
IBM Parallel FORTRAN 

1BM Parallel FORTRAN  is a  compiler  and  library  for 
writing and  executing  parallel  programs.  It  provides 
language  extensions  for  explicitly  programming  in par- 
allel, and  it  also  provides  compiler  enhancements  for 
automatically  generating  both  parallel  and  vector  code. 
Parallel FORTRAN  offers a  language for parallel  pro- 
gramming  that is  independent  of the  machine  configu- 
ration and the  operating  system. The  combination  of 
Parallel FORTRAN  and  IBM 3090 multiprocessors  can 
provide  a  significant  reduction  in  turnaround  time  for 
applications. 

P arallel  processing  is  a  widely  accepted technique 
for  reducing the turnaround time for  engineer- 

ing and scientific computation-bound applications.’ 
Recently there has  been  a  renewed interest in parallel 
processing, and today  a number of computer man- 
ufacturers are offering  parallel  processors.* The IBM 
3090 multiprocessor  is one such system. The 3090 
supports up  to six  scalar and vector  processors,  all 
sharing a  global  mem01-y.~ IBM Parallel FORTRAN 
enhances the parallel  processing  capabilities  of the 
3090.4 

Parallel FORTRAN is a  compiler and library that al- 
lows FORTRAN programmers to exploit  parallel  proc- 
essing on IBM 3090 multiprocessors. It operates un- 
der the MVS/XA and the VM/XA System Product (SP) 
operating systems.  Parallel FORTRAN was developed 
in IBM jointly by the Programming Systems Santa 
Teresa Laboratory, the Palo Alto  Scientific Center, 
and the Data Systems  Division in Kingston, and it 
has  been  available on a limited basis  since  March 
1988. 
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FORTRAN was introduced by IBM in 1954 and is the 
predominant language  for  scientific and engineering 
 application^.^ IBM FORTRAN compilers and libraries 
have  been  modified to support the evolving IBM 
hardware. vs FORTRAN Version 1 introduced a  basic 
form of parallelism  with the Multitasking Facility 
(MTF) .~  Automatic vectorization was added to vs 
FORTRAN Version 2 to support the IBM 3090 Vector 
Facilit~.’,~ Parallel FORTRAN continues the evolution 
by providing  language  extensions for explicitly pro- 
gramming in parallel and by providing compiler 
enhancements for automatically generating both 
parallel and vector  code. The extensions for  parallel 
execution  allow programmers to exploit the full 
hardware  capability of the IBM 3090 multiprocessor. 

Parallelism can occur in different forms in a FOR- 
TRAN program. An application may  have subroutines 
that can execute concurrently on different data. 
Loops  may  have iterations that can execute at the 
same time. Sequences of statements may be  eligible 
for concurrent execution.  Parallel  work  may occur 
nested  within other parallel  work.  Extensions in 
Parallel FORTRAN allow the specification of these 
various forms of parallelism,  wherever  they  may 
occur. 
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This paper discusses the extensions in Parallel FOR- 
TRAN to support parallelism as follows: 

Automatic parallel  execution  for  eligible DO loops 
Automatic integration of parallel and vector  proc- 

Language  for  parallel loop iterations 
Language  for  parallel statement sequences 
Language  for  parallel subroutines 
Library routines for  synchronizing  parallel  pieces 

essing 

of  work 

Also  covered are execution environments and per- 
formance considerations when  using  Parallel FOR- 
TRAN. The paper concludes with  examples that show 
both parallel and vector  processing  of  a matrix- 
multiplication program. 

Background 

Parallel FORTRAN evolved from a prototype that had 
been  developed  as part of a joint study with  Cornell 
University. The Cornell Theory Center is one of  five 
National Science Foundation supercomputer centers 
that were initiated in 1985 to provide supercomput- 
ing  resources  for  scientists nationwide. The Theory 
Center's primary supercomputing resource  is the 
Cornell National Supercomputer Facility (CNSF).~ 
The CNSF configuration  is  based on  an IBM 3090 
Model  600E  with six Vector  Facilities. 

An  objective of the Cornell Theory Center has  been 
to explore  parallelism and to provide  parallel com- 
puting in a production environment. A  parallel FOR- 
TRAN compiler was needed to achieve this objective; 
it was defined and specified jointly by IBM and Cor- 
nell. The resulting compiler, called the Parallel FOR- 
TRAN Prototype, was developed by IBM and delivered 
to Cornell in January 1987. Cornell has  been  using 
the prototype since then to explore  parallel comput- 
ing on its six-way IBM 3090." 

In addition to discussions  with  Cornell, the Parallel 
FORTRAN Prototype was built on experience  gained 
with three previously  existing  parallel  program  pack- 
ages developed at IBM. These three packages  provide 
FORTRAN programmers the following  ways to access 
the multiprocessing  capabilities of an IBM main- 
frame: 

The vs FORTRAN Multitasking Facility (MTF). MTF 
is a  set of subroutines incorporated into the vs 
FORTRAN Library,6 that allow FORTRAN subrou- 
tines to be  executed  asynchronously from the 
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mainline FORTRAN program. MTF operates only 
under the MVS operating system. 
Environment for Parallel Execution (EPEX). EPEX 
was developed at the IBM T. J. Watson Research 
Center to support the experimental, highly  parallel 
R P ~  computer," which  executes multiple instances 
of the same program, each running on its own 
processor.  Each  processor in the system,  besides 
having its own  local memory, is linked to the 
other processors by a common shared  memory. 
EPEX simulates this environment under VM by 
using multiple virtual machines and writable 
shared-memory segments. The shared memory is 
used for sharing data between the instances of the 
program and for  special coordination and syn- 
chronization variables  defined by EPEX. 
Loosely Coupled Array of Processors (ICAP). lCAP 
was developed in IBM Kingston to support an 
experimental parallel  system that consisted of a 
set of array processors attached via channels to  an 
IBM mainframe system." lcAP allowed FORTRAN 
subroutines to be  executed  asynchronously on the 
attached array processors. It now  provides the 
ability to execute its programs totally on  an IBM 
mainframe. lcAP operated under both the VM and 
the MVS operating systems. 

