Introduction
to Systems Application
Architecture

Systems Application Architecture is a framework in
which applications are developed so that they run con-
sistently on major IBM computing systems. This paper
presents the motivation and requirements for this
framework and describes the main elements of its
structure, It also discusses the effect on current proc-
essing technologies and on application development.

In March 1987, 1BM introduced Systems Applica-
tion Architecture (SAA), a significant new direction
for 1BM software which provides the framework for
the development of consistent applications across
the major IBM computing environments—Sys-
tem/370, AS/400™, and Personal System/2®. This an-
nouncement is not about a specific product, but
rather a pervasive software architecture that under-
lies the commitment to provide, in an evolutionary
way, cross-systems consistency across a broad spec-
trum of hardware, architecture, and operating sys-
tems environments. It is a software-based approach
to present the breadth of 1BM’s product line to its
customers as a family of software systems—a family
that will provide enterprise-wide solutions to busi-
ness computing problems.

sAA is composed of three significant elements—
Common User Access, Common Communications
Support, and Common Programming Interface—
that govern software interfaces, protocols, and con-
ventions for human interaction with applications
and system services, communication mechanisms
that interconnect SAA systems, and programming
interfaces for program development. Many of the
specifications that describe these elements have al-

95() WHEELER AND GANEK

by E. F. Wheeler

A. G. Ganek

ready been published, and more will follow as sAA
evolves and expands over time. The specifications
are open and available to encourage customer and
software-vendor participation in the development of
applications that adhere to SAA. In addition, a fourth
key element of the SAA strategy is IBM’s own com-
mitment to provide Common Applications that will
execute across the SAA system environments. As
customer, software-vendor, and 1BM SAA applications
become available, the new dimension of consistency
among them will augment the end user’s access to
applications of all kinds.

SAA is a key strategic direction for 1BM, analogous to
the System/360 announcement in 1964 that intro-
duced a family of hardware systems. SAA defines a
family of software operating systems whose goal is
to meet the following customer needs:

» Increased programmer and end-user productivity

e Enhanced ease of use and support by providing
consistency among applications

* Improved communications capability and usabil-
ity for enterprise-wide solutions

¢ Increased return on customers’ information sys-
tems investment via greater leverage of program-
mer resources and user experience

© Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without aiteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




These needs are to be met by providing consistent,
durable interfaces in 1BM software products.

This paper is intended to illuminate the concept of
SAA, demonstrate the motivations for this direction,
and explain its overall structure. Subsequent papers
in this issue will enlarge upon selected aspects and
components of sAA and highlight the technical chal-
lenges, trade-offs, and solutions involved in the im-
plementation of this architecture.

Background

Perhaps the easiest way to understand how cross-
systems consistency and Systems Application Archi-

Use of application enablers
became widespread.

tecture will meet customer requirements and remove
constraints to their growth is to present an historical
perspective on the evolution of IBM software.

In the mid-1950s, the programs that existed were
primarily application programs, executing the func-
tions for which a computer was acquired. The hard-
ware manufacturer provided the hardware, and the
customer, with the aid of rudimentary operating
systems and assemblers, wrote the software. Since
the application programs ran on the hardware di-
rectly, they were tied to the instruction set or “archi-
tecture” of the hardware. By the late 1950s and early
1960s, hardware-oriented system software began to
emerge. This software, which was code that could be
shared by all customers, consisted primarily of input-
output routines. The routines operated card readers,
punches, printers, tape devices, and, toward the end
of this period, disk storage. In addition, high-level
languages, notably FORTRAN and COBOL, were intro-
duced and offered the potential to ease greatly the
task of programming, The net effect was to improve
the productivity of application developers. But, for
the most part, the applications of this period re-
mained directly related to the specific hardware sys-
tem on which they were running.

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

During the mid- to late 1960s, the function of oper-
ating system software increased as newer technology,
such as larger memory, became more available and
as the complexity of the hardware increased. These
developments spawned the widespread use of the
class of software we now call application enablers,
including the high-level languages and a variety of
other programming services. This software was a big
step forward, since applications developed in high-
level languages did not have to deal directly with the
details of the hardware. But most large applications
required additional, machine-specific support out-
side these languages and so were still directly de-
pendent on the underlying hardware. The advances
in application enablers, combined with the enhance-
ment of operating system software to provide so-
phisticated “batch processing” for automated job
scheduling, print spooling, and other aspects of
shared resource management, comprised the first
major stage in the evolution of operating system
technology.

