Architectures
of Advanced Function
Printing

Discussed is the use of the capabilities of all-points-
addressable laser (page) printers in applications in-
volving pages composed of text, image, and vector
data in a device-independent way. Also presented is
the ability to describe and print complex documents
composed of multiples of such pages. Provision is
made for the migration of current line-printer applica-
tions to print using these new page printers. Three
architectures are described that—along with an Ad-
vanced Function Printing (AFP) model—support these
capabilities. Each of these architectures is described
in the context of the current implementation of the
Advanced Function Printing software.

A sound architectural base is fundamental to the
success of any major software development. A
set of well-designed, carefully specified interfaces is
important to the systems developer, who must make
the various components of the system communicate
with one another. However, if the definition of these
interfaces is important to the systems developer, it is
even more important to the user of the system, who
expects system interfaces to be functional, easy to
use, and durable. Historically, the interfaces that
have been defined for printing have been straightfor-
ward descriptions of line-oriented text data and have
been relatively uninteresting. Therefore, the coding
of output statements has been looked upon as some
of the necessary drudgery of application program
development. With the introduction of all-points-
addressable laser printers and their ability to print
high-quality typographic text, raster-image, and vec-
tor graphics, this is no longer true. Print interfaces
have quickly become a subject of great interest.

234 cesry ET AL

by R. K. deBry
G. Platte
L. Berinato
W.

R.
B.
C.
J. Marlin

When we were considering the architecture for Ad-
vanced Function Printing (AFP), it was clear that a
well-defined and articulated set of interfaces was
required. Above all else, the architectures of AFp had
to provide a stable, durable base for customers to
build upon. Thus, one of the major objectives in
defining the architectures was to provide a structure
that was extensible and would, therefore, allow the
architectures to evolve over time to meet new and
existing customer requirements. At the same time,
these structures would have to be sufficiently flexible
to adapt to changing hardware technologies. We can
describe the functions initially required of the archi-
tecture in two broad categories.

A very important function required to exploit the
capabilities of high-function, all-points-addressable
printers is a device-independent description of doc-
uments that contain mixtures of text, image, and
vector data on the same page. Text data may require
the use of multiple high-quality typographic fonts,
as described by Griffee and Casey' in this issue.
Provision must be made for laying out pages of the
document in any direction and with any orientation.
All of this function must be provided in such a way
that the printers can operate as efficiently as possible.
It is not enough to be able to simply describe pages

© Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL. 27, NO 2, 1988

composed of text, image, and vector data. Applica-
tions must have an interface through which they can
build and manage the printing of complex, multi-
page documents, such as invoices or insurance
forms, where some pages are duplexed, others have
multiple copies, and so on. These document-related
functions are an important element of a printing
interface. Where they make sense, these functions
must be provided on both fanfold and cut-sheet
printers.

These very important considerations led us to define
three distinct interfaces for AFP.

Line-printer data. The first interface is the basic line-
printer data stream, as defined for the iBM 1403
printer and its successors. This type of data stream
is composed of a set of fixed-length records in which
each record is one print line and the first character
in each record is an ANsI forms-control character or
a machine-control character. This particular inter-
face was chosen to be supported because of the
number of 1BM customers who use this data stream
for large batch-printing applications. Tools have
been provided that allow an existing application that
generates a line-printer data stream to exploit the
functions of Advanced Function Printing through
externally defined declarations that are invoked at
print time, The line-printer data stream is discussed
briefly later in this paper and in the paper by deBry
and Platte? in this issue.

Advanced Function Printing Data Stream (AFPDS).
AFPDS, the architected application interface for AFp,
provides a device-independent interface through
which applications may describe pages composed of
text, image, and graphics data.> IBM program prod-
ucts, such as Document Composition Facility (DCF),*
DisplayWrite/370 (bw/370),° and Graphical Data
Display Manager (GDDM),° generate AFPDS data
streams. In addition, there are a number of utility
programs, such as Page Printer Formatting Aid
(ppFA),” and Overlay Generation Language (0oGL)®
that generate data in AFPDS format. Customer-writ-
ten applications that require the capabilities of Ad-
vanced Function Printing should also be written to
the AFPDS interface to keep device dependencies out
of the application program. The AFPDS data stream
is passed to the print-services component of the
system, Print Services Facility,® where the Intelligent
Printer Data Stream, the third architected interface
of AFP, is generated.

