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Engineering and Scientific
Subroutine Library for the
IBM 3090 Vector Facility

The Engineering and Scientific Subroutine Library
(ESSL) provides FORTRAN, Assembler, and APL2 appli-
cation programmers with a high-performance set of
mathematical subroutines which take advantage of the
performance gains offered by the IBM 3090 Vector Fa-
cility. This paper describes the contents of ESSL and
presents some of the techniques that were used to
develop high-performance vector subroutines. Other
key design considerations such as accuracy, ease of
use, and error handling are also discussed. This infor-
mation should be useful to anyone developing pro-
grams for the IBM 3090 Vector Facility.

he Engineering and Scientific Subroutine Li-

brary (EssL)'? is an 1BM Program Product that
can be used with v§ FORTRAN, Assembler, and APL2,
running under the MvS/XA, VM/SP HPO, VM/XA SF, Or
VM/XA SP operating systems.

ESSL comprises both a vector library and a scalar
library. The vector library subroutines have been
highly tuned to take advantage of the performance
gains offered by the 1BM 3090 Vector Facility. The
scalar library is provided for development and testing
on scalar machines of application programs contain-
ing EsSL calls.

The ESSL subroutines can be divided into ten areas:

¢ Linear algebra subprograms
¢ Matrix operations
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¢ Linear algebraic equations

* Eigensystems analysis

« Signal processing

 Sorting and searching

e Interpolation

¢ Numerical quadrature

e Random number generation
 Utilities

The vector and scalar libraries each contain 233 user-
callable subroutines (Table 1) which are useful for
many different types of scientific and engineering
applications in such industries as aerospace, auto-
motive, electronics, finance, petroleum, research,
and utilities. Several versions of most subroutines
are provided. These may include a short- and long-
precision real version, a short- and long-precision
complex version, and an integer version.

This paper first describes the 1BM 3090 Vector Facil-
ity and the contents of EsSL. Next, some of the
techniques that were used to optimize performance
are discussed; these are illustrated by examining the
performance of a few subroutines. Finally, accuracy,
ease of use, and error handling are discussed.
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Table 1 ESSL computational areas
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Linear algebra subprograms
Vector-Scalar
Sparse Vector-Scalar
Matrix-Vector
Sparse Matrix-Vector
Matrix operations
Linear algebraic equations
Dense
Banded
Sparse
Linear Least Squares
Eigensystem analysis
Signal processing
Fourier Transforms
Convolution/Correlation
General
Sorting and searching
Interpolation
Numerical quadrature
Random number generators
Utilities

OSSO0

OCOooCOQC

“m O Q0O ROOO

Total

—

WO e
—

W ) oo
—

O WO
—

MO WO

—
NwWwoOo
—
NDWNO
NOOOO
NMOOOO

8 !o-—-u-w.zmuua\:
S l-—-—-u-w&u-o——
t:’x !oooooooo
El’ IOOOOOOOO

I*4 = Integer subroutines

R*4 = Short-precision real subroutines

R*8 = Long-precision real subroutines

C*8 = Short-precision complex subroutines
C*16 = Long-precision complex subroutines

IBM 3090 Vector Facility overview

In February 1986, the 1BM 3090 Vector Facility was
made available. The essential computational advan-
tages of the Vector Facility are realized by processing
data in groups called vectors. 1BM 3090 processing as
well as the features of the 1BM 3090 Vector Facility
are described in a previous set of 1BM Systems Journal
articles.>”’

The 1BM 3090 Vector Facility has 16 vector registers,
each containing 128 (32-bit-wide) short-precision
elements. Eight vector-register pairs can also be cou-
pled into a 64-bit format to handle long-precision
data. The length of a vector register is referred to as
the vector section size (vss). When vectors are longer
than the vss, the architecture provides instructions
to handle vector sectioning.’ There are a total of 171
vector instructions to process, move, and interrogate
data. Neglecting overhead, most vector instructions
(e.g., add, subtract, multiply) generate one floating-
point result every cycle. Since it is possible to config-
ure the multiply and add pipelines as one long
pipeline, neglecting overhead, the compound vector
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instructions (multiply-add, multiply-subtract, and
multiply-accumulate) generate two floating-point
results every cycle. The architecture of the 1BM Sys-
tem/370 Vector Facility® is compatible with the Sys-
tem/370 architecture.

