
Common Communications
Support in Systems
Application Architecture

by V. Ahuja

Application execution in a Systems Application Archi-
tecture (SAA) network depends on the underlying ca-
pability of the network to obtain reliable connectivity
and orderly data exchange among its system compo-
nents. The objectives of SAA are distributed applica-
tions, distributed processing, and distributed data,
which are achieved through interconnected SAA sys-
tems supporting appropriate interfaces and architec-
tures. The Common Communications Support of SAA
affords this capability by utilizing a number of Systems
Network Architecture communication architectures
and international standards. These architectures pro-
vide useful data interchange within SAA components
by providing services ranging from managing data
links to specifying ddta streams for user applications.
This paper discusses’ the role of Common Communica-
tions Support and the means for SAA users to access
this support, and provides an overview of the functions
and roles of various component architectures of Com-
mon Communications Support, along with their interre-
lationships.

0 n March 17,1987, IBM embarked on an historic
course to address consistency across its selected

set of major computing environments. Systems Ap-
plication Architecture (SAA) is a collection of selected
software interfaces, conventions, and protocols that
collectively, over time, will provide the framework
for development and execution of consistent appli-
cations. These enhancements will pertain to consis-
tency for the end-user interfaces and application-
program interfaces across the future offerings of three
major IBM systems: System/370, AS/~OO”, and Per-
sonal System/2@. SAA has also identified a set of
common communication interfaces for intercon-
necting the three SAA computing environments. The
end-user interface, application-program interface,
and SAA applications are treated in other

documents’s2 and companion papers in this i~sue .~”
This paper addresses the Common Communications
Support in SAA.

Systems Application Architecture. The primary ob-
jective of SAA is to present a consistent and cooper-
ative system image across the identified computing
environments. A consistent system image, in turn,
implies ease in “porting” applications across such
systems. As a secondary objective, cooperative op-
eration of SAA systems implies that both the SAA
applications and the data can be distributed among
the SAA systems and effectively accessed by end users.
Furthermore, these objectives should be achieved,
over time, irrespective of whether SAA systems are
located in a single enterprise within a country or
within multiple enterprises participating in a global
network.

Figure 1 depicts the components of an SAA system
from a user perspective. One or more operating
systems exist for each of the three SAA computing
environments. These operating systems would, in
turn, support a set of identified programming lan-
guages and language interfaces. The Common Com-
munications Support (ccs) specifies protocols for
interconnection and data interchange among SAA
systems. The Common Programming Interface in-
cludes elements that provide access to the underlying
ccs protocols. An end user can also access these
protocols through a well-defined end-user interface

a Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

264 AHUJA IBM SYSTEMS JOURNAL. VOL 27, NO 3, 1988

Figure 1 Structure of Systems Application Architecture

1 PROGRAMMER

L
END USER

I

-
TO OTHER
SAA SYSTEMS

J

called the SAA Common User Access. This interface
provides consistency for end-user interactions with
a display terminal.

The role of ccs in SAA is depicted in Figure 2. The
figure shows that neither the end user nor an appli-
cation program directly accesses the ccs protocols.
Access to ccs protocols is provided through the
Common Programming Interface (CPI) or the Com-
mon User Access (CUA).

The primary responsibility of ccs is to provide inter-
connection of SAA systems, as shown in Figure 2.
Such interconnection is not simply the physical
transmission link connection between SAA systems.
ccs also specifies protocols to permit useful data
interchange between SAA applications and end users.
Thus, in effect, ccs specifies a set of communication
protocols that collectively provide such services.
Some other related objectives for ccs are to provide
services to enhance user productivity, such as distrib-

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988 AHUJA 265

~ ~

Figure 2 SAA and its Common Communications Support

CUA= co"0N
USER
ACCESS

.. .

uted data, program-to-program communication, and
network management, and to permit access from
non-sAA systems to SAA environments. To support
this access, ccs includes international standards such
as CCITT (International Telegraph and Telephone
Consultative Committee) Recommendation x.25,
and IEEE (Institute of Electrical and Electronics En-
gineers) Standards 802.2 for Logical Link Control
and 802.5 for Token Ring. In addition, ccs specifies
the formats and protocols of its elements, so that a
non-sAA system may generate a compatible stream
of data and operate with SAA systems.

SAA evolution and Common Communications Sup-
port. The evolution of SAA began with its announce-
ment in March 1987. At that time, IBM identified
SAA as the framework in which to develop consistent
SAA applications across the future offerings of Sys-
tem/370, ~s/400, and Personal System/2.

