applications. The simu- 
lator, which models  an IBM 3090 processor with Vector 
Facility  and a cache,  was  developed to help a pro- 
grammer  improve the performance of an application 
through better understanding and  use  of the Vector 
Facility  and the memory hierarchy of the IBM 3090 
system.  Our main  observations on a set of scientific 
applications are  as follows: (7) although the applica- 
tions have different characteristics of  memory ac- 
cesses  and vectorization, their program locality is high 
enough to take advantage of conventional cache struc- 
tures; (2) the cache hit ratio of the vector  execution 
can be quite different from (but not significantly lower 
than) that of the scalar execution of the same applica- 
tion; and (3) the application programs that are written 
to optimize the use of the memory  hierarchy in the 
system  generally  result in higher cache hit ratios than 
the others. The cache performance of these applica- 
tions with respect to various cache parameters is also 
presented. In particular, our  study finds that the cache 
structure of the IBM 3090 is well suited for large scien- 
tific applications. 

D uring the last  decade, the tremendous growth 
of computationally intensive  applications  has 

led to the rapid  development of  vector  supercom- 
puters in many  aspects. The so-called  “second-gen- 
eration supercomputers”‘ have  advanced to multi- 
processing,  e.g.,  from the Cray-12 to the C r a y - x ~ ~ . ~  
In contrast, vector  processors  have  been  incorpo- 
rated into mainframes  as built-in accelerators  for 
computationally intensive  applications,  e.g., the Vec- 
tor Facility (VF) in the IBM 3090 ~ystem.~ These new 
and much more powerful  processor (CPU) organiza- 
tions require a well-matched  high-performance 
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memory  organization to keep them fully utilized 
otherwise a longer  memory  access time could  result 
in a memory  bottleneck and limit the overall  system 
performance. 

The use  of  cache  memories in mainframe computers 
has  proved to be  very  effective in reducing the mem- 
ory  access time.5*6 A cache  is a small but high-speed 
buffer  for  keeping the recently  used data of a CPU 
accessible  within one or two  cycles. Its effectiveness 
relies  mainly  on the principle of program local it^,^ 
which  states that  an executing  program tends to use 
memory  locations that were either recently  refer- 
enced  or  near  recent  references.  In other words, 
memory  references tend to be clustered in space and 
time. 

A line of a cache  storage  is a group of data of 
consecutive  addresses in the memory that are loaded 
and replaced  as a logical unit. Spatial and temporal 
locality in conventional applications  tends to pro- 
duce  multiple  references to a cache line over a short 
period of time. The design  of the cache  involves the 
selection  of  cache-structure parameters such  as line 
size so that the cache  performs well for  typical  ap- 
plications.  However, the use  of data structures and 
the memory  reference pattern of vector instructions 
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in a  scientific  program  can  be quite different  from 
conventional (or nonnumeric) applications. 

Compared to the use  of memory in conventional 
applications, computationally intensive  applications 
can  be  characterized by 

1. The use  of  large data sets  of multidimensional 
matrices 

2. The use  of DO loops,  which  can  address  almost 
randomly  several  large data sets at a time 

3. Addressing the operands of a  vector instruction 
on  a stride basis,  where the access pattern of a 
vector instruction is  said to be stride i if any  two 
successive data references  are  a  distance  of i words 
or i double  words apart 

A vector  execution that addresses elements sparsely 
located in multidimensional matrices  can  result in 
rapid  replacement of cache  lines and thus poor  cache 
performance. Without an understanding of the pro- 
gram  locality  of this new area of applications,  it  is 
not known  if any conventional cache structures 
would  still  be  effective.* 

In the past,  cache  memories  had  never  been  imple- 
mented in supercomputers; instead, big  register  files 
and memory-interleaving  techniques  had commonly 
been  used to speed up the memory acces~es .~ ,~~  A 
cache  is not a  replacement  for  any of these  compo- 
nents but  is  a  very  good enhancement for further 
reducing  memory  access time in the following three 
ways: 

1. A  vector  register  file  is so small that it  can  hardly 
hold  all  of the data needed  by the vector  proces- 
sor. A cache  can  serve as an overflow  buffer  for 
data re-use  with an access time of only one or 
two  cycles. 

