Integrating applications
with SAA

Advances in computing technology and reductions in
development cost have greatly increased the number
of people who use computers, and have expanded the
number and types of applications available to them.
People want their applications to share data and to be
consistent with one another with respect to terminol-
ogy and appearance. They also frequently need access
to applications and data on computers in other loca-
tions; the computers may be models and types that
these persons do not normally use. Integrating appli-
cation functions in a seamless environment is an im-
portant step toward satisfying some of these require-
ments. This paper discusses what integrated applica-
tions are, why they are valuable, and how Systems
Application Architecture (SAA) can make it easier to
develop them.

Integrated applications are diverse functions and
services that work together and look like one
consistent system to the end user. They coexist in an
environment that provides a framework for promot-
ing consistency of appearance and terminology. Such
an environment would allow applications to share
services and exchange data in a standardized fashion.
It would also allow users to switch between applica-
tions as required by the job being performed.

Computer networks make it possible for users to
store needed applications and data in many different
places. Figure 1 illustrates a simple configuration
with an end user and two different applications. Each
of the applications is located at a different node in
the network and executes in a different operating
environment. If the applications were integrated
from an end-user point of view, they would appear
to be running in a single environment close to the
user, as illustrated in Figure 2. The user would be

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

L. A. Buchwald
R. W. Davison
W. P. Stevens

by

able to switch back and forth between the applica-
tions, with the system transferring data between the
applications as required.

Value of integrated applications

During the past few years there has been a significant
growth of new business applications over the broad
range of 1BM hardware, a trend resulting from the
need of business professionals for increasingly accu-
rate and timely information to help run businesses.
This trend is also the result of an improved ability
to deliver computer applications.

The information center, for example, has assisted
business professionals with applications and decision
support tools that help them do their jobs more
quickly and accurately. Another example is the com-
puting power delivered by the personal computer.
Business solutions may now be implemented and
tailored applications developed independently of a
company’s computer experts. The personal com-
puter is ideal for business solutions that are highly
interactive and must react to the individual user’s
needs with tailored output. Because of their former
high cost, such applications as graphics design,
spreadsheets, and complex document formatting
were previously available to only a few users. Many
of today’s business applications, however, run as self-

@ Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

BUCHWALD, DAVISON, AND STEVENs 315




Figure1 Applications around a network

Figure2 User’s view of integrated applications

USER'S LOCAL SYSTEM

INTEGRATED
APPLICATION
ENVIRONMENT

contained, independent units that do not interact
with one another or with the user in a consistent
manner. :

316 sucHWALD, DAVISON, AND STEVENS

The growth of new business applications has increas-
ingly obligated the user to remember multiple ways
of accessing and interacting with different operating
systems. Specifically, it requires familiarity with dif-
ferent environment and application command sets
and interaction techniques. A mental adjustment
may often be necessary to accommodate the new
environment or application each time the user
switches applications.

In order to take advantage of the productivity gains
provided by new business applications, the applica-
tions must be available to work together in a con-
sistent fashion across different hardware and oper-
ating environments. In particular, a technique must
be provided for switching applications (i.e., moving
from one application to another and back in a spon-
taneous fashion), with no need to explicitly termi-
nate one application before starting another.

To present more fully the user’s view of integrated
applications, Figure 3 illustrates some of the short-
comings of nonintegrated applications. The figure
might exemplify a user in the insurance industry
who has responsibility for claims processing. The
claims-processing transactions are implemented on
an Mvs/CICS system, and PROFs™ office applications
are available on a vM/cMS system. The user follows
a standard sequence of steps for processing each
claim, but may have to deviate from the normal
sequence of events to respond to an abnormal situ-
ation. Consider the case in which required informa-
tion necessary to complete the claims process has
not been received from the claims adjuster. When
this is discovered, the user must send a memoran-
dum or note to the adjuster inquiring about the
status of the investigation and requesting the missing
information. To accomplish this, the user must
switch from the claims-processing application to the
proFs office application. Coincidentally, the user
expects the claimant’s name and claim number and
the adjuster’s name and electronic mail address to
be transferred automatically to the PROFS note appli-
cation. The user wishes to view the two applications
as though they were running together in the same
environment.