Intelligent Printer Data Stream (IPDS). 1PDS is pro-
duced by Print Services Facility and is similar in

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Figure1 Structured-field definition for AFPDS and IPDS

STRUCTURED-FIELD RECORD

STRUCTURED-
FIELD
PARAMETERS

STRUCTURED-
FIELD

INTRODUCER

STRUCTURED-FIELD INTRODUCER

LENGTH OF THE STRUCTURED FIELD

LENGTH:
IDENTIFIER: TYPE OF STRUCTURED FIELD

structure and data content to AFPDS, but has been
bound to a specific printer. In 1PDs, device-specific
resources such as fonts are bound into the data
stream, and device-specific error recovery and device
control are provided through an 1PDS dialogue with
the printer. IPDS is independent of the attachment
mechanism of the printer. Today, printers exist that
support 1pDS over System/370 channels, SDLC LU 6.2
sessions, SDLC LU 1 sessions, and BSC links. IPDS is a
Systems Application Architecture (SAA) protocol
produced not only by Print Services Facility (PSF)
but also by GDDM, System/36, System/38, and the
IBM PC LAN PrintManager.'°

The structure of AFP architecture

Both Advanced Function Printing Data Stream
(arpDS) and Intelligent Printer Data Stream (IPDS)
are structured-field data streams. Structured fields
are self-identifying, self-contained data-stream ele-
ments of the form shown in Figure 1. The structured
field is composed of a length parameter, an 1D, and
flag bits, optionally followed by the data content of
the field. The length parameter defines the length of
the structured field, including the length parameter
itself, and points to the next structured field in the
sequence. The 1D parameter defines the content of

deBrY ET AL. 235

Figure2 Sample composed page

To: John Rogers
Security Systems, Inec.
205 Main Street
Plains, Iowa April 11, 1988

Dear John,
Sales have improved so dramatically since you

have joined the team, I would like to know your
techniques.

236 cemRv ET AL IBM SYSTEMS JOURNAL. VOL 27, NO 2, 1988

the structured field and indicates to the processor
how the rest of the structured field is to be inter-
preted.

Both AFPDS and 1pDS are fully paginated, object-
oriented data streams. This concept, which is similar
to the Office Document Architecture/Office Docu-
ment Interchange Format (0DA/ODIF) standard,'’ is
described in Reference 12. Consider the sample page
shown in Figure 2. Note that the page is composed
of elements of text, image, and graphics. These are
described in the data streams as discrete objects, each
having its own coordinate space onto which the
object’s data are mapped. The architecture definition
of the object is independent of the data stream in
which it is carried. Each data stream, whether AFPDS
or IPDS, provides a description of the environment
and defines the coordinate space on the page into
which the objects themselves are placed.

Other common architectural concepts shared be-
tween AFPDS and IPDS are the definition of printer
resources (fonts, electronic forms), media controls
(paper source, duplex), and presentation controls
(rotation, positioning). These concepts are described
in more detail in the following sections.

Figure 3 shows the AFP print model, based upon the
architectures we have just discussed. This structure
also illustrates some of the benefits of the AFp archi-
tectures. By providing a simple line-printer interface
to AFP, existing customer applications can be imple-
mented. The model shown also provides a way for
these existing applications to exploit the capabilities
of AFp without requiring the application to be re-
written.

The model also clearly separates the application layer
from the printer layer. Thus, the application can be
a relatively device-independent one and can be freed
from the details of resource management, device
control, and error recovery. These functions are pro-
vided by the print-services component of the system,
which uses the more device-oriented 1pDs data
stream to carry on a two-way dialogue with the
printer. Both AFPDS and 1PDSs provide for the mixing
of text, image, and vector data on the same page,
with similar data structures and data content. This
minimizes the processing required to move from the
AFPDS format to the 1PDS format and ensures the
integrity of the data to be printed.

