
Program locality
of vectorized applications
running on the IBM 3090
with Vector Facility

by K. So
V. Zecca

An instruction-level simulator is used to study the pro-
gram locality of large scientific applications. The simu-
lator, which models an IBM 3090 processor with Vector
Facility and a cache, was developed to help a pro-
grammer improve the performance of an application
through better understanding and use of the Vector
Facility and the memory hierarchy of the IBM 3090
system. Our main observations on a set of scientific
applications are as follows: (7) although the applica-
tions have different characteristics of memory ac-
cesses and vectorization, their program locality is high
enough to take advantage of conventional cache struc-
tures; (2) the cache hit ratio of the vector execution
can be quite different from (but not significantly lower
than) that of the scalar execution of the same applica-
tion; and (3) the application programs that are written
to optimize the use of the memory hierarchy in the
system generally result in higher cache hit ratios than
the others. The cache performance of these applica-
tions with respect to various cache parameters is also
presented. In particular, our study finds that the cache
structure of the IBM 3090 is well suited for large scien-
tific applications.

D uring the last decade, the tremendous growth
of computationally intensive applications has

led to the rapid development of vector supercom-
puters in many aspects. The so-called “second-gen-
eration supercomputers”‘ have advanced to multi-
processing, e.g., from the Cray-12 to the C r a y - x ~ ~ . ~
In contrast, vector processors have been incorpo-
rated into mainframes as built-in accelerators for
computationally intensive applications, e.g., the Vec-
tor Facility (VF) in the IBM 3090 ~ystem.~ These new
and much more powerful processor (CPU) organiza-
tions require a well-matched high-performance

436 so AND ZECCA

memory organization to keep them fully utilized
otherwise a longer memory access time could result
in a memory bottleneck and limit the overall system
performance.

The use of cache memories in mainframe computers
has proved to be very effective in reducing the mem-
ory access time.5*6 A cache is a small but high-speed
buffer for keeping the recently used data of a CPU
accessible within one or two cycles. Its effectiveness
relies mainly on the principle of program local it^,^
which states that an executing program tends to use
memory locations that were either recently refer-
enced or near recent references. In other words,
memory references tend to be clustered in space and
time.

A line of a cache storage is a group of data of
consecutive addresses in the memory that are loaded
and replaced as a logical unit. Spatial and temporal
locality in conventional applications tends to pro-
duce multiple references to a cache line over a short
period of time. The design of the cache involves the
selection of cache-structure parameters such as line
size so that the cache performs well for typical ap-
plications. However, the use of data structures and
the memory reference pattern of vector instructions

@ Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 27. NO 4. 1988

in a scientific program can be quite different from
conventional (or nonnumeric) applications.

Compared to the use of memory in conventional
applications, computationally intensive applications
can be characterized by

1. The use of large data sets of multidimensional
matrices

2. The use of DO loops, which can address almost
randomly several large data sets at a time

3. Addressing the operands of a vector instruction
on a stride basis, where the access pattern of a
vector instruction is said to be stride i if any two
successive data references are a distance of i words
or i double words apart

A vector execution that addresses elements sparsely
located in multidimensional matrices can result in
rapid replacement of cache lines and thus poor cache
performance. Without an understanding of the pro-
gram locality of this new area of applications, it is
not known if any conventional cache structures
would still be effective.*

In the past, cache memories had never been imple-
mented in supercomputers; instead, big register files
and memory-interleaving techniques had commonly
been used to speed up the memory acces~es .~ ,~~ A
cache is not a replacement for any of these compo-
nents but is a very good enhancement for further
reducing memory access time in the following three
ways:

1. A vector register file is so small that it can hardly
hold all of the data needed by the vector proces-
sor. A cache can serve as an overflow buffer for
data re-use with an access time of only one or
two cycles.

2. In a tightly coupled multiprocessor system, where
a main memory is shared among a set of scalar
and vector processors, the highly interleaved
memory will become a bottleneck for multiple
memory accesses generated by the processors,
even if it is fast enough to satisfy a single memory
request. A cache, which stages the momentarily
repeated accessed data of a CPU, can alleviate
memory contention.

3. While both register files and memory are archi-
tectural contexts that require a complex software
effort to manage them, a cache can be transparent
for any program.