In summary, therefore, working in conjunction with
a FORTRAN vector compiler®!® and high-perfor-
mance vector software such as ESSL, the iBM 3090
Vector Facility offers a significant potential for in-
creased computational performance.

ESSL contents

Linear algebra subprograms. A collection of 103
linear algebra subprograms cover four computa-
tional areas: vector-scalar, sparse vector-scalar, ma-
trix-vector, and sparse matrix—-vector.

The vector-scalar linear algebra subprograms con-
tain a subset of the Basic Linear Algebra Subpro-
grams (BLAS)'' and other commonly used vector
computations, such as dot product, vector maximum
element, vector copy, and vector update. The BLAS'!
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constitute an attempt to establish a standard set of
computational subroutines that allow application
software to be “portable” (i.e., usable in more than
one machine environment) and at the same time
efficient.

The sparse vector-scalar linear algebra subprograms
operate on sparse vectors; that is, only the nonzero
elements of the vector are stored. They provide
functions similar to the vector-scalar linear algebra
subprograms, and represent a subset of the proposed
Sparse BLAS.'?

The matrix-vector linear algebra subprograms con-
tain a subset of the Level 2 BLAS' and include
matrix-vector products, rank-one updates, and rank-
two updates for real general, complex general, and
real symmetric matrices.

The sparse matrix~vector linear algebra subprograms
operate on sparse matrices; i.e., only the nonzero
elements of the matrix are stored. Matrix—vector
products for sparse matrices or their transposes are
provided.

Matrix operations

There are 20 matrix operations subroutines, which
perform matrix multiplication for real and complex
matrices, their transposes, or their conjugate trans-
poses, and matrix addition and subtraction for real
and complex matrices or their transposes. In addi-
tion to the standard matrix multiplication, there is a
matrix multiplication that uses Winograd’s variation
of Strassen’s algorithm which provides improved
performance for large matrices. A combination of
matrix multiplication and addition, a proposed Level
3 BLAS,' is also included.

Linear algebraic equations. The 42 linear algebraic
equations subroutines cover four areas: dense,
banded, sparse, and linear least-squares.

The dense linear algebraic equations subroutines
provide solutions to linear systems of equations for
real general matrices or their transposes, and real
positive definite symmetric matrices. The functions
of factorization and solve with a condition number
and determinant are provided. Matrix inversion with
a condition number and determinant is also pro-
vided for real general matrices.

The banded linear algebraic equations subroutines
provide solutions to linear systems of equations for
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real general band matrices, real positive definite sym-
metric band matrices, real general tridiagonal mat-
rices, and real positive definite symmetric tridiagonal
matrices. The functions of factorization and solve
are provided for all matrix types.

The sparse linear algebraic equations subroutines

provide an iterative solution to linear systems of
equations for sparse positive definite and negative

Three levels of vector performance
can be achieved on the
IBM 3090 Vector Facility.

definite symmetric matrices using the conjugate gra-
dient method, with or without preconditioning,

The linear least-squares subroutines provide least-
squares solutions to linear systems of equations for
real general matrices. Two methods are provided:
singular value decomposition, and a QrR decom-
position? with column pivoting.

Eigensystem analysis. Eight eigensystem analysis
subroutines are provided to compute the eigenvalues
and optionally the eigenvectors of real symmetric,
complex Hermitian, real general, and complex gen-
eral matrices.

Signal processing. The 28 signal processing subrou-
tines cover three areas: Fourier transforms, convo-
lution and correlation, and general signal processing.

The Fourier transform subroutines perform trans-
forms in both one and two dimensions. The short-
precision subroutines contain a high-performance
mixed-radix capability. The convolution and corre-
lation subroutines provide the choice of using Four-
ier, direct, or combined Fourier and direct methods.
The autocorrelation subroutines provide the choice
of using Fourier or combined Fourier and direct
methods.

The general signal processing subroutines provide
the same function as a subset of key i1BM 3838 array
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processor algorithms: polynomial evaluation, Ith
Zero crossing, time-varying recursive filter, quadratic
interpolation, and Weiner-Levinson filter coeffi-
cients.

Sorting and searching. Twelve sorting and searching
subroutines are provided for sorting in place with or
without index designations, binary searching, and
sequential searching of real and integer data.

Interpolation. Six interpolation subroutines provide
the capability for polynomial interpolation, local
polynomial interpolation, and cubic spline interpo-
lation.

