
COBOL/2:
The next generation
in applications programming

by R. Sales

IBM COBOL/2 is a new compiler and debugger system
for the Personal System/2" product range developed
by Micro Focus Group PLC of the United Kingdom. In
this paper, Robert Sales, a software development man-
ager for Micro Focus who was instrumental in creating
the COBOLI2 system, describes how COBOL/2 breaks
new ground in providing support for many disparate
COBOL language dialects and standards, as well as in
providing support for 0S/2Iy on the Personal Computer
architecture.

C OBOL was conceived as a business-oriented lan-
guage and was designed to meet the needs of

data processing applications. It is particularly strong
in the area of character handling and data presenta-
tion, allowing clear and concise specification of the
fields making up file records. A wide range of ad-
vanced facilities are built into the language, including
indexed file handling, sorting and merging data files,
and report generation. These facilities are fully im-
plemented in COBOL/~ and undoubtedly represent
the principal value of the system. Together with
specialized syntax for interactive screen and key-
board handling, business applications can be devel-
oped that make full use of the immediacy of micro-
computers with all the power offered by COBOL on
mainframes. Alternatively, the system can be used
for developing, testing, and maintaining programs
which are to be run on the mainframe.

The use of COBOL as a data processing language on
mainframe computers is well known. This paper
discusses some of the features of COBOL/Z which
make it well suited to other application areas-in
particular, how it has been adapted for use on mi-
crocomputers.

158 SALES

COBOL/S, the ANS85 standard, and the support
of different dialects

The first COBOL standard was published in 1968 by
the American National Standards Institute (ANSI). It
was followed six years later by the 1974 standard,
which introduced new features, tightened up the
definition of others, and removed some facilities,
such as the NOTE statement, which had become
obsolete with the introduction of comment lines. By
contrast, the next standard took eleven years to
emerge and was the subject of intense debate.

The long negotiation for the A N S ~ ~ standard dem-
onstrated the importance attached to forward com-
patibility in the computer industry, particularly in
regard to COBOL, which has been the vehicle for
massive investments in applications software. De-
spite the obvious benefits of the new standard, in
particular the new structured programming con-
structs, its adoption was continually held back by
objections to any incompatibilities it introduced.
Publication was possible only after many features
originally destined for deletion (such as the notorious
ALTER verb) had been reinstated as "obsolete features
to be deleted from the next revision of standard
COBOL."

Whatever arguments may have been generated by
the arrival of the A N S ~ ~ standard, it remains true that

Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference. and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL. VOC 27, NO 2, 1988

very few commercial applications even conform to
the A N S ~ standard. The most widely used COBOL
compiler, IBM’S os/vs COBOL, not only offers a wide
range of its own extensions, but continues to support
much Of ANS68 COBOL.

To meet the needs of existing programs while allow-
ing new programs to be developed to the specifica-
tions of the new standard, COBOL/Z incorporates the
syntax of many different COBOL dialects. In order to
facilitate migration of programs to the new standard,
it is permitted to mix features from more than one
dialect within a single program.

Two series of compiler directives are available. One
of these series is positive; it enables the use of con-
structs from a specified dialect. The main effect of
these directives is to cause the reserved words for
that dialect to be set up in the compiler’s internal
reserved-word table. For instance, the directive osvs
will add all reserved words specific to os/vs COBOL,
thus allowing the use of such statements as EXHIBIT
and TRANSFORM. Conversely, NOOSVS will remove
these reserved words from the table and allow EX-
HIBIT and TRANSFORM to be used by the program as
data names. Where there is an incompatibility, these
directives will also determine the behavior of the
compiled code. Thus, the directive A N S ~ ~ not only
adds all the new reserved words but changes the
meaning of such statements as IF data-name IS AL-
PHABETIC from the A N ~ meaning (uppercase only
allowed) to the A N S ~ ~ meaning (uppercase or lower-
case permitted). Dialects recognized include OS/VS,
vs COBOL 11, ANW, A N S ~ , and, for compatibility with
IBM PC COBOL Version 1.00, PC-1.

