Understanding
device drivers
in Operating System/2

To meet its design goals for multitasking, Operating
System/2™ requires a device driver architecture for in-
terrupt-driven device management. A device driver in
0S/2™is affected by the new architecture both in its
structure and in its relationship to the system. An 0S/2
device driver contains components, such as the Strat-
egy Routine and Hardware Interrupt Handler, which have
well-defined responsibilities. The basic form of these
components is a FAR CALL/FAR RETURN model. The
operating system calls the device driver components
to handle certain types of events, such as an applica-
tion 1/O request or a device interrupt. In responding to
these events, an 0OS/2 device driver must cooperate
with the operating system to preserve system respon-
siveness by helping to manage the muititasking of con-
current activities. Since OS/2 uses both the real mode
and the protected mode of the system processor to
support DOS and OS/2 applications, respectively, the
components of an OS/2 device driver must execute in
both modes. In this manner, an OS/2 device driver can
be viewed as an installable extension of the Operating
System/2 kernel. Comparisons between IBM Personal
Computer DOS and Operating System/2 are drawn to
Hllustrate differences between device management and
device driver architecture.

device driver is used to manage devices in small-

system operating systems; it is a program that
manages the transfer of data to and from a particular
device. Operating systems use installable device driv-
ers to support a large number of devices.

Operating System/2™ defines a device-driver archi-
tecture within its framework of device management.
Device drivers are installed in 0s/2 through the con-
figuration file, CONFIG.SYS, which is processed during

170 mzew

by A. M. Mizell

system initialization. To understand how a device
driver relates to the system in Operating System/2,
it is first necessary to understand the context of the
08/2 device management.

0S/2 device management

Several design points in 0s/2 determine system struc-
ture; these include supporting the 80286 protected-
mode environment, maintaining the 80286 real
mode for Dos applications, and providing multitask-
ing.

The 0s/2 support of applications in both protect
mode and real mode is performed through mode
switching. 0s/2, however, minimizes the amount of
mode switching that must take place. This means
that device 1/0 may be processed in the mode of the
requesting application. 0s/2 device management is
therefore bimodal.

The multitasking capabilities of 0s/2 require effective
use of the system processor for different activities. A
program must be able to execute concurrently with
a device that is performing an operation. 0s/2 device
management must therefore have the ability to asyn-

© Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988




chronously notify an 1/0 requestor that an 1/0 oper-
ation is complete. Moreover, one or more programs
must be able to use different devices at the same
time. For example, a printer can be active at the
same time as the keyboard. Device management in
0s/2 is therefore interrupt-driven.

0s/2’s predecessor, DOS, represents a different per-
spective on device management. DOS is a single-task
system in which activities are serialized. An appli-
cation 1/0 request must complete before another
activity can take place. DOS device management can-
not asynchronously notify the 1/0 requestor that an
1/0 operation has completed. Instead, device man-
agement in DOS is based on polled 1/0, where the
state of a device operation is repeatedly checked for
completion.

The review of polled 1/0 versus interrupt-driven 1/0
characteristics will illustrate why interrupt-driven de-
vice management is more suitable for 0s/2.

Polled I/O. Polled 1/0 is accomplished by repeatedly
executing a set of instructions that check for com-
pletion of an 1/0 operation. A program issues an 1/0
request, then cycles through a loop of instructions.
In the instruction loop, the program checks an in-
dicator that shows the state of the 1/0 operation
being performed by the device. For example, the
indicator may be the value at one of the device’s 1/0
ports or the value of a flag that is set when the
device’s hardware interrupt invokes an interrupt
handler. Figure 1 depicts the polled 1/0.

Under Dos, a program must perform 1/0 according
to the polled 1/0 model. When an application pro-
gram issues an I/0 request to DOS, DOS issues a
command to the appropriate device driver, which
then issues an 1/0 command to its device. At this
point, the device driver must wait for its device to
complete the operation before it can determine what
action to take next. If the 1/0 operation fails, the
device driver may try to correct the error and retry
the operation. If the 1/0 operation succeeds, the
device driver may reuse resources allocated for the
operation, such as memory buffers.

The Dos device management is a simple scheme.
The program that controls the device also controls
the system processor, because the program must
continue to execute while waiting for the 1/0 request
to complete. This procedure is acceptable in a single-
tasking environment, because the system processor
need not be shared among concurrent activities.

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Figure1 Poiled /0

/O REQUEST

10 COMMAND
TO DEVICE

ACTION
COMPLETED
BY DEVICE?

mzert 171



Interrupt-driven I/O. Interrupt-driven device 1/0 re-
moves the serialization restriction. Interrupt-driven
device management supplies a mechanism to asyn-
chronously notify the 1/0 requestor when the 1/0
operation has completed. The system processor can
be shared among concurrent activities while the 1/0
operation is being performed by the device.

