IBM Parallel FORTRAN

IBM Parallel FORTRAN is a compiler and library for
writing and executing parallel programs. It provides
language extensions for explicitly programming in par-
allel, and it also provides compiler enhancements for
automatically generating both parallel and vector code.
Parallel FORTRAN offers a language for parallel pro-
gramming that is independent of the machine configu-
ration and the operating system. The combination of
Parallel FORTRAN and IBM 3090 multiprocessors can
provide a significant reduction in turnaround time for
applications.

arallel processing is a widely accepted technique

for reducing the turnaround time for engineer-
ing and scientific computation-bound applications.'
Recently there has been a renewed interest in parallel
processing, and today a number of computer man-
ufacturers are offering parallel processors.? The 1BM
3090 multiprocessor is one such system. The 3090
supports up to six scalar and vector processors, all
sharing a global memory.> 1BM Parallel FORTRAN
enhar}‘ces the parallel processing capabilities of the
3090.

Parallel FORTRAN is a compiler and library that al-
lows FORTRAN programmers to exploit parallel proc-
essing on 1BM 3090 multiprocessors. It operates un-
der the Mvs/XA and the vM/XA System Product (SP)
operating systems. Parallel FORTRAN was developed
in 1BM jointly by the Programming Systems Santa
Teresa Laboratory, the Palo Alto Scientific Center,
and the Data Systems Division in Kingston, and it
has been available on a limited basis since March
1988.
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FORTRAN was introduced by IBM in 1954 and is the
predominant language for scientific and engineering
applications.’ IBM FORTRAN compilers and libraries
have been modified to support the evolving IBM
hardware. vs FORTRAN Version | introduced a basic
form of parallelism with the Multitasking Facility
(MTF).® Automatic vectorization was added to vs
FORTRAN Version 2 to support the 1BM 3090 Vector
Facility.”® Parallel FORTRAN continues the evolution
by providing language extensions for explicitly pro-
gramming in parallel and by providing compiler
enhancements for automatically generating both
parallel and vector code. The extensions for parallel
execution allow programmers to exploit the full
hardware capability of the 1BM 3090 multiprocessor.

Parallelism can occur in different forms in a FOR-
TRAN program, An application may have subroutines
that can execute concurrently on different data.
Loops may have iterations that can execute at the
same time. Sequences of statements may be eligible
for concurrent execution. Parallel work may occur
nested within other parallel work. Extensions in
Parallel FORTRAN allow the specification of these
various forms of parallelism, wherever they may
occur.
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This paper discusses the extensions in Parallel FOR-
TRAN to support parallelism as follows:

« Automatic parallel execution for eligible DO loops

» Automatic integration of parallel and vector proc-
essing

s Language for parallel loop iterations

s Language for parallel statement sequences

s Language for parallel subroutines

» Library routines for synchronizing parallel pieces
of work

Also covered are execution environments and per-
formance considerations when using Parallel FOR-
TRAN. The paper concludes with examples that show
both parallel and vector processing of a matrix-
multiplication program.

Background

Parallel FORTRAN evolved from a prototype that had
been developed as part of a joint study with Cornell
University. The Cornell Theory Center is one of five
National Science Foundation supercomputer centers
that were initiated in 1985 to provide supercomput-
ing resources for scientists nationwide. The Theory
Center’s primary supercomputing resource is the
Cornell National Supercomputer Facility (CNSF).’
The CNSF configuration is based on an 1BM 3090
Model 600E with six Vector Facilities.

An objective of the Cornell Theory Center has been
to explore parallelism and to provide parallel com-
puting in a production environment. A parallel FOR-
TRAN compiler was needed to achieve this objective;
it was defined and specified jointly by iBM and Cor-
nell. The resulting compiler, called the Parallel FOR-
TRAN Prototype, was developed by 1BM and delivered
to Cornell in January 1987. Cornell has been using
the prototype since then to explore parallel comput-
ing on its six-way 1BM 3090.'°

In addition to discussions with Cornell, the Parallel
FORTRAN Prototype was built on experience gained
with three previously existing parallel program pack-
ages developed at 1BM. These three packages provide
FORTRAN programmers the following ways to access
the multiprocessing capabilities of an 1BM main-
frame:

s The vs FORTRAN Multitasking Facility (MTF). MTF
is a set of subroutines incorporated into the vs
FORTRAN Library,® that allow FORTRAN subrou-
tines to be executed asynchronously from the
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mainline FORTRAN program. MTF operates only
under the Mvs operating system.

s Environment for Parallel Execution (EPEX). EPEX
was developed at the 1BM T. J. Watson Research
Center to support the experimental, highly parallel
RP3 computer,'! which executes multiple instances
of the same program, each running on its own
processor. Each processor in the system, besides
having its own local memory, is linked to the
other processors by a common shared memory.
EPEX simulates this environment under vM by
using multiple virtual machines and writable
shared-memory segments. The shared memory is
used for sharing data between the instances of the
program and for special coordination and syn-
chronization variables defined by EPEX.

s Loosely Coupled Array of Processors (ICAP). ICAP
was developed in 1BM Kingston to support an
experimental parallel system that consisted of a
set of array processors attached via channels to an
IBM mainframe system.!'? ICAP allowed FORTRAN
subroutines to be executed asynchronously on the
attached array processors. It now provides the
ability to execute its programs totally on an 1BM
mainframe. ICAP operated under both the vM and
the MVSs operating systems.

