
Distributed files for SAA

by R. A. Demers

Files are still a major way of storing data in computer
systems, and they are a significant part of the informa-
tion to be handled by the distributed processing net-
works that are developing. Systems Application Archi-
tecture is supporting distributed files. In this paper, the
goals, benefits, and problems of providing this support
are discussed, along with the role of Distributed Data
Management architecture.

T remendous volumes of data are stored in files.
Making this great amount of data available to

the applications and users of today’s distributed
processing networks is a major challenge faced by
IBM’S Systems Application Architecture (SAA). This
paper addresses the goals, benefits, and problems
faced by SAA in supporting distributed files, and the
role of 19”s Distributed Data Management architec-
ture in meeting this challenge.

The paper begins with a brief overview of the evo-
lution of file systems, emphasizing the continuing
trend of file systems to increase user productivity by
providing higher levels of services. File systems are
then contrasted with databases to clarify what these
terms mean. The general concepts and benefits of
distributed file systems are presented, followed by a
discussion of SAA common programming interfaces
for distributed files. The role of distributed files in
cooperative processing, local area networks, and
wide area networks is then considered. Five levels of
distributed file processing are outlined to present a
picture of where we have been, where we are, and
where we are going with distributed files. The paper
concludes with a brief discussion of the performance
implications of distributed files.

348 DEMERS

The evolution of file systems

As operating systems have evolved, responsibilities
for using and managing system resources have mi-
grated from application programs to system com-
ponents designed to simplify the job of program-
ming. This is especially true for data storage and
access. In the earliest days of computing, each appli-
cation program that stored and accessed data on a
tape or disk had to have its own logic for requesting
services from the device, as shown in Part A of Figure
1. The programmer was required to know about
device characteristics and interfaces and to expend
considerable effort in managing the allocation of
space on the device. Sharing a device with other
programs was largely a matter of conventions of use
and luck in avoiding conflicts.

To ease these burdens, operating systems provided a
variety of access method services, as shown in Part
B of Figure 1. The tasks of using, managing, and
sharing devices became a system responsibility, al-
lowing the application programmer to better concen-
trate on application requirements. As high-level pro-
gramming languages became available, the direct use
of system access methods was replaced by language
statements, as shown in Part C of Figure 1. The
result was a still-higher-level view of data manage-
ment for application programmers that eliminated
many of the concerns that remained with the use of

@ Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOC 27, NO 3, 19BB

system access methods, such as interface conven-
tions, error handling, and buffer management.

Each high-level language evolved its own file models,
but there was considerable cross-fertilization among
the languages, and a number of generally useful
concepts gradually evolved. Among them are the
concepts of records, of operations over a sequence
of records, of keyed forms of access, and of file
sharing on a record basis. And as new systems were
developed that were required to support these lan-
guages, their access methods were designed to sup-
port these concepts and allow file sharing between
programs written in different languages.

With the availability of these enhancements, it
quickly became apparent that additional file services
were needed by applications. As the number of files
became large, a system facility for cataloguing and

Figure 1 Application programs and data management

I/O SUB-
ROUTINES

INSTRUCTIONS
METHOD
CALLS

ACCESS
METHOD
SERVICES

CONTROL

STORAGE
DEVICE

Figure 2 Programming languages and file systems

FILE SYSTEM

ACCESS
METHOD
SERVICES

DEVICE
SERVICES

SERVICES

SERVICES

locating files became necessary, along with system
facilities for securing them, for backing them up and
restoring them for disaster recovery, for describing
their records, and for keeping track of the programs
that use them. Additional system facilities also be-
came available in the form of generalized system
utility programs for entering data into files, for sort-
ing files, for copying files, and for writing reports.

These elaborate sets of system facilities for managing,
accessing, and using files eventually were seen asJile
systems, as organized bodies of data managed and
controlled by a comprehensive and tightly integrated
component of the operating system. To a large ex-
tent, these file systems have evolved to meet the
application development requirements associated
with the use of high-level languages, as shown in
Figure 2. The file systems are designed to support
the file models of multiple programming languages.

Common programming interfaces for files

To enhance program portability between SAA sys-
tems, the file interfaces of each of the designated SAA
programming languages (COBOL, FORTRAN, RPG 111,
and C) are being standardized. That is, all SAA COBOL
programs have the same file input/output capabili-
ties, but these are not necessarily the same as the file

IEM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

Figure 3 SAA Common Programming Interfaces for files

capabilities found in SAA FORTRAN programs or SAA
C programs. File models are included in the designs
of these languages, and they differ in many ways for
a variety of historical reasons.