Figure 3 depicts the SAA evolution. The first goal of
SAA was to present consistent interfaces for SAA sys-
tems, including ease in porting SAA applications
across IBM'S major computing environments. At that
time, ccs specified a set of communication protocols

266 AHUJA BM SYSTEMS XXIRNAL. VOL 27, NO 3. 1988

as the basis for interconnecting SAA systems. The
second goal of SAA was to address distribution of
applications and data. Here parts of an SAA applica-
tion are distributed and executed cooperatively
among more than one SAA system. The third goal of
SAA is to present the capability of transparent user
access to distributed data. The ccs part of SAA spec-
ifies protocols that support transparent local/remote
data access.

In short, Common Communications Support pro-
vides interconnect and data interchange to SAA end
users and applications through SAA interfaces, while
also specifying the means by which non-sAA systems
may participate in SAA environments.

The next section introduces the means available to
SAA users for accessing ccs protocols. The succeeding
section provides details of ccs protocols, including
the supported international standards. That section
also addresses the approaches for interconnection of
non-SAA systems with SAA environments. The sec-
tion after that uses an example of a hypothetical SAA

Enterprise Information System to illustrate the var-
ious SAA elements and their role in the context of
ccs.

SAA interfaces and Common Communications
support

In this section, we present the means available to an
SAA user for accessing ccs functions.* An underlying
ccs goal is to avoid exposing an SAA application to
the details of ccs protocols and formats. Instead, an
SAA application has available a collection of high-
level language interfaces that, in turn, provide access
to ccs protocols.

Figure 4 presents an abstract layered structure of SAA
interfaces as they relate to ccs. An end user can be
an operator who may use an IBM Personal Computer
or Personal System/2 workstation to interact with
an SAA system. The means for interaction available
on such workstations are the keyboard and the as-
sociated display screen. A set of rules has been pub-
lished that defines the use of function keys, screen
management, and the like under SAA.* These rules

Figure 3 SAA evolution and role of Common Communications Support

BM SYSTEMS JOURNAL, VOL 27, NO 3. 1988 AJUA 267

Figure 4 SAA application access to CCS functions

permit a consistent end-user interface across the SAA
applications.

An SAA application is a program written in an SAA
high-level language, e.g., FORTRAN, C, COBOL, CSP, or
REXX, that may reside in one or more SAA systems.
A given SAA application may require access to certain
ccs protocols through the use of the Common Pro-
gramming Interface. This is shown in Figure 4 and
explained below.
Distributed applications: Program-to-program com-
munication. If an SAA application needs to access
another SAA application and exchange data, this
communication is accomplished through the use of
a collection of high-level language statements. These
statements are defined as the Communications In-
terface, which is part of the CPI of SAA.’ At program

execution time, these statements result in generating
appropriate ccs formats and protocols to accomplish
communication with another SAA application. ccs
supports this interface by utilizing the SNA Logical
Unit Type 6.2 protocol.” A simple exchange using
the Communications Interface of CPI could be to
start a conversation between two programs, send
data, and then terminate the conversation.

Distributed data: Files and databases. SAA applica-
tions may also require access to data that may reside
either in the local SAA system or in a remote SAA
system. Data may be stored, retrieved, and updated
in one of two ways: as sequential, direct, or keyed-
access files, also known simply as “files,” or as a
relational database. SAA has specified elements of the
CPI to support access of remote data.

IBM SYSTEMS JOURNAL, VOL 27, NO 3. 1988

For data stored as files, the CPI element comprises
the existing high-level language constructs for file
input and output. Distributed data access for files is
accomplished as follows. During program execution
time, each data access is received by the underlying
software supporting the file system. The file access
software determines the location of the file by using
side directory information that relates files to their
locations. If the data reside in a local system, the

CCS specifies a set of protocols
for interconnection
and communication

among SAA systems.

access request is handled simply by the local file
management system. If the data reside in another
system, the data access request is transformed to
appropriate ccs protocols and sent to the remote
system. The ccs protocols used to accomplish these
functions are IBM'S Distributed Data Management
(DDM) architecture and SNA Logical Unit Type 6.2,
as described later.

The CPI element for relational database is IBM'S Struc-
tured Query Language (SQL). This language provides
access to computer data with a well-organized (struc-
tured) set of requests and queries.","

SNA Logical Unit Type 6.2, as described in the next
section, is used for the session protocols.

