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The  Engineering  and  Scientific  Subroutine  Library 
(ESSL)  provides  FORTRAN,  Assembler,  and  APL2 appli- 
cation  programmers  with  a  high-performance  set of 
mathematical  subroutines  which take advantage of the 
performance  gains  offered by the IBM 3090 Vector  Fa- 
cility. This  paper  describes the contents of  ESSL  and 
presents  some  of the techniques  that were used to 
develop  high-performance  vector  subroutines.  Other 
key  design  considerations  such  as  accuracy,  ease  of 
use, and  error  handling  are  also  discussed.  This  infor- 
mation  should  be  useful to anyone  developing  pro- 
grams  for the IBM 3090 Vector  Facility. 

T he Engineering and Scientific Subroutine Li- 
brary (ESSL)’” is an IBM Program Product that 

can be  used  with VS FORTRAN, Assembler, and APLZ, 
running under the MVS/XA, VM/SP HPO, VM/XA SF, or 
VM/XA SP operating systems. 

ESSL comprises both a  vector  library and a  scalar 
library. The vector  library subroutines have  been 
highly tuned to take advantage of the performance 
gains  offered by the IBM 3090 Vector  Facility. The 
scalar  library  is  provided  for development and testing 
on scalar machines of application programs contain- 
ing ESSL calls. 

The ESSL subroutines can be  divided into ten areas: 

Linear algebra subprograms 
Matrix operations 

Linear  algebraic equations 
Eigensystems  analysis 
Signal  processing 
Sorting and searching 
Interpolation 
Numerical quadrature 
Random number generation 
Utilities 

The vector and scalar libraries each contain 233  user- 
callable subroutines (Table 1) which are useful  for 
many different  types of scientific and engineering 
applications in such industries as aerospace, auto- 
motive,  electronics,  finance, petroleum, research, 
and utilities.  Several  versions of most subroutines 
are provided.  These  may include a short- and long- 
precision  real  version,  a short- and long-precision 
complex  version, and  an integer  version. 

This paper first  describes the IBM 3090  Vector  Facil- 
ity and the contents of ESSL. Next, some of the 
techniques that were  used to optimize performance 
are discussed;  these are illustrated by examining the 
performance of  a few subroutines. Finally,  accuracy, 
ease of use, and error handling are discussed. 
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Table 1 ESSL computational  areas 

Computational  Areas 1'4 R'4 R'8 C'8 C*16 

Linear algebra subprograms 
Vector-Scalar 0 18 18  17  17 
Sparse  Vector-Scalar 0 5 5 0 0 
Matrix-Vector 0 7 7 3 3 
Sparse Matrix-Vector 0 0 3 0 0 

Matrix operations 0 5 5 5 5 
Linear algebraic equations 

Dense 0 7 7 0 0 
Banded 0 10 10 0 0 

Linear Least Squares 0 3 3 0 0 
Eigensystem  analysis 0 2 2 2 2 
Signal  processing 

Fourier Transforms 0 7 1 0 0 
Convolution/Correlation 0 10 0 0 0 
General 0 5 5 0 0 

Sorting and searching 4 4 4 0 0 
Interpolation 0 3 3 0 0 
Numerical quadrature 0 5 5 0 0 
Random number generators 0 1 1 0 0 
Utilities - 1 0 0 0 

Total 5 92 82 27  27 

Sparse 0 0 2 0 0 

- - 1 - - 

1'4 = Integer subroutines 
R.4 = Shon-precision real subroutines 
R.8 = Long-precision real subroutines 

C.16 = Long-precision complex subroutines 
C'8 = Short-precision complex subroutines 

IBM 3090 Vector  Facility  overview 

In February  1986, the IBM 3090  Vector  Facility  was 
made available. The essential computational advan- 
tages  of the Vector  Facility are realized by processing 
data in groups  called  vectors. IBM 3090  processing  as 
well  as the features of the IBM 3090  Vector  Facility 
are  described in a  previous  set of IBM Systems Journal 
arti~les.~" 

The IBM 3090  Vector  Facility  has 16 vector  registers, 
each containing 128  (32-bit-wide)  short-precision 
elements.  Eight  vector-register  pairs  can  also  be  cou- 
pled into a 64-bit format to handle  long-precision 
data. The length of a  vector  register is referred to as 
the vector  section  size (vss). When  vectors are longer 
than the vss, the architecture provides instructions 
to handle vector ~ectioning.~ There are a total of 17 1 
vector instructions to process,  move, and interrogate 
data. Neglecting  overhead,  most  vector instructions 
(e.g., add, subtract, multiply)  generate one floating- 
point result  every  cycle.  Since it is  possible to config- 
ure the multiply and add  pipelines  as one long 
pipeline,  neglecting  overhead, the compound vector 

instructions (multiply-add,  multiply-subtract, and 
multiply-accumulate)  generate  two  floating-point 
results  every  cycle. The architecture of the IBM Sys- 
temj370 Vector  Facility*  is  compatible  with the Sys- 
tem/370 architecture. 