The file systems of SAA systems must support all of
these languages, as illustrated in Figure 3. The file
models of each SAA programming language are
standardized for program portability. The file sys-
tems of each SAA system must support the file models
of all SAA languages. In general, the file systems
provide one or more underlying access methods used
by the language compilers to implement the file
models of their language. These access methods can
be viewed as lower-level file models, each providing
a range of useful functions that the languages can
use. The mapping from language file model to system
file model is not necessarily a direct one. In some

cases, multiple file system requests must be issued to
support a single language request. In other cases, file
system requests must be carefully parameterized to
avoid side effects not acceptable to the language.

In SAA distributed file processing, IBM'S Distributed
Data Management architecture (DDM) defines a still
lower level of file models, which is also illustrated by
Figure 3. In order to access a remote file, the file
system interfaces of the requesting system are
trapped and converted to a sequence of DDM file
model commands. At the remote system, the DDM
commands are then converted to a sequence of
requests to its file system. This process is illustrated
in Figure 4. The common programming interfaces
to files defined by each SAA language are mapped by
their compilers to the local SAA system file interfaces.
For access to remote files, these interfaces are then

IBM SYSTEMS JOURNAL, VOL 27, NO 3. 1988 350 DEMERS

mapped to the interfaces of the DDM standard file
system. The mapping is not necessarily direct, but it
does allow for a high degree of local/remote trans-
parency. The logical distance from the language file
models to the DDM file models determines the cost
of performing interface conversions. For SAA systems
this is generally not a problem, because of the stan-
dardization that has occurred in the design of both
system file models and DDM file models.

File models

File systems support two different kinds of files:
stream files and record files. Stream files provide
only the minimum amount of support needed to
access file data, but thereby allow programmers max-
imum flexibility in organizing and accessing the data.
Examples of stream files are those of UNIX@ and the
IBM Personal Computer Disk Operating System (PC
DOS). When these files are used, strings of bytes can
be read or written according to their relative position
within the file.

In contrast, record files attempt to provide a broad
set of functions that are known to be useful in
implementing the file models of high-level languages.
Examples of these file systems are the Virtual Storage
Access Method (VSAM) of the Multiple Virtual Stor-

age/Extended Architecture (MVS/XA) operating sys-
tem and the integrated file system of the OS/400TM
operating system. These file systems directly support
the view that data consist of fields that are organized
into records stored in files. The following models of
record-oriented files are generally supported as a base
for high-level-language file models:

Sequential-A linearly organized set of records.
These records can be accessed relative to one another
(e.g., the record at the next file position), or randomly
by position in the file (e.g., record number 57).

Direct-A linearly organized set of records in which
there is an application-defined relationship between
the contents of a record and its position in the file.
These records can be accessed relative to one another
(e.g., the record at the next file position), or randomly
by position in the file (e.g., record number 57).

Keyed-A linearly organized set of records together
with an index that supports efficient access to records
by the values of their key fields. These records can
be accessed

Relative to one another by record position (e.g.,

Randomly by position in the file (e.g., record
the record at the next file position)

number 57)

Figure 4 Mapping SAA programming interfaces

// DlSP * (MOD)

SAA COBOL PROGRAM

OPEN
OUTPUT

WRITE

CLOSE

MYSlXA
f lLE SYSTEM

-ALLOCATE THE
FILE

-OPEN A QSAM
FILE FOR
OUTPUT

-PUT A RECORD AT
THEENDOFTHE
FILE

-CLOSE THE FILE

-DEALLOCATE THE
FILE

DCLFIL

CRTSEQF

LCKFIL
MODNONLK

OPEN
RELRNBAM

INSRECEF

CLOSE

DELDCL

ULKFIL

BM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

Figure 5 Stream versus record file models

STATEMENTS

-RECORD TO
BYTE STREAM

MANAGEMENT

I
MANAQEMENT

MANAGEMENT

Relative to one another by key value sequence
(e.g., the record with the next highest key value)
Randomly by key value of the file (e.g., the record
with key “DUCK”)

Alternate Index-An index over a base sequential,
direct, or keyed file that supports efficient access to
records by the values of alternate key fields. These
records can be accessed in the same ways as those of
keyed files.

