
Architectures
of Advanced Function
Printing

by R. K. deBry
B. G. Platte
C. L. Berinato
J. W. Marlin

Discussed is the use of the capabilities of all-points-
addressable laser (page) printers in applications in-
volving pages composed of text, image, and vector
data in a device-independent way. Also presented is
the ability to describe and print complex documents
composed of multiples of such pages. Provision is
made for the migration of current Iine-printer applica-
tions to print using these new page printers. Three
architectures are described that-along with an Ad-
vanced Function Printing (AFP) model-support these
capabilities. Each of these architectures is described
in the context of the current implementation of the
Advanced Function Printing software.

When we were considering the architecture for Ad-
vanced Function Printing (AFP), it was clear that a
well-defined and articulated set of interfaces was
required. Above all else, the architectures of AFP had
to provide a stable, durable base for customers to
build upon. Thus, one of the major objectives in
defining the architectures was to provide a structure
that was extensible and would, therefore, allow the
architectures to evolve over time to meet new and
existing customer requirements. At the same time,
these structures would have to be sufficiently flexible
to adapt to changing hardware technologies. We can
describe the functions initially required of the archi-
tecture in two broad categories.

A sound architectural base is fundamental to the
success of any major software development. A

set of well-designed, carefully specified interfaces is
important to the systems developer, who must make
the various components of the system communicate
with one another. However, if the definition of these
interfaces is important to the systems developer, it is
even more important to the user of the system, who
expects system interfaces to be functional, easy to
use, and durable. Historically, the interfaces that
have been defined for printing have been straightfor-
ward descriptions of line-oriented text data and have
been relatively uninteresting. Therefore, the coding
of output statements has been looked upon as some
of the necessary drudgery of application program
development. With the introduction of all-points-
addressable laser printers and their ability to print
high-quality typographic text, raster-image, and vec-
tor graphics, this is no longer true. Print interfaces
have quickly become a subject of great interest.

A very important function required to exploit the
capabilities of high-function, all-points-addressable
printers is a device-independent description of doc-
uments that contain mixtures of text, image, and
vector data on the same page. Text data may require
the use of multiple high-quality typographic fonts,
as described by Griffee and Casey' in this issue.
Provision must be made for laying out pages of the
document in any direction and with any orientation.
All of this function must be provided in such a way
that the printers can operate as efficiently as possible.
It is not enough to be able to simply describe pages

Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

234 deERY ET AL IEM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

composed of text, image, and vector data. Applica-
tions must have an interface through which they can
build and manage the printing of complex, multi-
page documents, such as invoices or insurance
forms, where some pages are duplexed, others have
multiple copies, and so on. These document-related
functions are an important element of a printing
interface. Where they make sense, these functions
must be provided on both fanfold and cut-sheet
printers.

These very important considerations led us to define
three distinct interfaces for AFP.

Line-printer data. The first interface is the basic line-
printer data stream, as defined for the IBM 1403
printer and its successors. This type of data stream
is composed of a set of fixed-length records in which
each record is one print line and the first character
in each record is an ANSI forms-control character or
a machine-control character. This particular inter-
face was chosen to be supported because of the
number of IBM customers who use this data stream
for large batch-printing applications. Tools have
been provided that allow an existing application that
generates a line-printer data stream to exploit the
functions of Advanced Function Printing through
externally defined declarations that are invoked at
print time. The line-printer data stream is discussed
briefly later in this paper and in the paper by deBry
and Platte2 in this issue.

Advanced Function Printing Data Stream (AFPDS).
AFPDS, the architected application interface for AFP,
provides a device-independent interface through
which applications may describe pages composed of
text, image, and graphics data3 IBM program prod-
ucts, such as Document Composition Facility (DCF),~
DisplayWrite/370 (DW/370),5 and Graphical Data
Display Manager (GDDM),~ generate AFPDS data
streams. In addition, there are a number of utility
programs, such as Page Printer Formatting Aid
(PPFA),' and Overlay Generation Language (OCL)'
that generate data in AFPDS format. Customer-writ-
ten applications that require the capabilities of Ad-
vanced Function Printing should also be written to
the AFPDS interface to keep device dependencies out
of the application program. The AFPDS data stream
is passed to the print-services component of the
system, Print Services Fa~ility,~ where the Intelligent
Printer Data Stream, the third architected interface
of AFP, is generated.