By the 1970s, the use of display terminals to access
computing resources and data stored on line had
become common, and technology had also made
communication possible between systems. To sup-
port these changes, system software increased in
scope and provided interconnect facilities to tie sys-
tems together. This, in turn, gave customers the
opportunity to bring key aspects of their businesses
on line and interconnect processors throughout their
businesses. Database and data communication prod-
ucts were the leading technology advances of this
second stage of operating system evolution. Together
with interactive support for program development,
this stage made the capabilities of computer systems
directly available to terminal operators. Computer
resource sharing now had an on-line, interactive
interface that was extended to non-data-processing
professionals as well as to industry personnel.

Today, technology has progressed to the point where
the need for application-enabling software is recog-
nized and provision has been made for it. Such
enabling capability includes management of data in
relational form, application-generation products,
and display management, to name just a few. The
result is that application programs have become
largely insulated from the underlying software and
hardware. With the use of this application-enabling
technology, the effort expended in creating an appli-
cation is, by and large, directed at solving the prob-
lem, rather than fitting the solution to a particular
hardware architecture or operating system.

WHEELER AND GANEK 251




The structural changes just described occurred
throughout 1BM’s product line. In the mid-1970s,
each computer family and its operating system as a
pair, along with the associated set of application
enablers, were optimized to a particular purpose, in
terms of criteria such as performance, capacity, and
application environment (i.e., batch, interactive, or
transaction processing). Each was designed and built
to be the best-of-breed for its intended goals. Collec-
tively, they allowed 1BM to move forward to compete
across a broad range of markets by satisfying cus-
tomer requirements at each point in the range. This
strategy proved to be successful and was well-ac-
cepted in the marketplace.

By the early 1980s, the span of computing power
from the smallest to largest machine in the IBM
product line had grown drastically. To provide com-
petitive solutions across this increased range, several
new environments were added. Today, in all of the
major environments except the two smallest, per-
sonal systems and the System/36, the power of the
hardware and the structure of the software have
progressed to the point where application enablers
provide levels of function that are roughly equal and
that have, by and large, insulated the applications
from the hardware, although they remain tied to the
operating system on which they run.

In the case of the System/36, the structure of the
software has reached the same point of evolution as
the others, but the small size of the system has meant
that the depth of function has certain limitations. As
an example, a relational database management sys-
tem is not available. In the 1BM Personal Computer
Disk Operating System (PC DOS), neither the struc-
ture of the software nor the depth of function is
equivalent to what is found in the larger systems.
Applications on PC DOS are still largely tied to the
hardware, and some advanced application enablers
are either not available or limited in function.

During the latter part of this evolution, the emer-
gence of Systems Network Architecture (SNA) per-
mitted the interconnection of any combination of
these systems and communication with a variety of
third-party equipment. SNA also brought the capa-
bility to more easily manage extremely large net-
works of interconnected systems. The benefits of
interactive computing, coupled with the connectivity
of these networks, provide significant capability for
customers to bring together diverse aspects of their
businesses for access from a single terminal anywhere
within the enterprise.

252 WHEELER AND GANEK

In contrast, because the application enablers for each
system have evolved independently and have been
optimized for the system on which they run, appli-
cations that use the enablers have also become seg-
mented by operating system. This condition limits
the wutility and increases the complexity of intercon-
necting heterogeneous systems because of the dispar-
ity of the application environments across systems.
If the needs of an installation grow beyond the
capacity of a particular system, this segmentation
makes it difficult to migrate up the product line. The
same barrier applies to the migration of applications
that run on large systems when the need arises to
replicate them on smaller, departmental systems.
The result is that the 1BM product line appears as a
number of independent systems, each one offering
advantages within its domain.

As we look forward to the end of this decade, hard-
ware technology is expected to continue to improve
at its historical rate of 20 to 25 percent per year.
Clearly, it is 1BM’s goal to continue to position the
product line to exploit fully this enormous range of
computing capability. As a result of this growth, we
have arrived at a key point in the evolution of
systems software, one that affords the opportunity to
integrate key systems across the entire spectrum of
Processor power.