Figure 2 Interrupt-driven /O

The heart of interrupt-driven device management is
the relationship between 0s/2 and its device drivers.
The operating system instructs the device driver to
perform an 1/0 operation on behalf of some appli-
cation thread of execution. The device driver sends
the appropriate command to the device and surren-
ders whatever is left of its time slice for execution.
The operating system then dispatches some other
thread that is ready to execute. When the device
completes the 1/0 operation, it issues a hardware
interrupt to the system. The hardware interrupt asyn-
chronously breaks into the execution of the current
thread and causes the device driver’s interrupt han-
dler to execute. The device driver’s interrupt handler
resets the interrupting condition at the device and
informs the operating system that the device driver
thread waiting on the 1/0 operation can be dis-
patched. The device driver thread is then dispatched
according to its priority. When it executes, it returns
the completion code of the 1/0 to the operating
system to be passed back to the application. Figure
2 depicts the logic for interrupt-driven 1/0.

DEVICE
INTERRUPT

oecuns The close interaction between the operating system

and its device drivers has several advantages. Differ-
ent devices can be used concurrently by different
applications. Different devices can be used concur-
rently by a single application (using multiple proc-
esses or threads). System performance benefits from
intelligent devices (those with specialized microproc-
essors that offload work from the system processor).

Of course, not all devices produce hardware inter-
rupts; however, those which do can be utilized effi-
ciently by the 0s/2 device management. Devices
which do not generate interrupts must be inherently
fast or managed by the device driver to utilize the
processor for insignificant lengths of time.

The role of the device driver

In general, a device driver manages the flow of data
to and from its device within the context of appli-
cation 1/0 requests.

0s/2 invokes the device driver when an application
issues a system request for 1/0. In the case where its

172 MIZELL IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988




device is not busy, the 0s/2 device driver may per-
form the requested activity immediately and return
to the operating system. Otherwise, the device driver
asynchronously notifies the operating system when

A device driver is the only
component in 0S/2 to interpret
hardware interrupts.

the requested activity is completed. When the oper-
ation is complete, 0s/2 returns to the requesting
application. The requesting application can be a real-
mode DOS application or a thread in a protect-mode
0s/2 application process.

Figure 3 shows the relationship between the 0s/2
device driver and the system. API is the Applica-
tion Programming Interface. The DOS interface is
provided through Interrupt 21H (hexadecimal) and
the 0s/2 interface is provided through dynamically
linked procedure-like calls to operating system serv-
ices.

The role of a device driver in DOS is similar. DOS
invokes the pos device driver when the application
issues a system request for 1/0. The DOS application
can also invoke the device driver through a software
interrupt, provided that the device driver intercepts
the software interrupt. But, in contrast to the 0s/2
device driver, the pos device driver performs the
requested function and returns to its caller on/y when
the requested action is complete.

The 0s/2 device driver plays a more significant role
in system operations than the Dos device driver. This
coupling of the operating system and the device
driver makes the 0s/2 device driver appear as an
extension of the operating system; an 0s/2 device
driver executes at the operating system privilege
level, privilege level 0.

The role of an 0s/2 device driver cannot be per-
formed by an application, as an 0s/2 device driver is
the only component in 0s/2 that is capable of inter-

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

preting hardware interrupts. Applications and 1/0
subsystems that manage a device must either use an
existing device driver or supply their own device
driver. This constraint results directly from the priv-
ilege-level architecture of the 80286 processor. A
hardware interrupt handler must execute at the op-
erating system privilege level. Applications and 1/0
subsystems, however, execute at the application priv-
ilege level, privilege level 3, or at the 1/0 privilege
level (10PL), privilege level 2.

0s/2 device management requires that the os/2 de-
vice driver be bimodal, since mode switching to
interpret application 1/0 requests would siow system
response to application activity considerably. The
0s/2 device driver must deal with application 1/0
requests and hardware interrupts regardless of the
current mode of the processor.

Device drivers and application 1/O requests

In 0s/2, application requests for 1/0 are made to the
operating system in the processor mode of the appli-
cation. The operating system passes the request to
the device driver, which then performs its operations
under the context of the application. In protect
mode, the device driver can address memory owned
by the application through the application process’s
Local Descriptor Table (LDT). In addition, the device
driver can address system memory through the
Global Descriptor Table (GDT). In real mode, the
device driver must use special system interfaces to
address memory above 1M bytes.

Applications use different kinds of interfaces in 05/2
to perform 1/0. The relationship between device
driver request activity and application 1/0 requests
depends on the system component that provides the
particular application interface. The system compo-
nent may send a number of requests to a device
driver to satisfy a single application 1/0 request. In
this situation, the device driver may not be able to
extrapolate the original 1/0 request made by the
application, If the commands received by the device
driver correspond directly to the application inter-
face, the device driver can identify the original 1/0
request. These scenarios depend on which set of rules
the system applies to the use of the device.

Device models

As is done in DOS, 0s/2 defines two device models,
the block device model and the character device
model, that determine how a device is treated by the

mzere 173




Figure 3 Relationship of the 0S/2 device driver to the system

PROTECT MODE

DOS
APPLICATION

INT 21H
API

PRIVILEGE
LEVEL 3

PRIVILEGE
LEVEL O

08/2 KERNEL

08/2 DEVICE DRIVER

HARDWARE
INTERRUPT

174 mze : IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988




operating system and how an application may use
the device. The choice of which device model to use
for a particular device is made by the developer of
the device driver. This choice depends on the nature
of the supported device and on the application’s
intended use of the device. The device driver is then
created according to the requirements of the model.