2. In  a  tightly  coupled  multiprocessor  system,  where 
a  main  memory  is  shared among a  set  of  scalar 
and vector  processors, the highly  interleaved 
memory will become  a  bottleneck for multiple 
memory  accesses  generated by the processors, 
even  if  it  is  fast  enough to satisfy  a  single  memory 
request. A cache,  which  stages the momentarily 
repeated  accessed data of  a CPU, can  alleviate 
memory contention. 

3. While  both  register  files and memory are archi- 
tectural contexts that require  a  complex  software 
effort to manage them, a  cache  can be transparent 
for  any  program. 

Cache  design and caching techniques for  vector  proc- 
essors are areas  remaining to be fully explored.  Un- 
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derstanding the characteristics of memory  accesses 
from real  applications  is the first and  an important 
step. Prior work in the performance  analysis of  vec- 
tor processors and applications  has  been  limited to 
taking  measurements  from  live  systems  (see, for 
example, Jordan") or to an analysis of the algo- 
rithmic performance of  specific computations. A 
trace-driven simulation of an experimental vector 
processor  is  described in Paul,"  with an emphasis 
on the vector architecture and its instruction set. 
Only  recently  have we seen  a  limited amount of 
performance data from  real and complete  vectorized 
applications p~b1ished.l~ 

To help  programmers  improve the performance of 
programs on an IBM 3090 equipped  with  Vector 
Facility (vF), we have  developed  a  Performance  Ana- 
lyzer (PA), which  includes an IBM 3090 VF inStruC- 
tion-level  uniprocessor simulator with  a  cache 
model. The analyzer  accepts  scalar and vectorized 
applications running on IBM 3090 systems and pro- 
vides  levels  of  execution information of the applica- 
tions, including the VF and its memory hierarchy 
(register  file,  cache, and memory). 

In our study, the cache  model,  which  accepts  mem- 
ory  reference  traces  from the analyzer,  is  used  as  a 
vehicle to measure the program  locality of a  set  of 
large  scientific  applications.  Therefore, we are not 
primarily  interested in the overall  cache  performance 
which  affects the throughput of its processors, but 
rather in addressing the following  issues: 

1. Program  locality of  large  scientific  applications, 
especially their vectorized  execution 

2. Differences in cache  performance  between  a vec- 
torized  application and its original  scalar  version 

3. Sensitivities  of  cache hit ratios of  scientific  (vec- 
torized and scalar)  applications  with  respect to 
different  choices  of  cache  parameters,  where the 
cache hit ratio is the ratio of the number of 
memory  references found in a  cache to the total 
number of memory  references during the execu- 
tion of an application 

The applications  selected  for the study  differ  from 
one another in the following  three  characteristics: (1) 
the extent  (low to high) of vectorization, (2) the 
length (short to long)  of data strides, and (3) the 
extent of  using optimizations that take advantage of 
the Vector  Facility and the cache in the IBM 3090. 

Moreover, the problem  sizes of these  applications 
were  chosen  such that (1) an application uses as 
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Figure 1 An IBM 3090 processor unit 

I 
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much  memory  as  possible  subject to a 16-megabyte 
limit on the total address  space, and ( 2 )  the simula- 
tion time had to be  tolerable.  Therefore,  these  large 
applications  generally  require  longer computation 
time, and their simulation is very time-consuming. 

Following  is a summary of our initial observations 
on this set  of  scientific  applications: 

1. A majority of data accesses in these  applications 
have  strong  spatial  locality.  For  example,  most  of 
the vector instructions in these applications are 
of stride 1. Therefore, their executions  still  can 
take  advantage of cache  memory. 

2.  The cache hit ratio of a vectorized  application 
can  be quite different  from (but not significantly 
lower than) that of the scalar  version of the same 
application. 

3. Although  all of these  large applications favor  big- 
ger  caches  for  achieving the same level  of hit 
ratios of conventional applications, our results 
indicate that the cache structure of the IBM 3090 
is  also  well  suited  for  large  scientific computa- 
tions. 

4. Of the applications studied, those  which  were 
developed to optimize the VF and the memory 
hierarchy in the IBM 3090 system  usually  can 
achieve a lower  memory  access rate than the 
others. 