Technology has progressed to the point where we
can provide a full-function system, Operating Sys-
tem/2™ (0s/2™) Extended Edition, on the current
line of intelligent workstations. This development
will enable the graphics power of the intelligent
workstation to be combined on one system with the
full set of operating system functions such as data-
base and communication facilities. The System/36
and System/38 are replaced by a new, unified system,
the 0s/400™ operating system and As/400 hardware,
that has the capability to support from four worksta-
tions to more than four hundred, depending, of
course, on the workload and configuration. This
system combines the ease of use of the System/36
and the advanced software technology of the Sys-
tem/38, together with state-of-the-art hardware for
enhanced performance and capacity.

These developments are undeniably important for
the small and intermediate computing environ-
ments. But it is equally important that, for the first
time, there will be a full set of application enablers
on all of our systems. By using the application ena-
blers to mask the underlying hardware and operating
system, the product line can be presented to cus-

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




tomers in a single coherent way from the smallest
intelligent workstation to the largest System/370 ma-
chines as a single family. Application developers can
begin to develop common applications that run on

SAA defines a consistent set
of application enablers.

each system of the family, rather than being limited
to a particular operating system or hardware archi-
tecture, thereby minimizing the effort required to
build such applications and to migrate users from
one system to another,

To make this happen, saA defines a consistent set of
application enablers that span the systems and min-
imize the historical differences, making these appli-
cation enablers the unifying force for the future.

The establishment of consistent application enablers
across a family of operating systems goes well beyond
the goal of portability of applications from one en-
vironment to another. When this consistency is com-
bined with a rich set of communications capabilities
and protocols for the interchange of data and for
process synchronization, the family-of-operating-
systems concept extends to a global environment in
which interconnected systems concurrently partici-
pate in addressing the needs of the enterprise. The
result is called an Enterprise Information System,
which represents the third major stage of operating
system evolution. Such an environment is a distrib-
uted system, and the programming functions that
enable it are referred to as distributed services. The
implication of such a capability is that any system
in the family can interact with any other system by
using the range of distributed services. Distributed
applications are those written to exploit multiple
system configurations to satisfy a variety of require-
ments, including specialized processing needs and
those motivated by geography, security, capacity,
availability, and organizational considerations.
Within this context, the technological advances in
power and improvements in price/performance of
personal computers that enable a full-function op-

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

erating system environment on a personal computer
today also offer a full realization of the potential of
cooperative processing. In cooperative processing,
intelligent workstations are used in conjunction with
host systems in an integrated way to provide the end
user with the advantages of both personal and host-
based computing. Cooperative processing allows the
user to have a single, seamless view of the function
of an application, whereas, in fact, the implementa-
tion is split between the workstation and the host.
This implementation model is of key importance to
sAA and will be addressed in more depth later in this
article.

Requirements

To support a product line that spans an ever-increas-
ing capacity range, more than one hardware archi-
tecture and operating system will be required. Ex-
actly how many are required and what part of the
range each can span may change over time as tech-
nology changes. Built on each of these architectures
and operating systems will be a set of application
enablers matched to its system. When one considers
the 1BM product line, the broadest in the industry,
ranging from the 1BM PC to the 3090 (which repre-
sents a factor of about 1000 in performance), it is
evident that multiple hardware architectures and
operating systems are necessary. They are necessary
today to allow customers to exploit this wide range
of capacity, and they will continue to be needed to
exploit the expanded capacity of the future-——capac-
ity driven by technology improvements that, as in-
dicated earlier, continue at rates in excess of 20
percent per year. Hardware architectures and oper-
ating systems have natural limits, both upward and
downward, and when forced to operate beyond those
limits, do so either poorly or with difficulty.

In 1BM, the multiple hardware architectures and op-
erating systems are well-positioned to take advantage
of the progress of technology. We face a different
problem: how to present that technology in a con-
sistent way. Consistency across the product line can
be achieved by making the interfaces of the software
consistent across however many implementations
are required to span the range. This mechanism
works because software technology is now advanced
enough to have the interfaces for application ena-
bling independent of the hardware, even on the
smallest and largest systems.