Even if N O A N S ~ ~ is specified, constructs which do not
require any new reserved words will still be compiled
correctly, so that it is possible to make use of these
features while maintaining forward compatibility.

The other series of directives is restrictive in the
sense that it enables the user to choose one dialect
and create a listing on which any departures from
the syntax permitted in that dialect are flagged. For
instance, the directive FLAG (A N S ~ ~) will cause any
use of in-line PERFORMS or other features not avail-
able in the ANSW standard to be flagged. Similarly,
the directive FLAG (SAA) will identify any departures
from standard COBOL as defined in IBM’S Systems
Application Architecture.

The combination of these series of directives gives
great flexibility in controlling migration between en-

IBM SYSTEMS JOURNAL, VOL 27. NO 2, 1988

vironments. As an example, if it were required to
convert a program originally developed with IBM’S

os/vs compiler to run under vs COBOL 11, it could be
compiled using the directives osvs FLAG (vscz). This

Implementation on an 8086- or
80286-based system of a high-level
language must resolve the problem

of data segmentation.

would ensure that all constructs specific to OS/VS
were understood by the compiler, while at the same
time warning of any such usages that are not part of
the vs COBOL 11 language.

COBOL/P and large applications

Every implementation on an 8086- or 80286-based
system of a high-level language permitting large
blocks of contiguous data must resolve the problem
of data segmentation. Whereas COBOL allows the
declaration of data items and groups of data items
of any length, the internal architecture of the CPU
only allows data to be addressed within a maximum
of 64K bytes from a base address defined by a
“segment register.”

On an 8086 system, or equivalently an 80286 system
working in the so-called “real mode,” the value
contained in the segment register corresponds to an
actual machine address. In fact, the corresponding
machine address is determined by multiplying the
contents of the segment register by 16 (or if, as is
usual, the value is expressed in hexadecimal form,
by adding a 0 on the end). A segment register can
thus be made to point to any machine address which
is a multiple of 16.

It is therefore relatively simple to point at whatever
data are required for a particular COBOL statement.
For instance, if a table is declared as

03 X1 PIC X(10) OCCURS 3000 INDEXED BY I1

a statement of the form

MOVE “ABCDEFGHIJ” TO X1 (11)

could be executed on the 8086 by calculating a value
for the segment register based on the value of the
index 11 such that the required instance of x1 would
start within 16 bytes of the base address.

The fundamental difference in “protected mode”
working on the 80286 microprocessor is that these

The COBOL/2 compiler does not
distinguish between real mode and

protected mode.

segment registers (renamed ‘‘selectors” in this case)
no longer contain real machine addresses, but rather
indices into a table maintained by the operating
system where the actual addresses are stored. When-
ever a value is placed into a selector (by instructions
of the form mov ds, ax, or pop es), an interrupt is
generated by the hardware, which transmits a call to
the operating system to ensure that the new value of
the segment register is valid. It will only be consid-
ered valid if it has been allocated previously by the
operating system, either when the program was
loaded or by subsequent calls made by the program
to the operating system requesting further memory.
Invalid contents will cause the process to halt.

The COBOL/Z compiler does not distinguish between
real mode and protected mode, and produces iden-
tical object programs for both cases. It follows that
the kind of calculation described in reference to real-
mode working is not permitted. Instead, a COBOL
data division of more than 64K bytes is viewed as
one or more 64K blocks of data followed by a final
segment up to 64K bytes long. Individual data items
may cross the boundary between one segment and
another and, for each item referenced in a procedure
division statement, the compiler determines whether

this is or may be the case (the doubt arises when the
data item is subscripted and the table of which it
forms a part itself crosses a segment boundary). If
boundary crossing is possible, the compiler will gen-
erate code to do one of two things. For small oper-
ands (including numeric operands which have a well-
defined maximum length), if the operand is a source
field for the operation, it is first copied to a dedicated
area within the first data segment and the operation
is performed on this copy. If it is a target operand,
the result is evaluated in the first data segment and
copied into place afterwards. For large operands,
calls are made to specialized routines which do not
assume that data are contained within a single seg-
ment but check whenever they increment data point-
ers to see whether the current segment is exhausted.