In this paper, a brief  description of a processor unit 
in an IBM 3090 system  is  first  presented.  Next our 
simulator, its  cache  model, and the set  of  scientific 
applications  used in this study are described. The 
3090 cache  model  is then used to study the charac- 
teristics of memory  references  of  these  applications. 
The succeeding  section further examines the pro- 
gram  locality  of  these  applications,  where  cache  miss 
ratios are obtained by varying the parameters of the 
cache  model.  Finally,  concluding remarks are pre- 
sented and possible future work  is  described. 

The IBM 3090 system with VF 
In  this  section we describe  briefly the main compo- 
nents in an IBM 3090 system  which are relevant to 
our simulator, namely the Central Processor (cP), its 
cache, and the optional VF. A conceptual diagram of 
the structure of the 3090 system  is  shown  in  Figure 
1. For the sake of clarity  only one processor unit is 
depicted. The figure contains a CP executing instruc- 
tions fetched  from memory through the System Con- 
trol  Element (SCE) and a VF which  can  optionally  be 
attached to the CP. The VF shares the CP access  path 
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to the cache, the main  memory, and the translate- 
lookaside-buffer (TLB), which  translates the virtual 
address of a  memory  reference to a  real  address. 

The  IBM 3090 central  processor  and its cache. An 
IBM 3090  processor  consists  mainly  of (1) an I-unit 
which  decodes the instructions to be  executed and 

A cache  miss  occurs  when  the CP 
accesses a piece of data not 

currently  in  the  cache. 

initializes  all  necessary  memory  accesses,  (2) an E- 
unit which  executes the instructions and stores  all of 
the changed data back to the memory,  (3)  a TLB, and 
(4)  a  cache.  There  are  sixteen  32-bit  general-purpose 
registers and four 64-bit  floating-point  (scalar)  regis- 
ters in the E-unit. 

Data from the memory are available to the CP only 
after  they  have  been  brought to the cache. A cache 
miss occurs  when the CP accesses  a  piece  of data that 
is  currently not in the cache. For example,  a  floating- 
point instruction that  references  a  single  word  may 
cause an entire cache line to be transferred  from 
memory to the cache.  However,  if the next instruc- 
tion references another word in the same  cache  line 
or any other line already in the cache, the data are 
immediately  available and no  memory  access  is 
needed.  Although the operation of a  cache  miss  is 
not completed until the whole  missed  line(s)  con- 
taining the data is  loaded into the cache, the CP is 
allowed to resume  its  execution as soon as the actual 
missed data are fetched to the cache. 

The cache in an IBM 3090  has  a  capacity of 64K 
bytes  (K = 1024) and a line size  of  128  bytes. The 
cache  is  set-associative  such that the 5 12 lines are 
distributed  over 128 congruence  classes and each 
congruence  class contains four lines,  where four is 
the set associativity (or set size) of the cache. The 
replacement  algorithm at the congruence  classes  is  a 
variation of the least-recently-used (LRU) algorithm, 
called the partitioned LRU alg01ithrn.l~ The cache 
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directory contains the real  addresses  of the lines 
currently in the cache. The store  strategy of the cache 
is  store-in  (also  known  as  write-back),  which  means 
that any data store  from the CP updates only the 
cache line containing the data; the actual memory 
update takes  place  when the line  is  replaced  from 
the cache. 

The  IBM 3090 VF. The IBM 3090  Vector  Facility 
(VF) is an extension of the System/370 mainframe 
for  vector  processing.15  Each  processing unit in the 
3090 contains a central processor and an optional 
VF. The VF, which  has 16 vector  registers  of  128 
words (or 64  double  words),  is implemented with  a 
pipelined  processor  having  a  vector  section  size  of 
128;  i.e., the pipeline  has 128  stages. 

For  vector  processing support, 17 1 new instructions 
operating on the vector,  general, and floating-point 
registers are defined.  Like the standard System/370 
instructions, these  vector instructions can access the 
memory and transfer data between the VF and the 
memory  through the cache. 