Stream files achieve maximum flexibility in storing,
accessing, and managing data by supporting only the
most primitive of functions. But programming costs
are not avoided; they are only moved from the
system domain to the application domain (as shown
in Figure 5) , where there is far less opportunity for
standardization and system support. For high-level-
language programs, the compilers must each take on
the burden of implementing their file models on top
of stream files.

From this discussion, it should not be construed that
either the stream-oriented or the record-oriented ap-
proach is necessarily superior. Trade-offs are made
between flexibility and system services in designing
file systems, but each model is better suited for
certain types of applications. The stream model is
more appropriate for complexly structured data
(such as documents and executable programs),
whereas the record-oriented models are more appro-
priate for traditional business data processing.

Because file systems have generally not supported
both file models, this distinction has been lost and is
a source of problems today. Application and system
programs mask the differences between the file
models that are available and the file models they
require. As we progress into a discussion of distrib-
uted file systems, this problem becomes even more
significant, since programs developed for stream ac-
cess may be required to access data stored in record
files, or vice versa.

File systems versus databases

The term database is often loosely used to describe
advanced file systems, but this terminology is inac-
curate and causes much confusion. To understand
why SAA includes support for both files and data-
bases, we must first distinguish between them.

As file systems evolved and became more elaborate,
the general concepts of managing data for integrity,
recovery, security, and access flexibility became
understood, along with the technology for achieving
these objectives. The resulting data management
systems were seen to be something qualitatively dif-
ferent and better than existing file systems.

File systems can be enhanced to support these re-
quirements, as seen in the integrated file/database
support of the OS/400, which evolved from the file
system of the IBM System/38. But in most systems
separate database support was added. For example,
the MVS/XA operating system provides extensive file
services with its Virtual Storage Access Method, but
the designers of Database 2 (DBZ) chose to start fresh
to obtain the performance and functional character-
istics their customers requested. Similar considera-
tions led to the development of Structured Query
Language/Data System (SQL/DS) for the Virtual Ma-
chine/Extended Architecture (VMIXA) systems and
for the Operating System/2’” Extended Edition
 OS/^^^ EE) database.

IBM SYSTEMS JOURNAL. VOL 27, NO 3. 1988

Database technology provides many features of great
value to some applications. Many of IBM’S largest
customers base their most critical applications on
Information Management System (IMS), a hierarchi-
cal database system, and increasingly on D B ~ , a re-
lational database system. But most businesses also
contain significant amounts of data for which data-
base capabilities are simply not needed. Examples of
such data are programs (both source and object),
private note files, documents, images, on-line con-
ference forums, and other forms of data lacking the
regularity of structure that underlies most database
designs. Simpler file services are sufficient for their
storage and access.

Perhaps most importantly, enormous numbers of
applications exist that were designed to use file sys-
tem interfaces. Migrating programs to use database
interfaces and moving their data from files to a
database can be expensive. Customers have adopted
a rational approach based on perceived value, using
database systems for key enterprise data, writing new
applications that use database interfaces, and mi-
grating existing applications and data when it makes
sense to do so.

In short, file systems are not being superseded by
databases. They remain useful and economical for
many applications and will be supported by operat-
ing systems for the foreseeable future. As operating
systems continue to evolve toward more comprehen-
sive services, their file systems must evolve with
them. Today, this evolution is in the direction of
services distributed over the systems of telecommu-
nications networks.

Distributed files

Telecommunications facilities have been used for
many years to transmit data between computer sys-
tems. These data have generally consisted of display
data streams, electronic mail, documents, whole files,
and the transactions of distributed applications.
More recently, support for distributed files has also
added to telecommunications traffic.

But why are distributed file services of value in
application design? This section examines some of
the benefits of distributed files.

Availability. Data that cannot be accessed are of no
value to a user. Networks of connected systems have
grown in size and complexity while data and users
have become distributed throughout the network.

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1983

But users have had difficulties in accessing the data
they need. The costs of developing specialized com-
munications programs to read or update files stored
in remote systems is simply too high for most appli-
cations and prohibitive for infrequent or casual que-
ries. Distributed file systems reduce these costs essen-
tially to the costs of using communications facilities.

Timeliness. Obtaining current data has often been a
problem for applications. Copies, or snapshots, of
whole files have only a limited “shelf life,” and the
use of expired data can produce erroneous results.
The use of distributed file systems can eliminate
these problems. The data available to anyone in the
network are as current as the applications that update
the data can provide.