In summary, therefore,  working in conjunction with 
a FORTRAN vector c ~ m p i l e r ~ . ' ~  and high-perfor- 
mance  vector  software  such  as ESSL, the IBM 3090 
Vector  Facility  offers  a  significant potential for in- 
creased computational performance. 

ESSL contents 

Linear  algebra  subprograms. A collection of 103 
linear  algebra  subprograms  cover four computa- 
tional areas:  vector-scalar,  sparse  vector-scalar, ma- 
trix-vector, and sparse  matrix-vector. 

The vector-scalar  linear  algebra  subprograms  con- 
tain a  subset  of the Basic  Linear  Algebra  Subpro- 
grams (BLAS)" and other commonly  used  vector 
computations, such  as dot product, vector maximum 
element, vector  copy, and vector update. The BLAS" 

McCOMB  AND SCHMIDT 405 IBM SYSTEMS JOURNAL. VOL 27, NO 4, 19M 



constitute an attempt to establish a standard set of 
computational subroutines that allow application 
software to be “portable” (i.e.,  usable in more than 
one machine environment) and at the same time 
efficient. 

The sparse  vector-scalar  linear  algebra  subprograms 
operate on sparse  vectors; that is,  only the nonzero 
elements of the vector are stored.  They  provide 
functions similar to the vector-scalar  linear  algebra 
subprograms, and represent a subset  of the proposed 
Sparse BLAS.” 

The matrix-vector  linear  algebra  subprograms  con- 
tain a subset of the Level 2 B L A S ’ ~  and include 
matrix-vector  products, rank-one updates, and rank- 
two  updates  for  real  general,  complex  general, and 
real  symmetric  matrices. 

The sparse  matrix-vector  linear  algebra  subprograms 
operate on sparse  matrices;  i.e.,  only the nonzero 
elements of the matrix are stored.  Matrix-vector 
products for  sparse  matrices or their transposes are 
provided. 

Matrix operations 

There are 20 matrix operations subroutines,  which 
perform matrix multiplication for real and complex 
matrices, their transposes, or their conjugate  trans- 
poses, and matrix addition and subtraction for  real 
and complex  matrices or their transposes. In addi- 
tion to the standard matrix multiplication, there is a 
matrix  multiplication that uses  Winograd‘s  variation 
of  Strassen’s  algorithm  which  provides improved 
performance  for  large  matrices. A combination of 
matrix  multiplication and addition, a proposed  Level 
3 BLAS,’~ is  also included. 

Linear  algebraic  equations. The 42 linear  algebraic 
equations subroutines cover four areas:  dense, 
banded, sparse, and linear  least-squares. 

The dense  linear  algebraic equations subroutines 
provide  solutions to linear  systems  of equations for 
real  general  matrices or their transposes, and real 
positive  definite symmetric matrices. The functions 
of factorization and solve  with a condition number 
and determinant are  provided.  Matrix  inversion  with 
a condition number and determinant is  also  pro- 
vided  for  real  general  matrices. 

The banded  linear  algebraic equations subroutines 
provide solutions to linear  systems  of equations for 
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real  general band matrices,  real  positive  definite  sym- 
metric band matrices,  real  general  tridiagonal mat- 
rices, and real  positive  definite  symmetric  tridiagonal 
matrices. The functions of factorization and solve 
are provided  for  all matrix types. 

The sparse linear algebraic equations subroutines 
provide an iterative solution to linear  systems  of 
equations for sparse  positive  definite and negative 

Three  levels of vector  performance 
can  be  achieved  on  the 
IBM 3090 Vector  Facility. 

definite  symmetric  matrices  using the conjugate  gra- 
dient method, with or without  preconditioning. 

