
IBM Parallel FORTRAN

1BM Parallel FORTRAN is a compiler and library for
writing and executing parallel programs. It provides
language extensions for explicitly programming in par-
allel, and it also provides compiler enhancements for
automatically generating both parallel and vector code.
Parallel FORTRAN offers a language for parallel pro-
gramming that is independent of the machine configu-
ration and the operating system. The combination of
Parallel FORTRAN and IBM 3090 multiprocessors can
provide a significant reduction in turnaround time for
applications.

P arallel processing is a widely accepted technique
for reducing the turnaround time for engineer-

ing and scientific computation-bound applications.’
Recently there has been a renewed interest in parallel
processing, and today a number of computer man-
ufacturers are offering parallel processors.* The IBM
3090 multiprocessor is one such system. The 3090
supports up to six scalar and vector processors, all
sharing a global mem01-y.~ IBM Parallel FORTRAN
enhances the parallel processing capabilities of the
3090.4

Parallel FORTRAN is a compiler and library that al-
lows FORTRAN programmers to exploit parallel proc-
essing on IBM 3090 multiprocessors. It operates un-
der the MVS/XA and the VM/XA System Product (SP)
operating systems. Parallel FORTRAN was developed
in IBM jointly by the Programming Systems Santa
Teresa Laboratory, the Palo Alto Scientific Center,
and the Data Systems Division in Kingston, and it
has been available on a limited basis since March
1988.

by L. J. Toomey
E. C. Plachy
R. G. Scarborough
R. J. Sahulka
J. F. Shaw
A. W. Shannon

FORTRAN was introduced by IBM in 1954 and is the
predominant language for scientific and engineering
 application^.^ IBM FORTRAN compilers and libraries
have been modified to support the evolving IBM
hardware. vs FORTRAN Version 1 introduced a basic
form of parallelism with the Multitasking Facility
(MTF) .~ Automatic vectorization was added to vs
FORTRAN Version 2 to support the IBM 3090 Vector
Facilit~.’,~ Parallel FORTRAN continues the evolution
by providing language extensions for explicitly pro-
gramming in parallel and by providing compiler
enhancements for automatically generating both
parallel and vector code. The extensions for parallel
execution allow programmers to exploit the full
hardware capability of the IBM 3090 multiprocessor.

Parallelism can occur in different forms in a FOR-
TRAN program. An application may have subroutines
that can execute concurrently on different data.
Loops may have iterations that can execute at the
same time. Sequences of statements may be eligible
for concurrent execution. Parallel work may occur
nested within other parallel work. Extensions in
Parallel FORTRAN allow the specification of these
various forms of parallelism, wherever they may
occur.

Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOC 27, NO 4, 1988 416 TOOMEY ET AL.

This paper discusses the extensions in Parallel FOR-
TRAN to support parallelism as follows:

Automatic parallel execution for eligible DO loops
Automatic integration of parallel and vector proc-

Language for parallel loop iterations
Language for parallel statement sequences
Language for parallel subroutines
Library routines for synchronizing parallel pieces

essing

of work

Also covered are execution environments and per-
formance considerations when using Parallel FOR-
TRAN. The paper concludes with examples that show
both parallel and vector processing of a matrix-
multiplication program.

Background

Parallel FORTRAN evolved from a prototype that had
been developed as part of a joint study with Cornell
University. The Cornell Theory Center is one of five
National Science Foundation supercomputer centers
that were initiated in 1985 to provide supercomput-
ing resources for scientists nationwide. The Theory
Center's primary supercomputing resource is the
Cornell National Supercomputer Facility (CNSF).~
The CNSF configuration is based on an IBM 3090
Model 600E with six Vector Facilities.

An objective of the Cornell Theory Center has been
to explore parallelism and to provide parallel com-
puting in a production environment. A parallel FOR-
TRAN compiler was needed to achieve this objective;
it was defined and specified jointly by IBM and Cor-
nell. The resulting compiler, called the Parallel FOR-
TRAN Prototype, was developed by IBM and delivered
to Cornell in January 1987. Cornell has been using
the prototype since then to explore parallel comput-
ing on its six-way IBM 3090."

In addition to discussions with Cornell, the Parallel
FORTRAN Prototype was built on experience gained
with three previously existing parallel program pack-
ages developed at IBM. These three packages provide
FORTRAN programmers the following ways to access
the multiprocessing capabilities of an IBM main-
frame:

The vs FORTRAN Multitasking Facility (MTF). MTF
is a set of subroutines incorporated into the vs
FORTRAN Library,6 that allow FORTRAN subrou-
tines to be executed asynchronously from the

IBM SYSTEMS JOURNAL, VOL 27, No 4, 1988

mainline FORTRAN program. MTF operates only
under the MVS operating system.
Environment for Parallel Execution (EPEX). EPEX
was developed at the IBM T. J. Watson Research
Center to support the experimental, highly parallel
R P ~ computer," which executes multiple instances
of the same program, each running on its own
processor. Each processor in the system, besides
having its own local memory, is linked to the
other processors by a common shared memory.
EPEX simulates this environment under VM by
using multiple virtual machines and writable
shared-memory segments. The shared memory is
used for sharing data between the instances of the
program and for special coordination and syn-
chronization variables defined by EPEX.
Loosely Coupled Array of Processors (ICAP). lCAP
was developed in IBM Kingston to support an
experimental parallel system that consisted of a
set of array processors attached via channels to an
IBM mainframe system." lcAP allowed FORTRAN
subroutines to be executed asynchronously on the
attached array processors. It now provides the
ability to execute its programs totally on an IBM
mainframe. lcAP operated under both the VM and
the MVS operating systems.

Programming of parallel applications

If a program is to be executed in parallel, it is
necessary to assign different pieces of the program to
different processors during execution. This requires
that the pieces eligible for execution in parallel be
identified. In some cases, it is possible for the parallel
pieces to be identified automatically by the compiler.
In other cases, the programmer may have to specify
the parallel pieces explicitly. Parallel FORTRAN sup-
ports both methods of achieving parallel execution.

Specifically, Parallel FORTRAN provides the follow-
ing:

Extensions to the compiler for automatically gen-

Extensions to the language for explicitly program-

Extensions to the library for synchronizing parallel

erating parallel code

ming in parallel

execution through locks and events

The FORTRAN program identifies the pieces of work
that are eligible to run in parallel. The FORTRAN
library then maps the parallel pieces of work onto
virtual processors that are known as FORTRAN proc-
essors. The operating system maps the FORTRAN
processors onto the real machine processors.

TOOMEY ET AL. 417

The number of FORTRAN processors is specified as a
run-time option. By varying this number, the user
can control the maximum degree of parallel execu-
tion that FORTRAN attempts to achieve during a given
execution of an application. The number of real

Automatic parallelism is the simplest
way to introduce parallelism

into an application.

processors available depends on the machine config-
uration, on other work being executed in the system,
and on the relative priorities assigned to the work. If
more real processors are assigned to the parallel
program by the operating system, more parallel ex-
ecution may be achieved.