Presentation Interface: Displays and printers. The
SAA Presentation Interface defines the interface for
programmers and users with a comprehensive set of
functions that allow information to be displayed or
printed in an effective manner. The major functions
provided are windowing, support to enable applica-
tions to conform to SAA Common User Access,
graphics, fonts, and double-byte character sets.13 An
SAA application uses the Presentation Interface for

presenting and receiving data from an application
user. ccs has specified two data streams, one each
for printers and for display terminals, as described
in the next section.

We have outlined the process by which SAA appli-
cations or end users may access ccs protocols. In
each case, the SAA application is presented with a
high-level interface, without being exposed to the
details of underlying ccs protocols. In the following
section, we address the specific ccs protocols for SAA,
including those that support the above elements of
the CPI.

Common Communications Support

Common Communications Support specifies a set
of protocols for interconnection and communication
among SAA systems. SAA applications access these
protocols through the CPI. As noted in the previous
section, the CPI presents a high-level programming
interface to the SAA applications, thereby shielding
the SAA application programmer from the details of
ccs protocols. In this section, we present an overview
of ccs protocols.

The makings of Common Communications Support.
An SAA system may connect to another SAA system,
as well as to devices such as displays and printers.
An SAA system may also require access from a non-
SAA system. Thus, ccs includes architectures ranging
from Data Link Control to application services and
data streams, as well as selected international stan-
dards.

ccs is constituted primarily of elements of SNA.
Selected international standards such as CCITT rec-
ommendations and IEEE standards have also been
included.

Elements of ccs have been classified in five broad
categories, namely data streams, application services,
session services, network, and data link controls.
These broad categories correspond roughly to group-
ings of SNA and Open Systems Interconnection (OSI)
layers, although no attempt is made to establish any
layer-to-layer correspondence. Figure 5 depicts the
ccs protocols and their potential relationship to the
CPI. In certain cases, such as document distribution
and network management, the SAA application may
be potentially integrated with the underlying ccs
architectures. Any requirement for a CPI element for
such services will be addressed as part of potential
SAA enhancements.

IBM SYSTEMS JOURNAL, VOL 27. NO 3. 198B

Figure 5 Common Communications Support

In the remaining part of this section, we first describe
the protocols for ccs and then discuss the intenvork-
ing of SAA and non-SAA systems. Detailed descrip-
tions of each of the identified ccs protocols can be
found in the referenced publications.
Common Communications Support for Presentation
Interface: Data streams. The Presentation Interface
element of CPI permits an SAA application to write,
in a consistent fashion, statements that result in
generating a data stream for a printer or a display
terminal. A data stream is a continuous ordered
stream of data elements conforming to a given for-
mat. ccs has identified the data streams for displays
and printers, namely the 3270 Data Stream and the
Intelligent Printer Data Stream.

The 3270 Data Stream, also referred to as the IBM
3270 Information Display Data Stream, is a format-

ted data stream used for transmitting data between
an application program and a terminal.'4 The data
stream controls the processing and formatting of data
by using commands, attention identifiers, and struc-
tured fields. An outbound data stream is sent from
an SAA application to a device, and an inbound data
stream is sent from the display terminal to the SAA
application. The commands control such things as
whether the SAA application writes to or reads from
the display terminal, and whether the screen is erased
before new data are written. The write control char-
acter, as shown in Figure 6 , is used to provide such
functions as sounding the alarm and enabling the
keyboard. An attention identifier describes the action
that caused the inbound data stream to be transmit-
ted. Structured fields are used to transmit images
and graphics and to convey additional control func-
tions and data to or from the terminal.

270 AWJA IBM SYSTEMS JOURNAL, VOC 27, NO 3, 1988

The Intelligent Printer Data Stream (IPDS) is the
host-to-printer data stream for all-points-addressable
(APA) ~rinting.’~ It provides commands to transmit
APA data, along with a set of interactive controls
used to communicate between a host printer driver
code and the microcode in the printer. The com-
mands and controls are defined in self-identifying
structured fields which are separate from any carry-
ing protocols. The APA capability of IPDS makes
possible the presentation of pages containing a mix-
ture of different data types: high-quality text, image,
vector graphics, and bar code. Interactive support in
IPDS allows for the dynamic management of re-
sources downloaded to a printer, control of device
functions such as duplexing, and media-bin selec-
tion. IPDS also provides for synchronization of the
host print process and the printer in order to recover
from errors.

Common Communications Support for distributed
office. In an office environment, an SAA application
is integrated with the underlying ccs architectures,
as shown in Figure 5 . Here the ccs support is pro-
vided through three architectures: Document Con-
tent Architecture, Document Interchange Architec-
ture, and the SNA Distribution Services architecture.
These architectures are briefly described below.