The linear  least-squares subroutines provide  least- 
squares solutions to linear  systems  of equations for 
real  general  matrices.  Two  methods are provided: 
singular  value  decomposition, and a QR decom- 
position*  with column pivoting. 

Eigensystem  analysis.  Eight  eigensystem  analysis 
subroutines are provided to compute the eigenvalues 
and optionally the eigenvectors of real  symmetric, 
complex Hermitian, real  general, and complex  gen- 
eral  matrices. 

Signal  processing. The 28 signal  processing subrou- 
tines  cover three areas: Fourier transforms,  convo- 
lution and correlation, and general  signal  processing. 

The Fourier transform subroutines perform trans- 
forms in both one and two  dimensions. The short- 
precision subroutines contain a high-performance 
mixed-radix  capability. The convolution and corre- 
lation subroutines provide the choice of using Four- 
ier,  direct, or combined Fourier and direct  methods. 
The autocorrelation subroutines provide the choice 
of using Fourier or combined Fourier and direct 
methods. 

The general  signal  processing subroutines provide 
the same function as a subset of  key IBM 3838 array 
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interpolation, and Weiner-Levinson  filter coeffi- 
cients. 

Sorting and searching. Twelve sorting and searching 
subroutines are provided  for  sorting in place  with or 
without index  designations, binary searching, and 
sequential searching of  real and integer data. 

Interpolation. Six interpolation subroutines provide 
the capability  for polynomial interpolation, local 
polynomial interpolation, and cubic spline interpo- 
lation. 

Numerical quadrature. Ten numerical quadrature 
subroutines provide methods for  integrating  a tabu- 
lated function and a  user-supplied function over  a 
finite, semi-infinite,  or infinite region  of integration 
by Gaussian quadrature methods. 

Random  number  generator. There are two uniform- 
distribution pseudorandom number generators. 

Utility subroutines. Two utility subroutines are pro- 
vided  for error handling and data format conver- 
sions. 

Performance 

The ESSL vector subroutines have  been  designed to 
provide high performance on the IBM 3090  Vector 
Facility. To achieve this performance, the vector 
subroutines use algorithms tailored to specific  oper- 
ational characteristics of the IBM 3090  Vector  Facil- 
ity,  such as cache size (the cache is a  high-speed 
buffer that is  used to hold portions of main memory 
that have  been  most  recently  referenced),  vector 
section  size (vss), number of vector  registers, and 
page  size. The key computational modules have  been 
written in assembler  language, the remaining mod- 
ules in FORTRAN. 

The following techniques were  used to optimize 
performance: 

Access data that are  stored  contiguously; that is, 
use stride- 1 computations.” 
Reuse data in vector  registers, minimizing vector 
loads and stores. 
Manage the cache  efficiently to maximize data 
reuse;  i.e., algorithms are structured to operate on 
subblocks that are  sized to remain in the cache 
until all computations involving the subblock are 
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DAXPY O.ooOo89 O.ooOo35 
DGEMX 0.019496 0.003849 
DGEMUL 5.935 0.168 

T(S) = IBM 3090 CPU time  in  seconds for public  domain scalar subroutine 
T(E) = IBM 3090-VF CPU time in seconds for vector ESSL subroutine 

complete. For example, the number of rows in the 
subblock  might be equal to the vss, while the 
number of columns is  chosen so that the subblock 
will  fit in the cache. 
Use the most  efficient machine instructions-for 
example, the multiply-add,  multiply-subtract, 
and multiply-accumulate instructions (the com- 
pound vector instructions). Neglecting  overhead, 
these instructions generate two  floating-point  re- 
sults  every  cycle. Other vector instructions, such 
as  multiply, add, and subtract, generate one float- 
ing-point  result  per  cycle. 
Perform  fewer loads and stores for short-precision 
data by using  long-precision instructions. 
Use algorithms that minimize paging;  for  example, 
alternate forward and backward sweeps through 
the columns of  a matrix. 

While  developing ESSL, it was observed that three 
levels  of vector performance can be  achieved on 
the IBM 3090  Vector  Facility.  These  levels can be 
roughly characterized by the following  Scalar CPU 
Time/Vector CPU Time speedup  ratios: 3.0 or less, 
3.0-6.0, and greater than 6.0. 

These ratios generally correspond to the programmer 
being  able to take advantage of vector instructions, 
reuse of data in vector  registers, and reuse of data in 
cache. 

A discussion of the performance of selected ESSL 
subroutines (see Table 2) illustrates these  perfor- 
mance levels. 