Block device model. A block device model is used
for storage devices. These devices typically transfer
data in blocks, usually through direct memory access
(DMA). Data can be retrieved at any time and in any
order; in other words, data transfer is not required
to be done in the order in which the data appear on
the device. A block device is accessed through the
file system, which identifies a specific block device
with a drive letter.

An application uses the file system interfaces to
perform 1/0 to a file, which is an abstraction of block
device data. The 0s/2 File System defines a block of
data as a sector 512 bytes long. The file system
converts the application 1/0 requests to sector 1/0
commands to the device driver. The application
performs 1/0 on the file by using the relative position
of the data in the file in terms of bytes and specifying
the number of bytes to transfer. The file system then
maps the byte references of the application 1/0 re-
quest to the sectors on the device which correspond
to the file. From a single application 1/0 request, the
file system may send one or more sector-based 1/0
commands to the block device driver. The block
device driver interprets 1/0 only in terms of sectors
and in terms of sector position on the device; the
device driver does not determine how data in a sector
relate to the application request. The commands a
block device driver can receive are listed in Table 1.

For example, an application uses the file 1/0 inter-
faces to first OPEN the file, READ and/or WRITE to the
file, then CLOSE the file. The file system may respond
to the OPEN by ordering the block device driver to
READ sectors from the device which represent direc-
tory and other control information. The file system
may also order the block device driver to WRITE
sectors to the device in order to clear internal file
system buffers. As a result of the application 1/0
(READs and WRITEs), the file system tells the block
device driver to READ and WRITE sectors. For the
CLOSE, the file system terminates the application’s
connection to the device. The file system may order
the block device driver to WRITE sectors representing
a final update to directory and other control infor-
mation stored at the device. The block device driver

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Table 1 Block device driver commands

Initialize

Media Check

Build BIOS Parameter Block
Read

Write

Write With Verify
Removable Media Support
Generic IOCtt

Reset Media

Get Logical Drive Map

Set Logical Drive Map

Query Partitionable Fixed Disks
Get Fixed Disk/Logical Units

never sees the exact type of request from the appli-
cation; instead, the block device driver operates un-
der the file system’s 1/0 requests, which are in the
context of application 1/0 requests.

Another interface that can be used to access block
devices is the 1/0 control interface, also known as
the 10ctl interface. The 10ctl interface is used primar-
ily to manage device-specific parameters that control
how a device operates. As it applies to block devices,
the 10ctl interface is generally used by system appli-
cations to format the media of a block device, not
for file 1/0. When a system application issues an 10Cti
request, the operating system passes the 10Ct request
directly to the target block device driver.

For example, a system application using the 10ctl
interface first OPENs the device name with the file
system interface. In this case, a block device name is
a drive letter. The system application then issues
10ctl requests. When the system application has fin-
ished, it CLOSEs the device with the file system inter-
face. The OPEN and CLOSE establish the connection
of the system application to the block device. Each
10Ctl request is sent to the block device driver iden-
tified by the application’s connection to the device.

Character device model. A character device model is
used for non-storage devices, which typically transfer
data in terms of characters, usually through program
1/0 instructions (IN and ouT) to 1/0 ports. Data
cannot be retrieved once they have been read or
written. Here, the order of data is significant, because
the device does not preserve the data.

A character device is accessed either through the file
system, an 1/0 subsystem, or the device 1/0 control

mzerl 175




Table2 Character device driver commands

Initialize

Read :
Peek (Nondestructive Read No Wait)
Input Status

Input Flush

Write

Output Status
‘QOutput Flush
Device Open
Device Close
Generic 10Ct
Delnstall

interface (1oct). A character device is identified to
the system by a device name. Character device data
may also be handled by an application through a
character device monitor. The commands a charac-
ter device driver can receive are listed in Table 2.

The primary file system interfaces used for character
device 1/0 are the OPEN, CLOSE, READ, and WRITE
functions. An application using the file system inter-
faces views character device data as a string of bytes
or characters and performs 1/0 based on the relative
position of the characters in the string and on the
number of characters (bytes) to transfer. The 0s/2
file system responds to application 1/0 requests by
passing the requests to the character device driver
without converting them.

A character device driver often manages an applica-
tion’s connection to its character device, particularly
where there is no system component that controls
access to the device. To control access to its device,
a character device driver can choose to have the file
system inform the device driver when an application
establishes or terminates the connection to the char-
acter device. The character device driver uses a flag
in its device header to indicate the choice of the
device driver. Then, when the application OPENs the
device, the file system sends an OPEN command to
the device driver. When the application CLOSEs the
device, the file system sends a CLOSE command to
the device driver. The OPEN command allows the
character device driver to associate subsequent 1/0
requests it receives (READs and WRITEs) with a partic-
ular application’s connection. A character device
driver may also initialize the state of the device
whenever an application first makes the connection
to the device (OPEN). Also, the device driver may
allocate or initialize resources for the forthcoming
application 1/0. The CLOSE command allows the

176 mze

device driver to free any resources it has allocated
on behalf of the application, reset internal variables,
and shut down the device (if necessary).