COBOL/2 and communication with OS/2”
functions and other languages

One of the major advances offered by os/2 over
earlier DOS versions is the introduction of the Appli-
cation Programming Interface (API). Parameters to
ws functions were passed in the internal registers of
the CPU and could therefore be accessed only through
Assembler programs. Parameters to the os/2 API
functions are passed in a standard way on the ma-
chine stack, which means that high-level languages
such as COBOL may now call the operating system
directly. To give COBOL the flexibility to call any of
these functions, certain syntax extensions have been
found necessary. These are detailed below, and an
example using all of these features follows. These
Same features also enable COBOL programs to call
subprograms written in C and, provided a stack-
based interface is used, Assembler.

Call by value. All parameters to os/2 functions are
passed on the stack. However, the stacked item may
be either the address of the parameter or its value,
and a given function may have parameters of both
kinds.

A parameter whose address is stacked is said to be
passed BY REFERENCE; data passed in this way may
be both read and modified by the called function. If
only the value is stacked, the parameter can serve
only as input to the function, and it is said to be
passed BY VALUE.

One of the extensions introduced by A N S E ~ is the
provision of parameter passing BY CONTENT as well
as the default BY REFERENCE. BY CONTENT is similar
to BY VALUE as described above, in that parameters

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

passed in this way serve only as input and cannot be
modified by the called program. However, it is a
consequence of the ANSI definition that a called
program does not need to know whether the param-
eters passed to it were BY REFERENCE or BY CONTENT.
A BY CONTENT parameter is therefore implemented
by allocating a work area within the data space of
the calling program, into which the parameter is
moved before the call. This copy of the parameter is
then passed BY REFERENCE to the called program,
which may change it while the original data remain
unchanged.

Since BY CONTENT is unsuitable for use in passing
values to os/2 functions, it was necessary to intro-
duce BY VALUE as a new category of parameter-
passing method in COBOL/Z. This method may not
be used to pass parameters to other COBOL programs
since, as mentioned above, there is no way for a
COBOL program to define the kind of parameter it is
expecting as input. A possible extension would be
the provision of syntax of the form

PROCEDURE DIVISION [USING BY REFERENCE ,data-namel,, , . . .I [[BY VALUE 1 1
Pointer variables. Pointer variables are a feature of
the IBM vs COBOL 11 compiler, from which the syntax
used in COBOL/Z is adapted. They are used to hold
pointers to data areas either within or outside the
data space of the program in which they are declared.

The statement

SET pointer-variable TO ADDRESS OF identifier

is used to initialize a pointer variable to the address
of an identifier, while the statement

SET ADDRESS OF linkage-record TO pointer-variable

will map the linkage record onto the address held in
the pointer-variable. Following a SET statement of
this kind, the linkage record, and all data items
contained within it, may be accessed by the COBOL
program in the normal way.

Pointer variables in COBOL/Z are held as four-byte
fields in standard 8086 pointer format, i.e., two-byte
offset followed by a two-byte segment. A special
value NULL is used to indicate a pointer which is not
pointing to any valid address. NULL pointers are
repre:xnted by binary zeros.

Return-code. This is a feature of both vs COBOL 11
and os/vs COBOL. RETURN-CODE is one of a class of
special data items known as “special registers” that
are not declared explicitly in the COBOL data division
but may be referenced within the procedure division.
The value held in RETURN-CODE at the moment when

A different data type, COMP-5, has
been introduced to use the storage

convention of the 8086.

a called program executes an EXIT PROGRAM is passed
back and placed in the RETURN-CODE belonging to
the calling program. This value normally represents
the success or failure of the call, with 0 meaning
success and other values indicating a particular error
code.