Programming of parallel  applications 

If a  program  is to be  executed in parallel, it is 
necessary to assign  different  pieces of the program to 
different  processors during execution. This requires 
that the pieces  eligible  for execution in parallel be 
identified. In some  cases, it is  possible  for the parallel 
pieces to be  identified automatically by the compiler. 
In other cases, the programmer may  have to specify 
the parallel  pieces  explicitly.  Parallel FORTRAN sup- 
ports both methods of achieving  parallel execution. 

Specifically,  Parallel FORTRAN provides the follow- 
ing: 

Extensions to the compiler for automatically gen- 

Extensions to the language  for  explicitly  program- 

Extensions to the library  for  synchronizing  parallel 

erating parallel  code 

ming in parallel 

execution through locks and events 

The FORTRAN program  identifies the pieces  of  work 
that are eligible to run  in parallel. The FORTRAN 
library then maps the parallel  pieces  of  work onto 
virtual processors that are known as FORTRAN proc- 
essors. The operating system maps the FORTRAN 
processors onto the real machine processors. 
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The number of FORTRAN processors  is  specified as a 
run-time option. By varying this number, the user 
can control the maximum  degree of parallel  execu- 
tion that FORTRAN attempts to achieve  during  a  given 
execution of an application. The number of real 

Automatic  parallelism is the  simplest 
way to introduce  parallelism 

into an application. 

processors  available  depends on the machine  config- 
uration, on other work  being  executed in the system, 
and on the relative  priorities  assigned to the work.  If 
more  real  processors  are  assigned to the parallel 
program by the operating  system,  more  parallel  ex- 
ecution  may  be  achieved. 

The hardware  configuration and differences  between 
operating  systems  are not exposed in the FORTRAN 
program.  Instead,  the  program  simply  specifies  sec- 
tions within the program that can  be  executed  con- 
currently. The compiler and library  accept this speci- 
fication and execute the parallel  sections,  using the 
processors  available to the program. 

Automatic parallel 

Automatic  parallelism  is the simplest way to intro- 
duce parallelism into an application.  A new compiler 
option  requests that the compiler  analyze  nests of 
DO loops to determine whether  they  are  eligible  for 
parallel  execution.  Parallel  code  is  generated  only if 
the results will be  not  be  changed by parallel  execu- 
tion. An extension of the data-dependence  algo- 
rithms used  for vectorization  determines  whether 
loops or selected  statements  within  loops  may  be 
executed  in  parallel. If there  are no dependences that 
prevent  parallel  execution, the compiler  determines 
whether it is  cost-effective to execute the loop in 
parallel. If so, parallel  code  is  generated  for the loop; 
otherwise,  serial  code  is  generated.  Besides  being  a 
simple way to introduce parallelism, automatic par- 
allelism  also  allows  a  program to remain  portable to 
other FORTRAN compilers. 
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The  vector and parallel  compiler options may both 
be  specified. In this  case, the compiler  analyzes  nests 
of DO loops  for both parallel and vector  execution. 
Individual  loops  may be  selected for  vector or par- 
allel  execution, or for both vector and parallel  exe- 
cution.  A loop selected  for  parallel  may contain inner 
loops in any  mode;  a loop selected  for  vector  may 
contain  only inner loops  which are scalar and serial. 
If it  is found to be  cost-effective,  loops  may  be  broken 
apart and different  pieces  executed in different 
modes. 

The  directives  provided by vs FORTRAN to influence 
automatic vectorization  have  been  extended to sup- 
port the automatic parallelization.  A  user  may now 
indicate  a  preference  for  parallel or serial  code  for  a 
given loop in the same manner as a  preference  for 
scalar or vector  code  might  have  been  indicated 
previously. The user  may  also  express  a  preference 
for the number of  processors to assign to the loop at 
run time and for the number of iterations to be 
grouped  together as a unit of  work at run time. 

Parallel  language  extensions 

Although automatic detection of parallelism  may  be 
an easy  way to introduce parallelism, it does  have 
some  limitations.  Primary  among  these  is the re- 
quirement that the answers not change  during  exe- 
cution in parallel.  Some  algorithms  are  able to run 
effectively  in  parallel  even  though  they contain data 
dependences that can cause their results to change 
from  parallel run to parallel  run. In chaotic  relaxa- 
tion, for example, the algorithms are designed to 
converge, and they  are  deemed to be  successful  when 
they  converge to a  value  with  some  small  tolerance. 
Any value  with this tolerance  is as acceptable as any 
other.  Automatic  parallelization  insists on producing 
the  same  value as is  produced by a  serial  execution 
of the program, and so it does not make  parallel  a 
program  with  such data dependences.  Therefore, 
although automatic detection  of  parallelism is an 
easy  way to obtain parallel  execution, it does not 
provide the complete  answer  for  a  parallel  program- 
mer. 

For this reason,  Parallel FORTRAN provides  language 
extensions  with  which the programmer  may  specify 
parallel  execution. The language  extensions can be 
categorized into two  types:  in-line  extensions and 
out-of-line  extensions. The in-line  extensions,  which 
define  parallelism  within  a routine, identify  loops or 
blocks of statements that can be  executed  concur- 
rently. The out-of-line  extensions,  which  define  par- 
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allelism  across  routines,  identify  subroutines that are 
eligible  for  parallel  execution.  Both  types  of  exten- 
sions  can be  nested. Thus programs that have  been 
written to exploit  parallel  execution can be  encap- 
sulated as library  routines and can be  invoked  from 
other programs,  either  serially or in  parallel,  in the 
usual FORTRAN manner. 