Using file 1/0 interfaces, an application must first
OPEN the character device name, READ and/or WRITE
to the device, and finally CLOSE the device. The file
system may respond to the OPEN by signaling the
character device driver to establish the application’s
connection to the device. The file system responds
to application 1/0 (READs and WRITEs) by sending
READ and WRITE requests for bytes to the character
device driver. For the CLOSE, the file system may
respond by informing the character device driver to
terminate the application’s connection to the device.
For a character device, the file system acts primarily
to route the application 1/0 request to the character
device driver. The character device driver can ex-
trapolate the actual request made by the application.

The 1/0 control interface, or 10ctl interface, is used
by an application to set device-specific parameters
or functions. When an application makes an 10Ctl
request, the operating system sends the request di-
rectly to the target character device driver.

To use the 10ct interface, an application first OPENs
the character device name with the file system inter-
face. It can then make 10ct! requests. When it has
completed its use of the 10ctl interface, it CLOSEs the
character device by using the file system interface.
The oPEN and CLOSE are handled by the file system
to inform the character device driver of the applica-
tion’s connection to the device. An 10CH request is
passed directly to the character device driver identi-
fied by the application’s connection to the device.

1/0 subsystem interfaces are used for device-specific
1/0 functions. 0s/2 has three 1/0 subsystems: video
(vio), keyboard (kBD), and mouse (MOU). (The file
system can also be perceived as an 1/0 subsystem for
block devices.) An application views character device
data in the logical format defined by the individual
1/0 subsystem. The VIO subsystem defines video data
either as characters and display attributes or as a
logical display buffer. Both the KBD and MOU subsys-
tems define their respective data as records. When
an application performs 1/0 with subsystem inter-
faces, the subsystem may use its own IOPL routines
or some system interface(s) to accomplish the re-
quest. The system interfaces allow a subsystem to
use a device driver as an application uses a device
driver. The subsystem, however, may gencrate a
number of requests in order to complete the activity
requested by the application.

iBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988




An application can directly manipulate character
device data through the character device monitor
interface. This interface allows an application to
intercept the data stream going to or coming from a
character device; i.e., an application can filter the
device data by changing, inserting, or deleting char-
acters in the data stream. The character device driver
cooperates with the application by passing device
data to the application. When the application is
finished, it returns the data to the device driver,
which then sends it to its ultimate destination. How-
ever, this interface applies only to those character
device drivers which allow monitoring of their data
streams, such as the base 0s/2 keyboard, mouse, and
printer device drivers.

Device driver structure

The structure of a device driver in 0s/2, like that of
a Dos device driver, follows the small program
model. This means that the 0s/2 device driver pro-
gram has a single code segment and a single data
segment. The 0s/2 device driver program, however,
does not include a stack segment. Instead, the device
driver uses the stack of its calling program. A device
driver performs its activities in a manner similar to
a subroutine or procedure.

As with a device driver under pos, the order of
segments in the 0S/2 device driver program is signif-
icant. The data segment must appear before the code
segment. The file containing the device driver pro-
gram is an o0s/2-executable file (an ExE file) that
contains, in the following order, the EXE header, the
data segment, and the code segment. The EXE header
is generated when the compiled program modules
are linked together into a program file,

The data segment in the 0s/2 device driver, as in a
pos device driver, must contain at least one device
header. A device header is a control block that
defines the device and the device model to the op-
erating system. When the operating system loads the
device driver program (during system initialization),
the operating system examines the device header to
determine whether the device driver is a block or
character device driver. The operating system can
then treat the device driver appropriately. For ex-
ample, if the device driver is a block device driver,
the operating system can assign drive letters to the
block devices supported by the device driver. The

1BM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

device header also contains a pointer to the primary
entry point into the device driver. The primary entry
point is used by the operating system to communi-
cate with the device driver. This entry point, which
is called the Strategy Routine, is discussed later.

The code segment has one or more entry points
which correspond to different device driver compo-
nents.

Unlike a DOs device driver, the 0s/2 device driver
may contain extra data segments which may be used
during the initialization of the device driver. How-
ever, after initialization, the extra data segments are
discarded by the operating system. Typically, a de-
vice driver uses these extra segments to contain
message text. These segments are bound to the exe-
cutable (EXE) file containing the device driver pro-
gram with the message utility MSGBIND. The mes-
sages are then accessed during device driver initiali-
zation through the message-handling interfaces in
0s/2. The device driver can thus display status mes-
sages concerning its ability to initialize its device.

An 0s/2 device driver may comprise up to four
components: the Strategy Routine, the Hardware
Interrupt Handler, the Timer Handler, and the Soft-
ware Interrupt Handler (see Figure 4). These com-
ponents interact with one another to control a device
and to manage data transfer to and from the device.
(A Dos device driver can have three types of entry
points: the Strategy Routine, the Hardware Interrupt
Handler, and the Software Interrupt Handler.)

Strategy Routine. The Strategy Routine is the fun-
damental component of the device driver; all device
drivers have a Strategy Routine. In both pos and
0$/2, the Strategy Routine handles 1/0 requests on
behalf of applications. Applications issue function
calls to the operating system. The operating system
converts function calls into commands to the device
driver’s Strategy Routine.

0s/2 has two application environments: 0S/2 appli-
cations make 1/0 requests in protect mode; a DOS
application in the DOs environment of 0s/2 makes
1/o requests in real mode. Consequently, the Strategy
Routine of an 0s/2 device driver is bimodal.