In COBOL/Z the return code is passed via the ax
register of the 8086, so that the code generated for
EXIT PROGRAM includes a move from the return code
into the ax register. Similarly, for a COBOL CALL
statement, following the call of the subprogram, the
value of ax is moved into the calling program’s
return code.

Since the os/2 functions always return a value in ax
indicating success or failure, calls to these functions
will automatically set up the COBOL RETURN-CODE
on return.

COMP-5 data. In most environments, binary data
longer than a single byte are stored with the most
significant byte at the lowest address. It is a charac-
teristic of the 8086 series chips that this convention
is reversed so that the machine instruction which
stores a two-byte value to memory will place the
least significant byte at the lower address. As a con-
sequence, most languages implemented on these
chips hold binary values with the least significant
byte first.

In the case of COBOL, COMPUTATIONAL data are stored
in binary form in most implementations, but data

IBM SYSTEMS JOURNAL, VOL 27. NO 2. 1988

items of this type frequently form part of records
written to files, and considerations of portability
dictate that they be stored in the conventional man-
ner, with the most significant byte first. A different
data type, COMP-5, has therefore been introduced
which uses the storage convention of the 8086.

The example in Figure 1 shows how a COBOL pro-
gram can call the operating system to allocate a
shared memory segment and initialize the data so

ANIMATOR is the symbolic
debugger supplied with COBOL/S.

obtained via a linkage section record. Following the
call, independent programs running concurrently,
whether COBOL or not, would be able to access this
shared segment.

COBOLIP and animation

ANIMATOR is the name given to the symbolic debug-

fers a very wide range of functions, perhaps its prin-
cipal strength, and certainly the chief quality aimed
for during its original development, is its “obvious-
ness.’’

In the animation of a program, the first thing the
user sees is a page of the source program presented
on the screen, together with two menu lines listing
the functions available. This screen of text will in-
clude the first executable statement of the program,
which is distinguished by highhghting. From then
on the user can simply type “S” (for Step) to execute
the current instruction and move the highlighting to
the next executable statement. The screen is re-
freshed as necessary so that at each state it includes
this next statement.

When the current instruction is a PERFORM, a Step
would normally cause ANIMATOR to display the text
of the performed routine with highhghting on its first
statement. However, commands are available both

ger supplied with COBOL/2. Although ANIMATOR Of-

162 SALES

to “step over” an entire PERFORM statement and,
once a performed subroutine has been entered, to
complete it and return to the statement following
the PERFORM. The other main execution command
is “Z” (for Zoom), which suspends animation, allow-
ing the user program to execute continuously until
either a breakpoint is reached or the user breaks in
by entering Ctrl Break on the keyboard.

Whatever execution commands are used, any screen
displays generated by the user program are automat-
ically diverted to a separate logical screen which can
be viewed at any time. Any statement requiring
keyboard input will cause the ANIMATOR screen to
be temporarily replaced by the user screen while the
input is in progress.

Breakpoints can be unconditional or conditional in
the sense that they will only be active when a COBOL
conditional expression typed in by the user becomes
true. They may also have an associated iteration
count so that they only take effect when control
passes through the statement a given number of
times. The execution path can be reviewed by means
of a backtracking facility.

Other important commands include “ R (Reset),
which allows program flow to be changed so that
alternative program branches can be tested, and “Q”
(Query), which is used to examine and change the
contents of data items and tables of data items; these
are displayed either in text form (with conversion
for nonDIsPLAY fields) or in hexadecimal form. The
Query command is also used to examine the status
of files and condition-names.

Some of the more advanced features of ANIMATOR
are made possible by the fact that it is integrated
with the compiler, which it can use to parse COBOL
syntax. Thus, the condition associated with a con-
ditional breakpoint can be a combined conditional
expression of any complexity. It is also possible to
set up such a condition which is not attached to a
particular point of the program but is tested after
each statement, with execution halting at whatever
point the condition becomes true.