Intelligent Printer Data Stream (IPDS). IPDS is pro-
duced by Print Services Facility and is similar in

IBM SYSTEMS JOURNAL, VOL 27. NO 2, 1988

Figure 1 Structured-field definition for AFPDS and IPDS

LENGTH: LENGTH OF THE STRUCTURED FIELD
IDENTIFIER: TYPE OF STRUCTURED FIELD

structure and data content to AFPDS, but has been
bound to a specific printer. In IPDS, device-specific
resources such as fonts are bound into the data
stream, and device-specific error recovery and device
control are provided through an IPDS dialogue with
the printer. IPDS is independent of the attachment
mechanism of the printer. Today, printers exist that
support IPDS over System/370 channels, SDLC LU 6.2
sessions, SDLC LU 1 sessions, and BSC links. IPDS is a
Systems Application Architecture (SAA) protocol
produced not only by Print Services Facility (PSF)
but also by GDDM, System/36, System/38, and the
IBM PC LAN PrintManager."

The structure of AFP architecture

Both Advanced Function Printing Data Stream
(AFPDS) and Intelligent Printer Data Stream (IPDS)
are structured-field data streams. Structured fields
are self-identifying, self-contained data-stream ele-
ments of the form shown in Figure 1. The structured
field is composed of a length parameter, an ID, and
flag bits, optionally followed by the data content of
the field. The length parameter defines the length of
the structured field, including the length parameter
itself, and points to the next structured field in the
sequence. The ID parameter defines the content of

Figure 2 Sample composed page

' .

Dear John,

ur
techniques.

I

/ : I et together and discuss y ~ u ~

Jim D. Bolt

236 dewy ET AL. IBM SYSTEMS JOURNAL, VOL 27. NO 2, 1988

the structured field and indicates to the processor
how the rest of the structured field is to be inter-
preted.

Both AFPDS and IPDS are fully paginated, object-
oriented data streams. This concept, which is similar
to the Office Document Architecture/Office Docu-
ment Interchange Format (ODA/ODIF) standard," is
described in Reference 12. Consider the sample page
shown in Figure 2. Note that the page is composed
of elements of text, image, and graphics. These are
described in the data streams as discrete objects, each
having its own coordinate space onto which the
object's data are mapped. The architecture definition
of the object is independent of the data stream in
which it is carried. Each data stream, whether AFPDS
or IPDS, provides a description of the environment
and defines the coordinate space on the page into
which the objects themselves are placed.

Other common architectural concepts shared be-
tween AFPDS and IPDS are the definition of printer
resources (fonts, electronic forms), media controls
(paper source, duplex), and presentation controls
(rotation, positioning). These concepts are described
in more detail in the following sections.

Figure 3 shows the AFP print model, based upon the
architectures we have just discussed. This structure
also illustrates some of the benefits of the AFP archi-
tectures. By providing a simple line-printer interface
to AFP, existing customer applications can be imple-
mented. The model shown also provides a way for
these existing applications to exploit the capabilities
of AFP without requiring the application to be re-
written.

The model also clearly separates the application layer
from the printer layer. Thus, the application can be
a relatively device-independent one and can be freed
from the details of resource management, device
control, and error recovery. These functions are pro-
vided by the print-services component of the system,
which uses the more device-oriented IPDS data
stream to carry on a two-way dialogue with the
printer. Both AFPDS and IPDS provide for the mixing
of text, image, and vector data on the same page,
with similar data structures and data content. This
minimizes the processing required to move from the
AFPDS format to the IPDS format and ensures the
integrity of the data to be printed.

Both AFPDS and IPDS are fully paginated data
streams. As we discuss in later sections of this paper,

IBM SYSTEMS JOURNAL VOL 27. NO 2. 1988

Figure 3 AFP model

each page of a document is fully described and carries
with it sufficient environmental information to allow
for efficient error recovery during the printing proc-
ess. Fixed page boundaries and the block-structured
nature of the data streams also allow certain efficien-
cies to be introduced into the printing process.

Finally, because the architectures of both AFPDS and
IPDS are block-structured and obey strict scoping
rules, new data types can easily be introduced. Mi-
gration and coexistence problems are minimized

because unrecognized data types can be passed over
without destroying the integrity of the rest of the
data on a page, and unsupported objects can be
transformed where possible. Vector graphics and
more sophisticated image-compression techniques
are possible candidates for extensions to AFPDS.