DAXPY. The DAXPY subroutine computes a  vector 
update, 

y + y +  ax, 

where x and y are  long-precision  vectors and a is  a 
long-precision  scalar. 

DAXPY is representative of the subroutines that 
achieve Level 1 performance.  Little can be done to 
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Table 3 illustration of cache  effect on  performance 

Number of 

Elements JTIME(E)]  JTIME(E)] Ratio 
Z z 2  Primed 

Vector  Cache :x% 
DAXPY 

50 9.60 7.00 1.37 
500 52.20 38.20  1.31 

io00 105.40 73.80  1.43 

DZAXPY 
50  11.86  7.06 

500 
1.68 

67.20  38.40 
lo00 

1.75 
130.76  14.22  1.76 

TIME(E) = IBM 3090-VF CPU time in  microseconds for ESSL subroutine 

optimize these subroutines; there is little data reuse, 
vector  loads and stores are executed  inside the in- 
nermost loop, and little benefit  is  derived  from the 
vector compound instructions. 

It is  interesting to examine  how the performance of 
DAXPY can  vary.  Table 3 illustrates the performance 
of DAXPY for a “primed cache”  (all data required  for 
the computation were in the cache  before the sub- 
routine was executed), and  an “empty cache” (none 
of the required data were in the cache  before the 
subroutine was  executed).  Even  for  this  simple  com- 
putation, we  see that the performance  penalty  ranges 
from 37-43 percent  when the data are not in the 
cache, and must  be  fetched  from  memory.  (Unless 
stated otherwise,  all other performance data are for 
an empty cache.) 

Since the vector, y,  is  used  for both input and output, 
DAXPY involves  some data reuse.  Consider the ESSL 
subroutine, DZAXPY, which is a minor modification 
of DAXPY that allows  distinct  vectors  for the input 
and output, i.e., 

z t y + a x .  

Table 3 gives the performance of DZAXPY for a 
primed cache and an empty cache. For DZAXPY, the 
performance  penalty  ranges  from 68-76 percent 
when the data are not in the cache and must  be 
fetched  from  memory. 

DAXPY and DZAXPY perform the same number of 
floating-point operations but differ in their memory 
accesses.  When  all data are in the cache  prior to the 
computation, they both require the same amount of 
time to perform their computation. However, this is 
not the case  when the data must be  fetched  from 
main  memory. 

DGEMX. The DGEMX subroutine computes a ma- 
trix-vector product, 

y + y + A x ,  

where x and y are long-precision  vectors and A is a 
long-precision  matrix. 

DGEMX is  representative of the subroutines that 
achieve  Level 2 performance. In addition to the 
performance improvement gained  from  using  vector 
instructions, the matrix-vector product is  imple- 
mented so that vector  loads and stores are removed 
from the inner loop by  reusing data in vector  regis- 
ters. 

Vector register reuse. To illustrate the reuse  of data 
in vector  registers,  consider the task of computing 
y t Ax; for  simplicity,  assume that the number of 
rows in the matrix A is  less than the vector  section 
size (vss): 

[I] Y m  - - 

This computation can be done as a series  of dot 
products, 

yi = 2 aijxj i = 1, m. 
n 

i= I 

However,  using the dot-product approach involves 
accessing  matrix A by  rows.  Since FORTRAN stores 
arrays in column major order, this would be a non- 
unit stride  access. Fortunately, it is easy to refor- 
mulate this as a stride- 1 computation: 

[ [ q  + .. .  + x n  [‘;] 
Y m  am 1 Umn 

This corresponds to the following FORTRAN loop: 

W IO I = ISM 
Y(1) = 0.0 

I O  CONTINUE 

Do30J= 1.N 
W 2 0 1 =  1.M 

20 CONTINUE 
30 CONTINUE 

Y(I) = Y(I) + X(J)*A(I,J) 

This can  be  vectorized  using either DAXPY or DGEMX: 
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Using DAXPY Using DGEMX 

DO IO I = I,M D O I O I = I , M  
YO) = 0.0 

IO CONTINUE 
Y(I) = 0.0 

IO CONTINUE 

* DGEMX segment 

DO3OJ-  I,N 
LD FO,X(I) 
VMDS VO,FO,A( I,  I )  