The guidance necessary for defining an architecture
that meets the challenge of consistency across the

WHEELER AND GANEK 953




Figure1 General software structure

COMMUNICATIONS
ACCESS
MANAGEMENT

NETWORK AND
INTERCONNECTED
SYSTEMS
MANAGEMENT

954 WHEELER AND GANEK IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




product line can be obtained by identifying the key
requirements for productive use of heterogeneous
data processing systems. Numerous IBM studies, cus-
tomer advisory councils, and user group meetings,
as well as discussions with software vendors, have
repeatedly determined three leading requirements in
this area:

» Usability—the need for applications to be easier
and simpler to use and to learn

* Productivity—the need for a straightforward and
productive way to develop applications that op-
erate across a variety of operating systems and
thereby ensure a wider range of usefulness, ob-
viating the necessity of rewriting applications to
meet the demands of different environments

* Connectivity—the ability to connect systems and
peripheral equipment in an easy and consistent
way, supported with the tools necessary to manage
the interconnected environment simply and effi-
ciently

Structure

Systems Application Architecture provides consis-
tency across dissimilar operating systems. The cor-
nerstone of the definition of such an architecture is
a conceptual model that describes software structure
in a generic way and provides a coherent organiza-
tion of function. This model, shown in Figure 1,
consists of four layers, each of which represents a set
or category of related functions. This structure pro-
vides a foundation for understanding the strategic
elements of 1BM software and how they fit together.
The blue, or bottom, layer in the figure is the software
uniquely related to the hardware. This software is
geared to manage and exploit the capabilities of the
specific hardware and architecture for which it is
designed. Included in this layer are functions that
manage physical system resources such as memory,
disk storage, printers, and processor dispatching. The
yellow layer represents communications software,
which provides the connectivity to allow communi-
cation among systems and applications and the abil-
ity to manage the interconnection of systems. This
software entails communication protocols and net-
work management. The green layer represents the
products directly related to writing and executing
applications, also called the application-enabling
products. Included in this category are services such
as database, query and report writing, and transac-
tion management, along with languages such as FOR-
TRAN and COBOL. At the top, the red layer represents
application software such as office systems, manu-

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

facturing automation, health-care systems, and thou-
sands of others that deliver the solutions to problems
for which computers are used.

This software model, which began as an organiza-
tional tool for high-end systems, has been mapped
against each of IBM’s major operating systems: Mul-
tiple Virtual Storage (Mvs), Virtual Machine/System
Product (vMm/sP), 0s/400, and 0s/2 Extended Edition,
and found to be generally applicable. The host sys-
tem environments of Mvs, vM, and 087400 support all
of the key functions of the model, although in many
cases with different interfaces. 0s/2 supports most of
these functions; however, some either are not yet
supported at this time or are not applicable, such as
Job Entry or Data Center Systems Management.
Despite these omissions, the model still applies to
0s/2 Extended Edition, since the majority of func-
tions are present, and the components it does have
can be structured according to the blue-, green-, and
yellow-layer approach. The model not only simplifies
the classification of products within the various sys-
tems, but provides a basis for defining common
elements across these operating systems to yield a
common set of interfaces for application programs.
The idea of cross-systems consistency was developed
from this concept of a common framework giving
rise to common interfaces.

sAA uses the generic software structure model as a
basic building block to address the three key require-
ments for cross-systems consistency. It does this by
controlling three new specifications that relate to the
requirements for consistency on a one-to-one basis
and also by building directly on the system structure
model, as shown in Figure 2. As can be seen in the
figure, the SAA components surround the software
structure in such a way as to provide consistent user,
programming, and communications access to the
operating systems functions of each system—Mvs,
VM/SP, 08/400, and 0s/2 Extended Edition.

SAA Is controlled by the specifications of the follow-
ing three elements: Common User Access, Common
Communications Support, and Common Program-
ming Interface. They are discussed below.

Common User Access. The first component governs
the end-user interface and is called Common User
Access (cUA). This interface controls how the system,
including the applications, interacts with a person at
a workstation or terminal. It is this interface that
ensures that the way things look to the user and the
actions required of the person by the system are

WHEELER AND GANEK 255




Figure2 Consistent interfaces built on system structure model

PROGRAMMERS

MVS

—

END USERS

256 WHEELER AND GANEK IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




familiar no matter what tasks are performed. By
providing a well-designed end-user interface for ap-
plication programs, applications are made easier to
learn and easier to use. By making the end-user
interface consistent across applications and across
systems, skill acquired with one application or on
one system is usually transferable to other systems
and applications. cua provides the window through
which the user views and accesses applications. The
enhanced ease of use and the consistency it provides
will augment the number of applications readily
available to the user.

cua is defined for the interaction between humans
and computers. In dealing with how the machine
communicates with people, it addresses what the
computer presents to the workstation operator, in-
cluding screen layout, use of color and highlighting,
messages, and help information. Also important to
CUA is how the user communicates with the machine,
which involves the keyboard layout and usage, the
use of a mouse, scrolling, and selection mechanisms.
Cua is intended to provide a consistent and highly
usable framework for the dialog between the person
and the machine that will result in continuity among
different applications and across the four SAA sys-
tems. The guidelines and rules are developed to
enhance ease of use, and the continuity achieved by
pervasive application of these conventions will en-
hance ease of learning. Cua is designed to take full
advantage of the capabilities of the intelligent work-
station, which has the greatest capacity for a highly
interactive user interface. Dependent workstations
are also supported in the specification; however, the
limitations of this technology will restrict the use of
some of the dynamic features available on intelligent
workstations. CUA allows a framework of consistency
to exist between these different kinds of workstations,
while still encouraging full utilization of the potential
of the intelligent workstation.