The Document Content Architecture (DCA) defines
the structure and meaning of the content of a docu-
ment that can be interchanged among office systems.
SAA specifies DCA for revisable-form-text data stream
(RFT-DCA) for document definition. A revisable-
form-text data stream consists of format units fol-
lowed by text units and an end unit, as shown in
Figure 7. The format units provide information that
may pertain to the entire document, and contain
parameters that specify information such as inter-
pretation of graphic characters in the document,
identifiers for the dictionary that can be used to assist
in spelling verification, punctuation formats, and
composition and formatting for lines and pages.
There may be one or more text units, with each text
unit representing a page. The end unit specifies the
end of a revisable-form-text data stream. RFT-DCA is
described in detail in Reference 16.

In an SAA office system, a given document is format-
ted using the RFT-DCA data stream and can be inter-
changed with other SAA office systems, using Docu-
ment Interchange Architecture (DIA), which in turn
uses SNA Distribution Services. DIA defines the func-
tions for interchanging documents between separate
office systems.” DIA provides a variety of services for

IBM SYSTEMS JOURNAL, VOL 27. NO 3, 1988

Figure 6 Common Communications Support for display
terminals and printers

I PRESENTATION
INTERFACE

OUTBOUND
3270
DATA STREAM

DiSPLAY
r-”

3270 DATA STREAM

OUTBOUND

s

IPDS

1 :EDER 1 COMMAND 1 WRITE I DATA
CONTROL
CHARACTER

INBOUND

Figure 7 Revisable-form-text data stream

272

accomplishing the interchange. For example, the
document library services of DIA allow documents
to be filed, searched, retrieved, or deleted from the
library. The document distribution service of DIA
provides the means to deliver a document to other
office systems. This distribution is accomplished by
utilizing SNA Distribution Services (SNA/DS), as ex-
plained below.

SNA/DS, the store-and-forward facility of SNA, uses
SNA Logical Unit Type 6.2 sessions to distribute data.
However, it does not require the prior establishment
of all end-to-end sessions. If a given destination node
does not have a session (or is not even powered on),
SNA/DS delivers the data to a point closest to the
destination node. This function is also referred to as
asynchronous delayed-delivery or connectionless
data distribution. Thus the sender, the receiver, and
the requisite communication resources need not be
active at the same time. SNA/DS allows inclusion of
multiple destinations in its header. Since the data
are staged as they progress through the network, SNA/
DS uses its distribution capability on the basis of the
network topology to deliver data to multiple desti-
nations. SNA/DS can be used for documents as well
as for messages and file~.'*9'~

Common Communications Support for network man-
agement. Network management is the process of
planning, organizing, and controlling a network. The

AHWA

ccs network management architecture is integrated
with the SAA network management system. As such,
SAA network management presents an end-user in-
terface to its users but does not use any element of
CPI. There is a requirement to provide a common
end-user interface for network management across

SAA network management architecture is part of SNA
Management Services, which provide services in the
following areas: Problem Management, Configura-
tion Management, and Performance and Accounting
Management. In short, Problem Management per-
tains to dealing with a problem from its detection
through its resolution. The steps of Problem Man-
agement are (1) determination, (2) diagnosis, (3)
bypass and recovery, (4) resolution, and (5) tracking
and control. Configuration Management consists of
the facilities and the process necessary to plan, de-
velop, operate, and maintain an inventory of infor-
mation system resources, attributes, and relation-
ships. Performance and Accounting Management is
the process of quantifying, measuring, reporting, and
controlling the usage, responsiveness, availability,
and cost of a
Common Communications Support for distributed
data. In the last section, we outlined the process and
interfaces used by SAA applications to access data
located within the local SAA system or in a remote
SAA system. ccs provides the services to accomplish

SAA Systems.

IBM SYSTEMS JWRNAL, VOL 27, NO 3, 1W

Figure 8 Distributed files

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988 AHUJA 273

I I

creation, access, update, and deletion of remote data
from a given SAA system. These services are provided
transparently to the SAA application. That is, while
SAA application programs access data as though the
data were local, distributed data services are invoked
to access data that reside in a remote location. We
address two kinds of distributed data here. First,
such record files as sequential, direct, or indexed-
sequential are classified as “flat file data,” or simply
“files.” The other kind of record files, relational or
hierarchical database, are simply referred to as “da-
tabase.” In either case, the underlying connection
support is provided through SNA Logical Unit Type
6.2.