Sharing. A major component of availability is file
sharing. Files locked or allocated to single users for
long periods of time are not available to other users.
A well-designed file system attempts to maximize
concurrency of access to its files by its users. This
concept must be extended to distributed file systems
and applied to both local and remote users of the
file.

Security. In opposition to requirements for avail-
ability is the simple fact that not everyone should be
able to access all of the data available to distributed
file systems. Two components make up network data
security-user authentication and user authoriza-
tion. Systems Network Architecture (SNA) Logical
Unit 6.2 (LU 6.2) provides a high degree of assurance
that the user of a file system is who he/she is sup-
posed to be. Each file system must then provide
assurances that the users of a particular file are
authorized to access it in the ways they are attempt-
ing. This assurance is a responsibility of well-de-
signed file systems, for both local and remote users.
Making data available through a distributed file sys-
tem allows the owner of the data to control who can
access the data. In contrast, when copies of files are
manually or electronically distributed, it is the owner
of the copy who controls its accessibility. In this case,
control shared is usually control lost.

Storage management. With the development of per-
sonal computers came small direct-access storage
devices. The availability of 10 or 20 megabytes of
on-line storage greatly enhanced the operability and
convenience of personal computers, but some signif-
icant problems were introduced at the same time.
On the one hand, some storage capacity is wasted,
at least for a while. It takes time for most users to fill

354

Figure 6 DDM file servers in cooperative processing

up that much storage. But, on the other hand, 10 or
20 megabytes is not very much storage for some
applications. The result is that some users have in-
sufficient capacity, whereas others have unused, and
unsharable, capacity. Distributed file systems alle-
viate these problems by providing enormous storage
capacity relative to the needs of any one user, along
with the ability to share that capacity among many
users.

A distributed file system can also provide some
important additional services to its users. One of
these is performing periodic backups to other media.
No system or device is 100 percent reliable over an
indefinite period of time. Prudent users make back-
ups of their data for quick recovery in case of failure,
but it is a nuisance to do so, and most users prefer
to have it done for them.

Another service consists of automatically staging
data onto the storage devices with the lowest costs
relative to frequency of use. For example, the Hier-
archical Storage Manager (HSM) component of

DEMERS

MVS/XA automatically moves data between different
levels of storage with different costs. When MVS/XA
is used as a distributed file server by the IBM En-
hanced Connectivity Facility Virtual File component
(ECF VFILE), the HSM support is provided without the
remote VFILE users being aware of it.

Program portability. One of the objectives of SAA is
to allow programs written in one of the SAA-desig-
nated languages to be easily moved from one SAA
system to another SAA system. But it is not enough
to move just the programs. Either the files they access
must be moved with the programs, or it must be
possible to access the files where they currently re-
side. The distributed file support of SAA systems
makes it possible to move either the files or the
programs.

Distributed processing environments

SAA support for distributed files is recognition of the
advances that have been made in this area. This
section briefly discusses three distributed processing
environments and discusses where they lead us.

Cooperative processing. The concept of cooperative
processing arose because personal computer users
wanted to use the resources of the host systems to
which they were attached. A key requirement is
access to host data storage and to host files. IBM
developed the ECF product for cooperative processing
with MVS/XA and VM/XA hosts, and the ~ s / 4 0 0 " PC
Support product for cooperative processing with
OW400 hosts.

The ECF product supports access to host files through
its VFILE component. This facility emulates the PC
DOS file system on the host system with good trans-
parency to personal computer applications. When
personal computer data is stored on the host, VFILE
simply maps the personal computer stream file onto
a set of fixed-length host file records. Files can be
transferred between the personal computer and the
host, or bytes can be read from or written to specified
positions of the mapped stream file. VFILE also allows
personal computer programs to access existing rec-
ord-oriented files as stream files. In this case, how-
ever, VFILE must convert data between personal com-
puter and host system representations on the basis
of user-supplied descriptions of the host data.
~ s / 4 0 0 PC Support provides fully transparent personal
computer file system emulation on AS/~OO hosts, in-
cluding hierarchical directories and file sharing, as
defined by PC DOS. It is not possible to access data

IBM SYSTEMS JOURNAL, VOL 27. NO 3, 1988

stored in host files with AS/~OO PC Support, but a
companion product called DDM/PC provides that
function. A key difference between ECF VFILE and
DDM/PC is that DDM/PC introduces a record-oriented
programming interface as an extension to the PC DOS
stream file interface and eliminates the need for
mapping stream interfaces to record-oriented inter-
faces. AS/~OO PC Support implements the stream file
and directory subsets of DDM architecture for com-
munications with AS/400 hosts. DDM/PC implements
the record-oriented file models of DDM architecture
for communications with all SAA systems.