The interface between the Strategy Routine and 0s/2
is the request packet. This interface is compatible
with the interface used by DOs to communicate with
DOos device drivers. The request packet is a control

mzeww 177




Figure4 Device driver components

REAL-MODE
SOFTWARE
INTERRUPT

08/2 KERNEL.

REQUEST
PACKET

08/2
DEVICE
DRIVER

08/2 KERNEL

HARDWARE
INTERRUPT

178 MIZELL BM SYSTEMS JOURNAL, VOL 27, NO 2, 1988




block that contains the command to the device driver
and command-related information. The device
model determines which commands the device
driver may receive (ct. Tables 1 and 2).

The Strategy Routine of an 0s/2 device driver exe-
cutes at task-time, that is, under the thread of the
application process that made the system call. The
application thread calls the operating system, which
in turn calls the Strategy Routine. Because the Strat-
egy Routine operates under the umbrella of the
operating system, it is not subject to task switches as
is an application. The thread executing in the Strat-
egy Routine does not lose its execution until it blocks
itself, yields its timeslice, or tries to access a segment
that is not present in system memory. (A segment
that is not present in system memory must be
swapped from disk, during which time another
thread can be dispatched.) For the device driver to
maintain control over the device, immunity from
preemption is important. The Strategy Routine can
change the state of the device in order to handle the
1/0 command from the operating system. In order
to guarantee control of the device, state changes must
either be atomic or must run to completion. Conse-
quently, the Strategy Routine controls its execution.

While executing at task-time, the Strategy Routine
is subject to being interrupted by its device’s hard-
ware interrupts. If the Strategy Routine shares data
structures with an interrupt-time component such as
the Hardware Interrupt Handler, it must exercise
care in accessing these common data structures.

To demonstrate how the Strategy Routine operates,
an example of the activities that occur is outlined:

1. 0s/2 calls the Strategy Routine entry point, pass-
ing a pointer to a request packet that identifies
the activity the device driver must perform.

The Strategy Routine verifies the request packet.

If the command can be handled immediately

(e.g., status check), the Strategy Routine performs

the operation.

4. If the command requires activity by the device
but the device is busy, the Strategy Routine places
the request packet at the end of a work queue.

5. If the command requires activity by the device
and the device is idle, the Strategy Routine issues
the command to the device.

6. If the Strategy Routine has completed the re-
quested function, it puts the status in the request
packet and returns to its caller, the operating
system kernel.

whN

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

7. If the Strategy Routine has not completed the
requested function, the Strategy Routine waits by
blocking the thread. Blocking the thread releases
the remainder of the time slice of the thread. The .~
operating system will dispatch another thread,
which can then make a system call. The Strategy
Routine can be called again at its entry point.

Hardware Interrupt Handler. The Hardware Inter-
rupt Handler is required if the device generates in-
terrupts; all device drivers managing interrupting
devices must have a Hardware Interrupt Handler. In
0s/2, the device driver’s Hardware Interrupt Handler
is the only component in the system that may service
a hardware interrupt. The Hardware Interrupt Han-
dler is referred to as an interrupt-time component
because it executes only when the device interrupt
occurs. It executes as a special interrupt-time thread
which is not associated with any application process.

The 0s/2 device driver initializes the entry point to
its Hardware Interrupt Handler during its initializa-
tion. When the hardware interrupt occurs, 0s/2 calls
the Hardware Interrupt Handler. In contrast, a DOS
device driver can simply replace the appropriate
vector in the real-mode interrupt table and let the
device interrupt call the device driver directly.

Device activities are asynchronous to the activities
being performed in the multitasking system. Conse-
quently, device interrupts occur regardless of which
application process is currently executing and re-
gardless of which mode the processor is in. For
example, an 1/0 request from a DOS application
running in the foreground DOS environment may
actually complete during the background execution
of an 0s/2 application. In this example, the 1/0
request is made in real mode, but the device interrupt
signaling 1/0 completion occurs in protect mode.
The reverse situation is also possible: an 1/0 request
made in protect mode may have the corresponding
device interrupt occur in real mode if the DOS envi-
ronment is foreground. The result of this behavior is
that the Hardware Interrupt Handler is bimodal,
executing in either mode of the processor.

The actions of the Hardware Interrupt Handler may
be illustrated by the following scenario:

1. The operating system calls the Hardware Inter-
rupt Handler when the device interrupt occurs
for which the Hardware Interrupt Handler is reg-
istered.

mzeee 179




2. The Hardware Interrupt Handler confirms that
its device issued a valid interrupt. A device may
generate an interrupt because it has completed its
work on a command or because it has experi-
enced some spurious event unrelated to the com-
mand.

3. If its device issued the interrupt, the Hardware
Interrupt Handler resets the interrupting condi-
tion at the device.

4. If the interrupt is not a spurious interrupt, the
Hardware Interrupt Handler checks the current
request packet to determine whether the re-
quested function was completed.

5. If the requested function was completed, the
Hardware Interrupt Handler puts the status in
the request packet and “unblocks” the thread
waiting in the Strategy Routine. The Hardware
Interrupt Handler can also start the activity re-
quired for the next request packet in the work
queue. In this case, the Strategy Routine can place
packets on the queue and the Hardware Interrupt
Handler can remove them.