' DAXPY xament DO30 J =Z.N 
LD FO,X(J) LD FO,X(J) 
VLD V0.Y VMADSVO,FO,A( I,J) 
VMADSVO,FO,A(IJ) 30 CONTINUE 
VSTD V0.Y 

30 CONTINUE VSTD V0.Y 
VAD V0,VO.Y 

DAXPY must  be  called N times from  within the DO 
30 loop, each time adding the contribution from the 
jth column of A to the vector, y, stored in memory. 
DGEMX is  called  only  once and computes the matrix- 

It is  easy  to  extend  the 
matrix-vector  product  to  handle 

matrices of arbitrary  size 
by breaking  the  matrix  into 

submatrices. 

vector product by accumulating the contribution 
from  each column of A in a  vector  register. Contrast- 
ing the two implementations, we notice that in the 
inner loop for DGEMX we have  been  able to eliminate 
the vector  load and vector  store instructions by 
reusing the data in vector  register 0. 

Paging  considerations. It is  easy to extend the ma- 
trix-vector product to handle matrices of arbitrary 
size  by breaking the matrix into submatrices.  How- 
ever,  for  large  matrices, the impact of  paging  must 
be considered. It is well known  (see the paper by 
Dubrulle16) that paging  for  matrices  stored in column 
major order will  be minimized  if the computation is 
structured so that all elements in one column are 
used  before  proceeding to the next column. How- 
ever,  this  conflicts  with our desire to reuse data in 
vector  registers.  A  compromise  is to block the matrix 
(the size  of the blocks  is k* vss by n, where  k  depends 
on the number of available  vector  registers), and 
then to alternate forward and backward  sweeps 
through the columns of A. This increases the likeli- 
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hood that pages  will  be in memory  when  accessed, 
since  a  least-recently-used  paging  replacement  algo- 
rithm is  used. The following  is an example of matrix 
blocking: 

Compute A l x  j = 1, n, 
Compute A2x j = n, 1, -1, 
Compute A3x  j = 1; n. 

DGEMUL. The DGEMUL subroutine performs  ma- 
trix multiplication, C t AB, where A, B, and C are 
long-precision  general  matrices, and either the nor- 
mal or transposed  form of A and B can be  selected. 

DGEMUL is representative of the subroutines that 
achieve  Level 3 performance.  In addition to the 
performance improvement gained  from  using  vector 
instructions, and reusing data in vector  registers, 
DGEMUL is also able to reuse data in cache. DGEMUL 
is structured to operate on subblocks that are sized 
to remain in the cache until all computations involv- 
ing the subblock are complete. 

For  example,  consider  multiplying  two  square mat- 
rices, A and B, of order n. Depending on the size of 
n, DGEMUL might  block the A matrix as shown in 
Figure 1. 

The value of k  is determined such that the vss by k 
subblock  of A will remain in the cache  while it is 
used to compute n matrix-vector products with the 
k-element  vectors  of B. 

Cache considerations. As discussed  by  Tucker,' the 
cache  is  a  high-speed  buffer that is  used to hold 
portions of main memory that have  been  most  re- 
cently  referenced. For the IBM 3090 Vector  Facility, 
the cache  is  a  64K-byte  (8K-double-word)  buffer 
divided into four  sets  of 2K double  words,  with data 
transfers  carried out a line (16 double words) at a 
time.  A double word can reside in only one particular 
location of any one of the four sets; the location  is 
uniquely determined by the low-order  bits  of the 
virtual  address of the double  word.  Accessing the 
elements of a  vector  with  a particular stride can 
result in the selected double words  frequently map- 
ping to the same cache location; this has the effect 
of reducing the effective  size  of the cache. For ex- 



Figure 1 Blocking of A matrix  by  the DGEMUL subroutine 

vss 

k 
L 

II 

k 

Table 4 IBM 3090 cache 

Bbide Eirective cache size 
(dot” words) 

1 8192 
16 512 
32 256 
64 128 
128 64 
256 32 
512 16 
1024 8 
2048 4 

Assumptions: 
I .  Long-precision array loaded on a page boundary. 
2. Sequential pages in virtual memory are assigned sequential pages in real mem- 

ory. (This may not always be the case since page  assignments arc under the 
control of the operating system.) 

ample,  suppose  vector  elements  with  a  stride  of 2048 
are accessed  (subject to the assumptions  given in 
Table 4). All elements will map to the same  cache 
location, so the first  four  elements  will  occupy that 
location in the four  sets. The fifth  element  fetched 
replaces one of the first four elements, so for this 
computation the effective  size  of the cache  has  been 
reduced to four double  words. The application  pro- 
grammer can help to alleviate this situation by not 
specifying the leading  dimension (Ida) of an array 
equal to or near  a  multiple of 128 for  long-precision 
arrays, or 256 for  short-precision  arrays  (see  Table 
4). 

