Distributed database
for SAA

This paper describes, in general terms, distributed da-
tabase and its relationship to Systems Application Ar-
chitecture (SAA). It shows the importance to effective
distribution of IBM’s Structured Query Language (SQL),
the database element of the Systems Application Ar-
chitecture Common Programming Interface (SAA CPI).
The paper defines five levels of distribution, showing
how each fits real-world application requirements. Fi-
nally, it outlines the magnitude of the task.

he success of 1BM’s entry into distributed data-

base depends heavily on the success of Struc-
tured Query Language (SQL) in providing the data-
base element of the Common Programming Inter-
face for Systems Application Architecture (SAA). In
addition to being a programming interface, sQL is
used directly by many end users through query prod-
ucts such as the Query Management Facility (QMF).
As workload and database data are distributed to
multiple large mainframe computers, departmental
systems, and workstations, it is essential that users
of these systems be protected from the culture shock
such changes could cause. Consistency of sQL lan-
guage statements and the results they produce at
execution is crucial.

This paper describes, in general terms, what a dis-
tributed database is. It shows how a distributed da-
tabase is different from distributed files and general
distributed processing. Five distinct levels of distrib-
uted database handling are defined, with a discussion
of the classes of applications that can be handled at
each level. The argument is presented that there are
natural states of technology which also suggest these
divisions.

362 renscH

by R. Reinsch

This paper does not present theorems, proofs, rules,
or criteria for truly distributed Database Manage-
ment Systems (DBMSs). Rather, general concepts are
presented to attempt to bridge the gap between the
tasks at hand and the technologies available to ac-
complish them.

The reader will see that in the distributed database
world, change is both the greatest strength and the
greatest challenge to be faced. To succeed, change
must be allowed, even encouraged. But control must
be maintained in the process. Most companies which
choose to invest in DBMSs do so to gain better control
over their corporate data resource. They need better
security, better concurrency, better recoverability,
and so on. Control must be maintained while new
and powerful workstations and departmental sys-
tems are being incorporated into a company’s overall
computing strategy. At the same time, the data proc-
essing community within most companies must
grow more flexible in forming itself to the natural
organization of the company it serves. Distributed
databases are a natural result. It’s almost impossible
to avoid them. They certainly provide a better fit in
most cases.

Most companies are not in the database manage-
ment business or even in the data processing busi-
ness. They design things, build things, sell things,

© Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




arrange things, or transport things. They use com-
puters and databases as tools to do their real job.
Distributed databases with SAA SQL can provide a
powerful means for making tasks easier, for making
the Database Management System (DBMS) a better

Traditional DBMSs operate
in a single environment.

silent partner, while at the same time supporting
those changes which are required to provide con-
stantly improving service and productivity for the
real job.

What is a distributed DBMS?

Let’s break down this question. What is a database?
A database is a collection of information (data)
which is stored and organized so that people can add
things, look at things, and change things in an effi-
cient manner. In general, the more data available
and the more people who have to work with it at the
same time, the more attention is given as to how it
is stored and organized. This is particularly impor-
tant when updates are involved.

Once the volume of data and/or the number of users
reaches a certain point, things start to go out of
control. Data are lost or destroyed, or people can’t
get their jobs done. Enter the pDBMS. The Database
Management System adds support to the raw data-
base. DBMSs typically provide concurrency (locking)
controls to prevent users from trampling one an-
other’s changes, security controls to prevent unau-
thorized users from accessing or changing the wrong
information, recovery procedures to protect against
“accidents,” etc. DBMSs also provide transaction
scheduling support, accounting information, diag-
nostic and servicing information when needed. Re-
lational DBMSs also take control of determining where
the data physically reside and deciding the best
method of transferring data to the user.

Traditional DBMSs operate in a single environment
comprising the computer with all the programs and

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

data, and the users who access the computer to do
their jobs. The DBMSs have been centralized to reduce
the cost of sharing corporate data. Statements such
as “Computers are expensive,” “You can’t waste a
second of computer time,” and “We have to fill all
our disks” are simply no longer true. Users and data
processing managers alike are seeing the changes in
the economics of computers. They no longer are so
expensive that the financial side of the company
demands major justification. If it fits on the desk,
buy it. Often the end result is a lot of little databases
which are clearly distributed but not part of a cohe-
sive distributed DBMS.