Cache design and caching techniques for vector proc-
essors are areas remaining to be fully explored. Un-

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

derstanding the characteristics of memory accesses
from real applications is the first and an important
step. Prior work in the performance analysis of vec-
tor processors and applications has been limited to
taking measurements from live systems (see, for
example, Jordan") or to an analysis of the algo-
rithmic performance of specific computations. A
trace-driven simulation of an experimental vector
processor is described in Paul," with an emphasis
on the vector architecture and its instruction set.
Only recently have we seen a limited amount of
performance data from real and complete vectorized
applications p~b1ished.l~

To help programmers improve the performance of
programs on an IBM 3090 equipped with Vector
Facility (vF), we have developed a Performance Ana-
lyzer (PA), which includes an IBM 3090 VF inStruC-
tion-level uniprocessor simulator with a cache
model. The analyzer accepts scalar and vectorized
applications running on IBM 3090 systems and pro-
vides levels of execution information of the applica-
tions, including the VF and its memory hierarchy
(register file, cache, and memory).

In our study, the cache model, which accepts mem-
ory reference traces from the analyzer, is used as a
vehicle to measure the program locality of a set of
large scientific applications. Therefore, we are not
primarily interested in the overall cache performance
which affects the throughput of its processors, but
rather in addressing the following issues:

1. Program locality of large scientific applications,
especially their vectorized execution

2. Differences in cache performance between a vec-
torized application and its original scalar version

3. Sensitivities of cache hit ratios of scientific (vec-
torized and scalar) applications with respect to
different choices of cache parameters, where the
cache hit ratio is the ratio of the number of
memory references found in a cache to the total
number of memory references during the execu-
tion of an application

The applications selected for the study differ from
one another in the following three characteristics: (1)
the extent (low to high) of vectorization, (2) the
length (short to long) of data strides, and (3) the
extent of using optimizations that take advantage of
the Vector Facility and the cache in the IBM 3090.

Moreover, the problem sizes of these applications
were chosen such that (1) an application uses as

SO AND ZECCA 437

Figure 1 An IBM 3090 processor unit

I

438 so AND ZECCA

much memory as possible subject to a 16-megabyte
limit on the total address space, and (2) the simula-
tion time had to be tolerable. Therefore, these large
applications generally require longer computation
time, and their simulation is very time-consuming.

Following is a summary of our initial observations
on this set of scientific applications:

1. A majority of data accesses in these applications
have strong spatial locality. For example, most of
the vector instructions in these applications are
of stride 1. Therefore, their executions still can
take advantage of cache memory.

2. The cache hit ratio of a vectorized application
can be quite different from (but not significantly
lower than) that of the scalar version of the same
application.

3. Although all of these large applications favor big-
ger caches for achieving the same level of hit
ratios of conventional applications, our results
indicate that the cache structure of the IBM 3090
is also well suited for large scientific computa-
tions.

4. Of the applications studied, those which were
developed to optimize the VF and the memory
hierarchy in the IBM 3090 system usually can
achieve a lower memory access rate than the
others.

In this paper, a brief description of a processor unit
in an IBM 3090 system is first presented. Next our
simulator, its cache model, and the set of scientific
applications used in this study are described. The
3090 cache model is then used to study the charac-
teristics of memory references of these applications.
The succeeding section further examines the pro-
gram locality of these applications, where cache miss
ratios are obtained by varying the parameters of the
cache model. Finally, concluding remarks are pre-
sented and possible future work is described.

The IBM 3090 system with VF
In this section we describe briefly the main compo-
nents in an IBM 3090 system which are relevant to
our simulator, namely the Central Processor (cP), its
cache, and the optional VF. A conceptual diagram of
the structure of the 3090 system is shown in Figure
1. For the sake of clarity only one processor unit is
depicted. The figure contains a CP executing instruc-
tions fetched from memory through the System Con-
trol Element (SCE) and a VF which can optionally be
attached to the CP. The VF shares the CP access path

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

to the cache, the main memory, and the translate-
lookaside-buffer (TLB), which translates the virtual
address of a memory reference to a real address.

The IBM 3090 central processor and its cache. An
IBM 3090 processor consists mainly of (1) an I-unit
which decodes the instructions to be executed and

A cache miss occurs when the CP
accesses a piece of data not

currently in the cache.

initializes all necessary memory accesses, (2) an E-
unit which executes the instructions and stores all of
the changed data back to the memory, (3) a TLB, and
(4) a cache. There are sixteen 32-bit general-purpose
registers and four 64-bit floating-point (scalar) regis-
ters in the E-unit.