Common User Access is discussed in greater depth
in the paper in this issue by Berry.'

Common Communications Support. The second sAA
element controls the interconnect protocols and is
called Common Communications Support (ccs).
This interface deals with how systems work together
to accomplish a job. For example, it controls how
systems communicate with one another to store,
retrieve, and move information through the com-
munications network. With consistent interconnect
implementations provided by ccs, customers can
build networks of systems with vastly differing ca-

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

pacities and readily share and exchange data among
them. These protocols will continue to evolve using
portions of SNA and international standards.

Included in ccs are the following facilities:

e Data streams—Data streams govern the way in
which data are handled and formatted when trans-
mitted over a communications link. They are
provided in saA for support of display devices,
document text, and printers.

¢ Application services—These services relate to
services that enhance the function of the network.
Examples include distribution services that enable
asynchronous distribution of data throughout the
network, protocols that define common office
functions such as document interchange, and net-
work management.

* Session services—These services reflect the SNA
Logical Unit (LU) Type 6.2 Advanced Program-
to-Program Communications protocol, which de-
fines a rich set of communications services along
with a consistent programming interface on each
of the SAA systems.

¢ Network—The network facility applies to Low
Entry Networking Nodes (Type 2.1 Nodes}), which
support peer-to-peer communication across nodes
in the network.

¢ Data link controls—These controls provide link
usage and management disciplines such as Syn-
chronous Data Link Control (SDLC) for teleproc-
essing links, Token-Ring for local area networks,
and x.25 for packet-switched networks.

The subject of Common Communications Support
is explored in detail in the paper by Ahuja in this
issue.?

Common Programming Interface. The third element
with which cross-systems consistency is concerned is
application enabling, addressed in saA by the Com-
mon Programming Interface (CPI). It specifies how a
programmer is to write and attach a new application
to 1BM’s family of sAA systems. The application writer
uses this interface to exploit the power of the system.
Having such an interface allows applications to be
independent of the underlying system and, therefore,
to run on any system of the 1BM saA family, maxi-
mizing the return on investment in application code.
It is also valuable because an application program-
mer can apply skill at using the CPI across the whole
IBM saA family—not just a single system—vastly
increasing productivity. This component of sAA de-
fines a set of application building blocks consisting

WHEELER AND GANEK 257




of languages and programming services for applica-
tion programmers. It already contains a rich set of
published interfaces that will expand over time to
include an even broader spectrum of interfaces for
application enabling.

The cpI language set provides consistent implemen-

tations of the most widely used languages that are
applicable across the saA system spectrum. The

Cooperative processing can now
be employed cost-effectively.

scope of the language set encompasses high-level
languages, procedures languages, application gener-
ators, and expert systems. The number of products
in this category is increasing as the SAA requirements
broaden. Included at this time are the cosoL, C,
FORTRAN, and RPG high-level programming lan-
guages; the REXX procedures language; and the Cross
System Product (Csp) application generator. Al-
though not supported at this time, expert systems
technology is planned for inclusion in SAA in the
future.

The services of the CP1 provide key enablers for the
development of portable and integrated applications.
Central to the saa direction is the relational database
accessed via the Structured Query Language (SQL)
standard database language. Complementary to the
relational database is the Query Interface that is
usable by end users and programs to access relational
data. The Dialog Interface provides a high-level,
programmable capability for defining and displaying
terminal screens that conform to the Common User
Access specification. Mechanisms are provided that
control the relationship between variables in the
program and fields and selections as portrayed on
the screen. Navigation among multiple panels is
supported. The Presentation Interface enables a
lower-level control of screens and printers for text
and graphic format display as well as multiple-win-
dow support; it is used in the implementation of the
Dialog Interface. The Common Programming Inter-

958 WHEELER AND GANEK

face for Communications (CI) provides a consistent,
high-level programming interface for the LU Type
6.2 protocol for program-to-program communica-
tion.