Numerical quadrature. Ten numerical quadrature
subroutines provide methods for integrating a tabu-
lated function and a user-supplied function over a
finite, semi-infinite, or infinite region of integration
by Gaussian quadrature methods.

Random number generator. There are two uniform-
distribution pseudorandom number generators.

Utility subroutines. Two utility subroutines are pro-
vided for error handling and data format conver-
sions.

Performance

The ESSL vector subroutines have been designed to
provide high performance on the 1BM 3090 Vector
Facility. To achieve this performance, the vector
subroutines use algorithms tailored to specific oper-
ational characteristics of the 1BM 3090 Vector Facil-
ity, such as cache size (the cache is a high-speed
buffer that is used to hold portions of main memory
that have been most recently referenced), vector
section size (vss), number of vector registers, and
page size. The key computational modules have been
written in assembler language, the remaining mod-
ules in FORTRAN.

The following techniques were used to optimize
performance:

* Access data that are stored contiguously; that is,
use stride-1 computations.'’

* Reuse data in vector registers, minimizing vector
loads and stores.

* Manage the cache efficiently to maximize data
reuse; i.e., algorithms are structured to operate on
subblocks that are sized to remain in the cache
until all computations involving the subblock are
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Table 2 Three levels of vector performance (300 vector

elements)
‘Subroutine T(S) T(E) T(S)/T(E)
 DAXPY 0.000089 0.000035 2.5
DGEMX 0.019496 0.003849 5.1
DGEMUL 5.935 0.768 1.7

T(S) = IBM 3090 CPU time in seconds for public domain scalar subroutine
T(E) = IBM 3090-VF CPU time in seconds for vector ESSL subroutine

complete. For example, the number of rows in the
subblock might be equal to the vss, while the
number of columns is chosen so that the subblock
will fit in the cache.

e Use the most efficient machine instructions—for
example, the multiply-add, multiply-subtract,
and multiply-accumulate instructions (the com-
pound vector instructions). Neglecting overhead,
these instructions generate two floating-point re-
sults every cycle. Other vector instructions, such
as multiply, add, and subtract, generate one float-
ing-point result per cycle.

¢ Perform fewer loads and stores for short-precision
data by using long-precision instructions.

e Use algorithms that minimize paging; for example,
alternate forward and backward sweeps through
the columns of a matrix.

While developing ESSL, it was observed that three
levels of vector performance can be achieved on
the 1BM 3090 Vector Facility. These levels can be
roughly characterized by the following Scalar CPU
Time/Vector cpU Time speedup ratios: 3.0 or less,
3.0-6.0, and greater than 6.0.

These ratios generally correspond to the programmer
being able to take advantage of vector instructions,
reuse of data in vector registers, and reuse of data in
cache.

A discussion of the performance of selected ESSL
subroutines (see Table 2) illustrates these perfor-
mance levels.

DAXPY. The DAXPY subroutine computes a vector
update,

yey+ax,

where x and y are long-precision vectors and « is a
long-precision scalar.

DAXPY is representative of the subroutines that
achieve Level 1 performance. Little can be done to
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Table 3 lllustration of cache effect on performance

Number of Empty Primed Empty/
Vector Cache Cache Primed
Elements [TIME(E)] [TIME(E)] Ratio
DAXPY
50 9.60 7.00 1.37
500 52.20 38.20 1.37
1000 105.40 73.80 1.43
DZAXPY
50 11.86 7.06 1.68
500 67.20 38.40 1.75
1000 - 130.76 74.22 1.76

TIME(E) = IBM 3090-VF CPU time in microseconds for ESSL subroutine

optimize these subroutines; there is little data reuse,
vector loads and stores are executed inside the in-
nermost loop, and little benefit is derived from the
vector compound instructions.

It is interesting to examine how the performance of
DAXPY can vary. Table 3 illustrates the performance
of DAXPY for a “primed cache” (all data required for
the computation were in the cache before the sub-
routine was executed), and an “empty cache” (none
of the required data were in the cache before the
subroutine was executed). Even for this simple com-
putation, we see that the performance penalty ranges
from 37-43 percent when the data are not in the
cache, and must be fetched from memory. (Unless
stated otherwise, all other performance data are for
an empty cache.)

Since the vector, y, is used for both input and output,
DAXPY involves some data reuse. Consider the ESSL
subroutine, DZAXPY, which is a minor modification
of DAXPY that allows distinct vectors for the input
and output, i.e.,

Ze—y+ ax.