Programming of parallel applications

If a program is to be executed in parallel, it is
necessary to assign different pieces of the program to
different processors during execution. This requires
that the pieces eligible for execution in parallel be
identified. In some cases, it is possible for the parallel
pieces to be identified automatically by the compiler.
In other cases, the programmer may have to specify
the parallel pieces explicitly. Parallel FORTRAN sup-
ports both methods of achieving parallel execution.

Specifically, Parallel FORTRAN provides the follow-
ing:

« Extensions to the compiler for automatically gen-
erating parallel code

« Extensions to the language for explicitly program-
ming in parallel

« Extensions to the library for synchronizing parallel
execution through locks and events

The FORTRAN program identifies the pieces of work
that are eligible to run in parallel. The FORTRAN
library then maps the parallel pieces of work onto
virtual processors that are known as FORTRAN proc-
essors. The operating system maps the FORTRAN
processors onto the real machine processors.
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The number of FORTRAN processors is specified as a
run-time option. By varying this number, the user
can control the maximum degree of parallel execu-
tion that FORTRAN attempts to achieve during a given
execution of an application. The number of real

Automatic parallelism is the simplest
way to introduce parallelism
into an application.

processors available depends on the machine config-
uration, on other work being executed in the system,
and on the relative priorities assigned to the work. If
more real processors are assigned to the parallel
program by the operating system, more parallel ex-
ecution may be achieved.

The hardware configuration and differences between
operating systems are not exposed in the FORTRAN
program. Instead, the program simply specifies sec-
tions within the program that can be executed con-
currently. The compiler and library accept this speci-
fication and execute the parallel sections, using the
processors available to the program.

Automatic parallel

Automatic parallelism is the simplest way to intro-
duce parallelism into an application. A new compiler
option requests that the compiler analyze nests of
DO loops to determine whether they are eligible for
parallel execution. Parallel code is generated only if
the results will be not be changed by parallel execu-
tion. An extension of the data-dependence algo-
rithms used for vectorization determines whether
loops .or selected statements within loops may be
executed in parallel. If there are no dependences that
prevent parallel execution, the compiler determines
whether it is cost-effective to execute the loop in
parallel. If so, parallel code is generated for the loop;
otherwise, serial code is generated. Besides being a
simple way to introduce parallelism, automatic par-
allelism also allows a program to remain portable to
other FORTRAN compilers.
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The vector and parallel compiler options may both
be specified. In this case, the compiler analyzes nests
of Do loops for both parallel and vector execution.
Individual loops may be selected for vector or par-
allel execution, or for both vector and parallel exe-
cution. A loop selected for parallel may contain inner
loops in any mode; a loop selected for vector may
contain only inner loops which are scalar and serial.
Ifit is found to be cost-effective, loops may be broken
apart and different pieces executed in different
modes.

The directives provided by vs FORTRAN to influence
automatic vectorization have been extended to sup-
port the automatic parallelization. A user may now
indicate a preference for parallel or serial code for a
given loop in the same manner as a preference for
scalar or vector code might have been indicated
previously. The user may also express a preference
for the number of processors to assign to the loop at
run time and for the number of iterations to be
grouped together as a unit of work at run time.

Parallel language extensions

Although automatic detection of parallelism may be
an easy way to introduce parallelism, it does have
some limitations. Primary among these is the re-
quirement that the answers not change during exe-
cution in parallel. Some algorithms are able to run
effectively in parallel even though they contain data
dependences that can cause their results to change
from parallel run to parallel run. In chaotic relaxa-
tion, for example, the algorithms are designed to
converge, and they are deemed to be successful when
they converge to a value with some small tolerance.
Any value with this tolerance is as acceptable as any
other. Automatic parallelization insists on producing
the same value as is produced by a serial execution
of the program, and so it does not make parallel a
program with such data dependences. Therefore,
although automatic detection of parallelism is an
easy way to obtain parallel execution, it does not
provide the complete answer for a parallel program-
mer.

For this reason, Parallel FORTRAN provides language
extensions with which the programmer may specify
parallel execution. The language extensions can be
categorized into two types: in-line extensions and
out-of-line extensions. The in-line extensions, which
define parallelism within a routine, identify loops or
blocks of statements that can be executed concur-
rently. The out-of-line extensions, which define par-
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allelism across routines, identify subroutines that are
eligible for parallel execution. Both types of exten-
sions can be nested. Thus programs that have been
written to exploit parallel execution can be encap-
sulated as library routines and can be invoked from
other programs, either serially or in parallel, in the
usual FORTRAN manner.

The in-line extensions permit the code within a
subroutine to be dynamically parceled out to more
than one processor for execution. The parallel code
sequences operate on the arrays and scalars known
to the subroutine. In this, they are similar to DO
loops, which are automatically parallelized. They are
unlike the automatically parallelized loops, however,
in that the programmer can specify operations that
contain data dependences.

The out-of-line extensions permit a user to create
new, disjoint, asynchronous execution environments
for one or more FORTRAN subroutines. Each disjoint
collection of subroutines, called a task, is indepen-
dent of all other tasks; the execution of one task
cannot affect another unless the programmer explic-
itly shares data between them. Thus, when algo-
rithms have been programmed and debugged, they
can be easily encapsulated within their own task
environments. When users explicitly share data be-
tween tasks, they are also explicitly identifying data
areas that should be reviewed if errors occur during
parallel execution.