The role played by the Common Programming In-
terface in SAA is elaborated upon in the paper by
Wolford in this issue.?

Cooperative processing

As indicated earlier, the advance of technology has
now permitted the cooperative processing model to
be employed cost-effectively for a wide variety of
applications. Use of this model has many benefits
and is a key aspect of the saA direction. The use of
an intelligent workstation as an integral part of an
application makes it possible to provide the appli-
cation user with the most advanced and usable hu-
man-to-machine interaction available in informa-
tion systems technology. This capability includes
advanced screen-display techniques and windows,
keystroke-initiated processing interactions, and high-
performance use of graphics. By using these capabil-
ities in conjunction with host-system services, the
application can afford to offer the user access to
shared files, databases, transaction services, special-
ized computing functions, and peripheral equipment
such as printers and plotters. Because the user per-
spective of the workstation/host interaction is made
transparent, the image of a single application is
preserved, as depicted in Figure 3. Advanced com-
munication support, the Common Programming In-
terface for Communications, and multitasking in
0s/2 Extended Edition allow workstation users to
concurrently utilize local applications that are writ-
ten for the personal computer and cooperative ap-
plications that exploit host-system services in a con-
sistent way, with easy transitions from application
to application.

Distributed processing

As we have seen, cooperative processing makes it
possible to present an integrated and seamless view
of intelligent workstation and host-system capabili-
ties. Advanced Program-to-Program Communica-
tion (APPC) capabilities, as defined by the SNA LU 6.2
protocol and accessed via the c1, provide a consistent
way to interconnect all of the saA systems. This
interconnection allows application function to be
split across intelligent nodes in the network in a
general way, providing for the distribution of func-
tion across multiple host systems as well as intelligent
workstations. Consistent implementations of CI per-

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




Figure3 Cooperative processing

" APPLICATIONS

_ 0s/400

HOST SYSTEMS

PPL APPL. APPL ~APPL I

INTELLIGENT
WORKSTATION

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988 WHEELER AND GANEK 250




mit distributed application functions to be written
independently of the system on which they will
execute, allowing function to be distributed accord-
ing to the requirements of an enterprise and redis-
tributed as necessary when those requirements
change to accommodate growth, reorganization, and
consolidation.

Built on the APPC base and the additional capabilities
of the Distributed Data Management (DDM) archi-
tecture, generalized distribution of data throughout
a network of heterogeneous systems can be achieved.
Distributed data means that files and databases can
be dispersed throughout the network, yet are acces-
sible by any program as if located on the local system.
The remote location of the data is thus transparent
to the application program. The application program
invokes the same interface for sQL or high-level
language record 1/0 operation regardless of the loca-
tion of the data, and the appropriate communica-
tions processing is implicitly generated in the case of
remote data. The communications processing takes
advantage of the ccs data formats, session protocols,
network management, and data link control facili-
ties.

Distributed relational data and distributed files are
discussed in more depth in this issue in the papers
by Reinsch* and Demers.’

Application development

The value of applications that comply with SAA is
enhanced because those applications

* Are easier to learn and use as a result of the cua

¢ Execute in a broader range of processing environ-
ments as enabled by the Cp1

 Interconnect that range of systems as needed via
the ccs

e Utilize advanced technologies such as relational
data and cooperative and distributed processing

Attainment of these benefits depends on the creation
of applications that take advantage of these features.
A critical aspect of the strategy to support SAA is to
provide a set of tools that will greatly improve pro-
ductivity in the development process for such appli-
cations.

The program development process normally consists
of a sequence of stages, including requirements gath-
ering, analysis and design, code development, system
integration and test, and maintenance. This se-
quence reflects more than just the construction of

260 WHEELER AND GANEK

an application program; it is the entire life cycle from
conception and definition of the requirements to
production usage and ongoing maintenance. Major
improvements in productivity necessitate not only
enhancements to each phase of the process, but also
a more comprehensive approach to the problem as
a whole. This approach in saA will emphasize an
integrated family of tools which provide an applica-
tion development environment to share program-
ming objects throughout the life cycle. A key element
in such an approach is a common data repository
affording advanced features for storing and retrieving
such objects, for describing their attributes, and for
defining relationships among them. These capabili-
ties would allow information related to an applica-
tion to be created once and be shared throughout
the product life cycle.