6. If the requested function requires further work (a
multistage operation), the Hardware Interrupt
Handler tells the device to begin the next stage.

7. If the Hardware Interrupt Handler is done with
activities for this particular occurrence of the
device interrupt, it returns to its caller, the oper-
ating system kernel. The operating system will be
able to call the Hardware Interrupt Handler at its
entry point at any time after the Handler sends
the the End-Of-Interrupt (Eo1) to the hardware
interrupt controller. The Eo1 tells the interrupt
controller that pending device interrupts can be
serviced. If there is another interrupt pending at
the hardware interrupt controller for the Hard-
ware Interrupt Handler, the Hardware Interrupt
Handler will be called before the Handler actually
returns to its caller for the first interrupt. This is
known as “nesting” of interrupts.

Timer Handler. In an 0s/2 device driver, the Timer
Handler is an optional component. The 0s/2 device
driver can use a Timer Handler to manage timeouts
and time delays. In this respect, the Timer Handler
resembles the timing facility in the DoOS environment.
In the DOS environment, the timing facility is sup-
plied by the Basic Input/Output System (BIOS) Int
1Ch interface. The 0s/2 device driver can also use
the Timer Handler to manage 1/0 operations for a
noninterrupting device. In either case, the Timer
Handler is actually driven by the system clock, the
real-time hardware clock device, instead of the sys-
tem timer that invokes the BIOS.

180 MIZELL

The 0s/2 device driver initializes the entry point to
the Timer Handler during its initialization. When
the clock hardware interrupt occurs, 0s/2 calls the
device driver’s Timer Handler. Like the Hardware

The 0S/2 device driver uses the
Software Interrupt Handler for
software interrupts issued by the
DOS application.

Interrupt Handler, the Timer Handler executes at
interrupt-time, and executes as a special interrupt-
time thread. The Timer Handler is also bimodal,
because the clock device generates interrupts regard-
less of the mode of the processor.

The equivalent kind of component in a Dos device
driver is a software handler that intercepts the BIOS
Int 1Ch interrupt or a hardware interrupt handler
that interrupts the system timer.

The operations of the Timer Handler are shown in
the following example.

1. The clock interrupt occurs, causing the operating
system to call the Timer Handler.

2. The Timer Handler performs the activities appro-
priate for this time interval. If some action must
take place in the Strategy Routine, the Timer
Handler can “unblock™ a thread that had been
blocked by the Strategy Routine.

3. When done, the Timer Handler returns to its
caller, the operating system kernel. The Timer
Handler does not issue an End-Of-Interrupt (EOI)
to the hardware interrupt controller. Instead, the
clock device driver manages the clock interrupts.

Software Interrupt Handler. The Software Interrupt
Handler is optional for 0s/2 device drivers, which
need it only to support operations in the DOS envi-
ronment of 0s/2. The 0s/2 device driver uses the
Software Interrupt Handler to intercept a software
interrupt issued by the Dos application. On the other
hand, a Software Interrupt Handler is a common

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988




component for a Dos device driver. A DOS device
driver often provides an interface to the pos appli-
cation through a software interrupt. In this situation,
the pDos device driver sets the software interrupt
vector to a handler in the device driver. The software
interrupt therefore invokes the DOS device driver
handler directly.

The 0s/2 device driver must initialize the entry point
of the Software Interrupt Handler for a specific soft-
ware interrupt vector. Whenever the DOS environ-
ment is foreground, the Dos application may issue a
software interrupt and directly invoke the device
driver’s Software Interrupt Handler. Since software
interrupts occur only in the DOS environment, the
Software Interrupt Handler executes only in real
mode.

The 0s/2 device driver’s Software Interrupt Handler
executes as an extension of the DOS application. In
other words, the Software Interrupt Handler executes
at task-time under the context of the DOS application,
which means that the Software Interrupt Handler is
subject to task switches. When the DOS application
is foreground, it loses the processor for multitasking
of background os/2 application processes. In addi-
tion, the Software Interrupt Handler can be inter-
rupted by hardware interrupts. It must therefore
exercise caution whenever using data structures that
are shared with other components in the 0s/2 device
driver.

The following example outlines the major activities
of a Software Interrupt Handler that intercepts a BIOS
software interrupt.

1. A Dos application issues the BIOS software inter-
rupt, which invokes the Software Interrupt Han-
dler.

2. The Software Interrupt Handler checks the re-
quested BIOS function.

3. If the desired BIOS function is permitted and the
device is not busy, the Software Interrupt Handler
may either call the BIOS service to perform the
function or perform the function itself.

4. If the desired BIos function is permitted and the
device is busy, the Software Interrupt Handler
may set a flag to indicate BIOS 1/0 pending. The
handler can then wait until one of the other device
driver components indicates that the Software
Interrupt Handler may proceed with the BIOS 1/0.

5. When done, the Software Interrupt Handler per-
forms an interrupt return (IRET) to the DOS appli-
cation. The Software Interrupt Handler can be
preempted by the mulititasking of background

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Table 3 Rules for writing protect-mode code

Do not perform segment arithmetic with
the segment registers. )
Do not depend on “wrap-around” offsets.
Do not access beyond the end of a segment.
Put only valid selector values in the
segment registers.
Do not write to a code segment.
Do not put both code and data in the
same segment.
Do not depend on instruction execution speed.

protect-mode applications or can be suspended if
the operator switches the DOS environment to the
background. The Software Interrupt Handler can
protect itself from suspension but not from
preemption. It does this by issuing some special
system calls to allow a critical section of execution
to complete. However, the Software Interrupt
Handler is not reentrant; it will not be called
again until it returns to the Dos application.