The in-line  extensions  permit the code  within  a 
subroutine to be  dynamically  parceled out to more 
than one  processor  for  execution. The parallel  code 
sequences  operate  on the arrays and scalars  known 
to the subroutine.  In  this,  they  are  similar to DO 
loops,  which  are  automatically  parallelized.  They are 
unlike the automatically  parallelized  loops,  however, 
in that the programmer can specify  operations that 
contain data dependences. 

The out-of-line  extensions  permit  a  user to create 
new,  disjoint,  asynchronous  execution environments 
for  one or more FORTRAN subroutines.  Each  disjoint 
collection of subroutines,  called  a task, is  indepen- 
dent of all other tasks; the execution of one task 
cannot affect another unless the programmer  explic- 
itly  shares data between them. Thus, when  algo- 
rithms  have  been  programmed and debugged,  they 
can be  easily encapsulated  within their own  task 
environments.  When  users  explicitly  share data be- 
tween  tasks,  they  are  also  explicitly  identifying data 
areas that should  be  reviewed if errors  occur  during 
parallel  execution. 

Parallel loops. A parallel  loop  is  one in which  each 
iteration of the loop may  be  executed  concurrently. 
Some  unspecified number of processors,  possibly  one 
per iteration, may  be  used to execute the loop. The 
number of processors  is  determined at run time, and 
that number can vary  from one to the number of 
FORTRAN processors  specified at run time. The order 
in  which iterations are executed  is  therefore not 
guaranteed. All iterations are completed,  however, 
before  execution continues beyond the end of the 
loop.  The  programmer  is  responsible  for  ensuring 
that the loop is  valid  for  parallel  execution.  Nor- 
mally,  each iteration should be computationally in- 
dependent of other iterations.  Alternatively, the user 
can  ensure that the proper  synchronization  is  used 
between iterations or that the results  are  meaningful 
in the absence of such  synchronization.  A PARALLEL 
LOOP has  a  syntax that is  similar to a DO loop,  a 
simple  form of  which  is  shown in Figure 1. 

This simple  form  of  a  parallel loop permits iterations 
to execute in parallel.  Suppose,  however, that a  pro- 
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Figure 1 Simple form of PARALLEL  LOOP 

PARALLEL  LOOP label  index=il,i2,13 

statements 

label CONTINUE 

Figure 2 Example of PRIVATE statement 

PARALLEL  LOOP 1 1111.12 

PRIVATE (XTEMP) 

XTEMP=A(I)*B(I) 

C(I)=XTEMP*D(I) 

1 CONTINUE 

grammer  needs to compute a  temporary  result,  such 
as XTEMP, within an iteration.  A statement like 
XTEMP=A(I)*B(I) cannot work  in  parallel.  When  sev- 
eral  processors  execute the statement simultane- 
ously,  each  computing  with  a  different  value of I, 
only one value of XTEMP is  saved,  i.e., the one that 
by chance was stored  last.  Each  processor  therefore 
needs its own  private  copy of XTEMP for the program 
to operate  correctly.  Such  private  variables  may be 
declared  with  a PRIVATE statement, as shown  in 
Figure 2. 

Further, given  such  private  variables, it is  sometimes 
desirable to initialize  them  before  executing  itera- 
tions of the loop, or to reference their final  value 
after  all loop iterations are complete. DOFIRST and 
DOFINAL statements are provided  for this purpose. 
These  statements  delimit,  respectively,  a  prolog and 
epilog  block  for the loop.  They  may  specify, by a 
LOCK operand, that only one processor at a time is 
to be permitted to execute the prolog or epilog. 
DOEVERY delimits the remaining  body of the loop 
that is  executed on each  iteration. 



Figure 3 Example of  PARALLEL  LOOP extensions 

Figure 4 Simple form of PARALLEL  CASES 
~ ~~~~ 

The example in Figure 3 shows the use  of these 
statements to implement a sum reduction. The prob- 
lem  is to compute a  global sum GSUM of a  vector 

AVAL. A private  variable PSUM is  initialized to zero 
for  each  processor and used in each  processor to 
accumulate a sum of the elements of the vector AVAL 
assigned to  that processor. The number of elements 
accumulated in each  local PSUM is determined dy- 
namically at run time. When  all elements have  been 
summed, each  processor adds its private  partial sum 
PSUM into the global total sum GSUM. This final 
addition is done under control of a  lock, so that 
GSUM is  updated by only one processor at a  time. 
(This  example,  which  is  used to illustrate the parallel 
loop,  may not contain enough  processing  for  profit- 
able  parallel  execution.) 

Parallel cases. It is  often  possible to execute  blocks 
of statements in parallel. The blocks  may contain 
straight-line  code or loops, and the loops  may  be 
either parallel or vector  loops.  What  is  significant  is 
that the blocks  may  be  processed concurrently. At 
the limit, each  block  can  be  executed by a  different 
processor, the number of  which  is not known but 
may  range  from one up  to the number of  blocks. 
The exact number is determined at the time the 
blocks are executed. As with  parallel  loops, the pro- 
grammer is  responsible  for  ensuring that such  blocks 
are valid  for  parallel  execution. That is to say,  each 
block  is computationally independent of the others, 
or the data interactions that arise  between  blocks are 
either controlled or intentional. 

The PARALLEL CASES structure is  provided to simplify 
the programming of such  parallel  blocks of state- 
ments.  A  simple  form of parallel  cases  is  shown in 
Figure 4. The three illustrated  cases  may  execute 
concurrently, but there is no guarantee of the order 
of their execution. As with  parallel  loops, the cases 
may  employ  private  variables as needed.  All  cases 
are  completed  before  execution continues beyond 
the END CASES statement. 

It is  often  helpful to make  some  cases  wait until 
preceding  cases  complete.  An  early  case  could then, 
for  example, compute data to be  used by more than 
one subsequent  case. To facilitate this, cases  may be 
numbered, and any case  may  wait  for  any  specified 
preceding  case. A sample  is  shown in Figure 5. In 
this manner, a  program containing an acyclic  graph 
of dependences  may be translated into a  series  of 
parallel  cases. 