An environment consisting of SAA os/2 workstations
and an SAA host system, such as an AS/~OO system, a
VM/XA system, or an MVS/XA system, is illustrated in
Figure 6 . In this environment, requests for data flow
from the workstation requester to the host system
server, and data are returned.

Local area networks. Local area networks (LANS)
provide high-speed data communications between a
limited number of systems within a small geograph-
ical area such as a single building or a college cam-
pus. They allow a fundamentally different approach
to system design. Instead of a central host system
controlling and providing services for workstations,
a LAN allows a collection of workstations to interact
with one another as peers. They can request services
from one another and share resources such as proc-
essor time, printers, and on-line storage. When one
of these peers is specialized to provide services for a
single resource, it is referred to as a “server” for that
resource.

If all workstations attached to a LAN are of the same
type, it is not too difficult to design messages and
protocols for server access. Examples of IBM homo-
geneous LAN servers are the PC Network and the RT
pcTM Distributed File System.’ Increasingly, however,
it is desirable to attach different types of systems to
a LAN. One example of a heterogeneous LAN is the
Andrew3 system developed by Carnegie Mellon Uni-
versity. To obtain the desired network transparency
for end users, requests for LAN services are converted
to and from a message format designed by the An-
drew architects. For files, this was possible because
only a single model of files was supported on the
LAN, the stream model popularized by UNIX and PC
DOS.

In this discussion, all LAN systems have been referred
to as workstations, but actually host systems are also
being attached to LANS, especially to act as servers.

IBM SYSTEMS JCURNAL, VOL 27, NO 3, 1%

The files distributed among the workstations of a
LAN may not be available when needed, and proper
backup and recovery processing can be awkward.
Attaching host systems, such as the A S / ~ O O system or
an IBM 9370 to LANS allows them to provide services

Any system can be a requester
and any system can be

a provider of file services.

in a more disciplined way. It also makes their enor-
mous volumes of data available to the workstation
users. But then we again run into the problems of
different file models and different data representa-
tions.

The SAA solution to these problems is through the
use of the SAA cross-systems architectures with DDM
for file services. As an example of what becomes
possible, IBM os/2 systems, attached as workstations
to a LAN, can access files stored in AS/~OO, MVS/XA, or
os/2 systems as file servers, as shown in Figure 7. In
this environment, any system can request file services
from any other system supporting DDM file services
attached to the LAN.

Wide area networks. The preceding discussions of
cooperative processing and local area networks fo-
cused on the attachment of workstations to file serv-
ers, but, in a larger sense, any system can be a
requester and any system can be a provider of file
services. In Figure 8, the accounting department and
the shipping department may each have their own
system for local applications, but they also need to
interact with each other, with their workstations, and
with headquarters systems. Whether these systems
are geographically distributed or in the same ma-
chine room makes no difference to the applications
being run. Note that multiple DDM file servers can
exist in the same system and that connectivity with
systems outside of the enterprise may also be re-
quired.

Figure 7 DDM requesters and servers attached to a local area network

REQUESTER/

LOCAL
AREA
NETWORK

Levels of file distribution

In this section, five levels of file distribution are
discussed. The discussion parallels similar levels of
database distribution discussed by Reinsch.'

User-assisted file distribution. From the very begin-
nings of the computer industry, it has been necessary
to transfer files from one system to another. When
tapes were the primary medium for storing files, it
was a simple matter to copy a tape and manually
transport it to wherever the file was needed. But even
then, there were problems with reading files written
to tape by other types of systems. Aside from for-
matting and labeling differences, it took specially
written application programs to read and convert
the data from the representations of the originating
system to those of the reading system. Early tape files
contained virtually no meta-data, that is, data that
described the contents of the file or provided infor-
mation about the file. At best, this information ac-
companied the tape on paper, but more typically it
was embedded in the programs written to process
the file. Thus, data conversions could not be handled
by file system utilities.

Atomic requests. An atomic request is one that is
performed completely before any information is re-
turned to the requester, with no intermediate state
information remaining in the file system to be used

by subsequent requests. Examples of atomic requests
are operations on whole files, such as requests to
rename a file, to list its attributes, to make a copy of
a file. or to lock a file.