Table 3 gives the performance of DzAxpYy for a
primed cache and an empty cache. For Dzaxpy, the
performance penalty ranges from 68-76 percent
when the data are not in the cache and must be
fetched from memory.

DAXPY and DZAXPY perform the same number of
floating-point operations but differ in their memory
accesses. When all data are in the cache prior to the
computation, they both require the same amount of
time to perform their computation. However, this is
not the case when the data must be fetched from
main memory.

408 Mccome AND sCHMDT

DGEMX. The DGEMX subroutine computes a ma-
trix-vector product,

ye—y+ Ax,

where x and y are long-precision vectors and A is a
long-precision matrix.

DGEMX is representative of the subroutines that
achieve Level 2 performance. In addition to the
performance improvement gained from using vector
instructions, the matrix—vector product is imple-
mented so that vector loads and stores are removed
from the inner loop by reusing data in vector regis-
ters.

Vector register reuse. To illustrate the reuse of data
in vector registers, consider the task of computing
y « Ax; for simplicity, assume that the number of
rows in the matrix A is less than the vector section
size (VSS):

N a --- Qin X1

Vm Am1 - -+ Qmn Xn

This computation can be done as a series of dot
products,

n

yi= Y a;x

j=1

i=1 m

However, using the dot-product approach involves
accessing matrix A by rows. Since FORTRAN stores
arrays in column major order, this would be a non-
unit stride access. Fortunately, it is easy to refor-
mulate this as a stride-1 computation:

1 an din

= X . +...+xn

VYm ami Qmn

This corresponds to the following FORTRAN loop:

DOI0I=IM
Y1) =00
10 CONTINUE

DO30J)=1IN
DO201=1M
Y1) = Y(I) + X()*A(L)
20 CONTINUE
30 CONTINUE

This can be vectorized using either DAXPY or DGEMX:
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Using DAXPY Using DGEMX
DOI101=1M DO10I=1M
Y) = 0.0 Y()=00
10 CONTINUE 10 CONTINUE
* DGEMX segment
LD FO,X(1)
DO30J=1N VMDS  VO,FOA(L,1)
* DAXPY segment DO 30 J=2N
LD F0,X(J) LD F0,X(J)
VLD V0, Y VMADS VO,F0,A(1,3)
VMADS V0,F0,A(1,1) 30 CONTINUE
VSTD V0,Y VAD Vo,v0,Y
30 CONTINUE VSTD VoY

DAXPY must be called N times from within the DO
30 loop, each time adding the contribution from the
Jjth column of A to the vector, y, stored in memory.
DGEMX is called only once and computes the matrix—

It is easy to extend the
matrix-vector product to handle
matrices of arbitrary size
by breaking the matrix into
submatrices.

vector product by accumulating the contribution
from each column of A in a vector register. Contrast-
ing the two implementations, we notice that in the
inner loop for DGEMX we have been able to eliminate
the vector load and vector store instructions by
reusing the data in vector register 0.

Paging considerations. It is easy to extend the ma-
trix—vector product to handle matrices of arbitrary
size by breaking the matrix into submatrices. How-
ever, for large matrices, the impact of paging must
be considered. It is well known (see the paper by
Dubrulle'®) that paging for matrices stored in column
major order will be minimized if the computation is
structured so that all elements in one column are
used before proceeding to the next column. How-
ever, this conflicts with our desire to reuse data in
vector registers. A compromise is to block the matrix
(the size of the blocks is k*vss by n, where k depends
on the number of available vector registers), and
then to alternate forward and backward sweeps
through the columns of A. This increases the likeli-
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hood that pages will be in memory when accessed,
since a least-recently-used paging replacement algo-
rithm is used. The following is an example of matrix
blocking:

—

A1 X1 Alx

«— . p—
Yy=1 4, .l T A4x |

— . —

A3 Xn A3X
Compute A4, x j=1,n,
Compute A,bx j=n,1,~1,
Compute A3x j=1,n

DGEMUL. The DGEMUL subroutine performs ma-
trix multiplication, C < AB, where A, B, and C are
long-precision general matrices, and either the nor-
mal or transposed form of A and B can be selected.

DGEMUL is representative of the subroutines that
achieve Level 3 performance. In addition to the
performance improvement gained from using vector
instructions, and reusing data in vector registers,
DGEMUL is also able to reuse data in cache. DGEMUL
is structured to operate on subblocks that are sized
to remain in the cache until all computations involv-
ing the subblock are complete.