Both  parallel  loops and parallel  cases  may contain 
nested  parallel  loops and parallel  cases. Input and 
output statements may  be  used  within  parallel loops 
and parallel  cases. 
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Parallel tasks. Parallel loops and cases are state- 
ments that yield in-line parallelism,  spreading the 
work of a given subroutine across multiple proces- 
sors.  Out-of-line  parallelism, in contrast, creates new 
and distinct FORTRAN execution environments and 
permits each of these distinct environments to exe- 
cute concurrently. A shorthand name for  these en- 
vironments is tusks. 

A Parallel FORTRAN program  begins execution in a 
task  referred to as the root tusk. The ORIGINATE 
statement may be used to create more tasks.  Each 
task that is originated in this way has an identifier 
and its own  storage. The identifier  is returned to the 
programmer by the ORIGINATE statement and is  used 
in other statements to manipulate the task. The 
storage  associated  with a task  is  private to that task 
and persists until the task  is terminated. When a task 
is no longer  needed, it can be  deleted  with a TERMI- 

statements are shown in Figure 6. 

Work is  assigned to a task  with the DISPATCH and 
SCHEDULE statements, which name a subroutine to 
be executed  asynchronously in the subtask and list 
the arguments to be passed to the called subroutine. 
The user  may  specify a particular task to be  called 
or may  request that the library  choose any available 
task. Dispatched  tasks complete their work automat- 
ically.  Scheduled  tasks require that the user  subse- 
quently issue a corresponding wait. Sample state- 
ments are shown in Figure 7. 

Tasks,  like subroutines in traditional FORTRAN, may 
communicate through arguments and common 
blocks.  Figure 8 shows the optional clauses on the 
SCHEDULE and DISPATCH statements to control the 
use of common blocks. A SHARING clause  may  be 
used to name common blocks to be shared with the 
task  selected to execute the subroutine. Shared com- 
mon blocks are accessed in the same location by 
both tasks. The scheduled or dispatched subtask uses 

NATE Statement. The ORIGINATE and TERMINATE 

Figure 5 Extended form of PARALLEL  CASES 

PARALLEL CASES 

CASE 1 

statements 

CASE 2 

statements 

CASE 3, WAITING FOR CASE 1 

statements 

CASE 4, WAITING FOR CASES (1,2) 

statements 

CASE 5, WAITING FOR CASES (1,2,3) 