Device driver operations

An 0s/2 device driver performs its activities in the
context of its caller and in the context of the proces-
sor mode. It interacts with the operating system to
handle application 1/0 requests that originate from
0s/2 applications and the DoOS application in the DOS
environment. The 0s/2 device driver handles hard-
ware interrupts that occur in protect mode and in
real mode. It may even manage the access of a DOS
application to a particular software interrupt inter-
face such as Bios. The combination of these activities
leads to a number of requirements for an 0s/2 device
driver.

Bimodal considerations

Because the 0s/2 device driver executes in protect
mode and in real mode, the bimodal components of
the device driver must follow rules enforced by the
processor architecture for protect-mode execution
(see Table 3). These rules also permit the device
driver’s bimodal components to execute in real
mode.

System services

DOS has no services designed specifically for device-
driver operations. 0s/2, on the other hand, provides
a set of special system services for device drivers,
called helper routines, or DevHIp services. These
services help the o0s/2 device driver to interact with
the operating system and to control the device driv-

mzere 181




Table4 0S/2 DevHIp services by category

" Process management
" Semaphore management
- Request Queue management
*'Character Queue management
Memory management
Interrupt management .
Timer services
Character Monitor management
Advanced BIOS management

er’s activities. Some system services provide func-
tions commonly performed by device drivers. The
availability of such services removes the need for
each device driver to “roll its own” services.

0s/2 puts a pointer to the DevHlp interface in the
Initialize request packet. When 0s/2 calls the device-
driver Strategy Routine to initialize, the device driver
must save this pointer for later use. 0s/2 sets up the
pointer to the DevHIp interface so that the pointer
is valid in both real mode and protect mode, and the
device driver can call the DevHIp interface without
considering which mode the processor is in. To
request a DevHIlp service, the 0s/2 device driver
places input parameters and the DevHIp function
number into registers and makes a FAR CALL through
the pointer to the DevHIp interface. The operating
system performs the requested service depending on
the availability of the service for the context in which
the device driver is executing. The DevHIp services
are listed by groups in Table 4.

Memory addressability

Bimodal operations make access to memory more
complex. The device driver’s interrupt-time compo-
nents must take into account not only processor
mode but also the current application context. An
interrupt-time component will often execute under
the address space (LDT) of an application different
from the one which issued the 1/0 request. An inter-
rupt-time component will often execute in a mode
different from the mode of the 1/0 requestor if the
system is configured for both 0s/2 applications and
a DOS environment.

The device driver utilizes the memory-management
DevHip services to help it manage its access to
application memory. The device driver’s task-time
component, the Strategy Routine, uses a DevHIp
service to convert memory addresses owned by an

182 wmizew

application process to physical addresses represented
by 32-bit numbers. The Strategy Routine then saves
the resulting 32-bit numbers. The device driver’s
interrupt-time components can convert the 32-bit
numbers with a DevHIp service into temporary log-
ical addresses. These temporary addresses give the
device driver’s interrupt-time components the ability
to transfer data regardless of the processor mode or
current application context.

An 0s/2 device driver must also manage its access to
nonsystem memory. (Nonsystem memory is the
memory reserved by BIOS, and it covers the range of
addresses from 640K bytes to 1M bytes.) 0s/2 does
not manage this reserved area of memory; to access
this memory, an 0s/2 device driver uses a DevHIp
service to establish a temporary logical address. A
device driver can then utilize memory such as the
display buffers or memory that exists on an adapter.

Synchronizing component actions

The 0s/2 device driver must manage its operations
across its task-time and interrupt-time components.
It may also need to coordinate activities with an
application.

Synchronization among device driver components
is relatively simple. Because all device-driver com-
ponents have access to the device driver’s data seg-
ment, the different components can share data struc-
tures. A common structure used in intercomponent
communication is a work queue of request packets.
Whenever its device is busy, the device driver can
place requests in the queue. As a request is com-
pleted, it can be removed from the queue. All com-
ponents of the device driver can therefore determine
the current request. Another data structure is a RAM
semaphore, which can be used to signal the occur-
rence of an event.

Another technique for intercomponent synchroni-
zation is the management of the thread in the Strat-
egy Routine. The Strategy Routine can block the
thread in order to wait for an interrupt event, and
the interrupt-time components can unblock the
thread when the event occurs.

For communication with an application, a device
driver may use a system semaphore. In this case, the
application passes the semaphore handle to the de-
vice driver, which converts the handle with a DevHIp
service. The device driver uses other DevHIp services
to manipulate the semaphore.

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988




Interrupt management

There are several considerations for a device driver
processing a hardware interrupt. Because of the sen-
sitivity of the operating system to device-driver per-
formance, the device driver must limit the time it
disables interrupts. The device driver’s interrupt-
time components must also limit the total time spent
processing the interrupt because time spent process-
ing interrupts delays 0s/2’s response to multitasking
events. The interrupt-time components must limit
the amount of interrupt nesting that can occur, since
interrupt nesting affects usage of the interrupt-time
stack.