Advanced Function Printing Data Stream

AFPDS is the defined application interface to AFP,
and, as mentioned earlier in this paper, AFPDS is a

Each page is a self-contained entity
with its own environment.

fully paginated, object-oriented data stream. These
data streams are not bound to a specific printer and
are independent of the operating system environ-
ment. AFPDS is currently processed in MVS, VM, VSE,
and System/36, and there is nothing in the architec-
ture to prohibit its implementation in other key IBM
operating systems. AFPDS structured fields are used
to define fully composed pages, to map line data to
page-printer format, and to describe mixed-line and
composed-page data. We now discuss each of these
applications.

Composed-page data streams. Figure 4 shows a typ-
ical page composed of text, image, and vector graph-
ics data. Along the side of the page are the AFPDS
structures used to describe the page. Each page is a
self-contained entity, and multiple pages may appear
between a begin-document structured field and an
end-document structured field. Throughout this ex-
ample, note the block structure of the data stream.
Each object-document, page, data object, etc.-is
defined by a BEGIN/END set of structured fields. The
architecture includes a well-defined set of scoping
rules for structured fields and for the nesting of
objects in the data stream. These rules are important,
because they provide for extensibility in the data
stream and make certain efficiencies possible in the
processing and error recovery of the data stream.

Begin document. The begindocument structured
field identifies the beginning of a document that is

238 WRY ET AL

to be processed by the system Print Services Facility
(PSF).

Begin page. The begin-page structured field defines
the beginning of a new page. Each page is a self-
contained entity with its own environment. This
page structure provides for more efficient error re-
covery and allows high-speed printers to pipeline
page processing.

Active environment group. The active environment
group defines the size of the page and identifies page
segments and coded fonts to be loaded into the
printing subsystem. Each of these functions is de-
scribed in its own structured field, which is included
within the active environment group. Later in this
paper we show that the values coded into the active
environment group are mapped into similar IPDS
structures to set up the physical printing environ-
ment on the printing device. The active environment
group has the following appearance:

BEGIN ACTIVE ENVIRONMENT GROUP
MAP CODED FONT-identifies coded fonts to be

used on the page

identifies page segments used
MAP PAGE SEGMENT-optional parameter that

PAGE DESCRIPTOR-Specifies the Size Of the page
COMPOSED TEXT CONTROL-constant information

for the Print Services Facility (PSF)

entation
COMPOSED TEXT DESCRIPTOR-text Origin and Ori-

END ACTIVE ENVIRONMENT GROUP

Composed-text block. The composed-text block con-
tains the actual data to be printed on the page, along
with optional formatting controls. These controls
specify functions such as the following:

Moving the print position in the in-line direction;
positioning may be in absolute terms or relative
to the current position
Moving the print position in the baseline direc-
tion; positioning may be in absolute terms or
relative to the current position
Selecting a font by referring to an identifier defined
in the active environment group
Drawing horizontal or vertical rules
Setting text orientation

The text data are identical to those carried in the
IPDS data stream. Thus, when the data stream is
bound to a particular device and the IPDS data stream