statements 

END  CASES 

Figure 6 ORIGINATE and TERMINATE statements 

ORIGINATE ANY TASK itask 

TERMINATE TASK itask 

Figure 7 Sample SCHEDULE and DISPATCH statements 
~~~~~ ~~~ 

SCHEDULE TASK itask,  CALLING  subnam(argl,arg2, ... ) 
DISPATCH ANY TASK itask,  CALLING  subnam(argl,argZ, ... > 



Figure 8 Options for SCHEDULE or DISPATCH statement 

the same copy of the common block  as the task that 
invoked it. A COPYING clause  may  be  used to name 
common blocks that are to be  copied into a  task 
when  work  is  assigned and copied out of the task 
when  work  is completed. Both the superior and the 
subordinate tasks  have  a private copy  of  these com- 
mon blocks. COPYINGI and COPYINGO name com- 
mons that are to be copied  respectively  only into  or 
only out of the subtask. 

Tasks  can  be  assigned  a  variety of pieces  of  work.  A 
TAGGING clause is provided to allow the programmer 
to name or tag  a particular piece  of  work. The values 
of the tags are saved  when the task is scheduled. 
Subsequently,  when the programmer issues  a  wait 
for  a  task, the values of  tags  for the completing task 
may  be  retrieved. This makes it easy  for the program 
to determine the specific  piece of work that had been 
assigned to the task that just completed. 

The WAIT FOR statement is  used to detect when  a 
task  has completed its assigned  work. Three types of 
WAIT FOR statements are available:  wait  for  a  specific 
task,  wait  for any task, and wait  for  all  tasks.  Figure 
9 shows the variations of the WAIT FOR statement, 
including its optional TAGGING clause. 

Parallel library. The Parallel FORTRAN library  also 
has extensions for  parallelism.  Some of these  exten- 
sions are internal, supporting the parallel  language 
and the automatic parallel  capabilities of the com- 
piler. Other extensions are external and may  be  used 
directly by the programmer. 

Routines are  provided  for the management of locks 
and events.  Locks  may  be used to ensure that only 
one processor at a time gains  access to a  resource, 
such as  a  variable  using  a  global counter. Events  may 
be  used to make a  task  wait until another task  has 
reached some point in execution. Synchronization 
techniques of many kinds can be implemented using 
locks and events. 

An optional trace of the parallel execution may  be 
requested via a run-time option. The trace  may  be 
an aid in tuning or debugging  a  program that exe- 
cutes in parallel. A separate trace file can be produced 
for  each  task, or a  single trace file can be produced 
covering  all  tasks.  Each trace record  identifies the 
executing task, subroutine, and statement. The sys- 
tem provides trace records  for such events  as start- 
and end-of-program execution, origination and ter- 
mination of tasks,  assignment and completion of 
work to tasks, sharing and copying common blocks, 
start and end of parallel loops and parallel  cases, and 
uses  of  locks and events. Programmers may  also 
enter trace records into these files  by calling  a  library 
subroutine. The level  of detail generated  in the trace 
file is controlled by the run-time option or by a 
library  call. 

Figure 9 Example of WAIT FOR statements 



Execution of parallel  applications 

Three conditions are required  for a program to exe- 
cute in parallel: (1) multiple pieces of parallel  work 
ready  for execution; (2) multiple FORTRAN processors 
associated  with the program; and (3) multiple real 

Parallel  execution  and  performance 
are improved  when  the  queue 

does  not  empty. 

processors  available to  it. The programmer controls 
the first  two conditions directly; the Parallel FORTRAN 
language and compiler are used to identify the par- 
allel  pieces  of  work, and a run-time option is  used 
to specify the number of FORTRAN processors. The 
third condition, the number of  real  processors,  is 
controlled by the operating system and depends on 
the amount of other work  being done by the system 
and on the relative  priorities  assigned to that work. 
As real  processors  become  available, the operating 
system can allocate them to the parallel program, 
and more of the parallel  pieces of  work can be 
executed simultaneously. The Parallel FORTRAN ex- 
ecution environment is shown  in  Figure 10. 

Parallel FORTRAN allows the programmer to identify 
more pieces  of parallel  work than there are FORTRAN 
processors. The additional pieces  may  be thought of 
as  sitting in a queue. Thus, when a FORTRAN proces- 
sor  finishes one piece  of  work, it selects the next 
piece  from the queue and executes it. The FORTRAN 
processors can continue to run without operating 
system interactions as long  as the queue contains 
work.  When the queue empties and refills,  however, 
the FORTRAN processors must use the less  efficient 
mechanisms provided by the operating system to 
suspend and restart  themselves. 

The degree to which  the queue of pending  parallel 
work  can  be  kept  from emptying varies from appli- 
cation to application. Parallel execution and per- 
formance are improved when the queue does not 
empty, because operating system  overhead is then 
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normally not required to schedule and synchronize 
parallel  work. The language extensions in Parallel 
FORTRAN and its support for multiple levels of par- 
allel  execution both facilitate the identification and 
execution of a continuing stream of  eligible  parallel 
pieces  of  work. 

The method used  for  representing FORTRAN proces- 
sors depends on the operating system. Under MVSIXA, 
each FORTRAN processor  is implemented as an MVS 
task. Under VM/XA, where  programs are run 
in virtual machines, the virtual machine is made into 
a virtual multiprocessing machine and each FOR- 
TRAN processor is executed by one of the virtual CPUS 
within the virtual multiprocessing machine. This is 
described in more detail subsequently in this paper. 
The programmer of a parallel  program  does not need 
to know about this difference  between operating 
systems.  Regardless of the operating system, the pro- 
grammer refers  only to the FORTRAN processors. It is 
the job of the FORTRAN compiler and library to 
provide  these FORTRAN processors in a portable man- 
ner. 

Other mechanisms have  been  used by other parallel 
processing  packages  for the IBM 3090 multiproces- 
sors. The vs FORTRAN Multitasking Facility (MTF), 
for  example,  uses the technique of suspending and 
restarting  tasks  for  each independent piece of work. 
This can result in two interactions with the operating 
system  for  each dispatch of a piece  of  parallel  work. 
A different approach, mi~rotasking,'~ keeps the pro- 
cessors in a busy-wait  spin loop when  they  have 
nothing to do. This avoids the overhead of suspend- 
ing  and.  restarting  work by the operating system  for 
the user of microtasking, but the cycles  used  for 
spinning are lost to other users in the system. 

Parallel FORTRAN programs  may be run  on dedicated 
or undedicated systems. On a dedicated system, the 