Unlike  a  scalar instruction whose operands are 
mostly in a few bytes or words,  a  vector instruction 
operates on data in streams of hundreds of  bytes.  If 
the utilization of a  vector  register  file  is not high 
enough,  bursts of memory  requests  can  create  a 
bottleneck at the memory.  But  a  vector operation in 
VF is  actually  executed in a  pipelined  way,  i.e., one 
vector element per  processor  cycle. If all the operands 
needed by the instruction are already in the cache, 
they  can  be  delivered to the VF at a rate of one 
operand every  cycle to keep the VF busy during the 
execution of the instruction. In the case  of a  cache 
miss, the first operand takes  whatever number of 
cycles  needed to be fetched  from the memory to the 
cache and the VF; subsequent operands in the missed 
line will  need one or two  cycles. 

In this  respect, the frequency of memory  references 
and the cache  miss ratio are important factors in the 
overall  cache  performance  of an application. A  pro- 
grammer can optimize the cache  performance of an 
application by the following  general  techniques:  (1) 
rearranging  program data and code so that frequently 
accessed data are stored in contiguous  memory  lo- 
cations,  (2)  creating temporary data areas to buffer 
the frequently  accessed elements in sparse  matrices, 
and (3) maintaining the temporal locality  of data 
usage,  e.g., avoiding the use  of  several  large  matrices 
at a  time. 
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The simulator  and  scientific  applications 

This section  describes our performance  analyzer (PA) 
and the set  of applications  used in the study. Our PA 
consists of a simulator of an IBM 3090  with VF and a 
cache  model. 

A simulator  for the IBM 3090 with VF. Our simu- 
lation model contains one IBM 3090  processing unit. 
It simulates  all of the System/370 and System/370- 
XA (Extended  Architecture)  nonprivileged instruc- 
tionsI6 and all of the VF instructions. There is no 
address translation in the simulator, so the simulated 
instructions are operating on virtual  addresses. The 
simulator accepts the module of a program  ready to 
be  executed on an IBM 3090  with VF, and it  guaran- 
tees that the program  result after the simulation is 
the same as that of the execution of the module on 
a real  system. A simulation produces the following 
information: 

1. An instruction trace  which contains, for  each 
instruction simulated, an instruction descriptor 
and the (virtual)  addresses  of any memory  refer- 
ences  generated by the instruction 

2. The summary of types of instructions and mem- 
ory  references 

3. The distribution of  all  of the instructions executed 
4. The distribution of  vector counts, i.e., the lengths 

5 .  The distribution of data strides of all  of the vector 
~ of all  of the vector instructions executed 

instructions 

As mentioned before, PA has  been  designed to sim- 
ulate the execution of a user  program  which  is  also 
in the form of an executable module in a real  system. 
This design can free the programmer  from the bur- 
den of  changing the source  code in a user  program 
to activate the simulator, as is done on other simu- 
lators. Therefore, the same copy of the program  can 
run native or under PA. Another design  feature  of 
PA was to support vs FORTRAN Version 2” programs 
because the majority of scientific/engineering  appli- 
cations are written in FORTRAN. 

The PA operates  as  follows: The first  record in the 
file containing the user module is  read. This record 
contains information such  as the starting address 
and the program  length of the module.  After the PA 
allocates  virtual  storage  for the program and a few 
buffers  used at  run time by the FORTRAN I/O routines, 
the program  is  transferred to memory and is  ready 
for simulation. 
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The status of the simulation is  kept by PA in  several 
internal arrays.  They are the general  registers, the 
floating-point  registers, the vector  registers, the scalar 
variables that contain the simulated condition code, 
the program counter (PC), etc.  These  variables are 
initialized  with the same values as in a real  system; 
e.g., the variable PC is  initialized  with the starting 
address of the program. At simulation time, PA and 
the simulated program are residing in the same 
address  space, but in order to simulate the execution 

The simulator  includes a cache 
model  which can be activated 

as an  option. 

of the user module as if it were running in its own 
address  space,  every  address  referenced  by the sim- 
ulated  program  has to be  corrected by  first subtract- 
ing  from it the loading  address of the module and 
then adding to it the starting address of PA itself. 

When the user  module  is  loaded, the PA does not 
begin the simulation immediately; instead, it waits 
for  user commands for cache setup and others.  In 
particular, a simulation begins  only  when the com- 
mands START or STEP are given. The START command 
unconditionally  begins the simulation, whereas the 
STEP command requests simulation of a predeter- 
mined number of instructions. After  initializing the 
status of the simulation, the PA enters a loop that 
fetches  simulated instructions from the memory, 
decodes them, and simulates their execution. A FOR- 
TRAN STOP statement in the user  program terminates 
the simulation. 