For the purposes of this paper, then, let’s agree that
for a DBMS to be considered distributed, it must still
be a DBMS (with the emphasis on management sys-
tem), with some of the data managed located on a
different computer, or the application on another
computer, or both. How the user got into this dis-
tributed situation and how permanent he or she
expects the condition to remain are the factors that
really dictate the level of distributed DBMS support
needed to do the job.

General distributed processing would allow an arbi-
trary division of the parts of the application into
different machines. With distributed DBMS, the line
is drawn exactly at the Application Programming
Interface (API) between the application and the DBMS.

The remainder of this paper describes five different
levels of distributed DBMS support, each of which is
suitable for a different application environment.

User-assisted distribution

In the first stage of distributed systems, the user is
completely aware of the distribution process. In fact,
for each distribution activity, the users are involved
twice.

For this stage, the user interacts with one system to
extract the needed data. He or she then physically
takes the data to the system which is to receive the
information. The user then initiates a process on the
receiving system to load the extracted data.

This does not sound very elegant. However, if this is
a relatively rare event, it may be completely ade-
quate. Across some organizational boundaries, this
may be the best way to get the job done. In fact, this
is exactly the process we follow when we install

RENSCH 363




software on our systems. One user creates an un-
loaded version of some information we want. We
buy it and load it into our system.

One of the interesting questions to consider in this
situation is why the data are being moved in the first
place. Is this a one-shot installation process? Did a
user move between systems? Did he or she bring

In the world of remote requests,
life is easier for the end user.

some programs along for use at the new site? Did he
or she bring data too? Did the user just need a frozen
copy of data at a particular point in time?

If both systems are of the same type and are running
the same operating system and DBMS, moving the
programs, canned queries, etc. to the new system
and putting them to work should be relatively sim-
ple. This is usually the case for packages you buy (or
you’d buy something else).

However, if the systems are different, many changes
to the program may be needed just to get it to run.
And if you want to get exactly the same results that
you got on the first machine, considerable reworking
of the queries and surrounding logic might be re-
quired to get the desired (consistent) answer.

What is fundamental at this stage is that the receiver
must know how to handle what has been sent. A
special program could be used to handle each differ-
ent set of information. In many cases, however, it
will be better to send a description of the information
along as part of the information sent.

With the Systems Application Architecture database
language sQL, the queries should run without modi-
fication and produce consistent results.! When these
SQL statements are part of a program written in one
of the saa languages, such as COBOL, the whole
program should move easily.

By minimizing the effort to convert programs, this
level of distribution can be put to use more often to

364 RenscH

solve data processing or information center prob-
lems. At this level, the fact that the sQLs and COBOLs
match is a convenience and a cost saver. The user is
aware of the process and can intervene where nec-
essary.

Whether files, programs, or database data are being
distributed at this stage, the general processing flow
is the same. In the next degree of distributed proc-
essing, the user is a little more isolated from what is
actually going on and has less opportunity to adjust
the process to account for differences between envi-
ronments.

Remote requests

In the world of remote requests, life is easier for the
end user. Instead of interacting with two different
systems at two different times to get data uploaded
or downloaded, he or she interacts with one system
once. At this stage, communications technologies are
used directly by the systems to accomplish a user’s
task. Here’s what happens. Generally the user estab-
lishes a connection between his or her system and
the system which has the information he or she
needs. This connection may be established automat-
ically, but it is more likely that the user will invoke
a procedure to log on to the remote system and
prepare it to receive requests from his or her system.
The user does this once, regardless of the number of
upload and download requests he or she will make.

When the user needs data, he or she interacts with
an application running on the local machine to start
the required operation. (This high-level request, such
as an extract query, can be edited immediately before
execution.) The application at the user’s machine
composes the message which represents the user’s
request. That application then sends the message to
the other machine, along with any data required to
satisfy the request (e.g., for upload). The application
at the DBMS’s system receives the request and begins
the processing necessary to do the job.