The hardware configuration and differences between
operating systems are not exposed in the FORTRAN
program. Instead, the program simply specifies sec-
tions within the program that can be executed con-
currently. The compiler and library accept this speci-
fication and execute the parallel sections, using the
processors available to the program.

Automatic parallel

Automatic parallelism is the simplest way to intro-
duce parallelism into an application. A new compiler
option requests that the compiler analyze nests of
DO loops to determine whether they are eligible for
parallel execution. Parallel code is generated only if
the results will be not be changed by parallel execu-
tion. An extension of the data-dependence algo-
rithms used for vectorization determines whether
loops or selected statements within loops may be
executed in parallel. If there are no dependences that
prevent parallel execution, the compiler determines
whether it is cost-effective to execute the loop in
parallel. If so, parallel code is generated for the loop;
otherwise, serial code is generated. Besides being a
simple way to introduce parallelism, automatic par-
allelism also allows a program to remain portable to
other FORTRAN compilers.

418 TOOMEY ET AL.

The vector and parallel compiler options may both
be specified. In this case, the compiler analyzes nests
of DO loops for both parallel and vector execution.
Individual loops may be selected for vector or par-
allel execution, or for both vector and parallel exe-
cution. A loop selected for parallel may contain inner
loops in any mode; a loop selected for vector may
contain only inner loops which are scalar and serial.
If it is found to be cost-effective, loops may be broken
apart and different pieces executed in different
modes.

The directives provided by vs FORTRAN to influence
automatic vectorization have been extended to sup-
port the automatic parallelization. A user may now
indicate a preference for parallel or serial code for a
given loop in the same manner as a preference for
scalar or vector code might have been indicated
previously. The user may also express a preference
for the number of processors to assign to the loop at
run time and for the number of iterations to be
grouped together as a unit of work at run time.

Parallel language extensions

Although automatic detection of parallelism may be
an easy way to introduce parallelism, it does have
some limitations. Primary among these is the re-
quirement that the answers not change during exe-
cution in parallel. Some algorithms are able to run
effectively in parallel even though they contain data
dependences that can cause their results to change
from parallel run to parallel run. In chaotic relaxa-
tion, for example, the algorithms are designed to
converge, and they are deemed to be successful when
they converge to a value with some small tolerance.
Any value with this tolerance is as acceptable as any
other. Automatic parallelization insists on producing
the same value as is produced by a serial execution
of the program, and so it does not make parallel a
program with such data dependences. Therefore,
although automatic detection of parallelism is an
easy way to obtain parallel execution, it does not
provide the complete answer for a parallel program-
mer.

For this reason, Parallel FORTRAN provides language
extensions with which the programmer may specify
parallel execution. The language extensions can be
categorized into two types: in-line extensions and
out-of-line extensions. The in-line extensions, which
define parallelism within a routine, identify loops or
blocks of statements that can be executed concur-
rently. The out-of-line extensions, which define par-

BM SYSTEMS XXIRNAL. VOL 27. NO 4, 1988

allelism across routines, identify subroutines that are
eligible for parallel execution. Both types of exten-
sions can be nested. Thus programs that have been
written to exploit parallel execution can be encap-
sulated as library routines and can be invoked from
other programs, either serially or in parallel, in the
usual FORTRAN manner.

The in-line extensions permit the code within a
subroutine to be dynamically parceled out to more
than one processor for execution. The parallel code
sequences operate on the arrays and scalars known
to the subroutine. In this, they are similar to DO
loops, which are automatically parallelized. They are
unlike the automatically parallelized loops, however,
in that the programmer can specify operations that
contain data dependences.

The out-of-line extensions permit a user to create
new, disjoint, asynchronous execution environments
for one or more FORTRAN subroutines. Each disjoint
collection of subroutines, called a task, is indepen-
dent of all other tasks; the execution of one task
cannot affect another unless the programmer explic-
itly shares data between them. Thus, when algo-
rithms have been programmed and debugged, they
can be easily encapsulated within their own task
environments. When users explicitly share data be-
tween tasks, they are also explicitly identifying data
areas that should be reviewed if errors occur during
parallel execution.

Parallel loops. A parallel loop is one in which each
iteration of the loop may be executed concurrently.
Some unspecified number of processors, possibly one
per iteration, may be used to execute the loop. The
number of processors is determined at run time, and
that number can vary from one to the number of
FORTRAN processors specified at run time. The order
in which iterations are executed is therefore not
guaranteed. All iterations are completed, however,
before execution continues beyond the end of the
loop. The programmer is responsible for ensuring
that the loop is valid for parallel execution. Nor-
mally, each iteration should be computationally in-
dependent of other iterations. Alternatively, the user
can ensure that the proper synchronization is used
between iterations or that the results are meaningful
in the absence of such synchronization. A PARALLEL
LOOP has a syntax that is similar to a DO loop, a
simple form of which is shown in Figure 1.

This simple form of a parallel loop permits iterations
to execute in parallel. Suppose, however, that a pro-

IBM SYSTEMS JOURNAL, VOL 27. NO 4, 1988

Figure 1 Simple form of PARALLEL LOOP

PARALLEL LOOP label index=il,i2,13

statements

label CONTINUE

Figure 2 Example of PRIVATE statement

PARALLEL LOOP 1 1111.12

PRIVATE (XTEMP)

XTEMP=A(I)*B(I)

C(I)=XTEMP*D(I)

1 CONTINUE

grammer needs to compute a temporary result, such
as XTEMP, within an iteration. A statement like
XTEMP=A(I)*B(I) cannot work in parallel. When sev-
eral processors execute the statement simultane-
ously, each computing with a different value of I,
only one value of XTEMP is saved, i.e., the one that
by chance was stored last. Each processor therefore
needs its own private copy of XTEMP for the program
to operate correctly. Such private variables may be
declared with a PRIVATE statement, as shown in
Figure 2.

Further, given such private variables, it is sometimes
desirable to initialize them before executing itera-
tions of the loop, or to reference their final value
after all loop iterations are complete. DOFIRST and
DOFINAL statements are provided for this purpose.
These statements delimit, respectively, a prolog and
epilog block for the loop. They may specify, by a
LOCK operand, that only one processor at a time is
to be permitted to execute the prolog or epilog.
DOEVERY delimits the remaining body of the loop
that is executed on each iteration.

Figure 3 Example of PARALLEL LOOP extensions

Figure 4 Simple form of PARALLEL CASES
~ ~~~~

The example in Figure 3 shows the use of these
statements to implement a sum reduction. The prob-
lem is to compute a global sum GSUM of a vector

AVAL. A private variable PSUM is initialized to zero
for each processor and used in each processor to
accumulate a sum of the elements of the vector AVAL
assigned to that processor. The number of elements
accumulated in each local PSUM is determined dy-
namically at run time. When all elements have been
summed, each processor adds its private partial sum
PSUM into the global total sum GSUM. This final
addition is done under control of a lock, so that
GSUM is updated by only one processor at a time.
(This example, which is used to illustrate the parallel
loop, may not contain enough processing for profit-
able parallel execution.)