program runs most  quickly. On  an undedicated sys- 
tem, the speed of the parallel  program is  affected, 
because the real  processors are used to support exe- 
cution of other concurrent programs.  Relative prior- 
ities  may  be  used to bias the operating system  toward 
or  against the parallel program. 

The programmer should  have in mind whether the 
computer system  is dedicated or undedicated. On a 
dedicated  system, the programmer might  assign  each 
FORTRAN processor a fixed and equal amount of 
work to  do concurrently. This is  called static map- 
ping, and it works well  when each FORTRAN processor 
is assured of  being  given a real  processor.  Because 
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equal amounts of work are assigned to each  proces-  essors among multiple users, this static mapping may 
sor,  they should all complete work at the same time. not perform well. 
Therefore,  they  all remain busy  as  long as there is 
parallel work  assigned to them. However, in an Suppose an application has  been  statically mapped 
environment where there is contention for  real  proc- and all  processors are working on it. Further suppose 
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that one processor  is taken away to  do a small  piece 
of work  for the operating system,  while the other 
processors continue to execute on their statically 
mapped partitions. When  these other processors  fin- 
ish their partitions, roughly  all at the same time, the 
interrupted processor  still  has some work to do on 
its partition, because of the time it lost  working  for 
the operating system.  Also,  because the program  has 
divided its work  statically, there is nothing for the 
other processors to do until the final  processor fin- 
ishes its partition. All processors are affected by a 
temporary loss  of one processor. 

On undedicated systems, an application that parti- 
tions work dynamically rather than statically  prob- 
ably performs better. Dynamic partitioning allows 
the program to make use  of  real  processors  as  they 
become  available during execution. Parallel  loops 
and cases and automatically parallelized loops are 
executed  with dynamic scheduling. Certain out-of- 
line  language statements, such  as WAIT FOR ANY 
TASK, also  allow dynamic load  balancing on the 
available  real  processors. The matrix-multiply ex- 
ample described later in the paper explores this issue 
further. 

When a Parallel FORTRAN program is executed  with 
a single FORTRAN processor, the order of execution 
of the program  is  repeatable. The statements always 
execute in the same order for the same data. This 
allows  for the development and debugging  of a par- 
allel  program in an environment where  bugs are 
reproducible.  When the program  is  executed  with 
multiple FORTRAN processors, the order of execution 
is not repeatable.  Such  bugs  may  be thought of as 
nondeterministic and not easily  reproducible.  It is 
beneficial to remove the deterministic class  of  bugs 
prior to parallel  execution. 

Parallel  processing  within  a  virtual  machine  on 
VM/XA 

Under VM/XA, as indicated earlier in this paper, 
programs are run within virtual machines.  When a 
Parallel FORTRAN program  is  executed, the virtual 
machine is made into a virtual multiprocessor. Each 
FORTRAN processor is executed by a virtual CPU 
within that virtual multiprocessor. (See Figure 1 1 for 
an illustration of this point.) 

Programs under VM/XA are normally  executed under 
control of a simple operating system, CMS, which 
runs within the virtual machine. CMS, however,  is 
not a multiprocessing operating system. It assumes 
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that it is running on a uniprocessor, and it cannot 
be  executed concurrently by multiple virtual CPUS 
within a virtual machine. The virtual CPUS that are 
executing  as FORTRAN processors,  therefore, cannot 
be  allowed to execute the internal routines of CMS 
concurrently and asynchronously.  Nonetheless, the 
FORTRAN processors  may  from time to time require 
a service  from CMS, such  as input, output,  or storage 
allocation. 

The solution to this problem is to define one virtual 
cpu-in addition to the virtual CPUS used  as FOR- 
TRAN processors-for  use as a CMS processor.  When 
a FORTRAN processor  requests a CMS service, the 
request is intercepted and queued for execution by 
the CMS processor, and the requesting FORTRAN proc- 
essor  is suspended until the CMS processor completes 
the request. The CMS processor  executes  these  re- 
quests one at a time, finishing  each  completely  before 
beginning the next. Each FORTRAN processor,  since 
it is  suspended while its request  is  processed, sees its 
requests handled in a fully synchronous manner, just 
as though it were on a uniprocessor. The CMS proc- 
essor  executes  requests, one at a time  and from start 
to finish in a fully synchronous manner, just as 
though it  too were on a uniprocessor. This maintains 
the integrity of the CMS internal implementation. 

FORTRAN processors not executing CMS requests are 
able to run without impediment from this serializa- 
tion. Parallel FORTRAN is intended for use  with  large 
computationally intensive applications, and requests 
for CMS services should therefore  be  occasional rather 
than frequent. If repeated use  were made of CMS 
services, alternative processing mechanisms would 
have to be pursued. 

Performance of parallel  applications 

The major reason  for  using  Parallel FORTRAN is to 
reduce the real time required to execute a FORTRAN 
program. The time reduction is  achieved  when mul- 
tiple  processors simultaneously execute portions of 
a single application program. Parallel FORTRAN does 
not reduce the total number of CPU cycles  required 
to execute a program; in fact, a modest  increase in 
CPU cycles  is normally  required. Instead, it allows a 
program to be  split into multiple independent in- 
struction streams.  When  these are executed simul- 
taneously by different CPUS of a 3090 multiprocessor 
system, the program  receives  cycles from each of the 
assigned CPUS. Thus the program  receives more CPU 
cycles in a given  span of real time, and it completes 
its computation more quickly. 
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Figure 11 Parallel processing within a virtual machine on VMlXA 
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For programs that are vectorizable, the IBM 3090 cally intensive computations. The Vector  Facility 
Vector  Facility also reduces the real time required to can be  viewed  as  providing  faster CPUS to the pro- 
execute  a FORTRAN program. The Vector  Facility gram.  Vector and parallel  execution complement 
improves performance because it uses  fewer CPU each other. Their combined use results in more and 
cycles than the scalar  processor  for many numeri- faster CPUS executing on a  program and can lead to 
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a larger reduction in the real time required to execute 
a program than either vector or parallel  alone. 