Data from the memory are available to the CP only
after they have been brought to the cache. A cache
miss occurs when the CP accesses a piece of data that
is currently not in the cache. For example, a floating-
point instruction that references a single word may
cause an entire cache line to be transferred from
memory to the cache. However, if the next instruc-
tion references another word in the same cache line
or any other line already in the cache, the data are
immediately available and no memory access is
needed. Although the operation of a cache miss is
not completed until the whole missed line(s) con-
taining the data is loaded into the cache, the CP is
allowed to resume its execution as soon as the actual
missed data are fetched to the cache.

The cache in an IBM 3090 has a capacity of 64K
bytes (K = 1024) and a line size of 128 bytes. The
cache is set-associative such that the 5 12 lines are
distributed over 128 congruence classes and each
congruence class contains four lines, where four is
the set associativity (or set size) of the cache. The
replacement algorithm at the congruence classes is a
variation of the least-recently-used (LRU) algorithm,
called the partitioned LRU alg01ithrn.l~ The cache

IBM SYSTEMS JOURNAL. VOL 27, NO 4, 1988

directory contains the real addresses of the lines
currently in the cache. The store strategy of the cache
is store-in (also known as write-back), which means
that any data store from the CP updates only the
cache line containing the data; the actual memory
update takes place when the line is replaced from
the cache.

The IBM 3090 VF. The IBM 3090 Vector Facility
(VF) is an extension of the System/370 mainframe
for vector processing.15 Each processing unit in the
3090 contains a central processor and an optional
VF. The VF, which has 16 vector registers of 128
words (or 64 double words), is implemented with a
pipelined processor having a vector section size of
128; i.e., the pipeline has 128 stages.

For vector processing support, 17 1 new instructions
operating on the vector, general, and floating-point
registers are defined. Like the standard System/370
instructions, these vector instructions can access the
memory and transfer data between the VF and the
memory through the cache.

Unlike a scalar instruction whose operands are
mostly in a few bytes or words, a vector instruction
operates on data in streams of hundreds of bytes. If
the utilization of a vector register file is not high
enough, bursts of memory requests can create a
bottleneck at the memory. But a vector operation in
VF is actually executed in a pipelined way, i.e., one
vector element per processor cycle. If all the operands
needed by the instruction are already in the cache,
they can be delivered to the VF at a rate of one
operand every cycle to keep the VF busy during the
execution of the instruction. In the case of a cache
miss, the first operand takes whatever number of
cycles needed to be fetched from the memory to the
cache and the VF; subsequent operands in the missed
line will need one or two cycles.

In this respect, the frequency of memory references
and the cache miss ratio are important factors in the
overall cache performance of an application. A pro-
grammer can optimize the cache performance of an
application by the following general techniques: (1)
rearranging program data and code so that frequently
accessed data are stored in contiguous memory lo-
cations, (2) creating temporary data areas to buffer
the frequently accessed elements in sparse matrices,
and (3) maintaining the temporal locality of data
usage, e.g., avoiding the use of several large matrices
at a time.

So AND ZECCA 439

The simulator and scientific applications

This section describes our performance analyzer (PA)
and the set of applications used in the study. Our PA
consists of a simulator of an IBM 3090 with VF and a
cache model.

A simulator for the IBM 3090 with VF. Our simu-
lation model contains one IBM 3090 processing unit.
It simulates all of the System/370 and System/370-
XA (Extended Architecture) nonprivileged instruc-
tionsI6 and all of the VF instructions. There is no
address translation in the simulator, so the simulated
instructions are operating on virtual addresses. The
simulator accepts the module of a program ready to
be executed on an IBM 3090 with VF, and it guaran-
tees that the program result after the simulation is
the same as that of the execution of the module on
a real system. A simulation produces the following
information:

1. An instruction trace which contains, for each
instruction simulated, an instruction descriptor
and the (virtual) addresses of any memory refer-
ences generated by the instruction

2. The summary of types of instructions and mem-
ory references

3. The distribution of all of the instructions executed
4. The distribution of vector counts, i.e., the lengths

5 . The distribution of data strides of all of the vector
~ of all of the vector instructions executed

instructions

As mentioned before, PA has been designed to sim-
ulate the execution of a user program which is also
in the form of an executable module in a real system.
This design can free the programmer from the bur-
den of changing the source code in a user program
to activate the simulator, as is done on other simu-
lators. Therefore, the same copy of the program can
run native or under PA. Another design feature of
PA was to support vs FORTRAN Version 2” programs
because the majority of scientific/engineering appli-
cations are written in FORTRAN.