Parallel cases. It is often possible to execute blocks
of statements in parallel. The blocks may contain
straight-line code or loops, and the loops may be
either parallel or vector loops. What is significant is
that the blocks may be processed concurrently. At
the limit, each block can be executed by a different
processor, the number of which is not known but
may range from one up to the number of blocks.
The exact number is determined at the time the
blocks are executed. As with parallel loops, the pro-
grammer is responsible for ensuring that such blocks
are valid for parallel execution. That is to say, each
block is computationally independent of the others,
or the data interactions that arise between blocks are
either controlled or intentional.

The PARALLEL CASES structure is provided to simplify
the programming of such parallel blocks of state-
ments. A simple form of parallel cases is shown in
Figure 4. The three illustrated cases may execute
concurrently, but there is no guarantee of the order
of their execution. As with parallel loops, the cases
may employ private variables as needed. All cases
are completed before execution continues beyond
the END CASES statement.

It is often helpful to make some cases wait until
preceding cases complete. An early case could then,
for example, compute data to be used by more than
one subsequent case. To facilitate this, cases may be
numbered, and any case may wait for any specified
preceding case. A sample is shown in Figure 5. In
this manner, a program containing an acyclic graph
of dependences may be translated into a series of
parallel cases.

Both parallel loops and parallel cases may contain
nested parallel loops and parallel cases. Input and
output statements may be used within parallel loops
and parallel cases.

BM SYSTEMS JOURNAL. VOL 27, NO 4, 1988

Parallel tasks. Parallel loops and cases are state-
ments that yield in-line parallelism, spreading the
work of a given subroutine across multiple proces-
sors. Out-of-line parallelism, in contrast, creates new
and distinct FORTRAN execution environments and
permits each of these distinct environments to exe-
cute concurrently. A shorthand name for these en-
vironments is tusks.

A Parallel FORTRAN program begins execution in a
task referred to as the root tusk. The ORIGINATE
statement may be used to create more tasks. Each
task that is originated in this way has an identifier
and its own storage. The identifier is returned to the
programmer by the ORIGINATE statement and is used
in other statements to manipulate the task. The
storage associated with a task is private to that task
and persists until the task is terminated. When a task
is no longer needed, it can be deleted with a TERMI-

statements are shown in Figure 6.

Work is assigned to a task with the DISPATCH and
SCHEDULE statements, which name a subroutine to
be executed asynchronously in the subtask and list
the arguments to be passed to the called subroutine.
The user may specify a particular task to be called
or may request that the library choose any available
task. Dispatched tasks complete their work automat-
ically. Scheduled tasks require that the user subse-
quently issue a corresponding wait. Sample state-
ments are shown in Figure 7.

Tasks, like subroutines in traditional FORTRAN, may
communicate through arguments and common
blocks. Figure 8 shows the optional clauses on the
SCHEDULE and DISPATCH statements to control the
use of common blocks. A SHARING clause may be
used to name common blocks to be shared with the
task selected to execute the subroutine. Shared com-
mon blocks are accessed in the same location by
both tasks. The scheduled or dispatched subtask uses

NATE Statement. The ORIGINATE and TERMINATE

Figure 5 Extended form of PARALLEL CASES

PARALLEL CASES

CASE 1

statements

CASE 2

statements

CASE 3, WAITING FOR CASE 1

statements

CASE 4, WAITING FOR CASES (1,2)

statements

CASE 5, WAITING FOR CASES (1,2,3)