For example, consider multiplying two square mat-
rices, A and B, of order n. Depending on the size of
n, DGEMUL might block the A matrix as shown in
Figure 1.

The value of k is determined such that the vss by k
subblock of A will remain in the cache while it is
used to compute n matrix—vector products with the
k-element vectors of B.

Cache considerations. As discussed by Tucker,” the
cache is a high-speed buffer that is used to hold
portions of main memory that have been most re-
cently referenced. For the iBM 3090 Vector Facility,
the cache is a 64K-byte (8K-double-word) buffer
divided into four sets of 2K double words, with data
transfers carried out a line (16 double words) at a
time. A double word can reside in only one particular
location of any one of the four sets; the location is
uniquely determined by the low-order bits of the
virtual address of the double word. Accessing the
elements of a vector with a particular stride can
result in the selected double words frequently map-
ping to the same cache location; this has the effect
of reducing the effective size of the cache. For ex-
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Figure1 Blocking of A matrix by the DGEMUL subroutine

Table 4 1BM 3090 cache

Stride Effective Cache Size
(double words)
1 ) 8192
16 512
32 ) 256
64 128
128 64
-, 256 32
512 16
1024 8
2048 4

Assumptions:

1. Long-precision array loaded on a page boundary.

2. Sequential pages in virtual memory are assigned sequential pages in real mem-
ory. (This may not always be the case since page assignments are under the
control of the operating system.)

ample, suppose vector elements with a stride of 2048
are accessed (subject to the assumptions given in
Table 4). All elements will map to the same cache
location, so the first four elements will occupy that
location in the four sets. The fifth element fetched
replaces one of the first four elements, so for this
computation the effective size of the cache has been
reduced to four double words. The application pro-
grammer can help to alleviate this situation by not
specifying the leading dimension (Ida) of an array
equal to or near a multiple of 128 for long-precision
arrays, or 256 for short-precision arrays (see Table
4).
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One important characteristic of the 1BM 3090 Vector
Facility is that if data are in the cache, there is no
performance penalty associated with stride-V com-
putations. This fact was used by a number of ESSL
subroutines, among them the Fourier Transform
subroutines,'”'® the matrix multiplication subrou-
tines, and the linear algebraic equation subroutines,
to achieve high performance.

Stride-N considerations. It is well known that com-
putations with non-unit stride should be avoided.
However, this is not always possible. Consider
computing the sum of two transposed matrices
C « AT + BT, where A, B, and C are stored in nor-
mal form in two-dimensional FORTRAN arrays.

Intuitively for the computation C = AT + B”, one
might guess that the best strategy would be the
following:
DO20J=IN
DOIOI={M
CiJ.D = A(1J) + B(L)).

10 CONTINUE
20 CONTINUE

That is, fetch columns of matrices A and B (stride
1), and store rows of the matrix C (stride N).

However, this is not the case for the iBM 3090 Vector
Facility. Due to the penalty for storing with large
stride, better performance is obtained by fetching
rows of matrices A and B (stride N), and storing
columns of matrix C (stride 1):
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DO20J= N
DO10l=1M
C(1,J)= A(J.1) + BU,I).
10 CONTINUE
20 CONTINUE

In cases where stride-N computations cannot be
avoided, better performance will be achieved if the
program can be constructed to use loads with strides
instead of stores with strides. In fact, in some cases,
large stride-N computations are more effectively
done with scalar code.

Other programming techniques

Next, some other programming techniques that were
used in ESSL are discussed.

Although stride-N computations should be avoided
if possible, there are some cases where it may be
worthwhile to consider using such a computation
(see the paper by Dongarra et al.’®). As discussed
earlier, the matrix-vector product can be calculated
by accessing the m by # matrix A by columns (stride
1) or by rows (stride N). Generally, one would opt
for accessing the matrix by columus, but if # is small
and n is somewhat larger than m, the matrix-vector
product is more efficiently computed using the stride
N implementation. For this case, m dot products of
length n are computed, i.e., fewer operations with
longer vector lengths than if the stride-1 approach
were used.

In some cases, loop overhead can be decreased by
treating matrices as though they were vectors.
For example, suppose one wishes to compute
C = A + B, where A, B, and C are n X n matrices
stored compactly [i.e., the arrays have been dimen-
sioned A(N, N}, B(N, N), C(N, N)]. In this case, it is
possible to cut down on loop overhead by doing one
vector addition of length »* instead of n vector
additions of length n.