The PA operates as follows: The first record in the
file containing the user module is read. This record
contains information such as the starting address
and the program length of the module. After the PA
allocates virtual storage for the program and a few
buffers used at run time by the FORTRAN I/O routines,
the program is transferred to memory and is ready
for simulation.

4 0 SO AND ZECCA

The status of the simulation is kept by PA in several
internal arrays. They are the general registers, the
floating-point registers, the vector registers, the scalar
variables that contain the simulated condition code,
the program counter (PC), etc. These variables are
initialized with the same values as in a real system;
e.g., the variable PC is initialized with the starting
address of the program. At simulation time, PA and
the simulated program are residing in the same
address space, but in order to simulate the execution

The simulator includes a cache
model which can be activated

as an option.

of the user module as if it were running in its own
address space, every address referenced by the sim-
ulated program has to be corrected by first subtract-
ing from it the loading address of the module and
then adding to it the starting address of PA itself.

When the user module is loaded, the PA does not
begin the simulation immediately; instead, it waits
for user commands for cache setup and others. In
particular, a simulation begins only when the com-
mands START or STEP are given. The START command
unconditionally begins the simulation, whereas the
STEP command requests simulation of a predeter-
mined number of instructions. After initializing the
status of the simulation, the PA enters a loop that
fetches simulated instructions from the memory,
decodes them, and simulates their execution. A FOR-
TRAN STOP statement in the user program terminates
the simulation.

The following commands can help the programmer
understand the behavior of the simulated program:

I. Begin and suspend the simulation
2. Trace instructions
3. Set traps
4. Pass data to the program from the terminal or

5. Display registers and memory
from a disk

IN SYSTEMS JOURNAL, VOL 27. NO 4, 1988

Table 2 Ratios (vector/scalar) of memory and cache
accesses

Application References MiSSeS

LKNEQ 0.1 1 0.92
FETlK 0.09
BOAST

0.62

SIMPLE
0.12 0.22
0.84

ARC3D
0.49

0.57 0.50

Table 3 Cache miss/memory reference ratios

Application Smtar veetor
(1 & 0) (D only) (1 & D l (Donly)

LINEQ 0.0oO 0.0oO 0.002 0.002
m I K 0.005 0,009 0.032 0.034
BOAST 0,004 0.008 0.008 0.012
SIMPLE 0.062 0.102 0.036 0.056
ARC3D 0.049 0,086 0,043 0.048

I: instruction accesses, D data accesses.

memory hierarchy of the IBM 3090 VF system, both
LINEQ and F F ~ K are highly vectorized and generate
low memory-reference rates. SIMPLE is not a highly
vectorized application, but its memory references are
mostly over contiguous addresses. ARC3D was origi-
nally written for a Cray machine; it is highly vecto-
rized but has long data strides. SIMPLE and A R C ~ D
were simulated in their original versions; little effort
was spent on rearranging the code for better perfor-
mance. Since the scalar and vectorized versions of
the BOAST application were both available for our
study, we have been able to detect whether the
program locality is significantly changed when it is
rearranged for vector processing.

Characteristics of memory accesses

The basic cache model of the IBM 3090 is used in
this section to study the locality of vector processing.
It is also used to compare the memory access rates
of the vector execution and the scalar execution of
an application.

Total memory references. There are three types of
memory references generated by a processor: instruc-
tion fetch, data fetch, and data store. The vector
execution of an application should generate fewer
memory references. First, there is a substantial re-
duction in instruction fetches because, as a result of

442 SO AND ZECCA

the vectorization, many scalar instructions are
packed into fewer vector instructions. Second, in
addition to the scalar register file, there is a vector
register file that works like another level of cache
storage in front of the cache. In the IBM 3090 VF, the
16 vector registers, which have a total storage of 8K
bytes, can reduce many data references for applica-
tions that can utilize the vector registers heavily. In
Table 2, the reduction in memory references ranges
from 16 percent to 9 1 percent, depending on the
degree of vectorization and utilization of vector reg-
isters in each application. This reduction is an im-
portant factor in the speedup of a program.