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988


~~~ 

Figure 4 Sample  page  with AFPDS 

To: John  Rogers 
Security  Systems,  Inc. 
205 Main S t r e e t  
P la ins ,  Iowa Apri l  11, 1988 

Dear  John, 
Sales  have improved so dramatical ly   s ince you 
have jo ined   the  team, I would l i k e   t o  know your 
techniaues.  

I 

A ->I Let's get  together  andldiscuss  your  promotion! 

Jim 7 I 
U 
PAGE 
SEGMENTS 
OR IMAGE 
BLOCKS 

1 

BEGIN  DOCUMENT  (BDT) 

BEGIN  PAGE  (BPG) 

ACTIVE  ENVIRONMENT 
GROUP  (AEG) 

TEXT  BLOCK 

IMAGE  BLOCK 

TEXT  BLOCK 

INCLUDE 
PAGE  SEGMENT 'X' WSl 

END  PAGE  (EPG) 

* 

END  DOCUMENT  (EDT) 

is generated, the text  block  does not have to be 
opened up  and transformed. The information re- 
quired for binding to a particular printer is  isolated 
in the active environment group. The text block  is 
made up of a  set of delimiters, along  with the text 
controls and the text data. Multiple text  blocks  may 
appear on the same page. Note that the term in-line 
refers to the direction in which characters are placed 
along the current line, and baseline refers to the 

direction in which  lines are placed on the page. A 
text  block appears as follows: 

BEGIN COMPOSED TEXT BLOCK 
COMPOSED TEXT DATA 

END COMPOSED TEXT BLOCK 

Image block. An  image  block  is similar to a com- 
posed-text  block in that  it is also made up of a  set of 

IBM SYSTEMS JOURNAL.  VOL 27, NO 2. 1988 deBRY ET AL. 239 



structured  fields that delimit the image  block,  pro- 
vide  descriptive information, and carry the actual 
image data. The set  of  image-structured  fields  de- 
scribed  here  provide  for  a unique form of compres- 

If data security  in  the  page  segment 
is  involved  (such  as  a  signature),  we 
send it in  the  data  stream  each  time 

it is to be used. 

~ _ _ _ _ _ _  ~ _ _ _ _ _  ~~ 

sion,  where an image cell may  be  defined and then 
replicated  across the page. Other more  sophisticated 
forms of image  compression  may  be instituted within 
the structure provided by the architecture. An  image 
block  comprises  the  following  structured  fields: 

BEGIN IMAGE BLOCK 
IMAGE OUTPUT CONTROL-image origin,  orienta- 

IMAGE INPUT DEscRmoR-image  size or image- 

IMAGE-CELL POSITION-required only  when  image 

tion, and scale  factor 

cell description 

cells are used 
IMAGE RASTER DATA 

END IMAGE BLOCK 

Page segment. A page  segment  defines constant data 
that can be printed on different  pages or in  different 
positions on the same  page. The constant data can 
include  text (in a  composed-text  block) or images  (in 
image  blocks) or both.  Page  segments  are  named  in 
the document and can  be  bound into the data stream 
in the print server, or named in the IPDS data stream 
and bound at the printing  device. The latter  tech- 
nique  is  especially  useful  where  a  given  page  segment, 
such as a  logo  (i.e.,  logotype) is used  over and over 
again during the  printing of a document. When the 
page  segment  is  prestored in the device, it does not 
have to be transmitted to the printer each time it is 
used. On the other hand, if data security in the page 
segment  is  involved  (such  as  a  signature,  for  exam- 
ple), we do not want it stored  in the printer, and we 
send it in  the data stream  each  time it is to be  used. 

240 deBRY ET AL 

A page segment  is  described  by the  following  struc- 
tured  fields: 

BEGIN PAGE SEGMENT 
COMPOSED TEXT BLOCK-OptiOnd 
IMAGE BLocKs-one or more;  optional 

END PAGE SEGMENT 

Page segments  are then referenced  in the data stream 
with an include-page-segment  structured  field. 

Graphics data. In  Figure 4, we show  a  sample  page 
composed of vector data. Such documents are  often 
created  using  graphics  facilities,  such  as GDDM, which 
provides an interface  known  as the Composed  Doc- 
ument Presentation Data Stream (CDPDS) in  which 
GDDM vector  graphics data can be  described.  For 
applications  using this interface, GDDM generates 
IPDS graphics  objects  for GDDM-driven printers, or it 
converts the graphics into AFPDS image  blocks  for 
PsF-driven printers.  For  example, ~w/370 uses this 
interface to print GDDM graphics on a PSF printer. 
Because the structures of AFPDS and CDPDS are  nearly 
identical,  the  graphics  block  defined  in CDPDS may 
easily  be supported by AFPDS at some  future point 
in  time. 

End page terminates the page. 

End document terminates the document. 

Line data. The AFP architecture  allows  an  applica- 
tion to print existing  line-data  streams on a page 
printer or invoke  transforms to enhance the line data 