Parallel loops. A parallel loop is one in which each
iteration of the loop may be executed concurrently.
Some unspecified number of processors, possibly one
per iteration, may be used to execute the loop. The
number of processors is determined at run time, and
that number can vary from one to the number of
FORTRAN processors specified at run time. The order
in which iterations are executed is therefore not
guaranteed. All iterations are completed, however,
before execution continues beyond the end of the
loop. The programmer is responsible for ensuring
that the loop is valid for parallel execution. Nor-
mally, each iteration should be computationally in-
dependent of other iterations. Alternatively, the user
can ensure that the proper synchronization is used
between iterations or that the results are meaningful
in the absence of such synchronization. A PARALLEL
LoOP has a syntax that is similar to a DO loop, a
simple form of which is shown in Figure 1.

This simple form of a parallel loop permits iterations
to execute in parallel. Suppose, however, that a pro-
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Figure1 Simple form of PARALLEL LOOP

PARALLEL LOOP label index=il,12,13
statements

label CONTINUE

Figure2 Example of PRIVATE statement

PARALLEL LOOP 1 I=I1,I2
PRIVATE (XTEMP)
XTEMP=A(I)*B(1)
C(I)=XTEMP*D(I)

1 CONTINUE

grammer needs to compute a temporary result, such
as XTEMP, within an iteration. A statement like
XTEMP=A(1)*B(1) cannot work in parallel. When sev-
eral processors execute the statement simultane-
ously, each computing with a different value of I,
only one value of XTEMP is saved, i.e., the one that
by chance was stored last. Each processor therefore
needs its own private copy of XTEMP for the program
to operate correctly. Such private variables may be
declared with a PRIVATE statement, as shown in
Figure 2.

Further, given such private variables, it is sometimes
desirable to initialize them before executing itera-
tions of the loop, or to reference their final value
after all loop iterations are complete. DOFIRST and
DOFINAL statements are provided for this purpose.
These statements delimit, respectively, a prolog and
epilog block for the loop. They may specify, by a
LOCK operand, that only one processor at a time is
to be permitted to execute the prolog or epilog.
DOEVERY delimits the remaining body of the loop
that is executed on each iteration.

Toomey T AL 419




Figure3 Example of PARALLEL LOOP extensions

. .GSUM=0
*'PARALLEL LOOP 1 1¥'1,u -
- PRIVATE e
DOFIRST
PSUM=0

. DOEVERY

. PSUM=PSUMFAVAL(I)

© ' DOFINAL LOCK
' GSUM=GSTM+PSUM

I CONTINUE:

Simple form of PARALLEL CASES

" PARALLEL CASES
PIRIVA’J.‘E’ (var; ..2)
CASE |
V Statemeilts
- case
Statemeﬂts
CASE
statements

END CASES

The example in Figure 3 shows the use of these
statements to implement a sum reduction. The prob-
lem is to compute a global sum GSUM of a vector
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AVAL. A private variable PSUM is initialized to zero
for each processor and used in each processor to
accumulate a sum of the elements of the vector AvaL
assigned to that processor. The number of elements
accumulated in each local psuM is determined dy-
namically at run time. When all elements have been
summed, each processor adds its private partial sum
PSUM into the global total sum GsuMm. This final
addition is done under control of a lock, so that
GSUM is updated by only one processor at a time.
(This example, which is used to illustrate the parallel
loop, may not contain enough processing for profit-
able parallel execution.)

Parallel cases. It is often possible to execute blocks
of statements in paraliel. The blocks may contain
straight-line code or loops, and the loops may be
either parallel or vector loops. What is significant is
that the blocks may be processed concurrently. At
the limit, each block can be executed by a different
processor, the number of which is not known but
may range from one up to the number of blocks.
The exact number is determined at the time the
blocks are executed. As with parallel loops, the pro-
grammer is responsible for ensuring that such blocks
are valid for parallel execution. That is to say, each
block is computationally independent of the others,
or the data interactions that arise between blocks are
either controlled or intentional.

The PARALLEL CASES structure is provided to simplify
the programming of such parallel blocks of state-
ments. A simple form of parallel cases is shown in
Figure 4. The three illustrated cases may execute
concurrently, but there is no guarantee of the order
of their execution. As with parallel loops, the cases
may employ private variables as needed. All cases
are completed before execution continues beyond
the END CASES statement.

It is often helpful to make some cases wait until
preceding cases complete. An early case could then,
for example, compute data to be used by more than
one subsequent case. To facilitate this, cases may be
numbered, and any case may wait for any specified
preceding case. A sample is shown in Figure 5. In
this manner, a program containing an acyclic graph
of dependences may be translated into a series of
parallel cases.

Both parallel loops and parallel cases may contain
nested parallel loops and parallel cases. Input and
output statements may be used within parallel loops
and parallel cases.
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Parallel tasks. Parallel loops and cases are state-
ments that yield in-line parallelism, spreading the
work of a given subroutine across multiple proces-
sors. Out-of-line parallelism, in contrast, creates new
and distinct FORTRAN execution environments and
permits each of these distinct environments to exe-
cute concurrently. A shorthand name for these en-
vironments is tasks.