Total cache misses. Table 2 indicates that, from
scalar to vector execution, the number of cache
misses was reduced by 8 percent to 78 percent. This
reduction is partly because a vector execution has a
comparable cache performance, but primarily it re-
sults from a substantial decrease in memory refer-
ences.

Cache miss ratio. In going from the scalar execution
to the vector execution of a highly vectorized appli-
cation, the memory references and cache misses are
substantially reduced. However, the vector execution
may result in a higher miss ratio. The reason is that,
from scalar execution to vector execution, the “re-
duced” memory references tend to cause cache hits
in the scalar execution. For example, before vecto-
rization, the instruction fetches corresponding to
scalar instructions have a very high hit ratio because
of their strong spatial locality. The LINEQ, FmlK, and
BOAST applications share this property. However, for
an application that is not highly vectorized or is not
effectively utilizing the vector registers, it may hap-
pen on the contrary that its vector execution has a
lower miss ratio. For example, the scalar executions
of SIMPLE and ARC3D have shown a higher miss ratio
than the vector executions. Therefore, it is not true
that the vector execution of an application always
has a higher miss ratio than that of its scalar execu-
tion.I3 Table 3 shows that, due to a poorer locality
of data references, the miss ratio of scalar execution
is actually higher than that of the vector execution
of the SIMPLE or ARC3D applications. However, be-
cause the program locality (especially instruction
fetches) in these applications is still strong, their
cache hit ratios are not significantly different.

Bursts of cache misses. Since a vector instruction is
an ensemble of scalar instructions, the number of
memory references for a vector instruction is in
general much higher than that for a scalar instruc-

IBM SYSTEMS JOURNAL, VOL 27. NO 4, 1988

tion. For example, a vector instruction may need
hundreds of words instead of one or two words.
However, as with most of the vector processors, the

Cache misses usually occur in
bursts in conventional computer

systems.

VF is implemented by pipelining; the cache is able to
cope with a higher access rate from VF as long as it
is a one-cycle cache and an executing application
does not cause too many cache misses.

It is known that cache misses usually occur in bursts
in conventional computer systems. This can be ex-
plained in the context of program locality. When the
CPU has in its cache most of the data needed to
execute a program, it causes no or few cache misses,
but when it changes its locality because of moving
to a new step in the program, or simply when it
executes a new program, bursts of cache misses are
needed to build up the locality for the new step or
program. When the miss distance is measured by the
number of instructions, this phenomenon is even
more striking for highly vectorized applications.

Figures 2A through 2D show that the distributions
of miss distances for the scalar and vector executions
of each application are quite different, and cache
misses are concentrated on far fewer instructions in
a vector execution. Particularly when a highly vec-
torizable application is written to optimize the use
of vector registers and the cache, its misses can occur
only in a few instructions. In contrast, by comparing
the difference between the two distributions in each
of the applications, we see that they are more similar
when an application is less vectorized.

Sensitivity to cache parameters

In this section, the locality of vector executions is
examined more closely with respect to the changes
in three important parameters of a cache model,
namely line size, cache size, and set associativity.

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

The vector section size is fixed at 128 in this study,
but the results should be applicable to other section
sizes as well.

Line size. Line size is the most important cache
parameter affecting cache performance (access time
and hit ratio) of an appl ica t i~n .~~ For a fixed-size
cache, the line size is also the most appropriate
parameter for examining the spatial locality of an
application. In the caches used in this experiment,
the set size and the cache size are fixed at 4 and 64K
bytes respectively, but the line size varies between 8
and 5 12 bytes. Two measures of miss ratios from
each simulation are presented in Figures 3A through
3D: miss ratio of only data references, and miss ratio
of all (instruction and data) memory references.

In these applications, the instruction fetches main-
tain a very low cache miss ratio even for small caches;
therefore, as shown in the figures, the shape of a
curve of miss ratios is mostly determined by that of
the data misses. Also, since the applications favor a
larger line size, the spatial locality of their data
references is quite strong.

Figures 3A through 3D indicate that the line size has
a point of diminishing return at about 128 bytes.
Beyond this, the utilization of cache lines is so low
that the miss ratio either remains constant or in-
creases. The figures also reveal that the cache per-
formance of vector execution is more sensitive to
line sizes than in the scalar case. A careful choice of
line size is therefore very important for vector proc-
essors.