before  printing.  Two AFPDS control  structures-Page 
Definitions (PAGEDEFS) and Form  Definitions  (FORM- 
DEFs)-provide this  function. 

Page dejinitions. PAGEDEF defines the page format 
used  by print services to format line data into pages. 
Page definitions  can  also  contain  names of fonts, 
page  size,  names  of  data-suppression  fields, and line 
positioning. 

These  controls  are  applied  externally to the  definition 
of the print data stream at the time the system print 
services are scheduled  for the print data set. A simple 
example of applying  a PAGEDEF is to print line data 
in a  two-up  format, that is, to print two  logical  pages 
(i.e.,  numbered pages)  side  by  side on a  sheet of 
standard computer paper.  This  requires  changing to 
a  smaller  font  size,  rotating the output, and reposi- 
tioning the pages on the media.  Page  definitions are 
composed of standard AFPDS structured fields.  Nor- 

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988 



mally, page definitions are invoked by  specifying the 
page definition  as an installation default parameter 
for line-printer datasets or as a parameter when 
scheduling the line printer dataset for printing. The 
application program  itself  need not be changed. 

A PAGEDEF comprises a set of data maps,  as follows: 

BEGIN PAGE MAP (PAGEDEF) 
BEGIN DATA MAP 
BEGIN ACTIVE ENVIRONMENT GROUP 
MAP CODED FONT 
MAP PAGE SEGMENT 
PAGE  DESCRIPTOR 
COMPOSED TEXT CONTROL 
COMPOSED TEXT DESCRIPTOR 

END ACTIVE ENVIRONMENT GROUP 
BEGIN DATA MAP TRANSMISSION  SUBCASE 

LINE DESCRIPTOR COUNT-number  of line descrip- 
tors 

LINE DEscRIPToR-map  of line data to page 

FIXED DATA SIZE-number  of bytes of  fixed data 
FIXED DATA TEXT-constant text data for page 

END DATA MAP 

END PAGE MAP 

Form definitions. A FORMDEF is required for  all AFP 
print jobs. A FORMDEF specifies the position of a page 
on a form and includes one  or more copy  groups. A 
copy group provides the following functions: 

Text suppressions, if any 
Overlays to be used 
Offset stacking 
Edge marking 
Forms flash 
Horizontal paper adjustment 
Paper-bin selection 
Duplexing 

Both form definitions and page definitions can be 
applied  externally to the print data set. A FORMDEF 
is composed  of a Document Environment Group 
and a set of medium maps. A Document Environ- 
ment Group is similar to  an Active Environment 

IBM SYSTEMS JOURNAL, VOL 27. NO 2, 1988 

Group and has the following structure: 

BEGIN DOCUMENT ENVIRONMENT GROUP 
MAP MEDIUM OVERLAY-identifies overlays 
MAP SUPPRESSION-identifies text  suppression 

PAGE PosmoN-page  offset from medium (phys- 
names 

ical  page) 

ment units to be  used 
MAP MEDIUM DESCRIPTOR-identifies measure- 

END DOCUMENT ENVIRONMENT GROUP 

A medium map is provided  for  each  set of  pages- 
called a copy  group-that  have similar attributes. A 
medium map is  composed of the following struc- 
tured fields: 

BEGIN MEDIUM MAP 
BEGIN FORM ENVIRONMENT GROUP 

FORM ENVIRONMENT GROUP DESCRIPTOR 
MAP MEDIUM OVERLAY 
PAGE POSITION 
MAP MEDIUM DESCRIPTOR 
MEDIUM COPY COUNT-number  of copies of 

each page 

bin  selection,  etc. 
MEDIUM MODIFICATION CONTROL-duplex, 

END FORM ENVIRONMENT GROUP 

END MEDIUM MAP 

Mixed line and page  data. By mixing structured 
fields with line data records, an application can 
perform the following  functions: 

Change page position, specify duplex printing, 
change paper source,  specify offset stacking, and 
specify number of  copies. 
Change the page  format-margins,  line  spacing, 
page  size, and the contents of the page. 
Use  text control codes in the file to change fonts 
within a line or page and control placement of 
text on the page. 
Include image data directly in the file. 
Include page segments on a page. 

Table 1 lists the structured fields that can be included 
directly  within a line-printer data stream. In a line 
data stream, the structured fields are identified by 
using the X ' 5A ' control character on the front of 
the record.  Line data records  must  be  prefixed  with 

deBRY ET AL. 241 



Table 1 AFPDS structured  field  that  can be mixed  with  line  data 

Abbrevtahm aml Name IdentifiW Record Length 
(hexadecimal) (bytes in 

hexadecimal 
-1 

Demflption 

I": Invoke  Medium  Map  D3ABCC  10 Selects the  copy-gtoup  definition 
IDM:  invoke  Data  Map  D3ABCA 10 Selects the  page  format 
CTX: Composed-Text  Data  D3EE9B  8-7FEF  Includes text on a page 
Image definition controls: 

BIM: Begin Image  Block D3A87B 10 
I K :  Image Output Control D3A773 20 
IDD:  Image  Input  Descriptor D3A67B 2 c  
IRD: Image Raster Data D3EE7B  8-7FEF 
IGpt Image Cell  Position D3AC7B 14 