Interrupt nesting is the situation when the interrupt-
time component is invoked before it finishes its
current processing. In other words, nesting of inter-
rupts is likely during the time between the sending
of the End-Of-Interrupt (0I) to the hardware inter-
rupt controller and the exit from the interrupt-time
component. Interrupt nesting depends on other fac-
tors as well, such as the interrupt rate of devices, the
number of active devices, and the relative priorities
of the active device interrupts. One technique the
device drivers can use to limit interrupt nesting,
assuming that the interrupt handler has no post-EOI
processing to perform, is to disable interrupts prior
to issuing the oL This prevents another interrupt
from occurring before the current interrupt level
completes, thereby reducing the possibility of a stack
overflow.

Initialization

Initialization of an 0s/2 device driver differs in a
number of areas from that of other components in
the system. A device driver is an installable compo-
nent of the system. It is identified and loaded through
the CONFIG.SYS configuration file, with the DEVICE
command. The configuration file is processed by the
operating system during system initialization to iden-
tify devices for subsequent 1/0.

Although an 0s/2 device driver is operationally bi-
modal, it initializes in protect mode. The context of
initialization is a special operating system applica-
tion-level process, sometimes referred to as the sys-
tem initialization process. The device driver executes
at the application protection level, privilege level 3,
which allows the device driver to make dynamic link
system calls. The device driver can therefore use the
file system services to perform file 1/0. For instance,
the device driver can read a device configuration file

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

or a font file. It can also use the message-handling
facility to display messages. For example, the device
driver may want to inform the user of the status of
its attempt to initialize the device.

Although the device driver initializes while executing
at the application-privilege level, the operating sys-

An 0S/2 design point is
compatibility with DOS applications.

tem grants it 1/0 privilege (10PL). This permits the
device driver to access 1/0 ports and disable hardware
interrupts as necessary.

Advanced BIOS

Advanced Bios (ABIOS) is the device interface layer
found on the Personal System/2™ Models 50, 60,
and 80. It is important to the 0s/2 device driver
because it is a bimodal interface which uses request
blocks to pass information. Without ABIOS, an 0S/2
device driver must control its device directly, making
the device driver sensitive to changes in the device.
To help access the ABIOS, the device driver uses the
DevHlp services provided by 0s/2. 08/2 ensures that
ABIOS is initialized prior to initializing the device
drivers.

Support of DOS device drivers

One of the design points for 0s/2 is compatibility
with pos applications. While many DoOs applications
can be supported with new 0s/2 device drivers, it is
also desirable to allow DOs device drivers to be
installed in os/2. However, the operating context of
the DOS environment of 0S/2 imposes some restric-
tions on the kinds of DOS device drivers that can be
used in 0s/2. The Dos device driver must be a
character device driver; it must perform polled 1/0;
it must not have timing dependencies; and it must
not rely on pos Int 21H system calls during its
initialization.

mzeee 183




A Dos device driver executes only in the real mode
of the processor. Under 0s/2, a device managed by a
DOS device driver can only be used by a pos appli-
cation running in the DOS environment. Because new
0s/2 applications execute only in protect mode, they
may not utilize the pos device driver’s device.

Summary

The 0s/2 device driver is a key element in supporting
the multitasking environment of 0S/2. Interrupt-
driven device management means that an 0S/2 de-
vice driver can allow other activities to take place
while waiting for completion of 1/0 to its device. An
0s/2 device driver can also maintain a list of out-
standing 1/0 requests. These factors help 0S/2 to
effectively utilize system resources.

Operating System/2 and 0s/2 are trademarks, and Personal Sys-
tem/2 is a registered trademark, of International Business Ma-
chines Corporation.

General references

IBM Operating System/2 Technical Reference Volume I,
84X 1434, IBM Corporation; available through IBM branch offices.

IBM Operating System/2 Technical Reference Volume II,
84X 1440, IBM Corporation; available through IBM branch offices.

IBM Operating System/2 Programmer’s Toolkit, Volume I,
6280200, IBM Corporation; available through IBM branch offices.

M. S. Kogan and F. L. Rawson III, “The Design of Operating
System/2,” IBM Systems Journal 27, No. 2, 90-104 (1988, this
issue).

iAPX 286 Programmer’s Reference Manuals, Intel Corporation,
Santa Clara, CA (1985).

IAPX 286 Operating System Writer's Guide, Intel Corporation,
Santa Clara, CA (1983).

Ann M. Mizell IBM Entry Systems Division, 1000 NW 5 1st Street,
Boca Raton, Florida 33432. Ms. Mizell joined IBM in 1982 in
Boca Raton as an application developer for the IBM Personal
Computer. She is currently an advisory programmer in the systems
software architecture group, where she has participated in the
design and development of OS/2. Ms. Mizell received her B.S.
degree in systems and controls engineering from Case Western
Reserve University, Cleveland, Ohio, in 1982; she is a member of
the Tau Beta Pi engineering honor society. Ms. Mizell is co-author
of a book entitled OS/2 Features, Functions, and Applications,
John Wiley & Sons, Inc., New York (1988).

Reprint Order No. G321-5317.

184 mze IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988