Both ArpDs and 1PDS are fully paginated data
streams. As we discuss in later sections of this paper,

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Figure3 AFP model

APPLICATION

AFP PRINTER

each page of a document is fully described and carries
with it sufficient environmental information to allow
for efficient error recovery during the printing proc-
ess. Fixed page boundaries and the block-structured
nature of the data streams also allow certain efficien-
cies to be introduced into the printing process.

Finally, because the architectures of both AFpDS and
IPDS are block-structured and obey strict scoping
rules, new data types can easily be introduced. Mi-
gration and coexistence problems are minimized

deBRY ET AL. 237

because unrecognized data types can be passed over
without destroying the integrity of the rest of the
data on a page, and unsupported objects can be
transformed where possible. Vector graphics and
more sophisticated image-compression techniques
are possible candidates for extensions to AFPDS.

Advanced Function Printing Data Stream

AFPDS is the defined application interface to AFP,
and, as mentioned earlier in this paper, AFPDS is a

Each page is a self-contained entity
with its own environment.

fully paginated, object-oriented data stream. These
data streams are not bound to a specific printer and
are independent of the operating system environ-
ment. AFPDS is currently processed in MVS, VM, VSE,
and System/36, and there is nothing in the architec-
ture to prohibit its implementation in other key 1BM
operating systems, AFPDS structured fields are used
to define fully composed pages, to map line data to
page-printer format, and to describe mixed-line and
composed-page data. We now discuss each of these
applications.

Composed-page data streams. Figure 4 shows a typ-
ical page composed of text, image, and vector graph-
ics data. Along the side of the page are the AFPDS
structures used to describe the page. Each page is a
self-contained entity, and multiple pages may appear
between a begin-document structured field and an
end-document structured field. Throughout this ex-
ample, note the block structure of the data stream.
Each object—document, page, data object, etc.—is
defined by a BEGIN/END set of structured fields. The
architecture includes a well-defined set of scoping
rules for structured fields and for the nesting of
objects in the data stream. These rules are important,
because they provide for extensibility in the data
stream and make certain efficiencies possible in the
processing and error recovery of the data stream.

Begin document. The begin-document structured
field identifies the beginning of a document that is

238 cesry eT AL

to be processed by the system Print Services Facility
(PSF).

Begin page. The begin-page structured field defines
the beginning of a new page. Each page is a self-
contained entity with its own environment. This
page structure provides for more efficient error re-
covery and allows high-speed printers to pipeline
page processing.

Active environment group. The active environment
group defines the size of the page and identifies page
segments and coded fonts to be loaded into the
printing subsystem. Each of these functions is de-
scribed in its own structured field, which is included
within the active environment group. Later in this
paper we show that the values coded into the active
environment group are mapped into similar 1PDS
structures to set up the physical printing environ-
ment on the printing device. The active environment
group has the following appearance:

BEGIN ACTIVE ENVIRONMENT GROUP
MAP CODED FONT—identifies coded fonts to be
used on the page
MAP PAGE SEGMENT—optional parameter that
identifies page segments used
PAGE DESCRIPTOR—specifies the size of the page
COMPOSED TEXT CONTROL—constant information
for the Print Services Facility (PsF)
COMPOSED TEXT DESCRIPTOR—text origin and ori-
entation
END ACTIVE ENVIRONMENT GROUP

Composed-text block. The composed-text block con-
tains the actual data to be printed on the page, along
with optional formatting controls. These controls
specify functions such as the following:

« Moving the print position in the in-line direction;
positioning may be in absolute terms or relative
to the current position

« Moving the print position in the baseline direc-
tion; positioning may be in absolute terms or
relative to the current position

» Selecting a font by referring to an identifier defined
in the active environment group

« Drawing horizontal or vertical rules

« Setting text orientation

The text data are identical to those carried in the
1PDS data stream. Thus, when the data stream is
bound to a particular device and the IpDs data stream

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Figure4 Sample page with AFPDS

LETTERHEAD
CAN BE
AN QVERLAY

To: John Rogers
Security Systems, Inec.
20% Main Street
Plains, Iowa

Dear John,

techniques.