Distributed file processing is accomplished by using
the Distributed Data Management (DDM) architec-
ture. For example, consider a file access by an SAA
application in SAA System A, as shown in Figure 8.
First, it is determined whether the file is located
locally in SAA System A or in some remote system.
Access to a local file is passed to and processed in
the local data management system. If the file is
located in a remote system, the request is forwarded
to the DDM Source process. The DDM Source creates
appropriate commands and forwards these com-
mands to the DDM Target process in the appropriate
SAA system. Let us assume that the file resides in SAA
System €3. Then the DDM Target routine in SAA

System B handles this request in conjunction with
its local data management system, Appropriate re-
sponses or file data are sent back from SAA System
B to SAA System A using the same path in the reverse
direction.

DDM architecture can be viewed as consisting of three
layers: the Data Manager, the Agent, and the Com-
munication Manager. The Data Manager provides
functions that pertain to both files and records in the

For distributed SAA applications,
each component of an application

uses the Communications Interface.

files. Files on remote systems can be created, deleted,
renamed, locked, or unlocked, and their attributes
can be retrieved. Sets of records can be loaded into
or unloaded from a remote file for a whole file
transfer. Individual records of remote files can be
read, written, modified, or deleted, either randomly
or consecutively, by record number or by key value.
For every application program, a DDM Agent is pro-
vided. A DDM Agent performs all of the necessary
conversions and parsing of DDM data. The DDM
Agent also enforces security and provides any
cleanup or recovery processing. The Communica-
tion Manager interfaces with the underlying Logical
Unit Type 6.2 protocols to accomplish data inter-
change between SAA systems.

ccs for distributed database provides protocols that
permit an SAA application to include the same Struc-
tured Query Language (SQL) statements to access or
process a database, whether the database is local or
remote. This is accomplished by utilizing SNA Logi-
cal Unit Type 6.2.

Common Communications Support for distributed
applications: LU 6.2. ccs for distributed SAA appli-
cations is provided through SNA Logical Unit Type
6.2 (LU 6.2), which defines the formats and protocols
for general-purpose program-to-program communi-
cation.

274 AHUJA

For distributed SAA applications, each component of
an application uses the Communications Interface
(cI), which is an element of the CPI .~ SAA applications
include CI statements that access subroutines in the
system. These subroutines, in turn, access the code
that provides LU 6.2 formats and protocols. Since LU
6.2 is the session-level support for SAA applications,
LU 6.2 is also used to support other distributed SAA
functions such as distributed data and network man-
agement.

Programs using LU 6.2 communicate via “conversa-
tions.” The LU 6.2 conversation functions are defined
in terms of programming-language-like statements
called “verbs.” The CI statements may be mapped
directly to these verbs. LU 6.2 includes a set of base
verbs as well as some optional capabilities for en-
hanced services. These verbs, along with relevant
parameters, provide functions such as starting and
ending conversations between remote programs,
sending and receiving data messages, synchronizing
processing between programs, and notifying a part-
ner program of any

The LU 6.2 protocols use underlying SNA Path Con-
trol and Data Link Control to receive and transmit
data among SAA systems.

Common Communications Support: Network. For
network-level support, ccs specifies SNA Low Entry
Network (LEN) or SNA Type 2.1 protocols. Type 2.1
protocols allow peer-to-peer connection of distrib-
uted processes, as well as providing the physical and
logical connectivity required to support LU 6.2 ses-
sions.

As shown in Figure 9, a Type 2.1 node consists of a
control point, multiple instances of logical units (LU
6.2), path control, and data link control (DLC). The
control point manages the resources of the Type 2.1
node. It creates the path control and DLC instances,
directs activation and deactivation of a link, and
assists LU 6.2 in session initiation and termination.
Path Control delivers message units between LUS in
the same or different nodes. Path Control also per-
forms segmentation and reassembly of message
units. The DLC used between two Type 2.1 nodes
may be IBM Token Ring, CCITT Recommendation
x.25, or Synchronous Data Link Control (SDLC), as
described below. Formats and protocols for Type 2.1
nodes are presented in detail in Reference 22.

Common Communications Support: Data link con-
trol. SAA systems may be interconnected using local
area networks, telecommunication links, or packet-

IBM SYSTEMS JOURNAL VOL 27, NO 3. 1988

Figure 9 Structure of LEN node

DATA LINK CONTROL

TFiANSMlSSlON MEDIUM

switched networks. For data link control, SAA speci-
fies three protocols, namely CCITT Recommendation
x.25, SDLC, and Token Ring. Any of these three
protocols may be used to interconnect SAA systems,
depending on the respective means of interconnec-
tion. Whereas SDLC and Token Ring primarily sup-
port SNA attachments, x.25 permits attachment of
SAA as well as non-sAA systems to access and partic-
ipate in SAA. The three data link controls are briefly
described next.