Cache size. In this simulation, the set size and line
size of a cache are fixed at 4 and 128 bytes respec-
tively, but the cache size is varied between 16K bytes
and 2 megabytes. These conditions allow us to find
out how strong the temporal locality is in the appli-
cations.

Figures 4A through 4D show that the miss ratios of
these applications can be higher than those of com-
mercial applications, e.g., databases and operating
systems, running on mainframe computers with
about the same memory size. As an example, in our
experience a cache size of 64K bytes usually can
maintain a hit ratio between 96 and 98 per~ent . '~

Therefore, in order to maintain a comparable level
of hit ratios, a large cache is desirable for supercom-
puter applications. Not only can a larger cache hold
a bigger working set, but it can also cover up long
data strides. For example, the cache hit ratio of the

SO AND ZECCA 443

A OlSTRtBUflON
Of MISS
OISTMCE (CFT)

C DlSllilBUnON
OF MISS
DISTANCE (ARC3D)

c-". = VECTOR

n---n = SCALAR

CACHE SIZE = 64 K
LINE SIZE = 128 BYTES
Si3 SIZE = 4

444

100

80

60

40

20

0

D DISTRIBUTION
OF MISS
DISTANCE (BOAST)

445

446

A CACHE MISS
RATIO VS LINE
SIZE (FFT)

0 0.18 E
8
3 0.15
W
I

3
0.1 2

0.09

0.06

0.03

0.00

C CACHE MISS
RATIO VS LINE
SIZE (ARCJD)

" . = VECTOR

""" = VECTOR
(DATA ONLY)

0"- 0 = SCALAR
(DATA ONLY)

CACHE SIZE = 64 K
SET SIZE = 4

0.18

0.1 5

0.1 2

0.0s

O.Of

0.0:

0.m

D CACHE MISS
RATIO VS LINE
SIZE (BOAST)

447

448

A CACHE MISS
RATtO VS CACHE
SIZE (ET)

= VECTOR

= SCALAR

------ = VECTOR
(DATA ONLY)

0"- 0 = SCALAR
(DATA ONLY)

CONGR. CLASS 3 2 TO 4 K
SET SIZE = 4

C CACHE MISS
RATIO VS CACHE
SIZE (ARC3D)

._-.I..I = VECTOR

". = SCALAR

= VECTOR """

(DATA ONLY)

o---o = SCALAR
(DATA ONLY)

CONGR. CLASS 3 2 TO 4 K
SET SIZE = 4

0.18
d
m
4 0.15
W

0.12

0.09

0.06

0.03

0.00

0.18

0.15

0.1 2

0.09

0.06

0.03

0.00

B CACHE MISS
RATIO VS CACHE
SIZE (SIMPLE)

= VECTOR

:?::5 @ = SCALAR

------ VECTOR
(DATA ONLY)

o---o = SCALAR
(DATA ONLY)

CONGR. CLASS 32 TO 4 K
SET SIZE = 4

D CACHE MISS
RATIO VS CACHE
SIZE (BOAST)

0"- 0 = SCALAR
(DATA ONLY)

CONGR. CLASS 32 TO 2 K
SET SIZE = 4

0.18

3
8
f 0.15
w
L

Y
0.12

0.09

0.06

0.03

0.00

10.00
-2

x 10

8.33

6.67

5.00

3.33

1.67

0.00

0 16 32 64 128 256 51 2 1024 2048

0. \

0 16 32 64 128 256 512 1024 2048
CACHE SIZE (KB)

Appendix: A sample of Performance Analyzer
output

The following output is produced by PA in the sim-
ulation of the Installation Verification Program (IVP)
distributed with the ESSL package. This IVP aims to
determine whether the ESSL installation is correct.
We have been using it as a verification program for
the PA itself. It calls all of the vector ESSL routines
and tests the correct simulation of 1 19 vector instruc-
tions out of a total of 17 1.

The top of the file contains a header given by the PA
programmer and the cache dimensions. The total
number of instructions, the cache misses, and the
vector instructions follow. The memory reference
summary gives details on the number of instructions
and data fetches generated by scalar and vector in-
structions. The same is provided for data store.