Requests to transfer files are also atomic. Transfer-
ring files between systems was one of the most ob-
vious, and therefore earliest, uses of data communi-
cations. Numerous jifile tranfler programs have been
marketed, with varying capabilities and varying abil-
ities to transfer files between different types of sys-
tems. Among the currently available IBM offerings
are the File Transfer Program and the Bulk Data
Transfer program for MVS/XA and VM/XA, the File
Transfer Subroutines of System/36, the Object Dis-
tribution Facility of System/38, and numerous pro-
grams for the IBM PC and Personal System/2@ (PS/~@)
systems. Although these programs work well in trans-
ferring files between like (or similar) systems, they
were not designed to work with one another. As a
result, transferring files between a System/36 and
MVS/XA, for example, is not possible with these pro-
grams.

DDM architecture supports file transfers between SAA
systems over SNA LU 6.2 communications. As with
other aspects of DDM, SAA systems attempt to provide
file transfer as a transparent capability of their exist-
ing utilities for copying files within the system. For

IBM SYSTEMS XXIRNAL. VOL 27. NO 3, 1988

Figure 8 DDM file servers in a wide area network

A DISTRIBUTED SYSTEM

example, the os/400 Copy File command can be used
to copy a file to or from a remote system with the
convenience of copying a file from one library to
another library on the same system.

Remote file processing. In the Remote File level of
file distribution, applications executing in one system
can access the contents of a remote file. At this point,
however, major difficulties arise, leading to the fol-
lowing questions:

Is the file system of the requester functionally
compatible with that of the file server?
Do they support the same file models?
Can their interfaces be mapped to and from a
common message format?

When the requester and the file server are of the
same system type and operating system type, the
answer is clearly yes, and distributed file services are
easily implemented. A good example of homogene-

IBM SYSTEMS JOURNAL, VOL 27. NO 3, 1988 DEMERS 357

ous distributed file services is the Distributed File
Services (DFS) component of the Advanced Interac-
tive Executive (A I X ~ ~) operating system of the RT PC.
In this case, an RT PC with large storage capacity is
used as a file server for other, smaller RT PCS on a
LAN. Any message format convenient to the devel-
opers of DFS was acceptable.

But in the case of mixed system types and mixed
operating systems-the heterogeneous systems
case-the picture is quite different. The file systems

The DDM file system architecture
consists of a set of standardized

file models within
a standardized file system.

of an IBM PC running PC DOS and an IBM System/370
running MVSIXA bear little resemblance to each
other, yet it was possible for the Enhanced Connec-
tivity Facility (ECF) product to bridge these differ-
ences and make MVSlxA data available to PC DOS
applications. It should be noted, however, that com-
ponents of the ECF product were added to both PC
DOS and MVSIXA. That is, the designers of ECF were
responsible for both ends of the communications
line and were able to design messages and protocols
that were tailored to that pair of system types.

The situation becomes even more complex when the
commitment is made to provide distributed file ser-
vices among any of N different system types, as IBM
has done with its SAA systems. At this point, we enter
the realm of cross-systems architecture. The cost
factor for developing and testing system-pair solu-
tions is N 2 , and is prohibitive for even small values
of N. The alternative is to connect each system type
to a standard file system and reduce the cost factor
to 2N.

This approach was selected for DDM, as shown in
Figure 9. The DDM file system architecture consists
of a set of standardized file models that exist within

358 DEMERS

a standardized file system. They are standardized in
the sense that representatives from a wide variety of
IBM systems participated in their design, seeking out
the file models and features that would best match
the needs of the high-level languages available on all
of their systems. In the figure, it is shown that data
management requests for remote file services are
trapped below local data management file system
interfaces and converted into messages acceptable to
the standard DDM file models.

The File Transfer, Access, and Management (FTAM)
protocol of the Open Systems Interconnection (OSI)
architecture4 also defines a standard file model, but
there is a major design difference between DDM and
FTAM. DDM defines a set of file models that are each
tailored to the specific requirements of a well-under-
stood high-level-language file model. FTAM defines a
single hierarchical file model that can be constrained
in various ways to meet specific access requirements,
but not with transparent access for existing applica-
tions. IBM has committed to supporting FTAM for
connectivity with other OSI vendors, but it has
adopted DDM into the framework of SAA because of
its emphasis on cross-systems transparency. Since
DDM is itself a published architecture, DDM requesters
and servers can also be implemented by other ven-
dors.