CCITT Recommendation x.25 has evolved over the
last decade, along with numerous public and private
packet-switched data networks. Within an SAA net-
work, an SNA node can communicate with another

SNA node using x.25 virtual circuits. In this case, x.25
virtual circuits are mapped to SNA data links. Since
more than one SNA session can map to an SNA link,
more than one SNA session may be mapped to a
given x.25 virtual circuit. Some SNA nodes, such as
clusters and terminals, attach to only one adjacent
SNA node using a single physical link. Such a single
link can be treated as a single virtual circuit.

SNA nodes that can connect to multiple adjacent
nodes over different physical links, or multidrop
links, can be connected using multiple virtual cir-
cuits. SNA nodes interconnected by virtual circuit
services remain logically adjacent, and the virtual
circuit protocols provide the mechanism to exchange

IBM SYSTEMS JOURNAL. VOL 27. NO 3, 1988 AHUJA 275

Figure 10 Lower layers of OS1 model and Token-Ring
protocols

data between these nodes. As such, X.25 virtual cir-
cuits provide functions similar to those of other data
transmission facilitie~.*~-~~ ccs has specified a set of
protocols and architectures, as shown in Figure 5,
for exchanging data above the x.25 packet level. CCITT
Recommendation X.25 may also be used to exchange
data between an SAA system and a non-SAA system,
as described later in this section.

SDLC defines formats and protocols for transferring
data across a transmission link. It prescribes a disci-
pline for managing synchronous, code-transparent,
serial-by-bit information transfer between nodes that
are joined by telecommunication links. SDLC is de-
scribed in detail in Reference 27.

The IBM Token-Ring protocols support the data link
control and the physical layer, as shown in Figure
10, and are described in detail in References 28 and
29. The IEEE 802.2 standard specifies Logical Link
Control (LLC). LLC defines formats and protocols for
exchanging frames between LLC layers attached to a
local area network. It has provisions such that only
error-free, nonduplicate, properly ordered frames are
delivered to the data link user. IEEE standard 802.5
specifies a ring using a token-passing scheme for
access. This part of the token-ring protocols pertains
to the local area network hardware and encompasses
the Physical Layer of the Reference Model for OSI.
Since this standard specifies the access to transmis-
sion media of token-ring local area networks, the
standard is called Media Access Controls for Token
Ring.

276 AHUJA

Participation of non-SAA systems with SAA net-
works. A non-SAA system can participate in an SAA
network in one of two ways. First, ccs has specified
a list of IBM publications that describe details of each
element of ccs. A given non-sAA system may gen-
erate the appropriate data stream based on these
architectures and may exchange data with SAA sys-
tems.

A non-SAA system may also utilize CCITT Recom-
mendation x.25 for access to SAA systems. Here we
outline an approach for such access. In this ap-
proach, each SNA session is mapped one-on-one to
an x.25 virtual circuit. As shown in Figure 1 1, an
SAA application is serviced by LU 6.2 protocols. At
the node attaching to the packet-switched data net-
work, an LU 6.2 session is mapped to an x.25 virtual
circuit. The attaching node also presents the appear-
ance of x.25 Data Terminal Equipment (DTE). If the
target DTE is an x.25 DTE, the x.25 virtual circuit
would exist between the SNA node adjacent to the
public packet-switched network and the x.25 DTE.
For some non-x.25 DTES, a Packet-Assembler Disas-
sembler (PAD) may be used to convert the non-x.25
protocols to x.25 protocols. (CCITT Recommenda-
tions x.3, x.28, and x.29 specify the PAD functions.)
In either case, the higher-level protocols that inter-
change data with the SAA application need to be
those specified in the above description of ccs.

An SAA Enterprise Information System and its
Common Communications Support

The preceding section described the role of individ-
ual ccs architectures in achieving the objective of
interconnection and data communication among
SAA systems. In this section, we use a hypothetical
example of an SAA Enterprise Information System
to illustrate the role of some of these architectures as
well as the role of other SAA components.