Next item is the cache miss summary, a distribution
of cache misses over instruction fetches, data fetches,

449 IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988 So AND ZECCA

and data stores. The first row applies to scalar in- The distribution of distance between cache misses
structions and the second to vector instructions. helps the programmer to determine how the cache

The distribution of vector counts gives the program-
mer an idea of how often the program is using the
pipeline, while the stride distribution can help the PA also provides a summary of all the branch instruc-
programmer in detecting pathological situations tions executed. Finally, there is a table of all instruc-
where long strides could impair performance. tions executed in the simulated program.

misses are occumng.

VECTOR ESSL INSTALLATION VERIFICATION PROGRAM
CACHE SIZE 64K BYTES
CACHE LINESIZE 128 CONGRUENCE CLASSES 128 SET ASSOCIATIVITY 4
END OF SIMULATION NISTR = 5425 18 CACHE MISSES = 8658
VECTOR INSTRUCTIONS = 9 145

MEMORY REFERENCE SUMMARY
I FETCH D FETCH D STORE DF+DS IF+DF+DS

SCALAR 298053 231176 152724 383900 681953
VECTOR 17122 6217 23339 23339
TOTAL 248298 15894 1 407239 705292

CACHE MISS SUMMARY
IFETCH R DFETCH R DSTORE R DF+DS R IF+DF+DS R

SCALAR 4886 0 . a 6 1387 0.m6 2071 0 . a 4 3458 0.m9 8344 0.m2
VECTOR 199 0.012 115 0.018 314 0.013 314 0.0 13
TOTAL 4886 0.016 1586 0.006 2186 0.014 3772 0.009 8658 0.012

VECTOR COUNT DISTRIBUTION
(0,lO) 6508 (1 120) 358 (2 1 s o) 240
(51,128) 105 (129,256) 0 (257,512) 0
(513,1024) 0 >lo24 0

STRIDE DISTRIBUTION
(4 BYTES)
(0)
(1)
(2)
(3)
(499)

..........
<- I024

0
2147

366
27

206

0

(8 BYTES)
(0) 0
(1) 1332
(2) 344
(3) 13
(4,9) 120

..........
<- 1024 0

DISTRIBUTION OF DISTANCE BETWEEN CACHE MISSES
DISTANCE #

0 220
1 866

%
277

10.00

19
>=20

99
31 10

1.14
35.92

450 so AND ZECCA IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988

BRANCH INSTRUCTIONS
NUMBER 105576 BRANCHES TAKEN 74943 % TAKEN 70.98

DISTRIBUTION OF INSTRUCTIONS EXECUTED
I MNEMONICS

VAE
VSE
VME
VDE
VSTVP
VLI
VSTI
VLID
VSTID
VSRL
VSLL

SPM
BALR
BCTR
BCR
svc
MVCL
PACK
UNPK

......

Cited references and notes

1. E. W. Kozdrowicki and D. J. Theis, “Second generation of
vector supercomputers,” Computer 13, 7 1-83 (November
1980).

2. R. M. Russell, “The Cray-1 Computer System,” Communi-
cations of the ACM 21, No. 1, 63-72 (January 1978).

3. S. Chen, “Large scale and high-speed multiprocessor system
for scientific applications,” Proceedings of NATO Advanced
Research Workshop on High Speed Computing, J. S. Kawalik
(Editor), Springer-Verlag, New York (1983).

4. IBM System/370 Vector Operations, SA22-7125, IBM Cor-
poration; available through IBM branch offices.

5. J. S. Liptay, “Structural aspects of the System/360 Model 85:
11. The cache,” IBM Systems Journal 7, No. 1, 15-21 (1968).

6 . A. J. Smith, “Cache memories,” ACM Surveys 14, No. 3,
473-530 (September 1982).

7. E. G. Coffman and P. J. Denning, Operating Systems Theory,
Prentice-Hall, Inc., Englewood Cliffs, NJ (1973).

8. H. S. Stone, High-Performance Computer Architecture, Addi-
son-Wesley Publishing Co., Inc., Reading, MA (1987), Chap
ter 5.

9. P. Budnik and D. Kuck, “The organization and use of parallel
memories,” IEEE Transactions on Computers C-20, No. 12,

10. P. M. Kogge, The Architecture of Pipelined Computers,
McGraw-Hill Book Company, Inc., New York (198 I) .

1 1. K. E. Jordan, “Performance comparison of large-scale scien-
tific computers: Scalar mainframes, mainframes with inte-
grated vector facilities, and supercomputers,” Computer 20,
No. 3, 10-23 (March 1987).