To date, support for distributed file services based
on DDM architecture has been provided by the fol-
lowing IBM systems:

System/36 (requester and server)
System/38 (requester and server)
Mvs/xA Customer Information Control System

PC DOS (requester only)
NetView/PC'" (file upload only)
os1400 (requester and server)

As with other SAA cross-systems architectures, sup-
port for DDM is planned for all SAA systems, including

(CICS) (server only)

0.512, MVSIXA, and VM/XA.

Distributed file transactions. At the Remote File
Processing level, changes to the contents of files occur
when an individual request completes. No consid-
eration is given to coordinated changes to multiple
files or to recovery should there be a failure. This
level of support is adequate for applications that
perform file updates individually or that have only
elementary recovery requirements. It is generally not
adequate for transaction processing applications,

IBM SYSTEMS JOURNAL, VOL 27, NO 3. 1988

Figure 9 DDM processing overview

r--------- 1

I STANDARD DDM
FILE MODELS

I
I

I. I
I I
I I
L"""""J

where coordinated sequences of updates must be
performed on one or more resources. These appli-
cations are often interactive and require prompt and
automatic recovery from failures.

In recognition of this, transaction-processing features
have been implemented on several IBM file systems,
including the Customer Information Control Sys-
tem, the System/38, the os/400, and the 8100 Dis-
tributed Processing Program Executive (DPPX). In
these systems, file processing takes place within a
Unit of Work (uow). A uow begins automatically
at the beginning of a job or at the end of the previous
uow. A uow ends at an explicit request to commit
or rollback the uow, or at the end of a job. During
a uow, all requests to update recoverable resources
are performed but are not permanent. They become
permanent only at the completion of a COMMIT
request. If there is any failure, they are automatically

. b

1

backed out. They can also be rolled back by issuing
an explicit ROLLBACK request. It is important to note
that a uow covers all recoverable resources that are
affected by a transaction. If an application is updat-
ing both recoverable files and a database, commit
and rollback operations affect both of them.

When access to recoverable files is distributed, uow
processing must also be distributed. For SAA systems,
this distribution will be accomplished through the
use of SNA LU 6.2 synchronization point services,
which provides a two-phase protocol for committing
transactions.

Distributed file request processing. A possible direc-
tion for the functional growth of file systems can be
seen in ospoo. Two capabilities of this file system
allow application programs to interact with multiple
files as if a single file were being accessed

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

An os/400 Logical File provides an alternate, logi-
cal view of the data in an existing base file. Logical
files, however, can be constructed over multiple
base files. A request to access the records of a
logical file causes the file system to access records
from the underlying base files. These records are
presented to the application one at a time, as if it
were accessing a single file with records of varying
length and format.

The order in which records are presented depends
on how the logical file was designed. One way is
to specify that all of the records, from all of the
base files, are to be in ascending or descending
sequence in terms of common key fields in all of
the records. In this way, a hierarchical relationship
between the records of different base files can be
established, with master records preceding detail
records, for example. Another way is to specify
that all of the records from one base file are to
precede all of the records from the next base file.
In this way, a large set of records can be partitioned
into a number of smaller files.

An os/400 Join File is like a logical file in that it is
defined over multiple base files. In join files, how-
ever, the application sees only records of a single
format consisting of one copy of the key fields and
the unique fields from each base record.

A challenge for distributed processing is to extend
these concepts across the full range of SAA file sys-
tems, allowing logical and join files to be defined
over base files residing on remote systems, with full
local/remote transparency. When this occurs, the file
system will have to access files on multiple remote
systems in order to acquire or update records. In
other words, the processing of the data management
request will be distributed to multiple systems.

Beyond these specific examples, support for files
replicated on multiple systems or partitioned across
multiple systems will also require the distribution of
the processing of requests for file services.

Performance

The performance of a distributed file system is a
difficult issue because of the number of variables
over which the developers of the file system have no
control. Among them are the following:

The performance costs associated with the trans-
lation of interfaces to and from the message for-
mats of a distributed file system

360 DEMERS

The performance of the communications facilities

The performance of the remote file system
The performance of the storage devices used for a

used

given file

These factors can have either a positive or a negative
impact on the performance perceived by an appli-
cation, but of equal importance is how the distrib-
uted file system is used by applications in specific
network environments. The performance of an ap-
plication that queries or updates occasional records
in a remote file accessible only over a slow (e.g.,
2400 baud) communications line can be acceptable.
In contrast, the performance of an application that
sorts large volumes of long records in a remote file
accessible over a high-speed (e.g., 1.5 megabytes per
second) local area network can be unacceptable.