statements

END CASES

Figure 6 ORIGINATE and TERMINATE statements

ORIGINATE ANY TASK itask

TERMINATE TASK itask

Figure 7 Sample SCHEDULE and DISPATCH statements
~~~~~ ~~~ 

SCHEDULE TASK itask,  CALLING  subnam(argl,arg2, ... ) 
DISPATCH ANY TASK itask,  CALLING  subnam(argl,argZ, ... > 



Figure 8 Options for SCHEDULE or DISPATCH statement 

the same copy of the common block  as the task that 
invoked it. A COPYING clause  may  be  used to name 
common blocks that are to be  copied into a  task 
when  work  is  assigned and copied out of the task 
when  work  is completed. Both the superior and the 
subordinate tasks  have  a private copy  of  these com- 
mon blocks. COPYINGI and COPYINGO name com- 
mons that are to be copied  respectively  only into  or 
only out of the subtask. 

Tasks  can  be  assigned  a  variety of pieces  of  work.  A 
TAGGING clause is provided to allow the programmer 
to name or tag  a particular piece  of  work. The values 
of the tags are saved  when the task is scheduled. 
Subsequently,  when the programmer issues  a  wait 
for  a  task, the values of  tags  for the completing task 
may  be  retrieved. This makes it easy  for the program 
to determine the specific  piece of work that had been 
assigned to the task that just completed. 

The WAIT FOR statement is  used to detect when  a 
task  has completed its assigned  work. Three types of 
WAIT FOR statements are available:  wait  for  a  specific 
task,  wait  for any task, and wait  for  all  tasks.  Figure 
9 shows the variations of the WAIT FOR statement, 
including its optional TAGGING clause. 

Parallel library. The Parallel FORTRAN library  also 
has extensions for  parallelism.  Some of these  exten- 
sions are internal, supporting the parallel  language 
and the automatic parallel  capabilities of the com- 
piler. Other extensions are external and may  be  used 
directly by the programmer. 

Routines are  provided  for the management of locks 
and events.  Locks  may  be used to ensure that only 
one processor at a time gains  access to a  resource, 
such as  a  variable  using  a  global counter. Events  may 
be  used to make a  task  wait until another task  has 
reached some point in execution. Synchronization 
techniques of many kinds can be implemented using 
locks and events. 

An optional trace of the parallel execution may  be 
requested via a run-time option. The trace  may  be 
an aid in tuning or debugging  a  program that exe- 
cutes in parallel. A separate trace file can be produced 
for  each  task, or a  single trace file can be produced 
covering  all  tasks.  Each trace record  identifies the 
executing task, subroutine, and statement. The sys- 
tem provides trace records  for such events  as start- 
and end-of-program execution, origination and ter- 
mination of tasks,  assignment and completion of 
work to tasks, sharing and copying common blocks, 
start and end of parallel loops and parallel  cases, and 
uses  of  locks and events. Programmers may  also 
enter trace records into these files  by calling  a  library 
subroutine. The level  of detail generated  in the trace 
file is controlled by the run-time option or by a 
library  call. 

Figure 9 Example of WAIT FOR statements 



Execution of parallel  applications 

Three conditions are required  for a program to exe- 
cute in parallel: (1) multiple pieces of parallel  work 
ready  for execution; (2) multiple FORTRAN processors 
associated  with the program; and (3) multiple real 

Parallel  execution  and  performance 
are improved  when  the  queue 

does  not  empty. 

processors  available to  it. The programmer controls 
the first  two conditions directly; the Parallel FORTRAN 
language and compiler are used to identify the par- 
allel  pieces  of  work, and a run-time option is  used 
to specify the number of FORTRAN processors. The 
third condition, the number of  real  processors,  is 
controlled by the operating system and depends on 
the amount of other work  being done by the system 
and on the relative  priorities  assigned to that work. 
As real  processors  become  available, the operating 
system can allocate them to the parallel program, 
and more of the parallel  pieces of  work can be 
executed simultaneously. The Parallel FORTRAN ex- 
ecution environment is shown  in  Figure 10. 

Parallel FORTRAN allows the programmer to identify 
more pieces  of parallel  work than there are FORTRAN 
processors. The additional pieces  may  be thought of 
as  sitting in a queue. Thus, when a FORTRAN proces- 
sor  finishes one piece  of  work, it selects the next 
piece  from the queue and executes it. The FORTRAN 
processors can continue to run without operating 
system interactions as long  as the queue contains 
work.  When the queue empties and refills,  however, 
the FORTRAN processors must use the less  efficient 
mechanisms provided by the operating system to 
suspend and restart  themselves. 

The degree to which  the queue of pending  parallel 
work  can  be  kept  from emptying varies from appli- 
cation to application. Parallel execution and per- 
formance are improved when the queue does not 
empty, because operating system  overhead is then 

IBM  SYSTEMS JOURNAL,  VOL 27, NO 4, 1988 

normally not required to schedule and synchronize 
parallel  work. The language extensions in Parallel 
FORTRAN and its support for multiple levels of par- 
allel  execution both facilitate the identification and 
execution of a continuing stream of  eligible  parallel 
pieces  of  work. 

The method used  for  representing FORTRAN proces- 
sors depends on the operating system. Under MVSIXA, 
each FORTRAN processor  is implemented as an MVS 
task. Under VM/XA, where  programs are run 
in virtual machines, the virtual machine is made into 
a virtual multiprocessing machine and each FOR- 
TRAN processor is executed by one of the virtual CPUS 
within the virtual multiprocessing machine. This is 
described in more detail subsequently in this paper. 
The programmer of a parallel  program  does not need 
to know about this difference  between operating 
systems.  Regardless of the operating system, the pro- 
grammer refers  only to the FORTRAN processors. It is 
the job of the FORTRAN compiler and library to 
provide  these FORTRAN processors in a portable man- 
ner. 

Other mechanisms have  been  used by other parallel 
processing  packages  for the IBM 3090 multiproces- 
sors. The vs FORTRAN Multitasking Facility (MTF), 
for  example,  uses the technique of suspending and 
restarting  tasks  for  each independent piece of work. 
This can result in two interactions with the operating 
system  for  each dispatch of a piece  of  parallel  work. 
A different approach, mi~rotasking,'~ keeps the pro- 
cessors in a busy-wait  spin loop when  they  have 
nothing to do. This avoids the overhead of suspend- 
ing  and.  restarting  work by the operating system  for 
the user of microtasking, but the cycles  used  for 
spinning are lost to other users in the system. 

Parallel FORTRAN programs  may be run  on dedicated 
or undedicated systems. On a dedicated system, the 
program runs most  quickly. On  an undedicated sys- 
tem, the speed of the parallel  program is  affected, 
because the real  processors are used to support exe- 
cution of other concurrent programs.  Relative prior- 
ities  may  be  used to bias the operating system  toward 