The improvement in turnaround  time for an appli- 
cation converted to parallel  is limited by the amount 

The  improvement  in  turnaround  time 
for  an  application  converted 

to parallel  is  limited by the  amount 
of serial  processing  that  remains 

in  the  converted  application. 

of serial  processing that remains in the converted 
application. Not everything can be done in parallel. 
For example, the reading of initial data and the 
printing of final  results are often done by a single 
processor. The following equation, often  referred to 
as  Amdahl's  law,  can  be  used to estimate an upper 
limit for the speedup  expected  for an application. 
Given the fraction of the original  serial execution 
time that can be  converted to parallel, p, and the 
fraction that must remain in serial, 1 - p, the equa- 
tion computes the maximum speedup  for a given 
number of processors, n, as follows: 

n Speedup = 
n(1 - P )  + P .  

Measurements of performance. Applications vary in 
the degree to which they  can be parallelized. An 
indication of this can be  seen in results of measure- 
ments on four applications representing  different 
areas of scientific  research. Measurements were 
taken using  from one through six processors.  Figure 
12 shows the speedups  achieved. The speedups 
shown are relative to the serial  vectorized  versions 
of the applications. The primary factors  affecting the 
speedup of an application are the number of proces- 
sors  allocated to  an application and the percentage 
of the application's  processing that can execute in 
parallel. 

Programs A and B were measured at Cornel1 Uni- 
versity on a VM/XA system  using the Parallel FOR- 
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TRAN prototype." Program A, which studies protein 
folding and the 3D structure of polypeptides,  uses a 
Monte Carlo technique to evaluate the free  energy 
of the system.  It was parallelized  with the out-of-line 
language  extensions.  Program B, which  involves  re- 
search on statistical methods, performs multiplica- 
tion, factorization, and inversion of  very  large mat- 
rices  using the automatic parallel and automatic 
vector compiler options. Programs C and D were 
measured under MVS/XA, using the released  version 
of Parallel FORTRAN. Program C is a high-energy 
physics application employing a Monte Carlo simu- 
lation for the simulation of quantum chromody- 
namics. It too is a vector program, but  it uses  parallel 
subroutines. Program D is a thin-layer  fluid dynam- 
ics application using  parallel  tasks. All runs were 
made in a dedicated environment on a 3090 Model 
600E equipped with six Vector  Facilities. 

The four programs ran from 4.1 to 5.3 times faster 
on the six-way machine; therefore they  show  effective 
parallelism of 90 to 97 percent, according to Am- 
dahl's  law. Effective percent parallelism  is  calculated 
by observing the actual speedup of an application 
and then using  Amdahl's law. 

Parallel programming guidelines. The results of the 
measurements of parallel applications show that the 
speedups can vary and  that each application is  dif- 
ferent. It is  difficult to predict in advance how a given 
application will perform. However, the fdlowing  are 
guidelines  for  writing  successful  parallel  programs 
on the IBM 3090: 

Optimize code for serial  processing. Traditional 
optimization remains just as important in parallel 
codes  as it does in  serial  codes.I4 Optimization 
reduces the absolute number of CPU cycles  re- 
quired to execute the program.  Parallelization by 
itself  merely  spreads the remaining cycles  across 
more than  one processor.  It  is  still important  to 
optimize the code  for the scalar and vector  capa- 
bilities of the processor  when  writing a program 
with  Parallel FORTRAN. 
Maximize the parallel use of multiple Vector Fa- 
cilities. For best performance, a program should 
be structured to take maximum advantage of mul- 
tiple  Vector  Facilities. In general,  good  vector 
operation should not be  sacrificed to obtain par- 
allel operation. 

9 Minimize the work that must be done serially. The 
time it takes to do this work  is part of the mini- 
mum  amount of time it will take a program to 
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Figure 12 Performance of selected  application  programs 

~-----S-o 100% PARALLEL ."it---. PROGRAM C t--..-". PROGRAM A PROGRAM D 
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execute. In other words, the more serial the work, butions and the processing required to  do the 
the slower the program  execution. distributions. However, judgment is required, be- 

9 Minimize the overhead due to executing parallel 
constructs. Overhead adds to the minimum 
amount of time it takes to execute  a  program. In 
Parallel FORTRAN, overhead can be minimized by 
several means. Originating  tasks  once and assign- 
ing work to them many times will  save the re- 
peated  overhead of originating and terminating 
tasks. Distributing parallel  work in larger rather 
than smaller  pieces  reduces the number of distri- 

cause the goals  of  assigning  work  dynamically to 
balance the workload on the processors and that 
of assigning  work in large chunks are to some 
extent in conflict. 
Assign workloads that are dynamically self-bal- 
ancing. Unbalanced workloads  have the same neg- 
ative effect on performance as  serial  work.  Parallel 
FORTRAN provides  several  facilities to help dynam- 
ically balance workloads. PARALLEL LOOPS, PAR- 
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Figure 13 Serial  matrix  multiplication 

COMMON /AC/ A(500,1500),  B(1500,200),  C(500,200) 

REAL*8 A, B, C, T 

DO 20 I=1, 500 

DO 20  K=l,  200 

T-0 . DO 
DO 30 J=l, 1500 

30 T=T+(B(J,K)*A(I,J)) 

20 C(I,K)=T 

ALLEL CASES, and automatically parallelized DO 
loops are all  dynamically  load-balanced by the 
library. The SCHEDULE statement, when  used  with 

ments, and  the DISPATCH statement both provide 
a way to assign additional work to tasks without 
waiting  for  all  tasks to complete their assignments. 
Parallel  locks and events  allow the programming 
of many different  types of application-specific 
load-balancing algorithms. 
Minimize storage  contention. Try to make maxi- 
mum use  of  cache and avoid storing adjacent 
words in memory from different  processors.  Meth- 
ods for  achieving  these  objectives include choosing 
the rightmost dimension of an array for  parallel- 
ization and specifying  large chunk sizes  for  a par- 
allelized DO loop or PARALLEL LOOP construct. 

the WAIT FOR TASK Or WAIT FOR ANY TASK State- 

Parallel  programming  example:  Matrix 
multiplication 

In the following  examples,  a matrix-multiplication 
problem is programmed repeatedly in different ways 
to illustrate the features of Parallel FORTRAN and to 
explore  issues in parallel and vector  programming. 
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The first matrix-multiplication program is shown in 
Figure 13, in which  a  serial  program has been opti- 