A Parallel FORTRAN program begins execution in a
task referred to as the root task. The ORIGINATE
statement may be used to create more tasks. Each
task that is originated in this way has an identifier
and its own storage. The identifier is returned to the
programmer by the ORIGINATE statement and is used
in other statements to manipulate the task. The
storage associated with a task is private to that task
and persists until the task is terminated. When a task
is no longer needed, it can be deleted with a TERMI-
NATE statement. The ORIGINATE and TERMINATE
statements are shown in Figure 6.

Work is assigned to a task with the DISPATCH and
SCHEDULE statements, which name a subroutine to
be executed asynchronously in the subtask and list
the arguments to be passed to the called subroutine.

The user may specify a particular task to be called
or may request that the library choose any available
task. Dispatched tasks complete their work automat-
ically. Scheduled tasks require that the user subse-
quently issue a corresponding wait. Sample state-
ments are shown in Figure 7.

Tasks, like subroutines in traditional FORTRAN, may
communicate through arguments and common
blocks. Figure 8 shows the optional clauses on the
SCHEDULE and DISPATCH statements to control the
use of common blocks. A SHARING clause may be
used to name common blocks to be shared with the
task selected to execute the subroutine. Shared com-
mon blocks are accessed in the same location by
both tasks. The scheduled or dispatched subtask uses

Figure5 Extended form of PARALLEL CASES

PARALLEL CASES
CASE 1
statements
CASE 2
statements
CASE 3, WAITING FOR CASE 1

statements

statements

statements

END CASES

CASE 4, WAITING FOR CASES (1,2)

CASE 5, WAITING FOR CASES (1,2,3)

ORIGINATE and TERMINATE statements

ORIGINATE ANY TASK itask

TERMINATE TASK itask

Figure7 Sample SCHEDULE and DISPATCH statements

SCHEDULE TASK itask, CALLING subnam(argl,arg2, ...)

DISPATCH ANY TASK itask, CALLING subnam(argl,arg2, ...)
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Figure 8 Options for SCHEDULE or DISPATCH statement

SCHEDULE TASK ita‘sk\,‘
%  SHARING (éommbn, commo‘:i,‘
COPYING (common, common, ‘ve
' COPYINGI(common, ‘éomaﬁ‘gwnr,_ .
COPYINGO(common; gﬁmmon;

* ' TAGGING (tagone, tagiﬁu',?

CALLING subnam(argl,arg?, +os) .

the same copy of the common block as the task that
invoked it. A COPYING clause may be used to name
common blocks that are to be copied into a task
when work is assigned and copied out of the task
when work is completed. Both the superior and the
subordinate tasks have a private copy of these com-
mon blocks. COPYINGI and COPYINGO name com-
mons that are to be copied respectively only into or
only out of the subtask.

Tasks can be assigned a variety of pieces of work. A
TAGGING clause is provided to allow the programmer
to name or tag a particular piece of work. The values
of the tags are saved when the task is scheduled.
Subsequently, when the programmer issues a wait
for a task, the values of tags for the completing task
may be retrieved. This makes it easy for the program
to determine the specific piece of work that had been
assigned to the task that just completed.

The WAIT FOR statement is used to detect when a
task has completed its assigned work, Three types of
WAIT FOR statements are available: wait for a specific
task, wait for any task, and wait for all tasks. Figure
9 shows the variations of the WAIT FOR statement,
including its optional TAGGING clause.

Parallel library. The Parallel FORTRAN library also
has extensions for parallelism. Some of these exten-
sions are internal, supporting the parallel language
and the automatic parallel capabilities of the com-
piler. Other extensions are external and may be used
directly by the programmer.

Routines are provided for the management of locks
and events. Locks may be used to ensure that only
one processor at a time gains access to a resource,
such as a variable using a global counter. Events may
be used to make a task wait until another task has
reached some point in execution. Synchronization
techniques of many kinds can be implemented using
locks and events.

An optional trace of the parallel execution may be
requested via a run-time option. The trace may be
an aid in tuning or debugging a program that exe-
cutes in parallel. A separate trace file can be produced
for each task, or a single trace file can be produced
covering all tasks. Each trace record identifies the
executing task, subroutine, and statement. The sys-
tem provides trace records for such events as start-
and end-of-program execution, origination and ter-
mination of tasks, assignment and completion of
work to tasks, sharing and copying common blocks,
start and end of parallel loops and parallel cases, and
uses of locks and events. Programmers may also
enter trace records into these files by calling a library
subroutine. The level of detail generated in the trace
file is controlled by the run-time option or by a
library call.

Figure9 Example of WAIT FOR statements

WAIT FOR TASK itask, TACGING(varons,vartwo)
WAIT FOR ANY TASK itask, TAGGING(varome,var

| WAIT FOR ALL TASKS
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Execution of parallel applications

Three conditions are required for a program to exe-
cute in parallel: (1) multiple pieces of parallel work
ready for execution; (2) multiple FORTRAN processors
associated with the program; and (3) multiple real

Parallel execution and performance
are improved when the queue
does not empty.

processors available to it. The programmer controls
the first two conditions directly; the Parallel FORTRAN
language and compiler are used to identify the par-
allel pieces of work, and a run-time option is used
to specify the number of FORTRAN processors. The
third condition, the number of real processors, is
controlled by the operating system and depends on
the amount of other work being done by the system
and on the relative priorities assigned to that work.
As real processors become available, the operating
system can allocate them to the parallel program,
and more of the parallel pieces of work can be
executed simultaneously. The Paralle] FORTRAN ex-
ecution environment is shown in Figure 10.