An SAA Enterprise Information System consists of
one or more SAA systems interconnected using ccs;
it supports CUA for end-user interfaces and CPI for
SAA applications. In the SAA Enterprise Information
System shown in Figure 12, an end user on a Per-
sonal System/2 (PS/~@) workstation is accessing an
SAA application. The interactions between the user
and the ps/2 display conform to CUA. In this example,
the SAA application, residing in the P S / ~ , requests
access from a file. If the requested file is located in
the (local) P S / ~ , the request is processed by the local
file management system. If the file is located in a
remote system, such as in the System/370 with the

IBM SYSTEMS JOURNAL, VOC 27, NO 3. 1988

Figure 11 Attachment of non-SAA DTEs to SAA system using CCITT Recommendation X.25
~~~~~~ ~ ~ 

\ 

HIGHER-LEVEL 
S M  PROTOCOLS 

I 

NETWORK 

NON-SAA 

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988 AHUJA 277 



SYSTEM/370 
VM 

0512 
WORKSTATION 

DDM 
LU 6.2 

278 AHUJA  IBM SYSTEMS JOURNAL,  VOL 27, NO 3, 1988 



Virtual Machine (VM) operating system, the request 
is handled by the local DDM Processor. The DDM 
protocols and the underlying LU 6.2 protocols are 
used to format and send a request to the remote 
System/370  for  execution. The results of the request 
are received  back in the P S / ~  and presented to the 
SAA application. Note that the SAA application is not 
exposed to the location of the file or to the details of 
DDM or LU 6.2 protocols in this case. 

The SAA application in the pS/2 workstation  may  also 
access another SAA application in another SAA sys- 
tem, for  example,  in the System/370  with the Mul- 
tiple Virtual  Storage (MVS) operating  system.  Here, 
the SAA application uses the Communications Inter- 
face  element of the CPI to communicate with the 
remote SAA application. The underlying  software 
support for the CPI converts these  requests to LU 6.2 
protocols,  which  in turn initiate, manage, and ter- 
minate this program-to-program communication. 
The two SAA applications may be independent ap- 
plications or two parts of a single distributed SAA 
application. 

Similar  scenarios  exist  for SAA applications using 
distributed relational data and the other SAA systems 
(for  example, AS/~OO), thus providing  users  with a 
great  deal of flexibility  in  building their SAA Enter- 
prise Information System. 

Summary 

Systems  Application  Architecture is IBM’S framework 
for  consistency  across its three major computer sys- 
tems. Common Communications Support addresses 
the interconnection and data communication func- 
tions among the SAA systems and the attachment of 
non-sAA systems. ccs consists of selected SNA archi- 
tectures and international standards. As SAA expands 
over time, the role of ccs will correspondingly  be 
extended. Additional requirements for ccs exten- 
sions  include file  services and support for  Open 
Systems Interconnection. 

Acknowledgments 

Several individuals have  helped  me  over the course 
of writing about this  diverse topic. I owe  special 
gratitude to  John Marsland,  George Deaton, Don 
Holtz, John Drake, Dave  Rose,  Rich  Demers, Robert 
Pascoe,  George  Zagelow,  Carol  Berinato, Jane 
Munn, Jim Frey,  Roger  Reinsch,  Jeff Stark, Hamid 
Khafagy,  Alan Ganek, Homer Leonard, Karla Nors- 
worthy, and Judy Haber. For editorial assistance, 

special thanks are due to the staff of the IBMSyStemS 
Journal. 
Personal System/2 and PSI2 are registered trademarks, and AS/ 
400 and OS/400 are trademarks, of International Business  Ma- 
chines Corporation. 

Cited  references  and  note 

I. Systems  Application Architecture-An Overview, GC26-4341- 
0, IBM Corporation (May  1987);  available through IBM 
branch offices. 

2. Systems  Application Architecture Common  User Access Panel 
Design and  User Interaction, SC26-435 1-0, IBM Corporation 
(December 1987);  available through IBM branch offices. 

3. R. E. Berry, “Common User Access-A consistent and usable 
human-computer interface,” IBM  Systems Journal 27, No. 
3,  281-300 (1988, this issue). 

4.  A. L. Scherr, “SAA distributed processing,” IBM  Systems 
Journal 27, No. 3, 370-383 (1988, this issue). 

5 .  L. A. Buchwald, R. W. Davison, and W. P.  Stevens, “Inte- 
grating applications with  SAA,” IBM  Systems Journal 27, No. 
3, 3 15-324 (1988, this issue). 

6. D. E. Wolford, “Application enabling in SAA,” IBM  Systems 
Journal 27, No. 3,  301-305 (1988, this issue). 

7. D. B. Rose and J. E. Munn, “SNA  network management 