Next, a technique to save load-and-store machine
cycles is illustrated. Consider the problem of com-
puting the element-by-element product of two com-
plex short-precision vectors (an important compu-
tational element required by the convolution
subroutines). Long-precision vector load-and-store
instructions can be used in place of short-precision
vector load-and-store instructions (provided arrays
are aligned on double-word boundaries), resulting in
the following loop:
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LA R2,2 SET THE STRIDE REGISTER TO 2

LOOP VLVCU N SET THE VECTOR COUNT TO N
VLD V2X LOAD X WITH STRIDE 1
. V2 CONTAINS XR (REAL PART OF X)
* V3 CONTAINS X1 (IMAGINARY PART OF X)

VME  V0,V2, YR(R2) XR*YR
VMSE VO,V3YI(R2) ZR = XR*YR — XI*YI
VME  V4,V2,YI(R2) XR*Y!
VMAE V4,V3YR(R2) Z1 = XR*YI + XI*YR

VLER VL, V4 COPY ZI TO VI
VSTD VO,Z STORE Z WITH STRIDE |
BP LOOP

COMPUTE Z(I) = X(I) ® Y(I)

WHERE X, Y, AND Z ARE SHORT-PRECISION COMPLEX VECTORS
X = (XR,XI)
Y = (YR,Y])
Z = (ZR,Z])

The above loop contains eight vector instructions; a
comparable loop that did not use the long-precision
vector load-and-store instructions would contain
nine vector instructions. In addition to saving one
vector instruction, some of the stride-2 accesses nor-
mally required for complex data have been changed
into stride-1 accesses.

Representative performance information for selected
ESSL subroutines for one particular problem size is
given in Table 5. ESSL performance varies depending
on the application-program-dependent matrix and
vector sizes. Additional performance information for
ESSL subroutines is available, 8202

Accuracy

Accuracy is strongly dependent on the algorithm
used (which may vary within a subroutine), the
matrix and vector sizes, and the 1BM 3090 Vector
Facility model-dependent parameters [Vector Sec-
tion Size (vss) and Partial Sum Number (PsN)]. For
the 1BM 3090 Vector Facility, the vss (number of
elements in a vector register) is 128, and the PSN
(length of the pipeline) is 4. The 1BM 3090 Vector
Facility uses a partial-sum technique (described in
Reference 3) for the multiply and accumulate, ac-
cumulate, zero partial sums, and sum partial sums
vector instructions. Since floating-point addition is
not associative, this technique produces a result
which is model-dependent and may differ from the
result of sequential addition.

ESSL provides short- and long-precision versions of
most subroutines. In most cases, short-precision sub-
routines use long-precision accumulations, with the
final result truncated to short-precision to obtain
increased accuracy.

Bitwise-identical results frequently occur, but are not
guaranteed between the ESSL vector and scalar sub-
routines due to architectural differences between the
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Table5 Sample ESSL performance resuits

N=300
Generdl mamx factor
s General matrix solvrz

X to real meer transfam

. Sart .
Random numbet generator

N = Order of the matrix, size of the transform, or number of vector elements
T(S) =IBM 3090 CPU time in seconds for public domain scalar subroutine
T(E) = IBM 3090-VF CPU time in seconds for vector ESSL subroutine

vector and scalar hardware. For example, vector
divide and multiply instructions do not permit un-
normalized operands; scalar instructions do.

ESSL does not round numbers or mask underflow.
However, for performance reasons we recommend
that underflow be masked using the vS FORTRAN
Library utility, xUrLow.>!?

Ease of use

ESSL is callable from FORTRAN, Assembler, and APL2
programs. All ESSL subroutines follow standard FOR-
TRAN calling conventions, and must run in the FOR-
TRAN environment. When ESSL subroutines are
called from a non-FORTRAN program, the FORTRAN
conventions such as array ordering must be used.

ESSL functions are invoked from FORTRAN programs
using a function reference, and ESSL subroutines are
invoked from FORTRAN programs using a CALL state-
ment, ESSL routines can be called from Assembler
programs by coding an appropriate macro instruc-
tion, such as CALL, or by coding Assembler language
branch instructions.