Parallel FORTRAN allows the programmer to identify
more pieces of parallel work than there are FORTRAN
processors. The additional pieces may be thought of
as sitting in a queue. Thus, when a FORTRAN proces-
sor finishes one piece of work, it selects the next
piece from the queue and executes it. The FORTRAN
processors can continue to run without operating
system interactions as long as the queue contains
work. When the queue empties and refills, however,
the FORTRAN processors must use the less efficient
mechanisms provided by the operating system to
suspend and restart themselves.

The degree to which the queue of pending parallel
work can be kept from emptying varies from appli-
cation to application. Parallel execution and per-
formance are improved when the queue does not
empty, because operating system overhead is then
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normally not required to schedule and synchronize
parallel work. The language extensions in Parallel
FORTRAN and its support for multiple levels of par-
allel execution both facilitate the identification and
execution of a continuing stream of eligible parallel
pieces of work.

The method used for representing FORTRAN proces-
sors depends on the operating system. Under MVS/XA,
each FORTRAN processor is implemented as an Mvs
task. Under vM/xa, where programs are run
in virtual machines, the virtual machine is made into
a virtual multiprocessing machine and each FOR-
TRAN processor is executed by one of the virtual CPUs
within the virtual multiprocessing machine. This is
described in more detail subsequently in this paper.
The programmer of a parallel program does not need
to know about this difference between operating
systems. Regardless of the operating system, the pro-
grammer refers only to the FORTRAN processors. It is
the job of the FORTRAN compiler and library to
provide these FORTRAN processors in a portable man-
ner.

Other mechanisms have been used by other parallel
processing packages for the 1BM 3090 multiproces-
sors. The vs FORTRAN Multitasking Facility (MTF),
for example, uses the technique of suspending and
restarting tasks for each independent piece of work.
This can result in two interactions with the operating
system for each dispatch of a piece of parallel work.
A different approach, microtasking,'® keeps the pro-
cessors in a busy-wait spin loop when they have
nothing to do. This avoids the overhead of suspend-
ing and restarting work by the operating system for
the user of microtasking, but the cycles used for
spinning are lost to other users in the system.

Parallel FORTRAN programs may be run on dedicated
or undedicated systems. On a dedicated system, the
program runs most quickly. On an undedicated sys-
tem, the speed of the parallel program is affected,
because the real processors are used to support exe-
cution of other concurrent programs. Relative prior-
ities may be used to bias the operating system toward
or against the parallel program.

The programmer should have in mind whether the
computer system is dedicated or undedicated. On a
dedicated system, the programmer might assign each
FORTRAN processor a fixed and equal amount of
work to do concurrently. This is called static map-
ping, and it works well when each FORTRAN processor
is assured of being given a real processor. Because
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Figure 10 Parallel FORTRAN execution environment

FORTRAN ENVIRONMENT (ONE PER USER)

PARALLEL FORTRAN APPLICATION PROGRAM

| | I | | ||
(! i [ I

FORTRAN FORTRAN FORTRAN FORTRAN o0s
TASK TASK TASK TASK

e e

PARALLEL FORTRAN LIBRARY

FORTRAN FORTRAN FORTRAN 'Y R
PROCESSOR PROCESSOR PROCESSOR

| | | |
! [ 1 |

MVS/XA OR VM/XA

| | || | |

1 I 1
REAL CPUO REAL CPU1 REAL CPU2 l {
| eee |
I |
| I
L
equal amounts of work are assigned to each proces- essors among multiple users, this static mapping may
sor, they should all complete work at the same time. not perform well.
Therefore, they all remain busy as long as there is
parallel work assigned to them. However, in an Suppose an application has been statically mapped
environment where there is contention for real proc- and all processors are working on it. Further suppose
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that one processor is taken away to do a small piece
of work for the operating system, while the other
processors continue to execute on their statically
mapped partitions. When these other processors fin-
ish their partitions, roughly all at the same time, the
interrupted processor still has some work to do on
its partition, because of the time it lost working for
the operating system. Also, because the program has
divided its work statically, there is nothing for the
other processors to do until the final processor fin-
ishes its partition. All processors are affected by a
temporary loss of one processor.

On undedicated systems, an application that parti-
tions work dynamically rather than statically prob-
ably performs better. Dynamic partitioning allows
the program to make use of real processors as they
become available during execution. Parallel loops
and cases and automatically parallelized loops are
executed with dynamic scheduling. Certain out-of-
line language statements, such as WAIT FOR ANY
TASK, also allow dynamic load balancing on the
available real processors. The matrix-multiply ex-
ample described later in the paper explores this issue
further.

When a Parallel FORTRAN program is executed with
a single FORTRAN processor, the order of execution
of the program is repeatable. The statements always
execute in the same order for the same data. This
allows for the development and debugging of a par-
allel program in an environment where bugs are
reproducible. When the program is executed with
multiple FORTRAN processors, the order of execution
is not repeatable. Such bugs may be thought of as
nondeterministic and not easily reproducible. It is
beneficial to remove the deterministic class of bugs
prior to parallel execution.