EIM End  Image  Block D3A97B 10 
IPS: Include  Page  Segment D3AFSF 16 

Begins gtl image definition 
Positions  an  image on a page 
Spmifles the size of an  image 
Desmiba an  image raster pattern 
Specifre size, position,  and  repeating of 

Ends an image  definition 
Specises a page segment 

image Celts 

a  valid  carriage-control  character  when  line and page 
data are  being  mixed. 

Intelligent  Printer  Data  Stream 

IPDS is an IBM data stream  for  all-points-addressable 
printingI3 and has  been  defined as an SAA protocol. 
PSF accepts the AFPDS data stream and generates 
IPDS. IPDS is  bound to the printer in the sense that 
the IPDS data stream contains device-specific  re- 
sources,  such as fonts, and device-specific  controls 
and recovery  sequences.  This data stream  provides 
for  a  two-way  dialogue  between  the printer and print 
services  for  managing  resources,  querying  device 
characteristics, and handling  certain  recovery  situa- 
tions. The following  are  some of the characteristics 
that make IPDS unique among printer data streams. 

IPDS is  a  fully  paginated,  object-oriented data stream. 
Applications that create  each  type of source data (for 
example,  graphics,  image, and text)  may  be  inde- 
pendent  of one another. IPDS allows the output of 
these  independent  applications to be  merged at the 
printer.  Fixed  page  boundaries  provide  for  efficient 
error recovery and allow  for the design  of  high-speed 
printers that are  capable of pipelining the processing 
of  page data. Because IPDS is  independent of the 
carrying  protocol, the same data stream can be  car- 
ried to channel-attached  printers,  local  area  net- 
works, or any other type of networking  protocol that 
supports the transparent transmission  of data. 

IPDS transfers  all data and commands through self- 
identifjmg structured  fields,  many of  which are  sim- 

242 deBRY ET AL. 

ilar to those  defined in AFPDS. Additionally,  controls 
are  provided  for  the  dynamic  management of down- 
loaded and resident  resources,  such  as  overlays,  page 
segments, and fonts. 

Other  device-control  functions  provide  for  duplex- 
ing,  operator  panel  displays,  paper  sourcing, and 
finishing.  The  same  controls further provide the 
comprehensive  handling of exception  functions, so 
that users  can  control  levels  of document precision. 
The  range of document  precision  is  from output 
exactly as requested to output that is the best the 
printer  can  do. 

Finally, IPDS provides  a  complete  acknowledgment 
protocol at the data-stream  level.  This  protocol  helps 
synchronize  host and printer processes and exchange 
query-reply information, and it returns detailed  er- 
ror information. 

Consider  Figure 5 ,  which  shows the same  page  as in 
previous  examples, but with the IPDS data-stream 
constructs that are  used to print it. Note  the  similar- 
ities  between this data stream and the AFPDS example 
discussed  in the previous  section. 

Printer  initialization 

Before  any printing can take  place, the host  must 
specify certain  parameters and conditions  for the 
printer.  A  typical printer initialization  sequence 
might  be  composed of the following  commands, 
which  are  passed to the printer as structured fields: 

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988 



Figure 5 Sample  page with IPDS 

ONE OR 
MORE 
TEXT 
BLOCKS I 

> 

L 

To: John  Rogers 
Security  Systems,  Inc. 
205 Main S t r e e t  
P la ins ,  Iowa Apri l  11, 1988 

Dear  John, 
Sales  have improved so dramat ica l ly   s ince  you 
have  joined  the team, I would l i k e  t o  know your 
techniques. 

Le t ' s   ge t   t oge the r  and discuss  your  promotion! 
""""""_ 1 

Jim D. Bolt '1 I 

I LOAD  PAGE  DESCRIPTOR  (LPD) 

WRITE  TEXT 

WRITE  TEXT 

WRITE  TEXT 

WRITE  IMAGE  CONTROL 

WRITE  IMAGE 

WRITE  IMAGE 

I END 

11 END  PAGE 

1 

- 
PAGE 
SEGMENTS 
OR IMAGE 
BLOCKS 

Sense Type and Model. The host  sends this com- 
mand to the printer, which  senses the IPDS functions 
that are  implemented by the printer. 

Acknowledge. Recall that IPDS defines  a  two-way 
communications path  between  the  host and the 
printer. In this case,  the  acknowledge  structured  field 
provides the host  with the requested IPDS implemen- 
tation information. 

IBM SYSTEMS J W R N A L .  VOL 27, NO 2, 1988 

Set Home State. IPDS defines  a  state-machine  imple- 
mentation that must be  followed  by any IPDS printer. 
The  initializing commands described  here  require 
the printer to be in home state. 

Loadpage descriptor. This command sets print char- 