BLOCKS

AN

April 11, 1988

Sales have improved so dramatically since you
have Joined the team, I would like to know your

> discuss your promotion!

BEGIN DOCUMENT (BDT)
BEGIN PAGE (BPG)

ACTIVE ENVIRONMENT
GROUP (AEG)

TEXT BLOCK

IMAGE BLOCK

TEXT BLOCK

INCLUDE: | L
PAGE SEGMENT X' (PS) "
. Jim D. Bolt 0 END PAGE (EPG)
-
[]
-
E£ND DOCUMENT (EDT)
PAGE ‘
SEGMENTS
OR IMAGE
BLOCKS.

is generated, the text block does not have to be
opened up and transformed. The information re-
quired for binding to a particular printer is isolated
in the active environment group. The text block is
made up of a set of delimiters, along with the text
controls and the text data. Multiple text blocks may
appear on the same page. Note that the term in-line
refers to the direction in which characters are placed
along the current line, and baseline refers to the

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

direction in which lines are placed on the page. A
text block appears as follows:

BEGIN COMPOSED TEXT BLOCK
COMPOSED TEXT DATA
END COMPOSED TEXT BLOCK

Image block. An image block is similar to a com-
posed-text block in that it is also made up of a set of

deBRY €T AL 239

structured fields that delimit the image block, pro-
vide descriptive information, and carry the actual
image data. The set of image-structured fields de-
scribed here provide for a unique form of compres-

If data security in the page segment

is involved (such as a signature), we

send it in the data stream each time
it is to be used.

sion, where an image cell may be defined and then
replicated across the page. Other more sophisticated
forms of image compression may be instituted within
the structure provided by the architecture. An image
block comprises the following structured fields:

BEGIN IMAGE BLOCK
IMAGE OUTPUT CONTROL—image origin, orienta-
tion, and scale factor
IMAGE INPUT DESCRIPTOR—Iimage size or image-
cell description
IMAGE-CELL POSITION—required only when image
cells are used
IMAGE RASTER DATA
END IMAGE BLOCK

Page segment. A page segment defines constant data
that can be printed on different pages or in different
positions on the same page. The constant data can
include text (in a composed-text block) or images (in
image blocks) or both. Page segments are named in
the document and can be bound into the data stream
in the print server, or named in the 1PDs data stream
and bound at the printing device. The latter tech-
nique is especially useful where a given page segment,
such as a logo (i.e., logotype) is used over and over
again during the printing of a document. When the
page segment is prestored in the device, it does not
have to be transmitted to the printer each time it is
used. On the other hand, if data security in the page
segment is involved (such as a signature, for exam-
ple), we do not want it stored in the printer, and we
send it in the data stream each time it is to be used.

240 cesRY ET AL

A page segment is described by the following struc-
tured fields:

BEGIN PAGE SEGMENT
COMPOSED TEXT BLOCK—optional
IMAGE BLOCKS—oOne or more; optional

END PAGE SEGMENT

Page segments are then referenced in the data stream
with an include-page-segment structured field.

Graphics data. In Figure 4, we show a sample page
composed of vector data. Such documents are often
created using graphics facilities, such as GDDM, which
provides an interface known as the Composed Doc-
ument Presentation Data Stream (CDPDs) in which
GDDM vector graphics data can be described. For
applications using this interface, GDDM generates
1PDS graphics objects for GDDM-driven printers, or it
converts the graphics into AFPDs image blocks for
PSF-driven printers. For example, Dw/370 uses this
interface to print GDDM graphics on a PSF printer.
Because the structures of AFPDS and CDPDS are nearly
identical, the graphics block defined in cDPDS may
easily be supported by AFPDS at some future point
in time.

End page terminates the page.

End document terminates the document.

Line data. The AFp architecture allows an applica-
tion to print existing line-data streams on a page
printer or invoke transforms to enhance the line data
before printing. Two AFPDS control structures—Page
Definitions (PAGEDEFs) and Form Definitions (FORM-
DEFs)—provide this function.