The following commands can  help the programmer 
understand the behavior of the simulated program: 

I.  Begin and suspend the simulation 
2. Trace instructions 
3.  Set traps 
4. Pass data to the program  from the terminal or 

5. Display  registers and memory 
from a disk 
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Table 2 Ratios  (vector/scalar) of  memory  and  cache 
accesses 

Application References MiSSeS 

LKNEQ 0.1 1 0.92 
FETlK 0.09 
BOAST 

0.62 

SIMPLE 
0.12  0.22 
0.84 

ARC3D 
0.49 

0.57 0.50 

Table 3 Cache  miss/memory  reference  ratios 

Application Smtar veetor 
(1 & 0) (D only) (1 & D l  (Donly) 

LINEQ 0.0oO 0.0oO 0.002 0.002 
m I K  0.005 0,009 0.032 0.034 
BOAST 0,004 0.008 0.008 0.012 
SIMPLE 0.062 0.102 0.036 0.056 
ARC3D 0.049 0,086 0,043 0.048 

I: instruction accesses, D data accesses. 

memory  hierarchy of the IBM 3090 VF system, both 
LINEQ and F F ~ K  are highly  vectorized and generate 
low memory-reference  rates. SIMPLE is not a highly 
vectorized application, but its memory  references are 
mostly  over contiguous addresses. ARC3D was  origi- 
nally  written  for a Cray machine; it is  highly  vecto- 
rized but has  long data strides. SIMPLE and A R C ~ D  
were simulated in their original  versions; little effort 
was spent on rearranging the code  for better perfor- 
mance.  Since the scalar and vectorized  versions of 
the BOAST application were both available  for our 
study, we have  been  able to detect whether the 
program  locality is  significantly  changed  when it is 
rearranged  for  vector  processing. 

Characteristics of memory accesses 

The basic  cache  model  of the IBM 3090 is  used in 
this section to study the locality of vector  processing. 
It is also used to compare the memory access  rates 
of the vector execution and the scalar  execution of 
an application. 

Total memory references. There are three types of 
memory  references  generated by a processor: instruc- 
tion fetch, data fetch, and data store. The vector 
execution of an application should  generate fewer 
memory  references.  First, there is a substantial re- 
duction in instruction fetches  because,  as a result of 
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the vectorization, many scalar instructions are 
packed into fewer vector instructions. Second, in 
addition to the scalar  register  file, there is a vector 
register  file that works  like another level  of  cache 
storage in front of the cache. In the IBM 3090  VF, the 
16 vector  registers,  which  have a total storage of 8K 
bytes, can reduce many data references  for  applica- 
tions that can utilize the vector  registers  heavily. In 
Table 2, the reduction in memory  references  ranges 
from 16 percent to 9 1 percent, depending on the 
degree  of  vectorization and utilization of vector reg- 
isters in each application. This reduction is an im- 
portant factor in the speedup of a program. 

Total cache misses. Table 2 indicates that, from 
scalar to vector execution, the number of cache 
misses  was reduced by 8 percent to 78 percent. This 
reduction is partly  because a vector execution has a 
comparable cache performance, but primarily it re- 
sults  from a substantial decrease in memory  refer- 
ences. 

Cache miss ratio. In going  from the scalar execution 
to the vector execution of a highly  vectorized appli- 
cation, the memory references and cache  misses are 
substantially  reduced.  However, the vector execution 
may  result in a higher  miss ratio. The reason is that, 
from  scalar execution to vector execution, the “re- 
duced” memory references tend to cause  cache hits 
in the scalar execution. For example,  before  vecto- 
rization, the instruction fetches corresponding to 
scalar instructions have a very  high hit ratio because 
of their strong spatial  locality. The LINEQ, FmlK, and 
BOAST applications share this property.  However,  for 
an application that is not highly  vectorized or is not 
effectively utilizing the vector  registers, it may  hap- 
pen on the contrary that its vector execution has a 
lower  miss ratio. For example, the scalar  executions 
of SIMPLE and ARC3D have  shown a higher  miss ratio 
than the vector  executions. Therefore, it is not true 
that the vector execution of an application always 
has a higher  miss ratio than that of its scalar  execu- 
tion.I3 Table 3 shows that, due to a poorer locality 
of data references, the miss ratio of  scalar  execution 
is actually  higher than  that of the vector  execution 
of the SIMPLE or ARC3D applications.  However, be- 
cause the program  locality  (especially instruction 
fetches) in these applications is still strong, their 
cache  hit ratios are not significantly  different. 