In today’s typically nonintegrated applications, the
user most often sees applications as shown in Figure
3. It is necessary to switch between two different
computing environments each time there is a need
to use the other application. The claims processor
may have to take the following steps:

1BM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




e Write the necessary information to be transferred
to the note application.

e Wait to terminate the claims-processing applica-
tion gracefully.

¢ Log off the cics system.

e Transfer via vTAM or a hardware switch to the vm
system and log on.

 Start PROFS and the note application.

¢ Manually enter the data to be transferred, as well
as any text, to the note application.

e Send the note.

e Return to the claims-processing application
through a similar procedure.

Integrated applications, on the other hand, can pro-
vide a consistent user view by masking the complex-
ities of system access, the dependencies on applica-
tion location, and the differences in data formats.
From the user’s point of view, integrated applications
are consistent in screen layout, terminology, com-
mands, and navigation, and they can easily access
and process data from other applications. Integrated
applications are easy to use, both individually and
collectively, and they do not have to be terminated
in order to switch from one to another.

The chief user benefit of integrated applications is
improved productivity, which is manifested in sev-
eral ways:

¢ Users can transfer computer skills from job to job
with minimal training. They can learn the new
job-related applications more quickly and easily
because of common methods for application exe-
cution and interaction. Education and training are
limited to learning new application functions and
their relationship to job-related tasks.

¢ Application execution and interactions can be tai-
lored to the user’s skills and job requirements.
Application functions may be sequenced to sup-
port the job at hand, rather than tailoring the job
to satisfy computer system requirements or restric-
tions.

¢ Application location is transparent; the user only
requires access to a computer system to use the
applications,

It is the intention of SAA to provide a framework in
which applications can be developed and integrated
in these ways.

The integration of applications

Application integration today most often occurs be-
tween functions within a single application or be-

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

Figure 3 Using applications in different environments

tween functions of related applications. Applications
may be related by industry or by product family.
Current and future application development should
aim toward the integration of unrelated applications,
such as those shown in the claims-processing and
office examples provided in the previous section.

Designers must address both planned and unplanned
integration. Planned integration is achieved when all
the applications involved are intentionally integrated
by design and implementation. Unplanned integra-
tion comes about when functions are used collec-
tively among applications in a manner that was not
intentionally planned for at the time the applications
were developed. This includes the need to integrate
new applications with applications that already exist.
It also includes the spontaneous requirement to spec-
ify application interactions that are not known at
development time.

SAA provides a number of facilities to help developers
integrate applications, including the Common Pro-
gramming Interface (Cp1), such as those described in
sAaA for database, data access, and languages. Other
facilities are provided through underlying product
functions and common architectures supported in
all saA environments. It is important to remember,
though, that saa architectures and products are con-
tinuing to evolve. Additional elements and functions
may be provided as requirements for them are iden-
tified, as solutions are defined, and as resources are
committed for all SAA environments.

BUCHWALD, DAVISON, AND STEVENS 317




Sharing data

Seemingly unrelated applications frequently require
access to the same data; a good example of this is an
employee address file. Data stored in such a file may
be used by payroll, personnel, the employee stock
plan, expense accounting, and other applications.

Today, users frequently
require access to applications
that run on different systems
to take advantage of unique
hardware features.

These applications, however, are typically developed
separately, usually in different groups organized
along functional lines. The result is different versions
of the same data with slightly different content and
structure, each of which is created, maintained, and
accessed separately.

There are several ways applications can share data.
They can access shared files or databases, pass data
to other applications, or share global data in mem-
ory. However, the sharing of global data in memory
is not recommended, because it results in inflexible,
complex applications and prohibits distribution of
the functions to other computers in the network.

Sharing data can be difficult because data formats
are often unique to each application. The saA Data
Content Architectures, data access techniques, and
system facilities address this problem. With these
architectures, applications may be “educated” to un-
derstand the data that are received and the processing
to be performed. In this manner, data may be shared
in a single computing environment or across multi-
ple computing environments.

