Application enabling in SAA

The Common Programming Interface (CPI), one of the
four key elements of Systems Application Architecture,
comprises a growing set of programming languages
and services. The CPI indirectly offers end-user access
through the Common User Access by providing the
application developer with the necessary interfaces.
The CPI addresses the application development re-
quirement for portability of applications and program-
mer skills. As the CPI continues to expand, it ad-
dresses the requirements for access to host data
through intelligent workstations and for transparent
access to remote data and applications.

he announcement of Systems Application Ar-

chitecture (SAA) on March 17, 1987 established
the Common Programming Interface (CP1) as one of
the four key elements of sAA. This announcement
also set a clear direction for the management and
availability of consistent application programming
interfaces. Figure 1 illustrates the elements of the
announced CPI. A number of implementations of
these interfaces are available, and work continues to
expand the interface implementations available in
all saa environments, while at the same time extend-
ing the cp1 by enhancing the announced interfaces
and adding new languages and services.

Objectives of the CPI

Four discrete objectives have been described for the
CPL.

Consistency for the end user. This objective involves
support of the Common User Access (CUA)' element
of saa through the cPI by providing for the applica-
tion programmer a useful, complete, and productive
interface that allows conformance with the cua. It
also means providing an interface that gives the
application programmer choice and flexibility while

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

by D. E. Wolford

ensuring that he or she has consistent user interfaces
and allowing the degree of control required by the
application.

Programmer productivity. Consistent interfaces are
provided that make application programmer skills
and the programs portable among the SAA environ-
ments.

Applications that exploit the strengths of individual
SAA environments. The CPI objective is to empower
such applications by providing the needed function
through the CPI, such as the Communications inter-
Jace, or by providing transparent enabling, similar to
the method by which access to distributed data is
enabled through the sQL and the high-level language
file 1/0 interface.

An enterprise-wide application development environ-
ment. The cPl must address the requirement to pro-
vide an application development model, tools, and
services to meet a growing customer need.

Consistency for the end user

One objective of the saa is especially clear—consis-
tency of the end user’s access to IBM’s SAA environ-
ments. Support of the cUA specification is also the
cers first objective. The Dialog and Presentation
interfaces of the cp1 have accepted the requirement
for the support of the cua. These interfaces will
enable the CUA and, in time, offer enforcement of

© Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

woLroro 301




Figure1 CPlelements

CICS/IMVS

APPLICATION
~GENERATION

PROGRAM SERVICES &2 L

DC = DATA COMMUNICATIONS

cuA conformance to those who desire it. The paper
in this issue by Uhlir> addresses enabling the cua
and the direction to be taken by enabling in the
future.

Productivity enhancement for the application
programmer

A predominant theme in the designation of the
current elements of the cpi is application productiv-

302 worrorD

ity. The cpi addresses productivity in two ways:
portability of applications and portability of skills.

Portable applications. Applications developed using
the CPI can be moved from one SAA environment to
another with a minimum of rewriting. While there
is no guarantee of complete application portability
among the SAA environments, the CPI is being de-
signed, managed, and developed in the SAA environ-
ments to minimize the amount of rewriting required

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




to enable portability. This portability of applications
is expected to be especially beneficial for vendors of
software that runs on 1BM systems. These vendors
can significantly expand the market for their prod-
ucts with less additional development effort by using
the cpPL

Portable skills. The application programmer who
learns the necessary elements of the CPI to code an
application in one SAA environment can, without
relearning or learning new CPI elements, use the same
skills to write programs in any other SAA environ-
ment. The CPI objectives embrace another equally
potent productivity enhancement for application de-
velopers: Consistency of the language and service
implementation guarantees more portable skills. The
CPI language and service implementations in the
System/370 (VM/CMS, TSO/E, CICS/MVS, and IMS/VS
Data Communications), IBM 0s/400™, and 0s/2™ Ex-
tended Edition are virtually syntactically and se-
mantically consistent.

The paper by Haynes® on the Application Generator
(AG) element of the CPI traces the history and future
of several implementations of the AG, namely the
Cross System Product implementations. This fourth-
generation language continues to meet application
programmers’ requirements for portability of appli-
cations and application development skills. Because

of these attributes, the Application Generator is a
central component of the CPIL.

Enabling applications that exploit the strengths
of the SAA environments

Another objective of the cPI is to make possible
applications that require data or programs residing
in other interconnected computers. The Common
Communications Support element of Systems Ap-
plication Architecture provides the necessary inter-
connections; the CPI provides the programming lan-
guages and services.