Page definitions. PAGEDEF defines the page format
used by print services to format line data into pages.
Page definitions can also contain names of fonts,
page size, names of data-suppression fields, and line
positioning.

These controls are applied externally to the definition
of the print data stream at the time the system print
services are scheduled for the print data set. A simple
example of applying a PAGEDEF is to print line data
in a two-up format, that is, to print two logical pages
(i.e., numbered pages) side by side on a sheet of
standard computer paper. This requires changing to
a smaller font size, rotating the output, and reposi-
tioning the pages on the media. Page definitions are
composed of standard AFpDSs structured fields. Nor-

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

mally, page definitions are invoked by specifying the
page definition as an installation default parameter
for line-printer datasets or as a parameter when
scheduling the line printer dataset for printing. The
application program itself need not be changed.

A PAGEDEF comprises a set of data maps, as follows:

BEGIN PAGE MAP (PAGEDEF)
BEGIN DATA MAP
BEGIN ACTIVE ENVIRONMENT GROUP
MAP CODED FONT
MAP PAGE SEGMENT
PAGE DESCRIPTOR
COMPOSED TEXT CONTROL
COMPOSED TEXT DESCRIPTOR
END ACTIVE ENVIRONMENT GROUP
BEGIN DATA MAP TRANSMISSION SUBCASE
LINE DESCRIPTOR COUNT—number of line descrip-
tors
LINE DESCRIPTOR—map of line data to page

FIXED DATA SIZE—number of bytes of fixed data
FIXED DATA TEXT—constant text data for page
END DATA MAP

END PAGE MAP

Form definitions. A FORMDEF is required for all AFp
print jobs. A FORMDEF specifies the position of a page
on a form and includes one or more copy groups. A
copy group provides the following functions:

& Text suppressions, if any

» Overlays to be used

s Offset stacking

» Edge marking

» Forms flash

» Horizontal paper adjustment
~ Paper-bin selection

» Duplexing

Both form definitions and page definitions can be
applied externally to the print data set. A FORMDEF
is composed of a Document Environment Group
and a set of medium maps. A Document Environ-
ment Group is similar to an Active Environment

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Group and has the following structure:

BEGIN DOCUMENT ENVIRONMENT GROUP
MAP MEDIUM OVERLAY—identifies overlays
MAP SUPPRESSION—identifies text suppression
names
PAGE POSITION—page offset from medium (phys-
ical page)
MAP MEDIUM DESCRIPTOR—identifies measure-
ment units to be used
END DOCUMENT ENVIRONMENT GROUP

A medium map is provided for each set of pages—
called a copy group—that have similar attributes. A
medium map is composed of the following struc-
tured fields:

BEGIN MEDIUM MAP
BEGIN FORM ENVIRONMENT GROUP
FORM ENVIRONMENT GROUP DESCRIPTOR
MAP MEDIUM OVERLAY
PAGE POSITION
MAP MEDIUM DESCRIPTOR
MEDIUM COPY COUNT—number of copies of
each page
MEDIUM MODIFICATION CONTROL—duplex,
bin selection, etc.
END FORM ENVIRONMENT GROUP

END MEDIUM MAP

Mixed line and page data. By mixing structured
fields with line data records, an application can
perform the following functions:

~ Change page position, specify duplex printing,
change paper source, specify offset stacking, and
specify number of copies.

~ Change the page format—margins, line spacing,
page size, and the contents of the page.

~ Use text control codes in the file to change fonts
within a line or page and control placement of
text on the page.

» Include image data directly in the file.

» Include page segments on a page.