or  against the parallel program. 

The programmer should  have in mind whether the 
computer system  is dedicated or undedicated. On a 
dedicated  system, the programmer might  assign  each 
FORTRAN processor a fixed and equal amount of 
work to  do concurrently. This is  called static map- 
ping, and it works well  when each FORTRAN processor 
is assured of  being  given a real  processor.  Because 



PARALLEL  FORTRAN LIBRARY 

PROCESSOR 
FORTRAN  FORTRAN  FORTRAN 

PROCESSOR  PROCESSOR 

"it- 
REAL  CPUO 

MVS/XA OR VM/XA 

L REAL CPUl 

I ... 1 
I 
I 

L""J 

equal amounts of work are assigned to each  proces-  essors among multiple users, this static mapping may 
sor,  they should all complete work at the same time. not perform well. 
Therefore,  they  all remain busy  as  long as there is 
parallel work  assigned to them. However, in an Suppose an application has  been  statically mapped 
environment where there is contention for  real  proc- and all  processors are working on it. Further suppose 

424 TOOMEY ET AL. IBM SYSTEMS JOURNAL, VOL 27, NO 4. 1988 



that one processor  is taken away to  do a small  piece 
of work  for the operating system,  while the other 
processors continue to execute on their statically 
mapped partitions. When  these other processors  fin- 
ish their partitions, roughly  all at the same time, the 
interrupted processor  still  has some work to do on 
its partition, because of the time it lost  working  for 
the operating system.  Also,  because the program  has 
divided its work  statically, there is nothing for the 
other processors to do until the final  processor fin- 
ishes its partition. All processors are affected by a 
temporary loss  of one processor. 

On undedicated systems, an application that parti- 
tions work dynamically rather than statically  prob- 
ably performs better. Dynamic partitioning allows 
the program to make use  of  real  processors  as  they 
become  available during execution. Parallel  loops 
and cases and automatically parallelized loops are 
executed  with dynamic scheduling. Certain out-of- 
line  language statements, such  as WAIT FOR ANY 
TASK, also  allow dynamic load  balancing on the 
available  real  processors. The matrix-multiply ex- 
ample described later in the paper explores this issue 
further. 

When a Parallel FORTRAN program is executed  with 
a single FORTRAN processor, the order of execution 
of the program  is  repeatable. The statements always 
execute in the same order for the same data. This 
allows  for the development and debugging  of a par- 
allel  program in an environment where  bugs are 
reproducible.  When the program  is  executed  with 
multiple FORTRAN processors, the order of execution 
is not repeatable.  Such  bugs  may  be thought of as 
nondeterministic and not easily  reproducible.  It is 
beneficial to remove the deterministic class  of  bugs 
prior to parallel  execution. 

Parallel  processing  within  a  virtual  machine  on 
VM/XA 

Under VM/XA, as indicated earlier in this paper, 
programs are run within virtual machines.  When a 
Parallel FORTRAN program  is  executed, the virtual 
machine is made into a virtual multiprocessor. Each 
FORTRAN processor is executed by a virtual CPU 
within that virtual multiprocessor. (See Figure 1 1 for 
an illustration of this point.) 

Programs under VM/XA are normally  executed under 
control of a simple operating system, CMS, which 
runs within the virtual machine. CMS, however,  is 
not a multiprocessing operating system. It assumes 

IBM SYSTEMS JOURNAL. VOL 27. NO 4, 19% 

that it is running on a uniprocessor, and it cannot 
be  executed concurrently by multiple virtual CPUS 
within a virtual machine. The virtual CPUS that are 
executing  as FORTRAN processors,  therefore, cannot 
be  allowed to execute the internal routines of CMS 
concurrently and asynchronously.  Nonetheless, the 
FORTRAN processors  may  from time to time require 
a service  from CMS, such  as input, output,  or storage 
allocation. 

The solution to this problem is to define one virtual 
cpu-in addition to the virtual CPUS used  as FOR- 
TRAN processors-for  use as a CMS processor.  When 
a FORTRAN processor  requests a CMS service, the 
request is intercepted and queued for execution by 
the CMS processor, and the requesting FORTRAN proc- 
essor  is suspended until the CMS processor completes 
the request. The CMS processor  executes  these  re- 
quests one at a time, finishing  each  completely  before 
beginning the next. Each FORTRAN processor,  since 
it is  suspended while its request  is  processed, sees its 
requests handled in a fully synchronous manner, just 
as though it were on a uniprocessor. The CMS proc- 
essor  executes  requests, one at a time  and from start 
to finish in a fully synchronous manner, just as 
though it  too were on a uniprocessor. This maintains 
the integrity of the CMS internal implementation. 

FORTRAN processors not executing CMS requests are 
able to run without impediment from this serializa- 
tion. Parallel FORTRAN is intended for use  with  large 
computationally intensive applications, and requests 
for CMS services should therefore  be  occasional rather 
than frequent. If repeated use  were made of CMS 
services, alternative processing mechanisms would 
have to be pursued. 

Performance of parallel  applications 

The major reason  for  using  Parallel FORTRAN is to 
reduce the real time required to execute a FORTRAN 
program. The time reduction is  achieved  when mul- 
tiple  processors simultaneously execute portions of 
a single application program. Parallel FORTRAN does 
not reduce the total number of CPU cycles  required 
to execute a program; in fact, a modest  increase in 
CPU cycles  is normally  required. Instead, it allows a 
program to be  split into multiple independent in- 
struction streams.  When  these are executed simul- 
taneously by different CPUS of a 3090 multiprocessor 
system, the program  receives  cycles from each of the 
assigned CPUS. Thus the program  receives more CPU 
cycles in a given  span of real time, and it completes 
its computation more quickly. 

TOOMEY ET AL. 425 



Figure 11 Parallel processing within a virtual machine on VMlXA 

r 

t "it-- 
REAL GPUO 

For programs that are vectorizable, the IBM 3090 cally intensive computations. The Vector  Facility 
Vector  Facility also reduces the real time required to can be  viewed  as  providing  faster CPUS to the pro- 
execute  a FORTRAN program. The Vector  Facility gram.  Vector and parallel  execution complement 
improves performance because it uses  fewer CPU each other. Their combined use results in more and 
cycles than the scalar  processor  for many numeri- faster CPUS executing on a  program and can lead to 

426 TOOMEY ET AL. IBM  SYSTEMS JOURNAL, VOL 27, No 4. 1988 



a larger reduction in the real time required to execute 
a program than either vector or parallel  alone. 

The improvement in turnaround  time for an appli- 
cation converted to parallel  is limited by the amount 

The  improvement  in  turnaround  time 
for  an  application  converted 

to parallel  is  limited by the  amount 
of serial  processing  that  remains 

in  the  converted  application. 

of serial  processing that remains in the converted 
application. Not everything can be done in parallel. 
For example, the reading of initial data and the 