Most ESSL routines can be called from APL2 functions
via Processor 11. APL2 and Processor 11 manage the
necessary housekeeping and argument conversion
based upon descriptive information contained in a
NAMES file provided with ESSL. One important differ-
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ence must be kept in mind when accessing ESSL
routines from APL. In APL, arrays are stored in row
major order, while in FORTRAN they are stored in
column major order. Processor 11 does not modify
array ordering. One solution is to transpose all input
matrices before calling ESSL, and transpose all output
matrices after the call. Of course, in some cases the
cost of the transpositions may be more than the
performance improvement obtained by calling ESSL.
Another alternative is to build and process the matrix
in its logically transposed form. Finally, it is some-
times possible to handle this problem by reversing
arguments in the calling sequences of those ESSL
routines that provide the capability of using either
the normal or transposed form of the matrix. For
additional information, see the APL2 Programming
Guide

Because calling sequences are identical for the ESSL
vector and scalar subroutines, it is not necessary to
modify source code or recompile to switch between
the scalar and vector libraries; the desired library is
selected at link-edit or load time.

An attempt was made to be consistent across the
library when the calling sequences were designed.
Within each mathematical area, the calling sequence
syntax and naming conventions are similar. An at-
tempt was also made to achieve a balance between
keeping the calling sequence as simple as possible
and still allowing flexibility for the sophisticated user.
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Inserting calls to ESSL subroutines in application
programs is often very easy. For example, consider
the following:

DT =00
DO10) =1, N
DT = DT + X(I)*Y(I)
10 CONTINUE

The above loop can be replaced with the following
function reference:?*

DT = DDOT(N,X,1,Y,1)

(According to FORTRAN conventions, it would also
be necessary to declare DT and DDOT as double-
precision.)

Similarly, the loop

DO20J
DO 101
$=00
DO1IK= 1M
S =8+ A(LK)*B(K.J)
Il CONTINUE
)=
10 CONTINUE
20 CONTINUE

I,N
LL

can be replaced®* with

CALL DGEMUL(A,LDA,'N',B,LDB,'N',C,LDC,L,M,N)

For other more involved computations (e.g., solving
a system of linear equations), it may be possible to
simply replace a call to a user-written or library
subroutine with a call to a comparable ESSL subrou-
tine.

As we have seen, it is sometimes very easy to insert
calls to ESSL subroutines. In other cases, the obvious
replacement of the inner loop by the comparable
ESSL CALL may not be the most optimal modification.
For example, consider the following code fragment
from a FORTRAN program that typically occurs in an
eigensystem analysis subroutine:

DO 130J= 1L
G=00
DOII0OK=1,L
G =G+ Z(K)*Z(K,J)
110 CONTINUE
G=G*H
DO 120K =1, L
Z(K,J) = Z(K,J) + G*Z(K,})
120 CONTINUE
130 CONTINUE

The above code can be replaced with the following
calls to ESSL subroutines:**

CALL DGEMV ('T',L L,1.0D0,2,LDZ,2(1,1),1,0.0D0,AUX, 1)

CALL DGERI(L,L,H,Z(1,),1,AUX,1,Z,LDZ)
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As discussed by Dongarra et al.,”* the 110/130 loop
is really a matrix-vector product for the transpose
of a general matrix, and the 120/130 loop is really a
rank-one update for a general matrix.

Error handling

Three different types of errors can occur when using
ESSL subroutines: program exceptions, input argu-
ment errors, and computational errors. ESSL does
extensive parameter checking, reporting multiple er-
rors in one pass. Positive error messages specifying
corrective action are issued, rather than describing
what is incorrect.

Since ESSL uses FORTRAN error handling, all the
features available for handling errors in FORTRAN are
also available for ESSL errors. For example, it is
possible to control the number of times an error is
allowed to occur before the program terminates, the
number of messages printed, whether an error should
be considered terminal, and whether a traceback
map will be printed. EssL is shipped with recom-
mended error-handling defaults that are tailored to
the unsophisticated user. These defaults can be
changed at installation, and can also be changed
dynamically using the vs FORTRAN ERRSET facility.
See the EssL Guide Reference? for details.

Conclusions

In this paper, the ESSL subroutines have been dis-
cussed, and some of the techniques used to achieve
high performance on the 1BM 3090 Vector Facility
have been illustrated. These techniques should be
applicable to any application program developed for
the 1BM 3090 Vector Facility. Using ESSL in conjunc-
tion with the vectorizing vs FORTRAN Version 2
Compilerg"0 should help application programmers
to realize the full performance potential of the 1BM
3090 Vector Facility rapidly and easily.
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