One important characteristic of the IBM 3090 Vector 
Facility  is that if data are  in the cache,  there  is no 
performance  penalty  associated  with stride4 com- 
putations. This fact was  used  by a number of ESSL 
subroutines, among them  the  Fourier  Transform 
subroutine~,’~”~ the matrix  multiplication  subrou- 
tines, and the linear  algebraic equation subroutines, 
to achieve  high  performance. 

Stride-N considerations.  It is well known that com- 
putations with non-unit stride  should be  avoided. 
However,  this  is not always  possible.  Consider 
computing the sum of  two transposed  matrices 
C t AT + B’, where A, B, and C are stored in nor- 
mal  form  in  two-dimensional FORTRAN arrays. 

Intuitively  for  the computation C = AT + BT, one 
might  guess that the best  strategy  would  be the 
following: 

W Z O J -  I,N 
M) I O  I - I,M 

C(J.1) = A(I,J) + B(l,J). 

20 CONTINUE 
I O  CONTINUE 

That is,  fetch columns of matrices A and B (stride 
l), and store  rows of the matrix C (stride N). 
However,  this  is  not the case  for the IBM 3090 Vector 
Facility.  Due to the penalty  for  storing  with  large 
stride,  better  performance  is  obtained by fetching 
rows  of matrices A and B (stride N), and storing 
columns of matrix C (stride 1): 
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W 2 0 J -  1.N 
W 10 I = 1.M 

C(I,J) = A(J.1) t WJ.1). 
10 CONTINUE 
20 CONTINUE 

In cases  where stride4 computations cannot be 
avoided,  better  performance will  be  achieved  if the 
program  can  be  constructed to use  loads  with  strides 
instead of stores  with  strides. In fact, in some  cases, 
large stride4 computations are more  effectively 
done with  scalar  code. 

Other  programming  techniques 

Next,  some other programming  techniques that were 
used  in ESSL are  discussed. 

Although stride4 computations should be  avoided 
if  possible, there  are  some  cases  where  it  may  be 
worthwhile to consider  using  such  a computation 
(see the paper by Dongarra  et al.I9). As  discussed 
earlier, the matrix-vector  product  can  be  calculated 
by  accessing the rn by n matrix A by columns (stride 
1) or by  rows (stride N). Generally, one would opt 
for  accessing  the  matrix by columns, but if rn is  small 
and n is  somewhat  larger than m, the matrix-vector 
product  is  more  efficiently  computed  using the stride 
N implementation. For this case, m dot products  of 
length n are  computed, Le.,  fewer operations  with 
longer  vector  lengths than if the stride-1  approach 
were  used. 

In  some  cases,  loop  overhead  can  be  decreased by 
treating  matrices  as  though  they were  vectors. 
For example,  suppose one wishes to compute 
C = A + B, where A, B, and C are n X n matrices 
stored  compactly  [i.e., the arrays  have  been dimen- 
sioned A(N, N), B(N, N),  C(N, N)]. In  this  case, it is 
possible to cut down  on  loop  overhead by doing  one 
vector  addition of length n2 instead of n vector 
additions of  length n. 

Next,  a  technique  to  save  load-and-store  machine 
cycles  is illustrated.  Consider  the  problem of com- 
puting  the  element-by-element  product of  two com- 
plex  short-precision  vectors (an important compu- 
tational element  required by the convolution 
subroutines).  Long-precision  vector  load-and-store 
instructions can be  used in place of short-precision 
vector  load-and-store instructions (provided  arrays 
are aligned on double-word  boundaries),  resulting in 
the following  loop: 
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LOOP VLVCU N 
LA R2,2 SET THE STRIDE REGISTER TO 2 

VLD  V2,X LOAD  X WITH STRIDE I 
SET  THE VECTOR COUNT  TO N 

VZ CONTAINS XR (REAL PART OF X) 
V3 CONTAINS XI (IMAGINARY PART OF X) 

VME VO,VZ, YR(R2) XkoYR 
VMSE VO,V3,YI(R2) ZR - XR'YR - X W I  
VME V4.V2,YI(R2) X R Y I  
VMAE V4,V3,YR(R2) 21 - X R V I  + XI'YR 
VLER VI,V4 
VSTD V0.Z 