printing of final  results are often done by a single 
processor. The following equation, often  referred to 
as  Amdahl's  law,  can  be  used to estimate an upper 
limit for the speedup  expected  for an application. 
Given the fraction of the original  serial execution 
time that can be  converted to parallel, p, and the 
fraction that must remain in serial, 1 - p, the equa- 
tion computes the maximum speedup  for a given 
number of processors, n, as follows: 

n Speedup = 
n(1 - P )  + P .  

Measurements of performance. Applications vary in 
the degree to which they  can be parallelized. An 
indication of this can be  seen in results of measure- 
ments on four applications representing  different 
areas of scientific  research. Measurements were 
taken using  from one through six processors.  Figure 
12 shows the speedups  achieved. The speedups 
shown are relative to the serial  vectorized  versions 
of the applications. The primary factors  affecting the 
speedup of an application are the number of proces- 
sors  allocated to  an application and the percentage 
of the application's  processing that can execute in 
parallel. 

Programs A and B were measured at Cornel1 Uni- 
versity on a VM/XA system  using the Parallel FOR- 

IBM SYSTEMS JOURNAL, VOL 27, NO 4. 1988 

TRAN prototype." Program A, which studies protein 
folding and the 3D structure of polypeptides,  uses a 
Monte Carlo technique to evaluate the free  energy 
of the system.  It was parallelized  with the out-of-line 
language  extensions.  Program B, which  involves  re- 
search on statistical methods, performs multiplica- 
tion, factorization, and inversion of  very  large mat- 
rices  using the automatic parallel and automatic 
vector compiler options. Programs C and D were 
measured under MVS/XA, using the released  version 
of Parallel FORTRAN. Program C is a high-energy 
physics application employing a Monte Carlo simu- 
lation for the simulation of quantum chromody- 
namics. It too is a vector program, but  it uses  parallel 
subroutines. Program D is a thin-layer  fluid dynam- 
ics application using  parallel  tasks. All runs were 
made in a dedicated environment on a 3090 Model 
600E equipped with six Vector  Facilities. 

The four programs ran from 4.1 to 5.3 times faster 
on the six-way machine; therefore they  show  effective 
parallelism of 90 to 97 percent, according to Am- 
dahl's  law. Effective percent parallelism  is  calculated 
by observing the actual speedup of an application 
and then using  Amdahl's law. 

Parallel programming guidelines. The results of the 
measurements of parallel applications show that the 
speedups can vary and  that each application is  dif- 
ferent. It is  difficult to predict in advance how a given 
application will perform. However, the fdlowing  are 
guidelines  for  writing  successful  parallel  programs 
on the IBM 3090: 

Optimize code for serial  processing. Traditional 
optimization remains just as important in parallel 
codes  as it does in  serial  codes.I4 Optimization 
reduces the absolute number of CPU cycles  re- 
quired to execute the program.  Parallelization by 
itself  merely  spreads the remaining cycles  across 
more than  one processor.  It  is  still important  to 
optimize the code  for the scalar and vector  capa- 
bilities of the processor  when  writing a program 
with  Parallel FORTRAN. 
Maximize the parallel use of multiple Vector Fa- 
cilities. For best performance, a program should 
be structured to take maximum advantage of mul- 
tiple  Vector  Facilities. In general,  good  vector 
operation should not be  sacrificed to obtain par- 
allel operation. 

9 Minimize the work that must be done serially. The 
time it takes to do this work  is part of the mini- 
mum  amount of time it will take a program to 

TOCMEY ET AL. 427 



Figure 12 Performance of selected  application  programs 

~-----S-o 100% PARALLEL ."it---. PROGRAM C t--..-". PROGRAM A PROGRAM D 

PROGRAM B - 85% PARALLEL 

execute. In other words, the more serial the work, butions and the processing required to  do the 
the slower the program  execution. distributions. However, judgment is required, be- 

9 Minimize the overhead due to executing parallel 
constructs. Overhead adds to the minimum 
amount of time it takes to execute  a  program. In 
Parallel FORTRAN, overhead can be minimized by 
several means. Originating  tasks  once and assign- 
ing work to them many times will  save the re- 
peated  overhead of originating and terminating 
tasks. Distributing parallel  work in larger rather 
than smaller  pieces  reduces the number of distri- 

cause the goals  of  assigning  work  dynamically to 
balance the workload on the processors and that 
of assigning  work in large chunks are to some 
extent in conflict. 
Assign workloads that are dynamically self-bal- 
ancing. Unbalanced workloads  have the same neg- 
ative effect on performance as  serial  work.  Parallel 
FORTRAN provides  several  facilities to help dynam- 
ically balance workloads. PARALLEL LOOPS, PAR- 

428 TOOMEY ET AL IBM SYSTEMS JCURNAL.  VOL 27, NO 4. 1988 



Figure 13 Serial  matrix  multiplication 

COMMON /AC/ A(500,1500),  B(1500,200),  C(500,200) 

REAL*8 A, B, C, T 

DO 20 I=1, 500 

DO 20  K=l,  200 

T-0 . DO 
DO 30 J=l, 1500 

30 T=T+(B(J,K)*A(I,J)) 

20 C(I,K)=T 

ALLEL CASES, and automatically parallelized DO 
loops are all  dynamically  load-balanced by the 
library. The SCHEDULE statement, when  used  with 

ments, and  the DISPATCH statement both provide 
a way to assign additional work to tasks without 
waiting  for  all  tasks to complete their assignments. 
Parallel  locks and events  allow the programming 
of many different  types of application-specific 
load-balancing algorithms. 
Minimize storage  contention. Try to make maxi- 
mum use  of  cache and avoid storing adjacent 
words in memory from different  processors.  Meth- 
ods for  achieving  these  objectives include choosing 
the rightmost dimension of an array for  parallel- 
ization and specifying  large chunk sizes  for  a par- 
allelized DO loop or PARALLEL LOOP construct. 

the WAIT FOR TASK Or WAIT FOR ANY TASK State- 

Parallel  programming  example:  Matrix 
multiplication 

In the following  examples,  a matrix-multiplication 
problem is programmed repeatedly in different ways 
to illustrate the features of Parallel FORTRAN and to 
explore  issues in parallel and vector  programming. 

IBM SYSTEMS JOVRNAL. VOL 27, NO 4, 1988 

The first matrix-multiplication program is shown in 
Figure 13, in which  a  serial  program has been opti- 
mized  for  use on the IBM 3090 Vector  Facility. This 
is the code that is to be  parallelized in the remaining 
examples. In the example, the temporary variable T 
allows the compiler to use the vector MULTIPLY-AND- 
ADD instruction. As a  result, the program  in  Figure 
13 computes 128 different  values of T = T + 
(B(J,K)*A(Z,J)) with  a  single instruction, and  it 
keeps  these resultant values in a  register and stores 
the 128 values of C(Z,K) only  once. 

The objective now is to parallelize the matrix mul- 
tiplication without degrading the vector  perfor- 
mance.  Figure 14 shows that the matrix multiplica- 
tion is vectorized  over the Z loop and  that vector 
register  reuse  is obtained by storing C(Z,K) outside 
the J loop only. This leaves the K loop as the prime 
candidate for  parallelization. 