The application development environment is an ex-
cellent candidate for utilizing cooperative processing
to achieve the best possible ease of use and to exploit
the value of local processing power in an intelligent
workstation wherever applicable. Host facilities
would be likewise used where appropriate, such as
for the data repository.

Common applications

The manifestation of the SAA concept is the set of
applications that exploit its principles to achieve its
objectives. The characteristics of these applications,
called Common Applications, are directly derived
from the principles of cross-systems consistency that
we have explored in this paper. Such applications
execute on all the SAA operating systems, providing
consistent function across a vast range of computing
power. They adhere to the CUA specification to in-
teract with people in a highly usable and consistent
way. Similarly, where applicable, they utilize the ccs
to effect interactions from system to system. They
are also based on the cp1, which enables consistent
function and implementation. Foremost design con-
siderations are integration and extensibility across
the breadth of the enterprise they serve. Cooperative
processing is emphasized wherever applicable to en-
hance the function, usability, and integration of the
application.

IBM is committed to deliver many such Common
Applications targeted to support specific industry
requirements as well as cross-industry needs. An
example of the latter is Office and Decision Support,
which is analyzed in a case study in this issue by
Dunfee et al.®

IBM SYSTEMS JOURNAL, VOL 27, NG 3, 1988




The objectives and value of Common Applications
are as suitable for iBM’s customers and independer}t
software vendors as they are for iBM. The emphasis

As SAA evolves, the support of the
Enterprise Information System will
continue to expand.

on an open, published set of interfaces, protocols,
and conventions is designed to encourage customer
and vendor participation.

Enterprise Information System

Cooperative processing, advanced communication
facilities, distributed data, and Common Applica-
tions permit an end user, through the window of the
intelligent workstation, to access all of the capabili-
ties available in the network to which that worksta-
tion is attached. Not only are diverse capabilities
accessible, but the complexity of the interconnec-
tions is not apparent. This environment, concep-
tually depicted in Figure 4, i3 the Enterprise Infor-
mation System, a central theme in saA. The objective
is to provide enterprise-wide solutions to business
problems by extending the scope of applications to
span multiple systems, from workstations to mid-
range systems to mainframes, that may be geograph-
ically dispersed. This objective allows an enterprise
to install and configure information processing sys-
tems according to the needs of the business, includ-
ing organizational, geographic, and historical factors,
while still achieving the integration so vital to pro-
ductivity and effectiveness.

As SAA evolves, the support of the Enterprise Infor-
mation System will continue to expand. The key to
the success of this direction is the cross-systems
consistency foundation:

e Consistent user interface as defined by cua to
allow consistent human interaction with infor-
mation processing facilities across the entire scope
of the enterprise, enhancing ease of use and knowl-
edge transfer

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

* Flexible connectivity of heterogeneous systems as
provided by ccs to allow the concurrent use of the
variety of computing capabilities in the enterprise
in an integrated and complementary way

» Consistent programming interfaces as provided by
the cp1 to allow application development to be
independent of the system selection, programs to
be portable from system to system, and program-
ming skill expanded to be applicable across the
systems in the enterprise

The Enterprise Information System support will be
further enhanced by the advances in distributed
processing that will facilitate transparency of location
for data and function across the enterprise. This
capability will help mask the complexity of the in-
terconnected environment and will permit applica-
tion programmers to focus more on the problem to
be solved. Continued emphasis on network and sys-
tem management tools as well as consistent security
mechanisms across the scope of the Enterprise In-
formation System will be required to minimize the
effort to support and control the diverse systems in
the enterprise.

Conclusion

In summary, Systems Application Architecture de-
fines 1BM’s solution to achieve cross-systems consis-
tency. It provides an architectural framework for a
family of operating systems that spans the three
orders of magnitude in the range of power of com-
puting hardware now offered in 1BM’s product line.
SAA achieves the framework via an extensive set of
published protocols, interfaces, and conventions that
give rise to Common Applications, which are port-
able across diverse environments; this set makes
possible the interconnection and integration of these
environments. SAA provides a consistent, state-of-
the-art user interface to achieve the best possible
usability.

SAA is evolving, continually encompassing a broader
scope over time in order to keep pace with the
advances of technology in both hardware and soft-
ware. Its goal, however, remains the same—to pro-
vide the base of usability, consistency, and connec-
tivity required to make use of programming re-
sources and user experience most effectively, thereby
increasing productivity and protecting software in-
vestment. SAA brings a comprehensive unification to
1BM’s family of systems, providing access to an enor-
mous spectrum of processing power via an architec-
ture that is available now and is the base for expan-
sion in the future.