Table 1 lists the structured fields that can be included
directly within a line-printer data stream. In a line
data stream, the structured fields are identified by
using the X'5A"' control character on the front of
the record. Line data records must be prefixed with

geerY ET AL 249

Table 1 AFPDS structured field that can be mixed with line data

~ Abbreviation and Name * Identifier Record Length Description
B . - (hexadecimal) (bytes in .
o hexadecimal
‘) code))
IMMiY Invoke Mbdium Map " D3ABCC 10 Selects the wpymup definition
IDM: Invoke Data Map D3ABCA 10 Selects the page format
CTX: Composed-Text Data © D3EE9B 8-7FEF Includes text on a page
Image definition controls: ‘ o
BIM: Begin Image Block D3A87B 10 Begins an image definition
- IOC; Image Output Control - D3A77B 20 Positions an image on a page
‘IDD:-1mage Input Descriptor . .D3A67B 2C Specifies the size of an image
IRD: Image Raster Data .. D3EE7B - 8-7FEF - Describes an image raster pattern
ICP: Image Cell Position " D3ACTB 14 Specifies size, position, and repeating of
T e : image cells - ,
ElM;"End”l‘mage Block - . D3A97B 10 Ends an image definition
“IPS: Include Page Segment D3AF5F 16 Specifies a page segment

a valid carriage-control character when line and page
data are being mixed.

Intelligent Printer Data Stream

IPDS is an IBM data stream for all-points-addressable
printing'® and has been defined as an sAA protocol.
PSF accepts the AFPDS data stream and generates
1PDS. IPDS is bound to the printer in the sense that
the 1pDS data stream contains device-specific re-
sources, such as fonts, and device-specific controls
and recovery sequences. This data stream provides
for a two-way dialogue between the printer and print
services for managing resources, querying device
characteristics, and handling certain recovery situa-
tions. The following are some of the characteristics
that make 1PDS unique among printer data streams.

1pDS is a fully paginated, object-oriented data stream.
Applications that create each type of source data (for
example, graphics, image, and text) may be inde-
pendent of one another. 1pDs allows the output of
these independent applications to be merged at the
printer. Fixed page boundaries provide for efficient
error recovery and allow for the design of high-speed
printers that are capable of pipelining the processing
of page data. Because IPDs is independent of the
carrying protocol, the same data stream can be car-
ried to channel-attached printers, local area net-
works, or any other type of networking protocol that
supports the transparent transmission of data.

1PDs transfers all data and commands through self-
identifying structured fields, many of which are sim-

242 cesry et AL

ilar to those defined in AFPDS. Additionally, controls
are provided for the dynamic management of down-
loaded and resident resources, such as overlays, page
segments, and fonts.

Other device-control functions provide for duplex-
ing, operator panel displays, paper sourcing, and
finishing. The same controls further provide the
comprehensive handling of exception functions, so
that users can control levels of document precision.
The range of document precision is from output
exactly as requested to output that is the best the
printer can do.

Finally, 1pDS provides a complete acknowledgment
protocol at the data-stream level. This protocol helps
synchronize host and printer processes and exchange
query-reply information, and it returns detailed er-
ror information.

Consider Figure 5, which shows the same page as in
previous examples, but with the 1pDs data-stream
constructs that are used to print it. Note the similar-
ities between this data stream and the AFPDS example
discussed in the previous section,

Printer initialization

Before any printing can take place, the host must
specify certain parameters and conditions for the
printer. A typical printer initialization sequence
might be composed of the following commands,
which are passed to the printer as structured fields:

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Figure5 Sample page with IPDS

PRINTER INITIALIZATION

: John Rogers
Security Systems, Inc.
205 Main Street
Plains, Iowa

Dear John,

techniques.

ONE OR
MORE
TEXT
BLOCKS

April 11, 1988

Sales have improved so dramatically since you
have joined the team, I would like to know your

LOAD FONT EQUIVALENCE (LFE)
LOAD PAGE DESCRIPTOR (LPD)

WRITE TEXT
WRITE TEXT
WRITE TEXT

=

WRITE IMAGE CONTROL
WRITE IMAGE
WRITE IMAGE

Jim D. Bolt N

discuss your promotion!

I N G iy S

END PAGE

PAGE
SEGMENTS
OR IMAGE
BLOCKS

Sense Type and Model. The host sends this com-
mand to the printer, which senses the 1PDs functions
that are implemented by the printer.

Acknowledge. Recall that 1PDs defines a two-way
communications path between the host and the
printer. In this case, the acknowledge structured field
provides the host with the requested 1PDS implemen-
tation information.