acteristics  for  the  logical  page,  including  page  size, 
initial  text  coordinate  positions,  text  direction,  text 
margin,  intercharacter adjustment, baseline  incre- 
ment, font ID, and text  color. 

deBRY ET AL. 243 



Load Page  Position. This command positions the 
upper  left-hand  corner of the logical  page  with  re- 
spect to the top-of-form  setting,  which  positions the 
logical  page on the physical  page. 

Load Copy Control, This command specifies the 
number of copies to be produced,  whether to print 
simplex or duplex, the overlays that are to be in- 
cluded on each  copy, and the suppressions that are 
to be activated  for  each  copy.  Suppression  allows 
data to be selectively omitted during  printing. 

Load Font Equivalence. This command maps  local 
font IDS from  within the text or graphics data to 
either  loaded  font IDS or global font IDS used  for 
resource  management. 

IPDS data  objects. Once the printer has  been  ini- 
tialized, it is  ready to receive the page  images to be 
printed. The sequence of structured  fields  required 
to print the example page  might be as follows: 

Begin Page. This structured field puts  the printer 
into page state. 

Write Text. This  structured  field  sends  text data to 
the printer. The text data are  identical to the data 
contained  within an AFPDS composed-text  block. 
When  the printer is  in  page  state, the text  following 
this command prints on the current page. 

Include  Page Statement. This command causes  a 
previously  stored  page  segment to be  merged  with 
the current page.  An identifier in the structured field 
names the page  segment to be  merged. 

Write Image  Control. This command causes  the 
printer to enter the image-block  state. 

Write Image. This command sends  a  raster  image to 
the printer. The image data that are transmitted as 
part of this  structured  field  are  identical to the image 
data contained  in an AFPDS image  block. 

End. This command ends  image  state. 

End Page. This command terminates page state and 
returns the printer to home  state. 

Concluding remarks 

The architectures of Advanced Function Printing 
(AFP) have  been  described, and the following  three 
architectures  have  been  defined: 

244 deBRY ET AL 

Line Printer Data Stream (LPDS) 
Advanced  Function  Printing Data Stream (AFPDS) 
Intelligent  Printer Data Stream (IPDS) 

Each  of  these  architectures  plays an important role 
in  Advanced  Function  Printing. The line-printer  in- 
terface  provides  a way  for  existing applications to 
print on an AFP printer and exploit the capabilities 
of the printer without  affecting  the  application  pro- 
gram.  The AFPDS data stream  is an application  inter- 
face to AFP that allows an application to be  device- 
independent, shielding  the  application  from  device- 
specific  functions  such  as  device  control and error 
recovery. IPDS provides  for an efficient,  two-way 
communication link  between printer and print ser- 
vices. It  is  bound to a  specific printer and provides 
detailed control over print resources,  device control, 
and error  recovery. 

The  commonality  between AFPDS and IPDS mini- 
mizes  the  processing  step  in  transforming AFPDS into 
IPDS, and ensures  the  integrity of the data to be 
printed. Page definitions and form  definitions  are 
control  structures that apply  across  all  three  environ- 
ments and provide  added  functions  beyond  those 
defined  in  the data streams. 

Cited  references 

1. A. W. Griffee and C. A. Casey, “An introduction to typo- 
graphic fonts and digital font resources,” IBMSystems Journal 
27, No. 2,  206-218  (1988, this issue). 

2. R. K. deBry and B. G.  Platte, “Advanced Function Printing: 
A tutorial,” IBMSystems Journal 27, No. 2,219-233 (1988, 
this issue). 

3. Print  Services Facility Data Stream Reference, SH35-0073, 
IBM Corporation; available through IBM branch offices. 

4. Document Composition Facility and  Document Library Fa- 
cility General  Information Manual, GH20-9 158,  IBM  Corpo- 
ration; available through IBM branch offices. 

5 .  Introducing DisplayWrite/370, GH12-5170, IBM Corpora- 
tion; available through IBM branch offices. 

6. Graphical Data Display Manager  General  Information Man- 
ual, GC33-0100, IBM Corporation; available through IBM 
branch offices. 

7. Page  Printer  Formatting Aid User’s Guide and  Reference, 
G544-3 18 1, IBM Corporation; available through IBM branch 
offices. 

8. Overlay Generation  Language Users Guide and  Reference, 
SH35-0079, IBM Corporation; available through IBM branch 
offices. 

9. Print  Services Facility User’s Programming Guide for  VM, 