mized  for  use on the IBM 3090 Vector  Facility. This 
is the code that is to be  parallelized in the remaining 
examples. In the example, the temporary variable T 
allows the compiler to use the vector MULTIPLY-AND- 
ADD instruction. As a  result, the program  in  Figure 
13 computes 128 different  values of T = T + 
(B(J,K)*A(Z,J)) with  a  single instruction, and  it 
keeps  these resultant values in a  register and stores 
the 128 values of C(Z,K) only  once. 

The objective now is to parallelize the matrix mul- 
tiplication without degrading the vector  perfor- 
mance.  Figure 14 shows that the matrix multiplica- 
tion is vectorized  over the Z loop and  that vector 
register  reuse  is obtained by storing C(Z,K) outside 
the J loop only. This leaves the K loop as the prime 
candidate for  parallelization. 

Figure 15 shows  how this can be done by using the 
SCHEDULE and WAIT FOR Statements. The matrix 
multiplication is  placed into a subroutine named 
MLT and is  modified so that it computes one Nth, 
where  N  is the number of processors of the matrix. 
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Figure 14 Vector report for  matrix  multiplication 

T,lECT +”----- DO 20 I=l, 500 
I 

I I  
II 
II 

SCAL I I+---- 
I l l  
I l l -  T=T+(B(J,K)*A(I,J)) 
II 

SCAL I+----- DO 20 K=l, 200 

To0 . DO 
DO 30 J=I, 1500 

C(I  ,K)-T 

The arguments of the matrix multiplication tell it 
how many processors there are and which Nth it is 
to compute. The matrix multiplication is  scheduled 
for  parallel execution with multiple executions of 
the SCHEDULE statement. 

The matrix multiplication is an example of a static 
mapping of  work to processors that can work well 
on a dedicated system  if  each  scheduled  task  is 
assured of having  a  real  processor immediately avail- 
able.  However, if the program  is  executing in an 
environment where there is contention for the real 
processors, the parallel performance actually 
achieved is determined by the task that receives the 
lowest  level  of  service. 

Dynamic balancing of work to processors  is  likely to 
be preferable  when  systems cannot be dedicated. 
Parallel FORTRAN provides  several methods for  dy- 
namic load  balancing, as illustrated in the next three 
examples. All  of these  examples  begin  with the ob- 
servation that the ordering of the I and K loops may 
be  reversed.  When this is done, the K loop becomes 
the outermost loop, where it is suitable for  parallel- 
ization. The Z and J loops,  meanwhile, maintain 
their relationship to each other for  generating effi- 
cient vector  code. 

Figure 16 shows the way in which dynamic load 
balancing can be done with the DISPATCH statement. 
For this technique, subroutine MLT is  modified so 
that, rather than doing one Nth of the matrix mul- 
tiplication, it does one iteration of the new outermost 
K loop. 
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Figure 17 shows dynamic load balancing being done 
by using the PARALLEL LOOP statement. Note that 
this code is a  small  modification of the original 
matrix multiplication shown in Figure 13. Finally, 
Figure 18  shows dynamic load balancing being done 
using automatically generated  parallel DO loops, and 
Figure 19 shows the way in which the compiler 
parallelized and vectorized the program. 

Concluding remarks 

Parallel FORTRAN provides  a  rich spectrum of func- 
tion that supports a  wide  range  of  parallel application 
programming styles. It can easily  be  used to exploit 
the parallel and vector  capability of IBM 3090 sys- 
tems. 

The parallelism in an application may  be  expressed 
in ways that are natural to the application. PARALLEL 
LOOPS and PARALLEL CASES may  be  used to parallelize 
the statements within a routine; SCHEDULE and DIS- 
PATCH may  be  used to execute independent subrou- 
tines in parallel. Automatic parallel and automatic 
vector  may  be  used to gain  faster execution of nests 
of  eligible DO loops.  Parallel execution is not re- 
stricted to a  single  level but may  be  specified  wher- 
ever it occurs.  Operating-system and machine-con- 
figuration  differences are not exposed to the pro- 
gram. 

The Parallel FORTRAN program  identifies the pieces 
of  work  eligible to run in parallel.  When the program 
is  compiled and executed, the library puts the parallel 
work in a queue and distributes it to Parallel FOR- 
TRAN processors.  Real  processors are allocated  dy- 
namically by the operating system. As additional real 
processors are allocated, additional FORTRAN proces- 
sors can execute concurrently. Programs that parti- 
tion work dynamically, employ multiple levels of 
parallelism, or use other strategies to keep the queue 
of parallel  work  full can best take advantage of these 
additional real  processors as they  become  available 
during execution. 

Parallel FORTRAN applications can run under the 
MVS/XA and the VM/XA SP operating systems. The 
degree  of  parallel execution can be controlled at run 
time through the number of FORTRAN processors. 
When  parallel  execution  is  requested and multiple 
real  processors  are  available,  Parallel FORTRAN can 
be  a  valuable  aid in reducing the turnaround time of 
applications. 
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Figure 15 Matrix multiplication with SCHEDULE 

INTEGER  KN(2OO) 

COMMON  /AC/  A(500,1500),  B(1500,200),  C(500,200) 

REAL*8 A, 8, C 

DO 20  K=1, NTASK 

KN(K)=K 

20  SCHEDULE ANY TASK  ITASK, 

* SHARING (AC), 

* CALLING  MLT  (KN(K),NTASK) 

WAIT  FOR  ALL  TASKS 

END 

SUBROUTINE  MLT  (KN,KT) 

COMMON  /AC/  A(500,1500),  B(1500,200),  C(500,200) 

REAL*8  A,  B,  C, T 

KUB=200*KN/KT 

KLB=l+ZOO*(KN-l  )/KT 

DO 20  I=l, 500 

DO  20  K=KLB,KUB 

T=O.DO 

DO 30 J=1, 1500 

30 T=T+(B(J,K)*A(I,J)) 

20 C(I,K)=T 

RETURN 

END 
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Figure 16 Matrix  multiplication with DISPATCH 

INTEGER KN(200) 

COMMON  /AC/  A(500,1500),  B(1500,200),  C(500,200) 

REAL%  A,  B, C 

DO 20  Knl, 200 

KN(K)=K 

20  DISPATCH ANY TASK  ITASK, 

* SHARING  (AC) , 
* CALLING  MLT (KN(K)) 

WAIT  FOR  ALL  TASKS 

END 

SUBROUTINE MLT(K) 

COMMON  /AC/ A( 500,1500), B( 1500,200), C( 500,200) 

REAL*8  A, B, C, T 

DO 20 1 ~ 1 ,  500 

TeO .DO 

DO 30 J=1,  1500 

30 T=T+(B(J,K)*A(I,J)) 

20 C(1  ,K)=T 

RETURN 

END 
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Figure 17 Matrix multiplication with PARALLEL  LOOP 

REAL*8 A, B, C, T 

PARALLEL LOOP  20  K=l, 200 

PRIVATE (T ) 

DO 20 I=l, 500 

TPO DO 

DO 30 J=1, 1500 

30 T=T+(B(J,K)*A(I,J)) 

20 C( I ,K)=T 
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Figure 18 Matrix multiplication with parallel DO loop 

COMMON /AC/ A(500,1500),  B(1500,200),  C(500,200) 

REALx8 A,  B, C, T 

DO 20 K=1, 200 

DO 20 1-1, 500 

T=O . DO 
DO 30 Jp1, 1500 

30 T=T+(B(J,K)*A(I,J)) 

20 C( I ,KIST 

Figure 19 Parallel report for  matrix multiplication with 
parallel DO loop 

p m  +-””” DO 20 K-1, 200 
I 

I t  
VECT I+------ DO 20 1-1, 500 

I I  
I I  sm I I+””- 
I l l  

DO 30 J=l, 1500 

TWO. DO 
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