COPY 21 TO VI 
STORE Z WITH STRIDE I 

BP L&P 

COMPUTE Z(1) = X(1) Y(1) 
WHERE X, Y, AND 2 ARE SHORT-PRECISION COMPLEX VECTORS 

X = (XR,XI) 
Y = (YR,YI) 
2 - (ZRZI) 

The above loop contains eight  vector  instructions;  a 
comparable loop that did not use the long-precision 
vector  load-and-store instructions would contain 
nine  vector  instructions. In addition to saving  one 
vector instruction, some of the  stride-2  accesses  nor- 
mally  required  for  complex data have  been  changed 
into stride- 1 accesses. 

Representative  performance information for  selected 
ESSL subroutines  for one particular  problem  size is 
given in Table 5.  ESSL performance  varies  depending 
on the  application-program-dependent  matrix and 
vector  sizes. Additional  performance information for 
ESSL subroutines  is a ~ a i l a b l e . ' ~ , ~ ~ - ~ ~  

Accuracy 

Accuracy  is  strongly  dependent on the algorithm 
used  (which  may  vary  within  a  subroutine), the 
matrix and vector  sizes, and the IBM 3090  Vector 
Facility  model-dependent  parameters  [Vector Sec- 
tion Size (vss) and Partial  Sum Number (PSN)]. For 
the IBM 3090  Vector  Facility, the vss (number of 
elements in a  vector  register)  is 128, and the PSN 
(length of the pipeline) is 4. The IBM 3090  Vector 
Facility  uses  a  partial-sum  technique  (described  in 
Reference  3)  for the multiply and accumulate,  ac- 
cumulate,  zero  partial  sums, and sum  partial sums 
vector  instructions.  Since  floating-point addition is 
not associative, this technique  produces  a  result 
which  is modeldependent and may  differ  from the 
result of sequential  addition. 

ESSL provides  short- and long-precision  versions of 
most  subroutines. In most  cases,  short-precision  sub- 
routines  use  long-precision  accumulations,  with the 
final  result truncated to short-precision to obtain 
increased  accuracy. 

Bitwise-identical  results  frequently  occur, but are not 
guaranteed  between the ESSL vector and scalar  sub- 
routines due to architectural  differences  between the 
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Table 5 Sample ESSL performance results 

N = Order of the  matrix,  size of the  transform, or number of vector  elements 
T(S) = IBM 3090 CPU time  in  seconds for  public  domain  scalar  subroutine 
T(E) = IBM 3090-VF CPU time in seconds for vector ESSL subroutine 

vector and scalar  hardware. For example,  vector 
divide and multiply instructions do not permit un- 
normalized operands; scalar instructions do. 

ESSL does not round numbers or mask  underflow. 
However,  for performance reasons we recommend 
that underflow  be  masked  using the vs FORTRAN 
Library  utility, X U F L O W . ~ ~ ' ~  

Ease of use 

ESSL is callable  from FORTRAN, Assembler, and A P L ~  
programs. All ESSL subroutines follow standard FOR- 
TRAN calling conventions, and must run in the FOR- 
TRAN environment. When ESSL subroutines are 
called from a non-FoRTRAN program, the FORTRAN 
conventions such as array ordering must be  used. 

ESSL functions are invoked from FORTRAN programs 
using  a function reference, and ESSL subroutines are 
invoked  from FORTRAN programs using  a CALL state- 
ment. ESSL routines can be  called from Assembler 
programs by coding an appropriate macro instruc- 
tion, such as CALL, or by coding  Assembler  language 
branch instructions. 

Most ESSL routines can be  called from APLZ functions 
via Processor 1 1. APLZ and Processor 1 1 manage the 
necessary  housekeeping and argument conversion 
based upon descriptive information contained in a 
NAMES file provided  with ESSL. One important differ- 

ence must be  kept in mind when  accessing ESSL 
routines from APL. In APL, arrays are stored in row 
major order, while in FORTRAN they are stored in 
column major order. Processor 11 does not modify 
array ordering. One solution is to transpose all input 
matrices  before  calling ESSL, and transpose all output 
matrices after the call.  Of  course, in some cases the 
cost of the transpositions may  be more than the 
performance improvement obtained by calling ESSL. 
Another alternative is to build and process the matrix 
in its logically transposed form. Finally, it is  some- 
times possible to handle this problem by reversing 
arguments in the calling  sequences of those ESSL 
routines that provide the capability of  using either 
the normal or transposed form of the matrix. For 
additional information, see the APLZ Programming 
Guide.23 

Because  calling  sequences are identical for the ESSL 
vector and scalar subroutines, it is not necessary to 
modify  source  code or recompile to switch  between 
the scalar and vector  libraries; the desired  library is 
selected at link-edit or load time. 