Shared data. File access methods and database man-
agers allow concurrent accessing and updating of
shared data. Multiple applications using the files
need not be in the same execution environment. In
addition, database managers provide a level of trans-
parency between the applications and the data. A

318 BucHWALD, DAVISON, AND STEVENS

database manager allows for storage layouts to be
changed without requiring changes to existing appli-
cations.

sAA further simplifies data sharing across environ-
ments. An SQL interface is provided in all SAA envi-
ronments as a common access technique and pro-
gramming interface. This allows applications that
are developed independently to share data in a
planned way. Databases can be designed to accom-
modate a range of application requirements, with
individual applications defining unique views to ac-
commodate specific requirements. New applications
can add data and share common data with applica-
tions developed earlier. This also simplifies support
of on-demand access to shared or common data with
generalized applications such as queries and spread-
sheets,

Remote data access. Today, users frequently require
access to applications that run on different systems
in order to take advantage of unique hardware fea-
tures. However, it is often not practical or convenient
to maintain multiple copies of data at different sites
to facilitate the sharing of data among the applica-
tions. Data are frequently stored where they may be
most easily maintained and made accessible to the
largest number of users, though this approach is not
necessarily convenient for all users. An example of
this is the requirement to process data stored in a
host connected to Intelligent Workstation (Iws)
hardware. Consider a user who has an interactive
business graphics application, an all-points-address-
able display, and a plotter that is available on the
workstation. Traditionally, the user must perform a
series of steps in order to abstract the required data
from the host database and download them to the
workstation for tailoring or reporting. However, if
the format and content of the host file can be de-
scribed to the business graphics program, the file can
be accessed as though it were a local file. The trans-
parent access to host-stored data is supported by the
Distributed Data Management (DDM) architecture
and products defined as part of SAA.

The workstation program opens a file as though it
were a local file. When an OPEN command fails, DDM
intercepts the failure and attempts to find the file on
the attached host system. If the required file has been
defined to the workstation with the proper access
and authorization, all subsequent READ and WRITE
commands to the file are routed to the ppDM com-
ponent on the host, and the records are passed
between the file and program as though both resided

BM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




Figure4 Accessing files via DDM

USER'S WORKSTATION

APPLICATION

HOST SYSTEM

in the same computer. Figure 4 illustrates this design
as it appears to the application program and the user.
The components contained in the dashed-line box
appear transparent. For simplicity, some of the com-
ponents such as the communications components
are not shown.

Data interchange. Today, applications in different
address spaces or execution environments can com-
municate, but the techniques are complex. Higher-
level communications access methods can simplify
this process by allowing applications to send and
receive messages and data by identifying the recipi-
ent and using common communications techniques
and protocols. SAA provides architectural definition
for products for data interchange. This includes ex-
changing messages using common communications
support, passing parameters using a higher-level call
interface, and controlling data passage via applica-
tion management functions (as, for example, in the
0s/2™ presentation manager) or dialog manager serv-
ices.

In addition, high-level functions are being developed
that allow each end of the interchange to request and
recognize changes in the communication flow.
Standardized interchange data structures and for-
matted data streams are being architected to reduce
application code dependence on fixed data formats.
The self-describing characteristic of architected data
streams facilitates data sharing among functionally
diverse applications that may be implemented at

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

different times. Thus, applications can recognize and
react to changing conditions and requests.

Direct interchange of data messages is supported by
SAA through a programming interface, a common
set of delivery functions, and a set of data-stream
architectures. Programs that communicate using
these facilities can be developed independently of
one another. This allows for generalized application
functions such as memo and mail to be used on
demand by other applications, with no special pro-
gramming requirements. The requesting application
would need to know the name and data requirements
of the function being requested.

SAA also supports data interchange between appli-
cations via variable pools and services provided in
dialog services. Applications designed to use the
variable pools and variable names can access and
update information stored there by other applica-
tions. Similarly, data interchange is supported by the
presentation management component of saA. The
interchange is under user control between the screens
of currently active applications, where, to the receiv-
ing application, it appears as though the user had
entered the data via the keyboard.

In summary, using dialog services and presentation
services, application front-ends on the workstation
can facilitate data interchange between indepen-
dently developed applications available on different
hosts. The next section presents additional discus-

BUCHWALD, DAVISON, AND STEVENS 319




sion of this approach, under the heading Executing
remote applications.

Sharing functions

saA dialog services provide a common set of facilities
to support and manage the dialog between a user
and an application and between independently de-
veloped applications. SAA dialog services allow ap-
plications to invoke each other in a standard way. A
common set of facilities provide a structured ap-
proach for menus and displays to be developed and

It is valuable to design
applications to be portable
from one processor to another.

maintained independently of application code; they
also provide an invocation mechanism which is con-
sistent across environments and applications.