Parallel processing within a virtual machine on
VM/XA

Under vM/xA, as indicated earlier in this paper,
programs are run within virtual machines. When a
Parallel FORTRAN program is executed, the virtual
machine is made into a virtual multiprocessor. Each
FORTRAN processor is executed by a virtual CPU
within that virtual multiprocessor. (See Figure 11 for
an illustration of this point.)

Programs under vM/XA are normally executed under
control of a simple operating system, CMS, which
runs within the virtual machine. cMS, however, is
not a multiprocessing operating system. It assumes
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that it is running on a uniprocessor, and it cannot
be executed concurrently by multiple virtual Cpus
within a virtual machine. The virtual CpPUs that are
executing as FORTRAN processors, therefore, cannot
be allowed to execute the internal routines of CMS
concurrently and asynchronously. Nonetheless, the
FORTRAN processors may from time to time require
a service from cwms, such as input, output, or storage
allocation.

The solution to this problem is to define one virtual
CPU—in addition to the virtual CPUs used as FOR-
TRAN processors—for use as a CMs processor. When
a FORTRAN processor requests a CMS service, the
request is intercepted and queued for execution by
the cMS processor, and the requesting FORTRAN proc-
essor is suspended until the cMs processor completes
the request. The CMS processor executes these re-
quests one at a time, finishing each completely before
beginning the next. Each FORTRAN processor, since
it is suspended while its request is processed, sees its
requests handled in a fully synchronous manner, just
as though it were on a uniprocessor. The cMS proc-
€ssor executes requests, one at a time and from start
to finish in a fully synchronous manner, just as
though it too were on a uniprocessor. This maintains
the integrity of the cMs internal implementation.

FORTRAN processors not executing CMS requests are
able to run without impediment from this serializa-
tion. Parallel FORTRAN is intended for use with large
computationally intensive applications, and requests
for cMs services should therefore be occasional rather
than frequent. If repeated use were made of CMs
services, alternative processing mechanisms would
have to be pursued.

Performance of parallel applications

The major reason for using Parallel FORTRAN is to
reduce the real time required to execute a FORTRAN
program. The time reduction is achieved when mul-
tiple processors simultaneously execute portions of
a single application program. Parallel FORTRAN does
not reduce the total number of cPU cycles required
to execute a program; in fact, a modest increase in
cPU cycles is normally required. Instead, it allows a
program to be split into multiple independent in-
struction streams. When these are executed simul-
taneously by different cpus of a 3090 multiprocessor
system, the program receives cycles from each of the
assigned cpus. Thus the program receives more CPU
cycles in a given span of real time, and it completes
its computation more quickly.
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Figure 11  Parallel processing within a virtual machine on VM/XA
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For programs that are vectorizable, the 1BM 3090 cally intensive computations. The Vector Facility
Vector Facility also reduces the real time required to can be viewed as providing faster cpPUs to the pro-
execute a FORTRAN program. The Vector Facility gram. Vector and parallel execution complement
improves performance because it uses fewer CPU each other. Their combined use results in more and
cycles than the scalar processor for many numeri- faster CPUs executing on a program and can lead to

426 ToomEY ET AL IBM SYSTEMS JOURNAL, VOL 27, NO 4, 1988




a larger reduction in the real time required to execute
a program than either vector or parallel alone.

The improvement in turnaround time for an appli-
cation converted to parallel is limited by the amount

The improvement in turnaround time
for an application converted
to parallel is limited by the amount
of serial processing that remains
in the converted application.

of serial processing that remains in the converted
application. Not everything can be done in parallel.
For example, the reading of initial data and the
printing of final results are often done by a single
processor. The following equation, often referred to
as Amdahl’s law, can be used to estimate an upper
limit for the speedup expected for an application.
Given the fraction of the original serial execution
time that can be converted to parallel, p, and the
fraction that must remain in serial, | — p, the equa-
tion computes the maximum speedup for a given
number of processors, #, as follows:

n

Speedup = +p
Measurements of performance. Applications vary in
the degree to which they can be parallelized. An
indication of this can be seen in results of measure-
ments on four applications representing different
areas of scientific research. Measurements were
taken using from one through six processors. Figure
12 shows the speedups achieved. The speedups
shown are relative to the serial vectorized versions
of the applications. The primary factors affecting the
speedup of an application are the number of proces-
sors allocated to an application and the percentage
of the application’s processing that can execute in
parallel.

Programs A and B were measured at Cornell Uni-
versity on a VM/XA system using the Parallel FOR-
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TRAN prototype.'° Program A, which studies protein
folding and the 3D structure of polypeptides, uses a
Monte Carlo technique to evaluate the free energy
of the system. It was parallelized with the out-of-line
language extensions. Program B, which involves re-
search on statistical methods, performs multiplica-
tion, factorization, and inversion of very large mat-
rices using the automatic parallel and automatic
vector compiler options. Programs C and D were
measured under MvVS/XA, using the released version
of Parallel FORTRAN. Program C is a high-energy
physics application employing a Monte Carlo simu-
lation for the simulation of quantum chromody-
namics. It too is a vector program, but it uses parallel
subroutines. Program D is a thin-layer fluid dynam-
ics application using parallel tasks. All runs were
made in a dedicated environment on a 3090 Model
600E equipped with six Vector Facilities.