For a database extract, the application on the remote
system will perform dynamic SQL operations to read
all the rows of the answer and buffer them up. When
the whole answer set has been collected, the appli-
cation closes the cursor and terminates processing
with the pBMS. Finally, the buffered answer and
status are transmitted back to the user’s system. The
user’s application will then put the answer where the
user requested.

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




The Virtual sQL (vsQL) processor in the Enhanced
Connectivity Facility (ECF) product® performs SQL
operations against DBMss using this level of distrib-
uted database. The application on the user’s system
is called the vsQL requestor and the application on
the remote DBMS system is the VSQL server.

In this environment, the DBMS is really unaware that
distribution is happening, just as it was in the pre-
vious case. The general rule is this: NO communi-
cation goes on while any DBMS resources are held.
This allows use of communications facilities which
might not notify the DBMs when failures occur with-
out jeopardizing availability of the data managed by

It is important that the SQL
statement behave consistently,
regardless of the target system.

the DBMS. All the failures which matter to the pBMS
are local and the operating system ensures that the
DBMS is informed.

In this environment, SQL statements (in VSQL queries)
are sent to the remote system to which the user is
connected. There is very little opportunity for a
system administrator to intervene in this process;
therefore, it is important that the SQL statement
behave consistently, regardless of the target system.
The user knows which system contains the data he
needs. He can also have duplicate (but slightly dif-
ferent) queries for each system to accommodate
language differences, though this is not desirable
from his point of view.

In all the cases discussed so far, the distributed data
are copies of originals. Both the original version and
the copy have lives of their own, and will diverge
over time as updates are made. When this situation
becomes intolerable, the next level of distributed
database handling is required.

Remote unit of work

With remote unit of work, an application program
executes on one system and uses the remote API

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

(Application Program Interface) provided by another
system. For distributed database, this means that any
DBMS facilities available to local applications are
available to applications running on remote systems.

With the sQL language, all requests which change the
database are tentative until committed by the appli-
cation program. While the application is executing,
database resources, i.e., data, are protected with locks
from interference by other users. While update locks
are held, no other program is allowed to access the
data. While read locks are held, no other program is
allowed to change the data. An application in a
workstation could gain read locks over large quan-
tities of data by executing simple queries. These locks
could interfere with those required by others, and
they would not be released until the application
released them. The SQL application program controls
boundaries of the active unit of work or transaction
through the use of COMMIT and ROLLBACK requests.

This is essentially sharing in real time, as it was
before any distribution was introduced; local users
and remote users share the data as if they were all
local. Application programs must do their job and
then release the locks, which identifies a key require-
ment at this level, timely and reliable failure notifi-
cations.

Users have all encountered programs that do not
execute properly. In particular, programs fail in ways
which prevent them from doing a complete job,
including releasing locks. For local applications, the
operating systems provide notification of such appli-
cation failures. The DBMS then rolls back the incom-
plete work and releases the locks held by the failed
application.

In the distributed case, the operating system which
sees the failure is remote to the DBMS. A mechanism
for timely failure notification is a major new require-
ment as we approach remote APL SNA’s Advanced
Program-to-Program Communication (AppC) and
Logical Unit Type 6.2 provide a connection archi-
tecture which gives the timely notification required
to allow remote applications to hold locks on data-
base resources between requests without jeopardizing
availability of the data for the rest of the users.

From the SAA perspective, remote unit of work
means that a program written, compiled, and exe-
cuting in one environment will be using an API
provided by another system. Operating System/2™
Extended Edition (0s/2™ EE) applications running on

REINSCH

365




Personal System/2® (ps/2®) machines will be access-
ing 1BM Database 2 (pB2) data using DB2’s SQL API on
Mvs on a System/370. So long as the application

SAA SQL, as the database element
of the Common Programming
Interface, provides the common API.

accesses only one DBMS at a time, it can adjust its
logic to accommodate differences between DBMS en-
vironments. However, it is likely that the very same
program may access local 0s/2 data on its next
execution, sQL/Ds data on the one after that, and
AS/400™ data on the next. For this application to be
successful, the APIs presented by all of these systems
must be the same. SAA SQL, as the database element
of the Common Programming Interface, provides
that common API.