Another powerful facility which relies on the re-
sources of the compiler is the “D” (for Do) com-
mand, which allows the user to type in a COBOL
statement for immediate execution. These Do com-
mands may alternatively be associated with break-
points, with the effect that they are executed when-
ever control passes through that breakpoint.

IBM SYSTEMS KIURNAL, VOL 27. NO 2, 1988

Figure 1 A COBOLI2 program calling an OS12 API function (in this case DosAllocShrSeg)

working-storage section.
01 num-bytes pic 9 (4) comp-5 value 4096.
01 selector-name.

03 pic x(18) value "\SHAREMEM\COBOLSEG".
03 pic x value low-value.

01 returned-pointer usage pointer value null.
01 redefines returned-pointer.

03 zero-offset pic 9 (4) comp-5.
03 returned-selector pic 9 (4) comp-5.

linkage section.
01 link-record pic ~(32000).

procedure division.

* The specification for DosAllocShrSeg is
* EXTRN WSALL0CSHRSEG:FAR *
* PUSH WORD Size ; Number of bytes requested
* PUSH@ ASCIIZ Name ; Name string
* PUSH@ WORD Selector ; Selector allocated (returned)
* CALL DOSALLOCSHRSEG

* Any parameter without an "@'I sign, such as the size field in
* this example, is expected to be passed by value.
* All other parameters (those with the "@'I sign) must be passed
* by reference (which is the default).
* An ASCIIZ string is a series of ASCII characters terminated
* by a binary zero.
* The function name is preceeded by two underscores, which tell
* the compiler that the function name is an external symbol to
* be resolved by the linker. The compiler will strip these
* underscores from the name.
* As in most other languages, the first parameter specified in
* a COBOL CALL is pushed last, so parameters are written in
* reverse order as compared with the specification above.
* Note the use of reference modification to access only that
* portion of the linkage record allocated by the call.
call I' DOSALLOCSHRSEG" using

*

*

byreference returned-selector

by value num-bytes.
selector-name

set address of link-record to returned-pointer.
move low-values to link-record (1:num-bytes).

IBM SYSTEMS JOURNAL, VOL 27. NO 2, 1988 SALES 163

COBOL/2 and interactive applications

If the most obvious advantage of a small desktop
computer over a mainframe is the immediacy of
interaction with the user, it is important that a
language designed for the small machine should
enable the user to take full advantage of the facilities
available.

One of the microcomputer-oriented features of
COBOL/Z is the screen-section code, which allows the
complete specification of screens in much the same
way that the report-section code allows the definition
of reports. The screen-section syntax of COBOL/~ is
based on that of IBM PC COBOL Version 1.00, but
includes certain extensions such as the use of OCCURS
to allow for display or entry of all the elements in a
table by means of a single ACCEPT or DISPLAY state-
ment.

The following example of a screen section shows
some of the options offered. To make use of these
screens, the procedure division simply uses state-
ments of the form DISPLAY PASSWORD-FORM, which
will clear the screen and display the message

“Please enter password < >,”

and ACCEPT PASSWORD-FORM, which will allow the
user to enter a password. The phrase REQUIRED
prevents processing from continuing until a pass-
word has been entered, while the phrase ENSURE
means that the characters entered are not echoed to
the screen.

The phrase TO P-PASSWORD means that the field
entered will be moved into the data item P-PASS-
WORD, which must be defined in the working-storage
section. Screen-section items declared with the TO
phrase only participate in ACCEPT statements and are
ignored during execution of DISPLAY statements.
Items which are only meant to participate in DISPLAY
statements must use the FROM or VALUE phrase, while
items declared with the USING phrase take part in
both ACCEPT and DISPLAY operations.

Other phrases used in this example include LINE and
COLUMN to define screen position, FULL to indicate
that the field must be entered in full before progress-
ing to the next field, and BLINK, meaning that the
message will be displayed blinking. This last is one
of many options allowing use of the various screen
attributes available on the PC screen, such as under-
lining, reverse video, high intensity and, on a color

164 SALES

screen, all the combinations of foreground and back-
ground color. Figure 2 illustrates the screen-section
code.