Figure 15 shows  how this can be done by using the 
SCHEDULE and WAIT FOR Statements. The matrix 
multiplication is  placed into a subroutine named 
MLT and is  modified so that it computes one Nth, 
where  N  is the number of processors of the matrix. 

TOOMEY ET AL. 429 



Figure 14 Vector report for  matrix  multiplication 

T,lECT +”----- DO 20 I=l, 500 
I 

I I  
II 
II 

SCAL I I+---- 
I l l  
I l l -  T=T+(B(J,K)*A(I,J)) 
II 

SCAL I+----- DO 20 K=l, 200 

To0 . DO 
DO 30 J=I, 1500 

C(I  ,K)-T 

The arguments of the matrix multiplication tell it 
how many processors there are and which Nth it is 
to compute. The matrix multiplication is  scheduled 
for  parallel execution with multiple executions of 
the SCHEDULE statement. 

The matrix multiplication is an example of a static 
mapping of  work to processors that can work well 
on a dedicated system  if  each  scheduled  task  is 
assured of having  a  real  processor immediately avail- 
able.  However, if the program  is  executing in an 
environment where there is contention for the real 
processors, the parallel performance actually 
achieved is determined by the task that receives the 
lowest  level  of  service. 

Dynamic balancing of work to processors  is  likely to 
be preferable  when  systems cannot be dedicated. 
Parallel FORTRAN provides  several methods for  dy- 
namic load  balancing, as illustrated in the next three 
examples. All  of these  examples  begin  with the ob- 
servation that the ordering of the I and K loops may 
be  reversed.  When this is done, the K loop becomes 
the outermost loop, where it is suitable for  parallel- 
ization. The Z and J loops,  meanwhile, maintain 
their relationship to each other for  generating effi- 
cient vector  code. 

Figure 16 shows the way in which dynamic load 
balancing can be done with the DISPATCH statement. 
For this technique, subroutine MLT is  modified so 
that, rather than doing one Nth of the matrix mul- 
tiplication, it does one iteration of the new outermost 
K loop. 

430 TOOMEY ET AL. 

Figure 17 shows dynamic load balancing being done 
by using the PARALLEL LOOP statement. Note that 
this code is a  small  modification of the original 
matrix multiplication shown in Figure 13. Finally, 
Figure 18  shows dynamic load balancing being done 
using automatically generated  parallel DO loops, and 
Figure 19 shows the way in which the compiler 
parallelized and vectorized the program. 

Concluding remarks 

Parallel FORTRAN provides  a  rich spectrum of func- 
tion that supports a  wide  range  of  parallel application 
programming styles. It can easily  be  used to exploit 
the parallel and vector  capability of IBM 3090 sys- 
tems. 

The parallelism in an application may  be  expressed 
in ways that are natural to the application. PARALLEL 
LOOPS and PARALLEL CASES may  be  used to parallelize 
the statements within a routine; SCHEDULE and DIS- 
PATCH may  be  used to execute independent subrou- 
tines in parallel. Automatic parallel and automatic 
vector  may  be  used to gain  faster execution of nests 
of  eligible DO loops.  Parallel execution is not re- 
stricted to a  single  level but may  be  specified  wher- 
ever it occurs.  Operating-system and machine-con- 
figuration  differences are not exposed to the pro- 
gram. 

The Parallel FORTRAN program  identifies the pieces 
of  work  eligible to run in parallel.  When the program 
is  compiled and executed, the library puts the parallel 
work in a queue and distributes it to Parallel FOR- 
TRAN processors.  Real  processors are allocated  dy- 
namically by the operating system. As additional real 
processors are allocated, additional FORTRAN proces- 
sors can execute concurrently. Programs that parti- 
tion work dynamically, employ multiple levels of 
parallelism, or use other strategies to keep the queue 
of parallel  work  full can best take advantage of these 
additional real  processors as they  become  available 
during execution. 

Parallel FORTRAN applications can run under the 
MVS/XA and the VM/XA SP operating systems. The 
degree  of  parallel execution can be controlled at run 
time through the number of FORTRAN processors. 
When  parallel  execution  is  requested and multiple 
real  processors  are  available,  Parallel FORTRAN can 
be  a  valuable  aid in reducing the turnaround time of 
applications. 

WM SYSTEMS JOURNAL, VOL 27, NO 4, 1988 



Figure 15 Matrix multiplication with SCHEDULE 

INTEGER  KN(2OO) 

COMMON  /AC/  A(500,1500),  B(1500,200),  C(500,200) 

REAL*8 A, 8, C 

DO 20  K=1, NTASK 

KN(K)=K 

20  SCHEDULE ANY TASK  ITASK, 

* SHARING (AC), 

* CALLING  MLT  (KN(K),NTASK) 

WAIT  FOR  ALL  TASKS 

END 

SUBROUTINE  MLT  (KN,KT) 

COMMON  /AC/  A(500,1500),  B(1500,200),  C(500,200) 

REAL*8  A,  B,  C, T 

KUB=200*KN/KT 

KLB=l+ZOO*(KN-l  )/KT 

DO 20  I=l, 500 

DO  20  K=KLB,KUB 

T=O.DO 

DO 30 J=1, 1500 

30 T=T+(B(J,K)*A(I,J)) 

20 C(I,K)=T 

RETURN 

END 

IBM SYSTEMS XXJRNAL. VOL 27. NO 4. 1988 TOOMEY  ET AL. 431 



Figure 16 Matrix  multiplication with DISPATCH 

INTEGER KN(200) 

COMMON  /AC/  A(500,1500),  B(1500,200),  C(500,200) 

REAL%  A,  B, C 

DO 20  Knl, 200 

KN(K)=K 

20  DISPATCH ANY TASK  ITASK, 

* SHARING  (AC) , 
* CALLING  MLT (KN(K)) 

WAIT  FOR  ALL  TASKS 

END 

SUBROUTINE MLT(K) 

COMMON  /AC/ A( 500,1500), B( 1500,200), C( 500,200) 

REAL*8  A, B, C, T 

DO 20 1 ~ 1 ,  500 

TeO .DO 

DO 30 J=1,  1500 

30 T=T+(B(J,K)*A(I,J)) 

20 C(1  ,K)=T 

RETURN 

END 

432 TOOMEY ET AL. IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988 



Figure 17 Matrix multiplication with PARALLEL  LOOP 

REAL*8 A, B, C, T 

PARALLEL LOOP  20  K=l, 200 

PRIVATE (T ) 

DO 20 I=l, 500 

TPO DO 

DO 30 J=1, 1500 

30 T=T+(B(J,K)*A(I,J)) 

20 C( I ,K)=T 

IBM SYSEMS XWRNAL. VOL 27, NO 4. 1988 

Acknowledgments 

We  wish to thank the Cornell National Supercom- 
puter Facility (CNSF) staff, the Parallel FORTRAN pro- 
totype  users, and the IBM on-site team at Cornell 
University  for their contributions to Parallel FOR- 
TRAN. In addition to providing us  with requirements 
for a Parallel FORTRAN compiler, the CNSF provided 
an environment where  scientists  could  explore  par- 
allelism in their applications. This allowed  us to 
receive  valuable  feedback  on our parallel  compiler. 
We also  discussed  parallel functions and received 
valuable input and support from the following IBM 
organizations: the Numerically  Intensive Computing 
(NIC) Center in the Palo  Alto  Scientific Center, the 
Engineering/Scientific  Systems NIC Center in IBM 
Kingston, NY, the VM Advanced  Technology group 
in IBM Kingston, NY, the Scientific/Engineering 
Computations group  in  Kingston, NY, the Research 

Parallel  Processing Prototype ( R P ~ )  project at the 
T. J. Watson  Research Center, and the Parallel 
Translator (PTRAN) project at the T. J. Watson  Re- 
search Center. 

Cited  references 

1. R. W. Hockney and C. R. Jesshope, Parallel Computers, 
Adam  Hilger Ltd., Bristol, Great Britain (1981). 

2.  Eric J. Lerner, “Parallel processing  gets  down to business,” 
High  Technology 5, No. 7,20-28 (July 1985). 

3. S.  G. Tucker, “The IBM 3090  system: An overview,” IBM 
Systems Journal 25, No. 1,4-20 (1986). 

4. IBM  Parallel FORTRAN Language  and Library Reference, 
SC23-043 1-0, IBM Corporation; available through IBM 
branch offices. 

5. J. Backus, “Programming in America in the 1950s-some 