As long as the data remain in one location and not
too many locations are involved in any given set of
processing, remote unit of work processing is prob-
ably enough. However, if data start moving on a
regular basis or coordinated updates are required at
more than one location, the next level of distributed
database is required.

Distributed unit of work

There are two key extensions provided by distributed
unit of work or distributed transaction processing
over remote unit of work. First, the DBMS knows or
finds out which system manages the data to be read
or changed by each request. Second, the DBMS coor-
dinates updates at several locations in a single trans-
action. Within the scope of one transaction or unit
of work, coordinated updates can be made to the
database on the mainframe and the database on a
workstation.

One of the application areas where this is especially
useful is data gathering from workstations into host
systems. Records can be moved from the worksta-
tion to the host without fear of loss or duplication.

366 remscH

Related updates at multiple locations can also be
performed as part of a single transaction. As an
example, consider removing an item from inventory
at one warehouse’s DBMS, showing the item in-transit
at another’s, and adjusting the financial records for
both warehouses at a central accounting location as
three related requests. As demanded by the semantics
of transactions, no partial updates are allowed; either
all of the related changes will be committed into the
database(s), or none of them will.

From an architectural perspective, two-phase com-
mit processing is required over the network of par-
ticipating DBMS locations. Each must have a say in
whether commitment of the transaction is possible
or whether the operations must be rolled back. SNA’s
LU 6.2 provides the architecture to allow this to occur.

From a practical perspective, the various warehouse
and accounting systems may have been in existence
prior to the introduction of the transaction to per-
form the coordinated update. In this case, aggrega-
tion of previously separate functions into a single,
apparently collected, integrated database is per-
formed. Another case involves a centralized system
which has outgrown its machine, or one which is
being decentralized to allow more local control at
the remote locations. In this case, the old transaction
programs which worked against local databases con-
tinue to operate, even though the data have been
distributed from their original location.

In both of these cases, it is very important that the
SQL language be the same in all of these systems. If
the statements cease to execute when the data move,
or worse yet, they execute but produce different
answers, the application programmer must con-
stantly test and adjust his programs to accommodate
changes in the environment. This is likely to become
too expensive or impossible to manage—so perform-
ance on the rea/ job (e.g., moving goods) suffers.

With sAA SQL as a language base, and the IBM rela-
tional pBMS products providing compiled as well as
dynamic SQL, a simple installation step is all that is
required to update the system. An operation called
BIND is performed; no application parameters are
required. The DBMS examines the statements in the
application, determines the location of all data being
accessed by the application, ensures that each loca-
tion involved computes the optimum access algo-
rithm to perform the operations required at that
location, and prepares to coordinate execution of the
transaction when requested. The whole process is

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




automatic, and the user is unaware of the distribu-
tion which happens to satisfy his requests.

Applications are not sensitive to the true location of
data or how data are supported by performance
assists such as indexes. At this level of distributed
support, the application only has to be sure that the
data referenced by any single statement reside at one
location.

Some application statements may fail when data are
moved from one location to another because the
single-site-per-statement restriction is not honored.
If this is a rare event, the application can be adjusted
to avoid the problem, or selected data can be dupli-
cated. However, if it occurs frequently or the appli-
cation cannot be made flexible enough at reasonable
expense, the next level of distributed database proc-
essing is required.

Distributed request

In the distributed request environment, all data lo-
cation restrictions are removed. Within a single sQL
statement, relational data from many locations can
be combined to produce the desired result. Whatever
would be possible with all data local is now possible
in a distributed environment as well. The distributed
database looks like one very large single DBMS.

However, the user still must consider the reality of
the situation; there is no magic. If it would have
taken a long time to perform the operation locally,
it is still likely to take a long time in a distributed
environment. However, there are some possibilities
for improved performance. For example, if local data
at a workstation are made remote on a big Sys-
tem/370, the results can come back to the applica-
tion faster; there is more CPU power available, faster
DASD, etc. However, there are also opportunities for
slower response. When communication channels are
introduced between processing steps, delays are in-
evitable. Depending on the bandwidth of the channel
being used and the amount of data which must flow,
this may or may not be significant for the whole job.
Consider the following extreme example:

SELECT COUNT(*) FROM A,B where Col from A =
Col_from_B.