WHEELER AND GANEK 261




Figure 4 Enterprise Information System

MID-RANGE

o INTERCONNECTED SYSTEMS
e DISTRIBUTED DATA

AND FUNCTION
¢ COMMON APPLICATIONS

WORKSTATIONS

262 wHEELER AND GANEK IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




Personal System/2 is a registered trademark, and AS/400, Oper-
ating System/2, OS/2, and OS/400 are trademarks, of Interna-
tional Business Machines Corporation.

Cited references

1. R. E. Berry, “Common User Access—A consistent and usable
human-computer interface for the SAA environments,” IBM
Systems Journal 27, No. 3, 281-300 (1988, this issue).

. V. Ahuja, “Common Communications Support in Systems
Application Architecture,” IBM Systems Journal 27, No. 3,
264-280 (1988, this issue).

. D. E. Wolford, “Application enabling in SAA,” IBM Systems
Journal 27, No. 3, 301-305 (1988, this issue).

. R. Reinsch, “Distributed database for SAA,” IBM Systems
Journal 27, No. 3, 362-369 (1988, this issue).

. R. A. Demers, “Distributed files for SAA,” IBM Systems
Journal 27, No. 3, 348-361 (1988, this issue).

. W. P. Dunfee, J. D. McGehe, R. C. Rauf, and K. O. Shipp,
“Designing SAA applications and user interfaces,” IBM Sys-
tems Journal 27, No. 3, 325-347 (1988, this issue).

Earl F. Wheeler /BM United States, 2000 Purchase Street, Pur-
chase, New York 10577. Mr. Wheeler is IBM Vice President and
General Manager, Programming Systems. He joined IBM as a
Jjunior engineer in 1957 in Endicott, New York. Throughout his
career, he has played a significant role in the development of IBM’s
products. During the late 1960s, he was responsible for the systems
management of intermediate processors such as the Model 40 and
Model 50 of the IBM System/360 and the emerging System/370
Model 155. During his assignment as Laboratory Director in
Kingston, New York, in the early 1970s, he directed the early
formulation of Systems Network Architecture. As Systems Devel-
opment Division Vice President of Industry Systems, and Vice
President, Communications Systems Division, in the mid-1970s,
Mr. Wheeler directed product management for all of IBM’s com-
munication products, including the 3270 displays, 370X multi-
plexors, and industry terminals. During this period, he was instru-
mental in managing the convergence of the IBM communications
product line to support SNA. As Assistant Group Executive,
Systems Development, Information Systems and Technology
Group, in the early 1980s, he was responsible for the product
strategy for all System/370 systems software. Mr. Wheeler came
to Corporate Headquarters as IBM Director of Programming in
1984 and was elected IBM Vice President, Programming, in 1985.
In his current position, he is responsible for directing the worldwide
development of IBM’s application-enabling software product of-
ferings and is the chief architect of Systems Application Architec-
ture.

Alan G. Ganek /BM Data Systems Division, P.O. Box 100,
Kingston, New York 12401. Mr. Ganek is manager of VM/XA
Advanced Systems. He received his M.S. in computer science from
Rutgers University in 1981. He joined IBM as an associate pro-
grammer in 1978 in Poughkeepsie, New York. His first assign-
ments involved the implementation of the MVS operating system
software support for the cross-memory and 370/XA architectures.
In 1981 he joined the MVS System Structure Technology depart-
ment, where he contributed to the definition of the Enterprise
System Architecture/370 leading to a first patent award. He later
became team leader for the MVS software support design for

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

ESA/370. In June 1983, Mr. Ganek was named development
manager of the MVS System Design Department, involving work
on a variety of advanced technology activities. In 1985, he was
appointed manager of MVS Design and Performance Analysis,
where he was responsible for the technical plan and content of the
MVS base control program future releases and, in 1986, was
promoted to program manager. Later that year, Mr. Ganek joined
the Information Systems and Storage Group staff as a technical
assistant. In 1987, he went to the Corporate Programming Staff,
where he contributed to a2 number of efforts concerning IBM’s
programming strategy and Systems Application Architecture. He
began his current assignment in June 1988 and is responsible for
VM/XA Advanced Systems direction, design, planning, and prod-
uct introduction support.

Reprint Order No. G321-5323.

WHEELER AND GANEK 263