COBOL/2 as a systems programming language

If COBOL is best known as a language for data proc-
essing applications, the development of COBOL/~
demonstrates that it can also be effective for systems
programming. The compiler is itself written in

COBOL offers a multiplicity of
storage formats for numeric data

items.

COBOL, as are many run time support functions such
as the indexed file handler, the screen handler, and
even ANIMATOR, the symbolic debugging tool. This
self-residency has played an important role in the
development of the product, encouraging the emer-
gence of new features and exposing problems as they
arise. In particular, ANIMATOR is routinely used to
“animate” itself and is even capable of animating
itself animating itself to any level of nesting.

Among the strengths of COBOL in the context of
systems programming is the simplicity of string ma-
nipulation. This has been much enhanced by the
concept of reference modification introduced by the
A N S ~ ~ standard, which allows any portion of a string
to be accessed directly by specifying a start position
and a length. For instance, the statement MOVE SPACE
TO TEXT-LINE (START-POS: FILL-LENGTH) will move
spaces into the portion of TEXT-LINE starting at po-
sition START-POS and for a length of FILL-LENGTH.
Similarly, the introduction of loop constructs (in-
line PERFORMS) and scope delimiters for conditional
statements (particularly END-IF) has added much to
the pleasure of working with COBOL.

However, COBOL is not like C. It was not designed
with bytes and bits in mind; to support this kind of
low-level working, certain enhancements have been
made to the language.

COBOL offers a multiplicity of different storage for-
mats for numeric data items. In the standard format

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Figure 2 Example screen section code

screen sec t ion .

01 password-form.
02 blank screen
02 value "Please enter password <".
02 p i c x(20) t o p-password, required, secure.
02 value ">".

01 check-f orm.
03 blank screen.
03 l i n e 2 , column 35, value "Check".
03 l i n e 4.
03 occurs 4.

04 p i c x from "<", l i n e , column 10.
04 p i c x(15) using s-to.
04 p i c x from ">".

03 value "Recipient Name and Address", l i n e + 2 , column 6 .
03 value I r < l l , l i n e 14, column 10.
03 p i c zzz,zz9.99 using s-amount, required.
03 value ">".
03 value I' Amount'', l i n e 15, column - 9 .
03 value *'<'I l i n e 5, column 40.
03 p i c x(10) using s-for .
03 value ">".
03 value 'I For", l i n e 6 , column - 9.
03 value It<", l i n e 5, column 60.
03 p i c x(10) us ing s - r e fno , fu l l .
03 value ">".
03 value "Reference", l ine 6 , column - 9.
03 value "Date: ' I , l i n e 14, column 46.
03 value "<", column day-col.
03 p i c zz using s-day, prompt is "d", auto, required.
03 value '*/", column month-col.
03 p i c zz using s-month, prompt is "m", auto, required.
03 Value "/", column year-col.
03 p i c zzzz using s-year, prompt is "y", f u l l , r e q u i r e d .
03 value "> 'I .

01 error-messages, b l ink.
02 clear-msg l i n e 24, blank l ine.
02 msgl l i n e 24, value "Inval id day ' I .

02 msg2 l i n e 24, value " Inva l id month".
02 msg3 l i n e 24, value " Inva l id year 'I.

IBM SYSTEMS JOURNAL, VOL 27, NO 2. 1988

they are held as printable characters (USAGE DIS-
PLAY), with the sign represented either as a separate
character at the beginning or end of the field or as a
transformation of the first or last character of the
field itself.

Most implementations also offer a binary format
(USAGE COMPUTATIONAL or BINARY in A N S ~ ~) and

IMAL). Calculations may be performed on data items
of any of these types and may involve different types
in the same statement. However much the compiler
attempts to optimize such code, it is clear that format
conversions will degrade performance. Even if cal-
culations are confined to binary fields, efficient im-
plementation is hampered by the fact that the ANS
standard requires such fields to behave in the same
way as DISPLAY fields; e.g., a data item defined as
PIC 9 (4) and occupying two bytes should only hold
values up to 9999.