The answer in this case will be only a few characters,
regardless of the size of tables A and B. The sQL
statement itself is under 60 characters. Neither of
these sizes will significantly affect the time it takes to

1BM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

get an answer. However, if Tables A and B are on
different systems, the bandwidth of the path between
them is crucial. If one of the systems is slower than
the other, this could negatively affect the time re-
quired. Even if all the data are on one system, the
speed of that system will make a difference. Two ps/2
systems connected over a typically fast local area
network may be able to outperform two System/370s
connected over voice-grade communication facili-
ties. The SQL DBMS optimizers can take all this vari-
ability into account as they compute the best (quick-
est) method to produce the desired result and have
it delivered to the application which requested it.
This represents a significant leap in technology in
the DBMSs.

Obviously, this optimization would be impossible if
each of the sQL DBMss spoke a different dialect of sQL
with different semantics and produced results differ-
ent from the others. To produce a result the user can
trust, each of the DBMSs must be directly substitutable
for the others in the sequence of operations required
to produce the required answer. It cannot matter
which order the optimizer picks or how it divides
the work between the DBMSs to get the job done.

SAA SQL provides an effective methodology for con-
sistent semantics and success in this environment.

Summary

This paper has described the distributed relational
database environment by beginning with a basic
nondistributed environment and then discussing lev-
els of data distribution which can be built on that
base. Each of the five levels of distributed processing
builds on the knowledge and technology of the pre-
vious level; new technologies are required to make
each step along the way. Finally, examples have been
presented of application circumstarices which de-
pended on each of the levels of distributed database
availability.

Some products are already available which provide
distributed services. A sampler follows.

In April 1984, 1BM announced DXT. That product,
in combination with the load facilities on DB2 and
sQL/DS, provided support for the first level of distrib-
uted DBMS data. Later announcements expanded the
types of data covered. There are many other products
which depend on or support this level of distribution.

In September 1986, 1BM announced ECF as a program
which used the Server and Requestor Processing

RENscH 367




Interfaces in pCs and Mvs and vM to perform the
second level of support for distributed database data.
Later announcements have expanded the environ-
ments covered and data formats supported. Initial
ECF support included remote request processing us-
ing the virtual SQL requestor (VSQL) against DB2 and
SQL/DS data, making these data available to applica-
tions running on DOS and 0S/2 systems.

In October 1987, 1BM announced SQL/DS with Re-
mote Relational Access Support. This is the first
taste of remote unit of work support for database; it

In a distributed environment,
portability is the rule
rather than the exception.

allows a cluster of sQL/DSs to operate with applica-
tions and DBMSss on different physical machines.

Announcements will continue as Systems Applica-
tion Architecture is enhanced and as the relational
database products implement those enhanced archi-
tectural elements.

In this paper, the author has tried to show the
magnitude of the problems at hand and provide
some clues as to the likely sequence of events for
distributed database processing. Space constraints
have made it impossible even to touch on some of
the real challenges facing implementers of distrib-
uted pBMSs and those who would use them. There
are issues related to the naming of users and database
objects, providing effective diagnostic information
and tools, providing distributed data administration
tools and facilities, managing copies of data as either
point-in-time snapshots or replicates or fragments of
databases, providing adequate security mechanisms
for the very secure while not burdening those who
are less concerned, etc. Even at the conceptual level
chosen for this paper, each of these topics in its own
right could support a separate paper. Each of these
areas, and others as well, must be addressed before
actual implementation can take place.

This paper was intended to provide insight into
distributed database requirements, to help the reader

368 remnscH

see the forest, a little, in a technological area which
could look like just so many trees—or even just
leaves blowing in the wind. This writer has at-
tempted, without resorting to rules, to identify key
characteristics of the problems to be addressed with
distributed database systems in a way that can be
directly applied to real user environments. With the
level of understanding offered here, the writer hopes
that the reader will be able to analyze his own
situation from a more practical perspective and see
where distributed database processing may help him
solve some of his application system problems.