Program-to-program linkage. Access to the comput-
ing and data storage capacity of IBM’s transaction
management subsystems—IMS/vs Data Communi-
cations and cics/Mvs—from all of an enterprise’s
computers is becoming steadily more interesting to
1BM users and is a requirement for some. This re-
quirement has been accepted in the cpi1, and a first
step has been taken toward enabling the linkage
through the Communications interface in each of
the saA environments. Through this LU 6.2 (Ad-
vanced Program-to-Program Communication) im-
plementation, application segments in two environ-
ments can be linked, providing access to iMs/v$ Data
Communications and cics/Mvs data and applica-
tions from intelligent workstations (IwWs) running

Figure2 Intelligent Workstation (IWS)

INTELLIGENT WORKSTATION

COMMUNICATIONS CPi

—FACILITIES IWS/HOST APPLICATION DEVELOPMENT
—LEVERAGE

o HIGHLY INTERACTIVE PROCESSING ON IWS

e CAPACITY/SHARING/CONTROL IN HOSTS

COMMUNICATIONS CPi

~IMS/VS DATA
COMMUNICATION
-CICS/MVS

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

worroro 303




Figure 3 Any-to-any connectivity in SAA

COMMUNICATIONS INTERFACE

— CONSISTENT INTERFACE TO
APPC/LU 6.2 IMPLEMENTATIONS
IN ALL SAA ENVIRONMENTS

—MORE EFFICIENT TRANSMISSION

—ASYNCHRONOQUS PROCESSING

APPC/LU 6.2

DC = DATA COMMUNICATIONS

0s/2 Extended Edition. Figure 2 illustrates this con-
figuration. In time, implementations of the Com-
munications interface will make it possible for an
application running in any interconnected SAA Sys-
tem to obtain access to data and applications in any
other SAA system, as illustrated in Figure 3. Further,
this Communications interface is the foundation for
the next advance in improved interconnection across
the enterprise; the ability to obtain access to a pro-
gram or a programming service in another computer
without knowing where it resides.

Access to remote relational data and flat files

Access to certain kinds of data without knowing the
computer in which they reside is supported through
the cpi. Relational data are available through the
database interface’s Structured Query Language
(sqQL). Files that are of sequential, keyed, or direct
organization are available through the high-level lan-
guage file input and output language statements.
These CPI implementations are further addressed by
Reinsch* and Demers® in this issue.

304 wovrorD

Providing an enterprise-wide application
development environment

Beyond the languages and services that constitute
the cpi1, application developers need an integrated
environment for designing, modeling, developing,
integrating, testing, and maintaining their applica-
tions systems throughout their life cycle. This envi-
ronment must provide consistent access to the ap-
plication developer; it must offer a development
process that allows easy monitoring; and finally, the
environment must offer a full set of application
development tools.

0S/400 and OS/2 are trademarks of International Business Ma-
chines Corporation.

Cited references

1. R. E. Berry, “Common User Access—A consistent and usable
human-computer interface for the SAA environments,” IBM
Systems Journal 27, No. 3, 281-300 (1988, this issue).

2. S. Uhlir, “Enabling the user interface,” IBM Systems Journal
27, No. 3, 306-314 (1988, this issue).

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




3. W. K. Haynes, M. E. Dewell, and P. J. Herman, “The Cross
System Product application generator: An evolution,” IBM
Systems Journal 27, No. 3, 384-390 (1988, this issue).

4. R. Reinsch, “Distributed database for SAA,” IBM Systems
Journal 27, No. 3, 362-369 (1988, this issue).

5. R. A. Demers, “Distributed files for SAA,” IBM Systems Jour-
nal 27, No. 3, 348-361 (1988, this issue).

Dean E. Wolford /BM General Products Division, 555 Bailey
Avenue, San Jose, California 95141. Mr. Wolford is currently a
senior programmer at GPD’s Santa Teresa Laboratory. He joined
the System Development Division’s Programming Laboratory in
1969, and held positions from 1969 to 1975 as an information
developer, planning and writing user documentation for such
programming products as COBOL, PL/I, VSAM, and other data
management components of System/360 and System/370 oper-
ating systems. From 1975 to 1980, Mr. Wolford managed infor-
mation development for IMS/VS, and, from 1980 to 1984, infor-
mation development for DB2, QMF, DXT, and Data Dictionary.
His most recent management assignment was again in information
development, providing guidance to customers implementing the
GPD storage strategy. Mr. Wolford is currently assigned to the
STL technical staff with responsibility for SAA introductions.

Reprint Order No. G321-5326.

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

woLForo 305