Bursts  of cache misses. Since a vector instruction is 
an ensemble of scalar instructions, the number of 
memory references  for a vector instruction is in 
general much higher than  that for a scalar instruc- 
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tion. For example, a vector instruction may  need 
hundreds of words instead of one or two  words. 
However,  as  with  most of the vector  processors, the 

Cache  misses  usually  occur  in 
bursts  in  conventional  computer 

systems. 

VF is implemented by pipelining; the cache  is  able to 
cope  with a higher  access rate from VF as  long as it 
is a one-cycle  cache and  an executing application 
does not cause too many cache misses. 

It is known that cache  misses  usually occur in bursts 
in conventional computer systems. This can be  ex- 
plained  in the context of program  locality.  When the 
CPU has in its cache  most of the data needed to 
execute a program, it causes no  or few cache  misses, 
but when it changes its locality  because of moving 
to a new step in the program, or  simply  when it 
executes a new program, bursts of cache  misses  are 
needed to build up the locality  for the new step or 
program.  When the miss distance is measured by the 
number of instructions, this phenomenon is even 
more striking  for highly  vectorized applications. 

Figures 2A through 2D show that the distributions 
of miss  distances  for the scalar and vector  executions 
of each application are quite different, and cache 
misses are concentrated on far fewer instructions in 
a vector execution. Particularly  when a highly  vec- 
torizable application is written to optimize the use 
of  vector  registers and the cache, its misses can occur 
only  in a few instructions. In contrast, by comparing 
the difference  between the two distributions in each 
of the applications, we see that they are more similar 
when an application is  less vectorized. 

Sensitivity  to  cache  parameters 

In this section, the locality of vector  executions is 
examined more closely  with  respect to the changes 
in three important parameters of a cache  model, 
namely line  size, cache size, and set associativity. 
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The vector  section  size is  fixed at 128 in this study, 
but the results should be  applicable to other section 
sizes  as  well. 

Line size. Line  size  is the most important cache 
parameter affecting  cache performance (access time 
and hit ratio) of an appl ica t i~n .~~ For a fixed-size 
cache, the line size  is also the most appropriate 
parameter for examining the spatial  locality of an 
application. In the caches used in this experiment, 
the set  size and the cache  size  are fixed at 4 and 64K 
bytes  respectively, but the line size varies  between 8 
and 5 12 bytes.  Two  measures  of  miss ratios from 
each simulation are presented in Figures 3A through 
3D: miss ratio of only data references, and miss ratio 
of all (instruction and data) memory references. 

In these applications, the instruction fetches main- 
tain a very  low cache  miss ratio even  for  small  caches; 
therefore,  as  shown in the figures, the shape of a 
curve of  miss ratios is mostly determined by that of 
the data misses.  Also,  since the applications favor a 
larger  line  size, the spatial locality of their data 
references  is quite strong. 

Figures 3A through 3D indicate that the line size  has 
a point of diminishing return at about 128 bytes. 
Beyond  this, the utilization of cache  lines  is so low 
that the miss ratio either remains constant or in- 
creases. The figures  also  reveal that the cache  per- 
formance of vector execution is more sensitive to 
line sizes than in the scalar case. A careful  choice of 
line  size  is therefore very important for  vector  proc- 
essors. 

Cache size. In this simulation, the set  size and line 
size  of a cache are fixed at 4 and 128 bytes  respec- 
tively, but the cache  size  is  varied  between 16K bytes 
and 2 megabytes.  These conditions allow us to find 
out how strong the temporal locality  is in the appli- 
cations. 