Applications developed using SAA dialog services as
an invocation and display interface will, indepen-
dently of the application code, simplify the tailoring
of menus, panels, and terminology to specific instal-
lation or individual requirements.

The sharing of application function in SAA is not
limited to using dialog manager or application func-
tions executing in the same computing environment.
SAA defines a common set of sNA Advanced Pro-
gram-to-Program Communication (APPC) and a
Common Programming Interface (cp1). The com-
munications CPI allows programs to talk to one
another, and it provides facilities for applications to
be developed that can start their own function or
start shared function on another system.

Portable applications. When an enterprise relies on
multiple processors (that may be of different hard-
ware architectures) to meet its information process-
ing needs, it is valuable to design applications to be
portable from one processor to another. The benefits
that may result are no need to rewrite applications,
consistency from one system to another, and more

320 BUCHWALD. DAVISON, AND STEVENS

timely delivery.! Another reason is to facilitate ap-
plication integration. Remote sharing of data, data
interchange architectures, advanced communica-
tions, and other advances in technology will help
simplify application integration across environ-
ments. Integrating applications may be most simpli-
fied when the applications are stored and executed
in the same environment, or the primary environ-
ment of the user.

Application design and development for portability
must be carefully considered. Modularization is a
very important technique in achieving application
portability. Specifically, the use of structured con-
cepts to separate functions is what allows the reuse
of common functions and facilitates portability. In-
tegrated applications should perform the same func-
tion consistently, even after maintenance to those
functions. The productive way to accomplish this is
to have the sharable functions as modules included
in each using application. When separating the func-
tions, it is important to strictly separate 1/0 opera-
tions from modules containing the business process-
ing logic. This is a valuable procedure because the
logic is the most easily ported component, and the
1/0 is most likely to require change and probably the
easiest to rewrite.

SAA languages permit the exploitation of facilities
unique to specific environments, applications, or
parts of applications. Applications which are in-
tended to be portable should use the saA language
subsets and facilities which are common across en-
vironments. Modules which exploit environment-
specific facilities should be isolated for ease of port-
ability.

Common Programming Interfaces (cpis) will be de-
fined for all sAA elements. Thus, it will be easier to
build applications for distribution throughout the
network on the basis of integration and resource
usage requirements. It will also be possible to redis-
tribute the applications as requirements change. This
can be contrasted with implementation decisions
that were dictated by the availability of functions in
a single environment.

Common application functions. SAA common appli-
cation functions are usually general functions that
apply to more than one business. They may also be
functions specific to a particular business which are
used by other businesses. Many office functions, for
example, are considered to be generalized functions.
Applications using general functions are more port-

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




Figure5 Using application front-ends in workstations

USER’'S WORKSTATION

CLAIMS OFFICE COMMUNICATIONS

DIALOG
SERVER

PRESENTATION
SERVER

I

e e

able, because these functions will be implemented
with the same interfaces in each SAA environment.
The saa common application functions will also
present a consistent appearance to the user and may
be executed remotely.

Using office mail to distribute reports in a manufac-
turing application is an example of integrating ap-
plications by using general functions. Another ex-
ample could be that of using the office memorandum
function to add address information to correspon-
dence generated by an insurance claims-processing
application.

Executing remote applications. SAA provides the in-
terfaces necessary to take advantage of the one saa
environment (i.e., 08/2) that has application manage-
ment functions. The presentation manager in 0s/2
supports application management functions that are
extensions to the SAA presentation interface. Appli-
cations written in any of the SAA environments can
take advantage of these application management
functions by using the SAA communications interface
to connect to an 08/2 workstation. An application
written in this cooperative fashion has its user inter-
face running on the 0s/2 workstation. The remainder
of the processing takes place on the host system.

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

A common front-end (or multiple unique front-
ends) can be written for the workstation using 08/2
presentation services and dialog manager services if
desired. By utilizing the sAA communications com-
ponent and communications CP1, the front-end can
invoke the main application function on the host.
In this manner, SAA support allows the user to con-
nect to multiple applications running in different
hosts concurrently. Figure 5 illustrates this approach
to application integration, using the earlier example
of an insurance claims processor accessing two di-
verse applications concurrently.