This situation is really no different from what one
sees in the use of locally attached direct-access stor-
age devices (DASD) for data access. Data stored in
memory can always be accessed faster, but with
proper buffering and caching, and with data trans-
mitted to or from the DASD in reasonably large
blocks, performance can be acceptable for many
applications. Also, where possible, it is desirable to
offload complex functions to the DASD or its con-
troller such that only final results are returned to the
requester.

In the design of a distributed file system, the same
concepts apply. Although specific network environ-
ments and applications cannot be known to the
developers of a distributed file system, the same basic
principles apply: buffer the data, keep the commu-
nications overhead to a minimum by using simple
messages and protocols, off-load complex functions
to the remote file system, and depend on application
designers and users to use file capabilities in a rea-
sonable way.

Under the conditions often found with personal
computers, including relatively slow local DASD,
high-speed LAN communications, and fast remote
processors and DASD, a distributed file server can
even offer performance advantages for some appli-
cations.

Conclusion

SAA allows users, programs, and data to be distrib-
uted throughout a network of interconnected IBM
systems. Providing distributed access to files is a key

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

element of this strategy. DDM is the SAA heteroge-
neous architecture that provides a universal solution
to distributed file processing across the range of SAA
systems.

UNIX is developed and licensed by AT&T, and is a registered
trademark in the U.S.A. and other countries.
Personal System/2 and PS/2 are registered trademarks, and
OS/400, Operating System/2, OS/2, AS/400, RT PC, AIX, and
NetView/PC are trademarks, of International Business Machines
Corporation.

Cited references

1. R. Reinsch, “Distributed database for SAA,” IBM Systems
Journal 27, No. 3, 362-369 (1988, this issue).

2. C. Sauer, D. Johnson, L. Loucks, A. Shaheen-Gouda, and T.
Smith, “RT PC distributed services,” Operating Systems Review

3. J. Moms, M. Satyanarayanan, M. Conner, J. Howard, D.
Rosenthal, and F. Smith, Andrew: A Distributed Personal Com-
puting Environment, Information Technology Center, Carnegie
Mellon University, Pittsburgh (November 1985).

4. Information Processing Systems-Open Systems Interconnec-
tion-File Transfer Access and Management-Part l-General
Introduction, International Standards Organization document
DIS 8571/1, Geneva (1986).

21, NO. 3, 18-29 (July 1987).

General references

IBM Distributed Data Management Architecture: General Infor-
mation, GC21-9527, IBM Corporation (1986); available through
IBM branch offices.
IBM Distributed Data Management Architecture: Implementation
Planner’s Guide, GC21-9528, IBM Corporation (1986); available
through IBM branch offices.
IBM Distributed Data Management Architecture: Implementation
Programmer’s Guide, SC2 1-9529, IBM Corporation (1 986); avail-
able through IBM branch offices.
IBM Distributed Data Management Architecture: Reference,
SC21-9526, IBM Corporation (1986); available through IBM
branch offices.

Richard A. Demers IBMApplication Business Systems, Highway
53 & NW 37th Street, Rochester, Minnesota 55901. Mr. Demers
is an advisory programmer working in Distributed Data Manage-
ment (DDM) architecture. He received a B.A. in philosophy from
Canisius College, Buffalo, New York, in 1968, and joined IBM as
an applications programmer in White Plains, New York. In 1972,
he moved to Endicott, New York, where he worked on OS/VSI,
OS/VS2, and DOS/VS support for the IBM 3895 Optical Check
Reader. Mr. Demers moved to the Rochester laboratory in 1975
to design the message handling and service components of the
Control Program Facilities of thr IBM System/38. Since 1982 he
has been working on the development of DDM architecture, for
which he received an IBM Outstanding Innovation Award in 1987.
Mr. Demers is a member of the Association for Computing Ma-
chinery. His professional interests include operating systems, dis-
tributed processing, data management, general systems theory,
programming languages, and object-oriented programming.

Reprint Order No. G321-5330.

IBM SYSTEMS JOURNAL, VOL 27, NO 3. 1988 DEMERS 361