directions,” IBM  Systems Journal 27, No. I ,  3-14 (1988). 

8. Since the focus of this paper is on Common Communications 
Support, only those elements of the Common Programming 
Interface are described that relate to CCS. A detailed treatment 
of the Common Programming Interface is  given  in  Reference 
6. 

9. Systems Application Architecture Common  Programming In- 
terface Communications Reference, 9226-4399, IBM Corpo- 
ration (May 1988);  available through IBM branch offices. 

10. Systems  Network Architecture Transaction Format  and Pro- 
tocol Reference Manual Architecture Logic  for LU Type 6.2, 
SC30-2369, IBM Corporation; available through IBM branch 
offices. 

1 1. Systems  Application Architecture Common  Programming In- 
terface Database Reference, SC26-4348, IBM corporation 
(September 1987);  available through IBM branch offices. 

12. R. Reinsch, “Distributed database for  SAA,” ZBM Systems 
Journal 27, No. 3,  362-369 (1988, this issue). 

13. Systems Application Architecture Common  Programming In- 
terface Presentation Reference, SC26-4359-0, IBM Corpora- 
tion (October 1987);  available through IBM branch offices. 

14. IBM 3270 Information Display  System  Data  Stream, GA23- 
0059-3, IBM Corporation (1986); available through IBM 
branch offices. 

15. Intelligent Printer Data  Stream, S544-3417, IBM Corporation 
(August  1987);  available through IBM branch offices. 

16. Document Content Architecture: Revisable-Form-Text Refer- 
ence, SC23-0758-1, IBM Corporation (1986);  available 
through IBM branch offices. 

17. Document Interchange Architecture: Technical Reference, 
SC23-0781, IBM Corporation; available through IBM branch 
offices. 

18. B. C. House1 and C. J. Scopinich, “SNA Distribution Serv- 
ices,” IBM  Systems Journal 22, No. 4,  319-343 (1983). 

19. Systems  Network Architecture Format and Protocol Reference 
Manual:  Distribution  Services, SC30-3098-2, IBM Corpora- 
tion (July 1985);  available through IBM branch offices. 

20. Systems  Network Architecture Format  and Protocol Reference 

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988 AHUJA 279 



Manual: Management Services, SC23-0757-1, IBM Corpora- 
tion (March 1986);  available through IBM branch offices. 

21. J. P. Gray, P. J. Hansen, P. Homan, M.  A. Lemer, and M. 
Pozefsky, “Advanced program-to-program communication in 
SNA,” IBM  Systems Journal 22, No. 4,298-318 (1983). 

22. Systems Network Architecture Format and Protocol Reference 
Manual Architecture Logic for  Type 2.1 Nodes, SC30-3422-0, 
IBM Corporation (December 1986);  available through IBM 
branch offices. 

23. The X.25 Interface for Attaching SNA Nodes to Packet- 
Switched Data Networks: General Information Manual, 
GA27-3345-2, IBM Corporation (March 1985);  available 
through IBM branch offices. 

24. The X.25 1984 Interface for Attaching SNA Nodes to Packet- 
SwitchedData Networks-Architecture Reference, SC30-3409, 
IBM Corporation; available through IBM branch offices. 

25. G. A. Deaton, Jr. and R. 0. Hippert, Jr., “X.25 and related 
recommendations in IBM products,” IBM  Systems Journal 

26. The X.25  1984 Interface for Attaching SNA Nodes to Packet- 
Switched Data Networks-General Information Manual, 
GA27-376 I ,  IBM Corporation; available through IBM branch 
offices. 

27. IBM Synchronous Data Link Control Concepts, GA21-3093, 
IBM Corporation; available through IBM branch offices. 

28.  N. C. Strole, “A local communications network  based on 
interconnected token-access  rings: A tutorial,” IEM Journal 
ofResearch and Development 21, No. 5,48 1-496 (September 
1983). 

29. IBM  Token  Ring Network Technology, GA27-3732-0, IBM 
Corporation (1986); available through IBM branch offices. 

22, NOS. 1/2, 11-29 (1983). 

Vijay Ahuja IBM Communication Products Division, P.O. Box 
12195, Research Triangle Park, North Carolina 27709. Dr. Ahuja 
is currently the manager  of Architecture and Performance in 
Advanced  Teleprocessing  Products. He received an M.S. in com- 
puter science from the University of North Carolina at Chapel 
Hill.  In  1976,  he  received a Ph.D.  in computer science, also from 
the University  of North Carolina. From September 1986 to April 
1988, he  worked on the SAA Common Communications Support. 
His current interests are in the areas of  network routing, congestion 
control, and deadlocks. Dr. Ahuja is the author of a textbook, 
Design and Analysis of Computer Communication Networks, pub- 
lished by McGraw-Hill, and several  papers on network design 
problems. 

Reprint Order No.  G321-5324. 

IBM SYSTEMS JOURNAL. VOL 27, NO 3. 1988 