Conclusion

The Systems Application Architecture database lan-
guage SQL provides an excellent base for portable
applications. In a distributed environment, portabil-
ity is the rule rather than the exception: No appli-
cation can ever escape cooperating with both older
and newer versions of itself. Some of these contacts
will be overt and planned. Some will be unplanned
and almost accidental. Almost all of them involve
intersections of interesting information which must
be shared to realize maximum return on investment.
SAA SQL is a key ingredient in achieving success in
this environment.

Operating System/2, OS/2, and AS/400 are trademarks, and Per-
sonal System/2 and PS/2 are registered trademarks, of Interna-
tional Business Machines Corporation.

Cited references and note

1. Fundamental differences in machine architectures might show
in the final result. For example, the difference between bit
encodings of ECBDIC and ASCII machines produces different
orders for alphabetic sorts. Also, System/370 floating-point
numbers can be much larger (or smaller) than IEEE floating-
point numbers; this might show through.

. Introduction to IBM System/370 to IBM Personal Computer
Enhanced Connectivity Facilities, GC23-0957, IBM Corpora-
tion; available through IBM branch offices.

. IBM Enhanced Connectivity Facility PC Requester’s Reference,
SK2T-0002, IBM Corporation; available through IBM branch
offices.

General references

Systems Application Architecture Common Programming Interface
Data Base Reference, SC26-4348, IBM Corporation; available
through IBM branch offices.

D. E. Wolford, “Application enabling in SAA,” IBM Systems
Journal 27, No. 3, 301-305 (1988, this issue).

R. Williams, D. Daniels, L. Haas, G. Lapis, B. G. Lindsay, P. Ng,
R. Obermarck, P. Selinger, A. Walker, P. Wilms, and R. Yost,
“R* An overview of the architecture,” Proceedings of the 2nd

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




International Conference on Databases: Improving Usability and
Responsiveness, Jerusalem, Israel, June 1982. Published in Im-
proving Usability and Responsiveness, P. Scheuermann, Ed., Ac-
ademic Press, New York, pp. 1-27.

D. Daniels, P. Selinger, L. Haas, B. Lindsay, C. Mohan, A. Walker,
and P. Wilms, “An introduction to distributed query compilation
in R*” Proceedings of the 2nd International Symposium on Dis-
tributed Databases, Berlin, September 1982.

L. M. Haas, P. Selinger, E. Bertino, D. Daniels, B. Lindsay, G.
Lohman, Y. Masunaga, C. Mohan, P. Ng, P. Wilms, and R. Yost
“R*; A research project on distributed relational DBMS,” /EEE
Database Engineering 5, No. 4, 28-32 (December 1982).

P. F. Wilms, B. G. Lindsay, and P. G. Selinger “Distributed
execution protocols for data definition in R*,” Proceedings of
SIGMOD 83, May 1983.

Roger A. Reinsch /BM Programming Systems Division, 555
Bailey Avenue, San Jose, California 95141. Mr. Reinsch is a senior
technical staff member at IBM’s Santa Teresa Laboratory. He
joined the Data Processing Division in 1967 at the Chicago Dis-
tribution Branch Office on the Sears Selected National Account
team. He was the communications expert of the team and worked
with message switching, data collection, and transaction-oriented
systems. In 1974, Mr. Reinsch joined a design group in the Systems
Development Division in Palo Alto, California. He later had
planning and development responsibilities for interactive products
and distributed data. In 1978, he joined the DB2 development
group as a team leader of the boundary functions between DB2
and its application environments. For this work, he earned an
Outstanding Innovation Award and a First Patent Award. In 1981,
Mr. Reinsch became a manager of development in DB2, and
subsequently managed planning, performance, design, and tech-
nical advisory activities for the DB2 organization. In 1986, Mr.
Reinsch gave up his management responsibilities to devote full
time to the technical aspects of distributed database.

Reprint Order No. G321-5331.

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

RENSCH 369