With this approach, the user has a consistent view
of application invocation. A common front-end uti-
lizing application management function in 0s/2 pre-
sentation services could present the user with choices
of applications. The user would not be aware which
applications run locally and which run on the remote
hosts to which the user is connected. Application
switching would occur when the user transferred
between the application windows.

When a cooperative application is started, the front-
end establishes a communication session with the
rest of the application in the appropriate host. The
user need not be aware of the steps that are involved

BUCHWALD, DAVISON, AND STEVENS 321




to perform authorization and initialization of the
host portion of the application. The work to accom-
plish this is contained within the local and host
components of the application, using the security
facilities available in each system.

Common User Access

The saa Common User Access (CUA) publication?
defines standards and guidelines for the appearance
of, interaction with, and terminology for the user
interface. Use of these rules will provide applications
a consistent way to interact with users. The defaults
provided by the saA dialog services and presentation
services will support these standards, making the
development of applications with common user in-
terfaces much easier. In addition, by using the SAA
dialog services screen definition language, users will
be able to change the defaults, thus tailoring the
screens to their standards and maintaining consis-
tency across applications.

Perhaps the most efficient way to realize the benefits
of integrated applications is to use consistent formats
(for example, using SAA CUA standards) for all user
interactions. Terminal or printed output should be
organized, using standards that make it easy for the
user to identify where things are and how to interact
with an application function. This standard ap-
proach to describing a user’s interaction with appli-
cation function will facilitate the user’s transfer be-
tween applications, whether in the same or different
environments, with a minimum of reorientation.

Consistent interactions require several standards.
Standards should be developed for each type of
display terminal. Screens should have the same lay-
out and appearance across applications and environ-
ments. Titles, command lines, and help areas should
have a standard placement.

The user’s interaction with the terminal should also
be consistent. Consistency here is intended to include
starting a session, invoking an application, getting
help or tutorial information, and making choices
within applications. Commands which perform the
same function should use the same names, syntax,
and semantics.

Common terminology among applications will also
increase productivity. In the past, this was not as
important because users accessed few applications,
which in many instances were designed and devel-
oped for a specific job. Today, word processing,

322 BUCHWALD. DAVISON, AND STEVENS

spreadsheets, decision support, and mail services are
used with great frequency, in addition to users’ job-
specific applications. It is perplexing and confusing

Common standards make it easier
for a user to identify and invoke
required actions and
request assistance for new
applications.

to the end user when applications use the same term
to mean different things and perform different func-
tions, or when they use different terms to articulate
the same meaning,

Common standards make it easier for a user to
identify and invoke the required actions and to
request assistance for new applications. As users gain
experience with an application, functions contained
in sAA dialog services will permit the bypassing of
application menus designated for the novice user.
The cua publication?® defines a consistent terminol-
ogy for cross-applications and cross-systems func-
tions, but it cannot be specific as to the terminology
of each industry. Thus, application designers must
also try to use standard terminology across applica-
tions.

Intelligent workstations

As indicated earlier, the presentation manager in
0s/2 supports application management functions
that are extensions to the SAA presentation interface.
By taking advantage of the saA communications
interface to connect to an 0s/2 workstation, an ap-
plication written in a cooperative fashion can have
its user interface running on the 0s/2 workstation,
with the remainder of the processing taking place on
the host system. A cooperative application can take
advantage of the interactive capabilities of the work-
station. In fact, the user interface can look the same
as the user interface of a local application. This
provides consistency for the user, regardless of the
system on which the processing occurs.

BM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




Intelligent workstations can also make it possible to
integrate existing applications by replacing their ex-
isting user interfaces. This is accomplished through
the capability of the workstation to put computing
power between the keyboard and the data input of a
terminal emulator. The existing application may not
need to be modified. The workstation can invoke
and communicate with existing applications and
present a standard interface to the user or other
applications. At the same time, existing applications
continue to see the data as though the user were
keying them in directly.

Over time, the SAA CPIs can be extended to decrease
the implementation efforts required for developing,
managing, and using cooperative applications such
as in the insurance environment described earlier.
For example, services could be provided to set up
the environment for host code automatically.