12. G. Paul, Studies in Vector Architecture, Research Report RC-
9234, IBM T. J. Watson Research Center, P.O. Box 218,
Yorktown Heights, NY 10598.

13. R. S. Clark and T. L. Wilson, “Vector system performance of
the IBM 3090,” IBMSystems Journal25, No. 1,63-82 (1986).

14. K. So and R. Rechtschaffen, “Cache operations by MRU-
Change,” IEEE Transactions on Computers 37, No. 6, 700-
709 (1988).

1566-1569 (1971).

- #
101
113
117

3
134
70
9

162
67
44

2

3
6335
1247

1051 1
22

309
2
4

032
%

0.02
0.02
0.00
0.02
0.01
0.00
0.03
0.01
0.0 1
0.00

0.00
1.17
0.23
1.94
0.00
0.06
0.00
0.00

15. W. Buchholz, “The IBM System/370 Vector Architecture,”
IBM Systems Journal 25, No. 1, 51-62 (1986).

16. IBM System/370 Extended Architecture-Principles of Oper-
ation, SA22-7085, IBM Corporation; available through IBM
branch offices.

17. IBM VS FORTRAN Version 2-Language and Library Ref-
erence, SC26-422 1, IBM Corporation: available through IBM
branch offices.

18. V. Zecca, A Performance Analyzer for the IBM 309O/VF with
Cache, IBM ECSEC Technical Report, IBM European Center
for Scientific and Engineering Computing, Via Giorgione 159,
00147 Rome, Italy (1988).

19. R. G. Scarborough and H. G. Kolsky, “A vectorizing Fortran
compiler,” IBM Journal of Research and Development 30,
No. 2, 163-171 (1986).

20. IBM Engineering and ScientiJic Subroutine Library, Guide
and Reference, SC23-0 184, IBM Corporation; available
through IBM branch offices.

21. R. C. Aganval and J. W. Cooky, “Fourier transform and
convolution subroutines for the IBM 3090 Vector Facility,”
IBM Journal of Research and Development 30, No. 2, 145-
162 (1986).

22. The SIMPLE code was developed by W. P. Crowley, C. P.
Hendrickson, and T. E. Rudy at the Lawrence Livermore
Laboratory, Livermore, CA, 1978. Our version is from Axel-
rod et al.23

23. T. S. Axelrod, P. F. Dubois, and P. G. Eltgroth, “A simulation
for MIMD performance prediction-Application to the S-1
MkIIa Multiprocessor,” Proceedings of the 1983 International
Conference on Parallel Processing (August 1983), pp. 350-
358.

24. The version for fluid dynamics was written in September 198 1
by Benek and revised by T. H. Pulliam at NASA Ames
Research Center, Cleveland, OH, June 1983.

25. A. J. Smith, “Line (block) size choice for CPU cache memo-
ries,” IEEE Transactions on Computers C-36, No. 9, 1063-
1075 (1987).

IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988 so AND ZECCA 451

Kimming So ZBM Research Division, T. J. Watson Research
Center, P . 0 . Box 704, Yorktown Heights, New York 10598. Dr.
So received his Ph.D. in computer science in 1980 from the
University of California at Santa Barbara. He has been a research
staff member at the Research Center since 1980, working on the
design and performance evaluation of multiprocessor organiza-
tions and trace-driven simulation of processor and cache opera-
tions. Dr. So’s current interests also include parallel processing
and programming.

Vittorio Zecca IBM European Center for Scientific and Engineer-
ing Computing, Via Giorgione 159, 00147 Rome, Italy. Dr. Zecca
obtained a degree in electronical engineering from Rome Univer-
sity in 1981. From 1982 to 1985 he worked in the aerospace field
having responsibility for data management for the San Marco
project. In 1985, he joined the IBM Rome Scientific Center. He
later was one of the initiators of ECSEC. He received an IBM
Outstanding Technical Achievement Award for his contribution
to the area of parallel processing. Dr. Zecca’s current interest is
tools for efficient vector/parallel processing.

Reprint Order No. G321-5337.

452 SO AND ZECCA BM SYSTEMS JOURNAL, VOL 27. NO 4, 1988