Figures 4A through 4D show that the miss ratios of 
these applications can be  higher than those of com- 
mercial applications, e.g., databases and operating 
systems, running on mainframe computers with 
about the same memory size. As an example, in our 
experience a cache size  of 64K bytes  usually can 
maintain a hit ratio between 96 and 98 per~ent . '~  

Therefore, in order to maintain a comparable level 
of hit  ratios, a large  cache  is  desirable  for supercom- 
puter applications. Not only can a larger  cache hold 
a bigger working  set, but  it can  also  cover up long 
data strides. For example, the cache hit ratio of the 
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Appendix:  A  sample of Performance  Analyzer 
output 

The following output is  produced by PA in the sim- 
ulation of the Installation  Verification  Program (IVP) 
distributed with the ESSL package. This IVP aims to 
determine whether the ESSL installation is  correct. 
We have  been  using  it as a verification  program  for 
the PA itself. It calls  all of the vector ESSL routines 
and tests the correct simulation of 1 19 vector instruc- 
tions out of a total of 17 1. 

The top of the file contains a header  given by the PA 
programmer and the cache  dimensions. The total 
number of instructions, the cache  misses, and the 
vector instructions follow. The memory  reference 
summary gives  details  on the number of instructions 
and data fetches  generated by scalar and vector  in- 
structions. The same  is  provided for data store. 

Next item is the cache  miss summary, a distribution 
of  cache  misses  over instruction fetches, data fetches, 
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and data stores. The first  row  applies to scalar in- The distribution of distance between  cache  misses 
structions and the second to vector instructions. helps the programmer to determine how the cache 

The distribution of vector counts gives the program- 
mer an idea of  how often the program is using the 
pipeline, while the stride distribution can help the PA also  provides  a summary of all the branch instruc- 
programmer in detecting  pathological situations tions executed.  Finally, there is  a table of all instruc- 
where  long  strides could impair performance. tions executed in the simulated program. 

misses are occumng. 

VECTOR ESSL INSTALLATION VERIFICATION PROGRAM 
CACHE SIZE 64K BYTES 
CACHE LINESIZE 128 CONGRUENCE CLASSES 128 SET ASSOCIATIVITY 4 
END  OF SIMULATION NISTR = 5425 18 CACHE  MISSES = 8658 
VECTOR INSTRUCTIONS = 9 145 

MEMORY REFERENCE SUMMARY 
I FETCH D FETCH D STORE DF+DS IF+DF+DS 

SCALAR 298053 231176 152724 383900 681953 
VECTOR 17122 6217 23339 23339 
TOTAL 248298 15894 1 407239 705292 

CACHE  MISS SUMMARY 
IFETCH R DFETCH R DSTORE R DF+DS R IF+DF+DS R 

SCALAR 4886 0 . a 6  1387 0.m6 2071 0 . a 4  3458 0.m9 8344 0.m2 
VECTOR 199 0.012 115 0.018 314 0.013 314 0.0 13 
TOTAL 4886 0.016 1586 0.006 2186 0.014 3772 0.009 8658  0.012 

VECTOR COUNT DISTRIBUTION 
(0,lO) 6508 ( 1 120) 358 (2 1 s o )  240 
(51,128) 105 (129,256) 0 (257,512) 0 
(513,1024) 0 >lo24 0 

STRIDE DISTRIBUTION 
(4 BYTES) 
(0) 
(1) 
(2) 
(3) 
(499) 

.......... 
<- I024 

0 
2147 

366 
27 

206 

0 

(8 BYTES) 
(0) 0 
(1) 1332 
(2) 344 
(3) 13 
(4,9) 120 

.......... 
<- 1024 0 

DISTRIBUTION OF DISTANCE BETWEEN CACHE MISSES 
DISTANCE # 

0 220 
1 866 

% 
277 

10.00 

19 
>=20 

99 
31 10 

1.14 
35.92 
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BRANCH INSTRUCTIONS 
NUMBER 105576 BRANCHES TAKEN 74943 % TAKEN 70.98 

DISTRIBUTION OF INSTRUCTIONS EXECUTED 
I MNEMONICS 

VAE 
VSE 
VME 
VDE 
VSTVP 
VLI 
VSTI 
VLID 
VSTID 
VSRL 
VSLL 

SPM 
BALR 
BCTR 
BCR 
svc 
MVCL 
PACK 
UNPK 

...... 
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