As with any higher-level interface, this has the poten-
tial to decrease the flexibility of an application. SAA
has started with the most general functions and can
be extended over time with more specific functions
as the need arises.

Concluding remarks

This paper defines integrated applications as diverse
functions and services that appear to the end user as
a single, consistent system. The functions and ser-
vices often do not have an industry or technical
relationship, but they are all necessary to the end
user’s job performance. In the past, a typical end
user had access to few computer applications, and
then only those that were directly job-related. With
advances in computer technology (networking, in
particular), reductions in computing cost, and the
availability of personal computing power, an era of
more extensive computer usage is emerging. Users
now have access to many general-purpose applica-
tions, such as office, document-processing, spread-
sheet, and graphics applications. Collective use of
these applications and job-specific applications can
significantly enhance productivity. The applications
must be consistent and easy to use if they are to be
organized in a manner that supports the natural or
prescribed way of carrying out a user’s job responsi-
bilities.

This paper discusses planned and unplanned appli-
cation integration using the elements of SAA to share,
access, and interchange data. Key to this discussion
is SAA support for writing portable applications and

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

locating them as close as possible to the user. Also
discussed is the importance of developing applica-
tions using common functions to improve consis-
tency. SAA provides facilities to assist in executing
these functions, whether local or remote, and make
the functions appear local to the end user.

The methodology of Common User Access (CUA)
and the SAA elements necessary to implement it are
described in terms of the importance of making
applications appear consistent. Illustrating the CuA
discussion is the use of intelligent workstations and
the saA elements planned for the workstation. They
will help facilitate a consistent user view by providing
transparency to the computer network and the many
different computing environments in which user ap-
plications may actually be running.

In closing, it is important to remember that SAA
definitions and products are developing. saa will
grow and evolve as requirements are identified, so-
lutions designed, and products implemented. In the
future, saa should simplify the job of developing
new applications to be integrated with one another
and with the user’s existing base of applications.

PROFS and OS/2 are trademarks of International Business Ma-
chines Corporation.

Cited references

1. Systems Application Architecture—An Overview, GC26-4341-
1, IBM Corporation; available through IBM branch offices.

2. Systems Application Architecture Common User Access Panel
Design and User Interaction, SC26-4351, IBM Corporation;
available through IBM branch offices.

Lawrence A. Buchwald IBM Application Systems Division, 472
Wheelers Farms Road, Milford, Connecticut 06460. Mr. Buchwald
joined IBM in 1982, specializing in the areas of database technol-
ogy and data modeling. In 1984, he joined the information center
staff at the Information Systems and Technology Group head-
quarters, where he was responsible for managing end-user execu-
tive services. He is currently a senior planner, with responsibilities
for strategies and plans in the area of application integration. Mr.
Buchwald has an M.B.A. in management science from Pace Uni-
versity, New York City.

Richard W. Davison IBM Application Systems Division, 472
Wheelers Farms Road, Milford, Connecticut 06460. Mr. Davison
joined IBM in 1966 as a systems engineer trainee in the Pough-
keepsie branch office. His main areas of specialty were process
control and communications as applied to the generation and
distribution of power in the power industry. He later joined the

BUCHWALD, DAVISON, AND STEVENS 323




Information Systems Group, participating in the development of
the Virtual Storage Extended/Interactive Problem Control System
(VSE/IPCS) and the Interactive System Productivity Facility
(ISPF) Dialog Manager program products, in the early efforts at
defining the Common User Access architecture. Mr. Davison was
development manager for the MVS/Prolog program offering. He
is currently a senior planner of programming architecture, with
responsibility for product requirements, programming architec-
tures, and product plans in the areas of communications and
distributed processing. He has a B.S. degree in engineering science
from the Rensselaer Polytechnic Institute, Troy, New York.

Wayne P. Stevens IBM Application Systems Division, 472
Wheelers Farms Road, Milford, Connecticut 06460. Mr. Stevens
joined IBM as a systems engineer in 1967, specializing in perfor-
mance analysis and improved programming techniques. He lec-
tures and publishes on structured design and data flow, and has
written on the topic of software design for a series of volumes on
application development to be published by Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, in 1988. Mr. Stevens is currently
responsible for planning future IBM application development
products.

Reprint Order No. G321-5328.

324 BUCHWALD, DAVISON, AND STEVENS IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