An attempt was made to be consistent across the 
library  when the calling  sequences were  designed. 
Within each mathematical area, the calling sequence 
syntax and naming conventions are similar.  An at- 
tempt was also made to achieve  a balance between 
keeping the calling  sequence as simple as  possible 
and still  allowing  flexibility  for the sophisticated  user. 
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the following: 

DT = 0.0 
D O I O J = I , N  

DT = DT + X(I)*Y(I) 
I O  CONTINUE 

The above loop can be replaced  with the following 
function referen~e:'~ 

DT = DDOT(N,X,I,Y,I) 

(According to FORTRAN conventions, it would  also 
be  necessary to declare DT and D W T  as  double- 
precision.) 

Similarly, the loop 

W 2 0 J =  I ,N 
Do IO I = I,L 

s = 0.0 
W I I  K =  I,M 

I I CONTINUE 
C(1.J) = S 

IO CONTINUE 
20 CONTINUE 

S = S + A(I.K)*B(K,J) 

can  be  replaced24  with 

CALL WEMUL(A,LDA,'N',B,LDB,'N',C,LDC,L,M,N) 

For other more involved computations (e.g.,  solving 
a  system of linear equations), it may  be  possible to 
simply  replace  a  call to a  user-written or library 
subroutine with  a  call to a comparable ESSL subrou- 
tine. 

As  we have  seen, it is  sometimes  very  easy to insert 
calls to ESSL subroutines.  In other cases, the obvious 
replacement of the inner loop by the comparable 
ESSL CALL may not be the most optimal modification. 
For example,  consider the following  code  fragment 
from  a FORTRAN program that typically  occurs in an 
eigensystem  analysis subroutine: 

W 1 3 O J = I , L  
G = 0.0 
DOl lOK=I ,L  

I IO CONTINUE 
G = G + Z(K.I)*Z(K.J) 

0 = G*H 
D O I 2 O K = I , L  

120 CONTINUE 
130 CONTINUE 

7lK.J) = Z(K,J) + G*Z(K,I) 

The above  code  can  be  replaced  with the following 
calls to ESSL  subroutine^:^^ 
CALL DGEMV ('T',L.L,l.OW,ZLDZ.Z(l,l),l,O.O~,AUX,I) 

CALLDGERI(L.L,H.~I.I).I.AUX,I,Z,LDZ) 
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of a  general matrix, and the 120/ 130 loop is  really  a 
rank-one update for  a  general  matrix. 

Error handling 

Three different  types  of errors can  occur  when  using 
ESSL subroutines: program  exceptions, input argu- 
ment errors, and computational errors. ESSL does 
extensive parameter checking,  reporting  multiple  er- 
rors in one pass.  Positive error messages  specifying 
corrective action are issued, rather than describing 
what  is  incorrect. 

Since ESSL uses FORTRAN error handling,  all the 
features  available for handling errors in FORTRAN are 
also  available  for ESSL errors. For example, it is 
possible to control the number of times an error is 
allowed to occur before the program terminates, the 
number of  messages printed, whether an error should 
be  considered terminal, and whether  a  traceback 
map will  be printed. ESSL is shipped  with  recom- 
mended error-handling defaults that are tailored to 
the unsophisticated  user.  These  defaults  can  be 
changed at installation, and can  also  be  changed 
dynamically  using the vs FORTRAN ERRSET facility. 
See the ESSL Guide Reference2  for  details. 

Conclusions 

In  this  paper, the ESSL subroutines have  been  dis- 
cussed, and some of the techniques used to achieve 
high  performance on the IBM 3090  Vector  Facility 
have  been  illustrated.  These  techniques  should  be 
applicable to any application  program  developed  for 
the IBM 3090  Vector  Facility.  Using ESSL in conjunc- 
tion  with the vectorizing vs FORTRAN Version 2 
Compile?'"  should  help  application  programmers 
to realize the full  performance potential of the IBM 
3090  Vector  Facility  rapidly and easily. 
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