The four programs ran from 4.1 to 5.3 times faster
on the six-way machine; therefore they show effective
parallelism of 90 to 97 percent, according to Am-
dahl’s law. Effective percent parallelism is calculated
by observing the actual speedup of an application
and then using Amdahl’s law.

Parallel programming guidelines. The results of the
measurements of parallel applications show that the
speedups can vary and that each application is dif-
ferent. It is difficult to predict in advance how a given
application will perform. However, the following are
guidelines for writing successful parallel programs
on the 1BM 3090:

s Optimize code for serial processing. Traditional
optimization remains just as important in parallel
codes as it does in serial codes.!* Optimization
reduces the absolute number of CPU cycles re-
quired to execute the program. Parallelization by
itself merely spreads the remaining cycles across
more than one processor. It is still important to
optimize the code for the scalar and vector capa-
bilities of the processor when writing a program
with Parallel FORTRAN.

s Maximize the parallel use of multiple Vector Fa-
cilities. For best performance, a program should
be structured to take maximum advantage of mul-
tiple Vector Facilities. In general, good vector
operation should not be sacrificed to obtain par-
allel operation.

* Minimize the work that must be done serially. The
time it takes to do this work is part of the mini-
mum amount of time it will take a program to
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Figure12 Performance of selected application programs
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execute. In other words, the more serial the work,
the slower the program execution.

e Minimize the overhead due to executing parallel
constructs. Overhead adds to the minimum
amount of time it takes to execute a program. In
Parallel FORTRAN, overhead can be minimized by
several means. Originating tasks once and assign-
ing work to them many times will save the re-
peated overhead of originating and terminating
tasks. Distributing parallel work in larger rather
than smaller pieces reduces the number of distri-
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butions and the processing required to do the
distributions. However, judgment is required, be-
cause the goals of assigning work dynamically to
balance the workload on the processors and that
of assigning work in large chunks are to some
extent in conflict.

e Assign workloads that are dynamically self-bal-

ancing. Unbalanced workloads have the same neg-
ative effect on performance as serial work. Parallel
FORTRAN provides several facilities to help dynam-
ically balance workloads. PARALLEL LOOPs, PAR-
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Figure13 Serial matrix muitiplication

REAL*8 A, B, C, T

DO 20 I=1, 500
DO 20 K=1, 200
T=0.D0
DO 30 J=1, 1500

30 T=T+(B(J,K)*A(I,J))

20 c(1,K)=T

COMMON /AC/ A(500,1500), B(1500,200), €(500,200)

ALLEL CASES, and automatically parallelized DO
loops are all dynamically load-balanced by the
library. The SCHEDULE statement, when used with
the WAIT FOR TASK OTr WAIT FOR ANY TASK state-
ments, and the DISPATCH statement both provide
a way to assign additional work to tasks without
waiting for all tasks to complete their assignments.
Parallel locks and events allow the programming
of many different types of application-specific
load-balancing algorithms.

s Minimize storage contention. Try to make maxi-
mum use of cache and avoid storing adjacent
words in memory from different processors. Meth-
ods for achieving these objectives include choosing
the rightmost dimension of an array for parallel-
ization and specifying large chunk sizes for a par-
allelized DO loop or PARALLEL LOOP construct.

Parallel programming example: Matrix
multiplication

In the following examples, a matrix-multiplication
problem is programmed repeatedly in different ways
to illustrate the features of Parallel FORTRAN and to
explore issues in parallel and vector programming.
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The first matrix-multiplication program is shown in
Figure 13, in which a serial program has been opti-
mized for use on the 1BM 3090 Vector Facility. This
is the code that is to be parallelized in the remaining
examples. In the example, the temporary variable T’
allows the compiler to use the vector MULTIPLY-AND-
ADD instruction. As a result, the program in Figure
13 computes 128 different values of 7' = T +
(B(J,K)*A(1,J)) with a single instruction, and it
keeps these resultant values in a register and stores
the 128 values of C(Z,K) only once.

The objective now is to parallelize the matrix mul-
tiplication without degrading the vector perfor-
mance. Figure 14 shows that the matrix multiplica-
tion is vectorized over the I loop and that vector
register reuse is obtained by storing C(1,K) outside
the J loop only. This leaves the K loop as the prime
candidate for parallelization.

Figure 15 shows how this can be done by using the
SCHEDULE and WAIT FOR statements. The matrix
multiplication is placed into a subroutine named
MLT and is modified so that it computes one Nth,
where N is the number of processors of the matrix.
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Figure 14 Vector report for matrix multiplication

VECT -;'-' ------ DO 20 I=1, 500
SCAL |+=—mmm—m DO 20 K=1, 200
It
H T=0.D0
b
SCAL | |+———w— DO 30 J=1, 1500
11
I ' | T=T+(B(J5K)*A(I’J))
Il
| C(1,K)=T
|
|

The arguments of the matrix multiplication tell it
how many processors there are and which Nth it is
to compute. The matrix multiplication is scheduled
for parallel execution with multiple executions of
the SCHEDULE statement.

The matrix multiplication is an example of a static
mapping of work to processors that can work well
on a dedicated system if each scheduled task is
assured of having a real processor immediately avail-
able. However, if the program is executing in an
environment where there is contention for the real
processors, the parallel performance actually
achieved is determined by the task that receives the
lowest level of service.