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Set Home State. 1pDs defines a state-machine imple-
mentation that must be followed by any 1PDS printer.
The initializing commands described here require
the printer to be in home state.

Load page descriptor. This command sets print char-
acteristics for the logical page, including page size,
initial text coordinate positions, text direction, text
margin, intercharacter adjustment, baseline incre-
ment, font 1D, and text color.

deBRY ET AL

Load Page Position. This command positions the
upper left-hand corner of the logical page with re-
spect to the top-of-form setting, which positions the
logical page on the physical page.

Load Copy Control. This command specifies the
number of copies to be produced, whether to print
simplex or duplex, the overlays that are to be in-
cluded on each copy, and the suppressions that are
to be activated for each copy. Suppression allows
data to be selectively omitted during printing,.

Load Font Equivalence. This command maps local
font IDs from within the text or graphics data to
either loaded font IDs or global font 1Ds used for
resource management.

IPDS data objects. Once the printer has been ini-
tialized, it is ready to receive the page images to be
printed. The sequence of structured fields required
to print the example page might be as follows:

Begin Page. This structured field puts the printer
into page state.

Write Text. This structured field sends text data to
the printer. The text data are identical to the data
contained within an AFPDS composed-text block.
When the printer is in page state, the text following
this command prints on the current page.

Include Page Statement. This command causes a
previously stored page segment to be merged with
the current page. An identifier in the structured field
names the page segment to be merged.

Write Image Control. This command causes the
printer to enter the image-block state.

Write Image. This command sends a raster image to
the printer. The image data that are transmitted as
part of this structured field are identical to the image
data contained in an AFPDS image block.

End. This command ends image state.

End Page. This command terminates page state and
returns the printer to home state.

Concluding remarks

The architectures of Advanced Function Printing
(AFP) have been described, and the following three
architectures have been defined:

244 cevry ET AL

¢ Line Printer Data Stream (LPDS)
¢ Advanced Function Printing Data Stream (AFPDS)
e Intelligent Printer Data Stream (1PDS)

Each of these architectures plays an important role
in Advanced Function Printing. The line-printer in-
terface provides a way for existing applications to
print on an AFP printer and exploit the capabilities
of the printer without affecting the application pro-
gram. The AFPDS data stream is an application inter-
face to AFP that allows an application to be device-
independent, shielding the application from device-
specific functions such as device control and error
recovery. IPDS provides for an efficient, two-way
communication link between printer and print ser-
vices. It is bound to a specific printer and provides
detailed control over print resources, device control,
and error recovery.

The commonality between AFPDS and IPDS mini-
mizes the processing step in transforming AFPDS into
1pDS, and ensures the integrity of the data to be
printed. Page definitions and form definitions are
control structures that apply across all three environ-
ments and provide added functions beyond those
defined in the data streams.

Cited references

1. A. W. Griffee and C. A. Casey, “An introduction to typo-
graphic fonts and digital font resources,” IBM Systems Journal
27, No. 2, 206-218 (1988, this issue).

2. R. K. deBry and B. G. Platte, “Advanced Function Printing:
A tutorial,” IBM Systems Journal 27, No. 2, 219-233 (1988,
this issue).

3. Print Services Facility Data Stream Reference, SH35-0073,
IBM Corporation; available through IBM branch offices.

4. Document Composition Facility and Document Library Fa-
cility General Information Manual, GH20-9158, IBM Corpo-
ration; available through IBM branch offices.

5. Introducing DisplayWrite/370, GH12-5170, IBM Corpora-
tion; available through IBM branch offices.

6. Graphical Data Display Manager General Information Man-
ual, GC33-0100, IBM Corporation; available through IBM
branch offices.

7. Page Printer Formatting Aid User’s Guide and Reference,
G544-3181, IBM Corporation; available through IBM branch
offices.

8. Overlay Generation Language User’s Guide and Reference,
SH35-0079, IBM Corporation; available through IBM branch
offices.

9. Print Services Facility User’s Programming Guide for VM,
$544-3512, IBM Corporation; available through IBM branch
offices.