personal impressions,” A History of Computing in the  Twen- 
tieth Century, N. Metropolis, J. Howlett, and Gian-Carlo Rota, 
Editors,  Academic  Press,  Inc., New York (1980), pp.  125-135. 

TOOMEY ET AL. 433 



Figure 18 Matrix multiplication with parallel DO loop 

COMMON /AC/ A(500,1500),  B(1500,200),  C(500,200) 

REALx8 A,  B, C, T 

DO 20 K=1, 200 

DO 20 1-1, 500 

T=O . DO 
DO 30 Jp1, 1500 

30 T=T+(B(J,K)*A(I,J)) 

20 C( I ,KIST 

Figure 19 Parallel report for  matrix multiplication with 
parallel DO loop 

p m  +-””” DO 20 K-1, 200 
I 

I t  
VECT I+------ DO 20 1-1, 500 

I I  
I I  sm I I+””- 
I l l  

DO 30 J=l, 1500 

TWO. DO 

434 TOOMEY ET AL 

6. IBM  VS  FORTRAN Version 2, Language and Library Ref- 
erence, SC26-422 1 - 1, IBM Corporation; available through 
IBM branch offices. 

7.  R. G. Scarborough and H. G. Kolsky, “A vectorizing FOR- 
TRAN compiler,” IBM Journal ofResearch and Development 

8.  D. H. Gibson, D. W. Rain, and H. F. Walsh, “Engineering 
and scientific  processing on the IBM 3090,” IBM  Systems 
Journal 25, No. I ,  36-50 (1986). 

9. Forefronts (whole  issue) 3, No.  2, Cornell Theory Center, 
Cornell University, Ithaca, NY  (1987). 

10. C. G. Hecht, “Parallel processing on the IBM 3090 Measure- 
ments of PFP,” Forefronts 3, No. 9, 2-4, Cornell Theory 
Center, Cornell University, Ithaca, NY (1988). 

11.  F. Darema, D. George, A. Norton, and  G. Pfister, A Single- 
Program-Multiple-Data Computational Model  for  EPEX- 
FORTRAN, Research Report RC-11552, IBM T. J. Watson 
Research Center, Yorktown Heights,  NY (1985). 

12. E. Clementi, J. Detrich, S. Chin, G. Corongiu, D. Folsom, 
D.  Logan,  R. Caltabiano, A. Carnevali, J. Helin, M. Russo, 
A. Gnudi,  and P. Palamidese, “Large-scale computations on 

30, NO. 2,  163-171 (1986). 

IBM  SYSTEMS JOURNAL,  VOL 27. NO 4. 1988 



a scalar,  vector and parallel  ‘supercomputer,”’ Parallel Com- 
puting 5, Nos. 1 and 2,  13-44 (July 1987). 

13. P. Carnevali, P. Sguazzero, and V.  Zecca, “Microtasking on 
IBM multiprocessors,” IBM  Journal of Research and Devel- 
opment 30, No. 6, 574-582  (1986). 

14. B. Liu and N. Strother, “Programming in VS FORTRAN on 
the IBM 3090  for maximum vector performance,” Computer 
21, NO. 6, 65-76 (1988). 

Leslie J. Toomey IBM Data Systems Division, Neighborhood 
Road, Kingston,  New  York 12401. Ms. Toomey is  Manager, Com- 
piler  Technology,  in the Engineering/Scientific  Systems  Develop- 
ment and Technology function in IBM Kingston, NY.  She joined 
IBM  East Fishkill,  NY,  in  1978  as an application programmer. 
The assignment involved numeric computing with FORTRAN for 
graphics  postprocessing.  In  1983  Ms. Toomey joined IBM  Kings- 
ton to work on engineering/scientific compiler development. She 
led the design and implementation of the Parallel FORTRAN 
Interface support on VM/XA, and received an Outstanding In- 
novation Award  for her work on  the Parallel FORTRAN project. 
Ms. Toomey received a B.S.  degree in mathematics from the State 
University  of New York at Albany  in  1977 and  an MS. degree in 
computer science from Syracuse  University  in  1984. 

Emily C. Plachy IBM Data Systems Division, Neighborhood 
Road, Kingston,  New  York 12401. Dr. Plachy  is Manager, Software 
Technology,  in the Engineering/Scientific  Systems Development 
and Technology function. After  working  for  Exxon Production 
Research Company in Houston, TX,  as a seismic applications 
programmer, she joined IBM in  1982 to work on engineer- 
ing/scientific compiler development. Dr. Plachy  provided the over- 
all  project management for the Parallel FORTRAN Prototype and 
managed the development of the Parallel FORTRAN Interface for 
VM/XA. She  received a B.S. degree  in  applied mathematics and 
computer science  from  Washington  University, St. Louis, MO, in 
1970, an MS. degree in computer science  from the University of 
Waterloo, Ontario, in  1971, and a D.Sc.  in computer science from 
Washington University in 1980. 

Randolph G. Scarborough IBMScientific Center, 1530 PageMill 
Road, Palo Alto, California 94304. Mr. Scarborough  is  Manager 
of FORTRAN Technology at the Palo Alto  Scientific Center. His 
primary focus is that of extending FORTRAN for new machine 
architectures. He joined IBM in 1969 as a systems  engineer  in 
Trenton, NJ, to work on large  scientific and state government 
accounts. In 1973,  he joined the Palo Alto  Scientific Center to 
develop the APL  microcode  for the System/370 Model  135. In 
1978 he produced the FORTRAN H Extended Optimization 
Enhancement. In  1983, this work  was augmented to include the 
new expanded-exponent, extended-precision (XEXP) number for- 
mat. Between  1982 and 1985  he produced the vectorizer incor- 
porated into VS FORTRAN Version 2. Since then, he has been 
working on Parallel FORTRAN. Mr. Scarborough  had  overall 
project responsibility  for the Parallel FORTRAN language and 
library extensions. He received a B.A. from Princeton University 
in  1968, and has received many IBM awards, including four 
Outstanding Innovation Awards (one for  Parallel FORTRAN) and 
two Corporate Awards. 

Richard J. Sahulka IBM Data Systems Division, Neighborhood 
Road, Kingston, New York 12401. Mr. Sahulka joined IBM in 
1957.  He  is currently working on  the Parallel FORTRAN project 
in the Engineering/Scientific  Systems Development and Technol- 
ogy function in Kingston, N Y .  He led the team that developed the 
VS FORTRAN Multitasking Facility,  receiving an IBM Outstand- 
ing Technical Achievement  Award  for that effort.  Mr. Sahulka has 
extensive experience in multiprocessing and multitasking, having 
worked on both the TSS and MVS operating systems. He received 
his  Sc.B.  degree in electrical  engineering from Brown  University, 
Providence, RI, in  195 I .  

Jin F. Shaw IBM  General  Products Division, Santa  Teresa Lab- 
oratory, P.O. Box 50020, San Jose, California 95150. Mr. Shaw is 
a member of the VS FORTRAN compiler group. He received an 
M.S. degree in computer science from the State University of  New 
York at Stony Brook, and joined IBM Poughkeepsie in 1981 to 
work on vectorization algorithms for compiler development. In 
1985,  he  moved to the Santa Teresa Laboratory and joined the 
VS FORTRAN compiler group. Since 1986, he has been  working 
on automatic parallelization for the Parallel FORTRAN project. 
Mr.  Shaw  received an Outstanding Innovation Award  for  his  work 
on the Parallel FORTRAN project. 

Alfred W. Shannon IBMGeneral Products Division, Santa Teresa 
Laboratory, P.O. Box 50020, San Jose, California 95150. Mr. 
Shannon received  his M.S. degree in computer science from the 
University of California at Davis  in  1976. He worked  for the 
Lawrence Livermore National Laboratory for  eight  years in appli- 
cation programming and in the development of the vectorizing 
LRLTRAN compiler for the Cray- 1. Mr. Shannon joined IBM in 
1982,  working in compiler performance and in environment de- 
velopment. He was involved  with the implementation of the 
Parallel FORTRAN library, and is currently working on environ- 
ment development in the Santa Teresa Laboratory. Mr. Shannon 
received an Outstanding Innovation Award  for  his  work in Parallel 
FORTRAN. He  is a member of  ACM and SIGPLAN. 

Reprint Order No. G321-5336. 

IEM SYSTEMS JOURNAL,  VOL 27, NO 4, 1988 TOOMEY ET AL. 435 