Dynamic balancing of work to processors is likely to
be preferable when systems cannot be dedicated.
Parallel FORTRAN provides several methods for dy-
namic load balancing, as illustrated in the next three
examples. All of these examples begin with the ob-
servation that the ordering of the I and K loops may
be reversed. When this is done, the K loop becomes
the outermost loop, where it is suitable for parallel-
ization. The 7 and J loops, meanwhile, maintain
their relationship to each other for generating effi-
cient vector code.

Figure 16 shows the way in which dynamic load
balancing can be done with the DISPATCH statement.
For this technique, subroutine MLT is modified so
that, rather than doing one Nth of the matrix mul-
tiplication, it does one iteration of the new outermost
K loop.
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Figure 17 shows dynamic load balancing being done
by using the PARALLEL LOOP statement. Note that
this code is a small modification of the original
matrix multiplication shown in Figure 13. Finally,
Figure 18 shows dynamic load balancing being done
using automatically generated parallel Do loops, and
Figure 19 shows the way in which the compiler
parallelized and vectorized the program.

Concluding remarks

Parallel FORTRAN provides a rich spectrum of func-
tion that supports a wide range of parallel application
programming styles. It can easily be used to exploit
the parallel and vector capability of 1BM 3090 sys-
tems.

The parallelism in an application may be expressed
in ways that are natural to the application. PARALLEL
LOOPs and PARALLEL CASES may be used to parallelize
the statements within a routine; SCHEDULE and DIS~
PATCH may be used to execute independent subrou-
tines in parallel. Automatic parallel and automatic
vector may be used to gain faster execution of nests
of eligible DO loops. Parallel execution is not re-
stricted to a single level but may be specified wher-
ever it occurs. Operating-system and machine-con-
figuration differences are not exposed to the pro-
gram.

The Parallel FORTRAN program identifies the pieces
of work eligible to run in parallel. When the program
is compiled and executed, the library puts the parallel
work in a queue and distributes it to Parallel FOR-
TRAN processors. Real processors are allocated dy-
namically by the operating system. As additional real
processors are allocated, additional FORTRAN proces-
sors can execute concurrently. Programs that parti-
tion work dynamically, employ multiple levels of
parallelism, or use other strategies to keep the queue
of parallel work full can best take advantage of these
additional real processors as they become available
during execution.

Parallel FORTRAN applications can run under the
MvS/XA and the VM/XA SP operating systems. The
degree of parallel execution can be controlled at run
time through the number of FORTRAN processors.
When parallel execution is requested and multiple
real processors are available, Parallel FORTRAN can
be a valuable aid in reducing the turnaround time of
applications.
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Figure 15 Matrix muitiplication with SCHEDULE

INTEGER KN(200)
COMMON /AC/ A(500,1500), B(1500,200), €(500,200)

REAL*8 A, B, C

-

DO 20 K=1, NTASK
KN(K)=K
20  SCHEDULE ANY TASK ITASK,
*  SHARING (AC),
*  CALLING MLT (KN(K),NTASK)

WAIT FOR ALL TASKS

END

SUBROUTINE MLT (KN,KT)
COMMON /AC/ A(500,1500), B(1500,200), €(500,200)
REAL*8 A, B, C, T
KUB=200*KN/KT
KLB=1+200%(KN-1) /KT
DO 20 I=1, 500
DO 20 K=KLB,KUB
T=0.D0
DO 30 J=1, 1500
30 T=T+(B(J,K)*A(1,J))
20 C(I,K)=T
RETURN

END
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Figure 16 Matrix multiplication with DISPATCH

INTEGER KN(200)
COMMON /AC/ A(500,1500), B(1500,200), C(500,200)
REAL*8 A, B, C

DO 20 K=1, 200
KN(K)=K
20 DISPATCH ANY TASK ITASK,
*  SHARING (AC),
*  CALLING MLT (KN(K))

WAIT FOR ALL TASKS

END

SUBROUTINE MLT(K)
COMMON /AC/ A(500,1500), B(1500,200), C(500,200)
REAL*8 A, B, C, T
DO 20 I=1, 500
T=0.D0
DO 30 J=1, 1500
30 T=T+(B(J,K)*A(1,J))
20 C(I,R)=T
RETURN

END
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Figure 17 Matrix multiplication with PARALLEL LOOP

REAL*8 A, B, C, T

PARALLEL LOOP 20 K=1, 200
PRIVATE(T)
DO 20 I=1, 500
T=0,D0
DO 30 J=1, 1500
30 T=T+(8(J,K)*A(L,JT))

COMMON /AC/ A(500,1500), B(1500,200), €(500,200)
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Figure 18 Matrix multiplication with parallel DO loop

DO 20 I=1,

T=0.D0

20 C(I,K)=T

REAL*8 A, B, C, T

DO 20 K=1, 200

500

DO 30 J=1, 1500

30 T=T+(B(J,K)*A(1,J))

COMMON /AC/ A(500,1500), B(1500,200), €(500,200)

Figure 19 Parallel report for matrix mutltiplication with

parallel DO loop
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DO 20 K=1, 200

DO 20 I=1, 500
T=0.D0
DO 30 J=1, 1500
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C(I,K)=T
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