S544-35 12, IBM Corporation; available through IBM branch 
offices. 

10. IBM  LAN  Print  Manager  Reference Guide: IBM PC Network, 
S544-3112, IBM Corporation; available through IBM branch 
offices. 

11. Information  Processing-Text  and Ofice Systems Document 
Architecture (ODA) and Interchange Format, ISO/DIS  86  13, 
International Organization for Standardization (1985). 

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988 



12. R. K. deBry and L. J. Hash, “Device Support of Multiple 
Information Types,” Proceedings of the IFIP TC 6 Interna- 
tional Symposium on Computer Message Systems, Washing- 
ton, D C ,  September 1985, pp. 195-200. 

13. Intelligent  Print Data Stream Reference, S544-3417, IBM 
Corporation; available through IBM branch offices. 

Roger K. deBry IBM Information  Products Division, 6300 Diag- 
onal Highway, Boulder, Colorado 80301. Dr.  deBry  received  his 
Ph.D degree from the University  of Utah in 1972 in electrical 
engineering. He subsequently took an assignment in Kingston, 
where  he  was  responsible for the IBM 3270 display data-stream 
architecture definition, and in 1979 received an Outstanding In- 
novation Award for his  work.  In 1985 he published the book 
Communication with Display Terminals, McGraw-Hill  Book 
Company, Inc., New York. Dr. deBry  worked for two years on  the 
Corporate Programming Staff in Purchase, New  York,  where  he 
focused on architecture and system  design  issues relating to device 
support. During this assignment, he became interested in software 
support for laser printers. As a result, at the completion of  his 
corporate staff assignment he  moved to Boulder as technical 
assistant to the programming center manager.  Dr.  deBry has been 
in this position for two years, and has been  responsible  for  devel- 
oping a printer software  strategy. He is  a member of  ACM and an 
active participant in IFIPS, where  he  is the US. representative to 
IFIPS, TC2, Programming. 

Brian G. Plane IBM Information  Products Division, 6300 Diag- 
onal Highway, Boulder, Colorado 80301. Mr. Platte joined IBM 
in 1970 as a programmer, and is currently a senior programmer 
in the Page Printer System  Design Department, where  he  is re- 
sponsible for page printer system  design. For the past nine years 
he has worked on APA printers and Advanced Function Printer 
software.  Mr.  Platte’s  responsibilities  have included IBM 3820 
software support, page printer software planning, system  design, 
and data-stream architecture. Prior to working on printers, he 
worked on the IBM 3850 Mass  Storage  System,  where  he was 
responsible  for the microcode.  Mr. Platte earned a B.S. degree  in 
mathematics at the Central Michigan University, Mount Pleasant, 
Michigan. He received an M.S. degree in computer science from 
the University of Colorado, Boulder, in 1975. Mr. Platte has 
received two patents, one of which  was for the IPDS architecture, 
which also earned him his  first Invention Achievement  Award, an 
IPD President’s  Award, and an Outstanding Technical Achieve- 
ment Award. 

Carol L. Berinato IBM Information  Products Division, 6300 Di- 
agonal Highway, Boulder, Colorado 80301. Ms. Berinato joined 
IBM in 1976 in Boulder as a programmer in product test, where 
she was part of the team testing the IBM 6670 printer. Today, she 
is a development programmer in the Boulder Programming Center 
and manages the architecture department, which has responsibility 
for the Intelligent Printer Data Stream (IPDS) architecture fur 
Advanced Function Printing and the corporate font architecture. 
Ms. Berinato graduated in 1973 with  a B.A. in philosophy and 
religion from Boston  University, and in 1976 received an M.S. in 
digital systems  design  from Arizona State University, Tempe. 

James W. Marlin IBM  Information  Products Division, 6300 Di- 
agonal Highway, Boulder, Colorado 80301. Mr. Marlin is an 
advisory  systems analyst in the IBM development laboratory in 
Boulder. He has held  several development and managerial posi- 
tions in areas related to IBM  systems architecture, including dis- 
play programming advanced technology, communication systems 
programming, industry systems development, and office systems 
interchange architecture. He is the recipient of an IBM Outstand- 
ing Innovation Award and  an  IPD Division  Award  for  his contri- 
butions to IBM data-stream strategy and development. Mr. Marlin 
was the lead architect for the development of the Intelligent Printer 
Data Stream architecture. He received  a B.S. in mathematics from 
the University of Washington, Seattle, in 196 1. 

Reprint Order No. G321-5322. 

IBM SYSTEMS JOURNAL, VOL 27. NO 2, 1988 