10. IBM LAN Print Manager Reference Guide: IBM PC Network,
S$544-3112, IBM Corporation; available through IBM branch
offices.

11. Information Processing—Text and Office Systems Document
Architecture (ODA) and Interchange Format, 1ISO/DIS 8613,
International Organization for Standardization (1985).

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

12. R. K. deBry and L. J. Hash, “Device Support of Multiple
Information Types,” Proceedings of the IFIP TC 6 Interna-
tional Symposium on Computer Message Systems, Washing-
ton, DC, September 1985, pp. 195-200.

13. Intelligent Print Data Stream Reference, S544-3417, IBM
Corporation; available through IBM branch offices.

Roger K. deBry IBM Information Products Division, 6300 Diag-
onal Highway, Boulder, Colorado 80301. Dr. deBry received his
Ph.D degree from the University of Utah in 1972 in electrical
engineering. He subsequently took an assignment in Kingston,
where he was responsible for the IBM 3270 display data-stream
architecture definition, and in 1979 received an Outstanding In-
novation Award for his work. In 1985 he published the book
Communication with Display Terminals, McGraw-Hill Book
Company, Inc., New York. Dr. deBry worked for two years on the
Corporate Programming Staff in Purchase, New York, where he
focused on architecture and system design issues relating to device
support. During this assignment, he became interested in software
support for laser printers. As a result, at the completion of his
corporate staff assignment he moved to Boulder as technical
assistant to the programming center manager. Dr. deBry has been
in this position for two years, and has been responsible for devel-
oping a printer software strategy. He is a member of ACM and an
active participant in IFIPS, where he is the U.S. representative to
IFIPS, TC2, Programming.

Brian G. Platte IBM Information Products Division, 6300 Diag-
onal Highway, Boulder, Colorado 80301. Mr. Platte joined IBM
in 1970 as a programmer, and is currently a senior programmer
in the Page Printer System Design Department, where he is re-
sponsible for page printer system design. For the past nine years
he has worked on APA printers and Advanced Function Printer
software. Mr. Platte’s responsibilities have included IBM 3820
software support, page printer software planning, system design,
and data-stream architecture. Prior to working on printers, he
worked on the IBM 3850 Mass Storage System, where he was
responsible for the microcode. Mr. Platte earned a B.S. degree in
mathematics at the Central Michigan University, Mount Pleasant,
Michigan. He received an M.S. degree in computer science from
the University of Colorado, Boulder, in 1975. Mr. Platte has
received two patents, one of which was for the IPDS architecture,
which also earned him his first Invention Achievement Award, an
IPD President’s Award, and an Outstanding Technical Achieve-
ment Award.

Carol L. Berinato IBM Information Products Division, 6300 Di-
agonal Highway, Boulder, Colorado 80301. Ms. Berinato joined
IBM in 1976 in Boulder as a programmer in product test, where
she was part of the team testing the IBM 6670 printer. Today, she
is a development programmer in the Boulder Programming Center
and manages the architecture department, which has responsibility
for the Intelligent Printer Data Stream (IPDS) architecture for
Advanced Function Printing and the corporate font architecture.
Ms. Berinato graduated in 1973 with a B.A. in philosophy and
religion from Boston University, and in 1976 received an M.S. in
digital systems design from Arizona State University, Tempe.

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

James W. Marlin IBM Information Products Division, 6300 Di-
agonal Highway, Boulder, Colorado 80301. Mr. Marlin is an
advisory systems analyst in the IBM development laboratory in
Boulder. He has held several development and managerial posi-
tions in areas related to IBM systems architecture, including dis-
play programming advanced technology, communication systems
programming, industry systems development, and office systems
interchange architecture. He is the recipient of an IBM Outstand-
ing Innovation Award and an IPD Division Award for his contri-
butions to IBM data-stream strategy and development. Mr. Marlin
was the lead architect for the development of the Intelligent Printer
Data Stream architecture. He received a B.S. in mathematics from
the University of Washington, Seattle, in 1961.

Reprint Order No. G321-5322.

deBRY ET AL 245