To ensure a true binary format that is not connected
with decimal arithmetic, we have defined a new data

be written either with 9s or with Xs, where each X
indicates one byte. Thus PIC xx USAGE COMP-X is
exactly the same as PIC 9 (4) COMP-X, but gives a
more accurate indication of the nature of the data.
These data items may have any length up to eight
bytes and are treated as unsigned numeric data. The
only thing that differentiates them from normal nu-
meric items is the fact that they are subject to binary
and not decimal overflow. This means that subtract-
ing 1 from an item declared as PIC x COMP-X and
containing a value of 0 will give a result of 255;
adding 1 to it when it contains 99 will give 100.

Manipulation of bits within these fields is made
possible by a number of system calls which perform
such functions as unpacking the eight bits of a byte
into eight contiguous bytes, rotating by a given num-
ber of bits, etc. There is some overhead in the use of
CALLS, and simple language extensions to provide
the logical operations of OR, AND, and XOR would be
of benefit to programs making heavy use of bit
manipulation.

Several options are available for optimization of
suitably written COBOL programs. Among these is
the NOTRICKLE option, which allows for fast execu-
tion of PERFORM statements by compiling the per-
form into an 8086 CALL instruction. All paragraphs
or sections which are used as the end of a perform
range, such as A in the statement PERFORM A and c

packed decimal (COMPUTATIONAL-3 Or PACKED-DEC-

type, COMP-X. The PICTURE string for such data may

166 SALES

in the statement PERFORM B THROUGH c , have an
8086 RET instruction planted after their last statement.

This optimization is not possible when a program
contains a statement such as PERFORM A and where,

OS/2 allows several COBOL
programs to be run concurrently.

in other circumstances, control is expected to fall
through, or “trickle,” from A into the succeeding
paragraph, as would be the case if the program also
contained the instruction PERFORM A THROUGH B.

Translation of PERFORMS into CALLS allows the PER-
FORM to be used recursively, and the compiler makes
some use of this possibility, for instance when dealing
with arithmetic and conditional expressions. The
program shown in Figure 3 demonstrates the use of
PERFORM recursion to calculate the factorial for a
number entered by the user. As in most examples of
recursion, it could be coded more simply using a
loop, as shown in the figure.

COBOL/2, file sharing, and network
communication

os/2 is a multitasking operating system, allowing
several COBOL programs to be run concurrently on
the same machine. If these programs make use of
the same files, it is necessary to have a means by
which one program can prevent the others from
accessing files, or particular records within files, while
it is making modifications. This is also important
when machines are connected together on a network.
In this case one or more of the machines may be set
up as a “server,” meaning that all its fdes or files
belonging to particular subdirectories are available
to any other machine on the network. Once a com-

on the server, the directory DIRl becomes known on
the network by the name XYZ; any other machine
can then issue a command such as NET USE E: server
XYZ and access the files on the server directory xyz
using the name e.jile-name.

mand such as NET SHARE DIRl XYZ has been issued

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

~

Figure 3 Example of a PERFORM recursion
______ _ _ _ _ _ ~ ~ ~-

working-storage section.
01 nl p i c 9 (4) .
01 n2 p i c 9(18).
procedure division.

display “Enter number: I’ with no advancing accept nl
move n l t o n2
perform p l
i f n2 = 0

else

end-if
stop run.

subtract 1 from nl
multiply nl by n2
on size error

move 0 t o n2
endlsultiply

i f nl > 1
perform p l

display “Number too large”

display “Factorial * I‘ n2

P l

end-if.

In COBOL/Z, record locks may be obtained when a
record is read to prevent anyone else from accessing
that record until the lock is released. The SELECT
statement for a file may include the phrase LOCK
MODE IS AUTOMATIC, meaning that locks will be
applied automatically to each record read, or LOCK
MODE IS MANUAL, meaning that a lock will only be
applied if the READ statement uses the WITH LOCK
phrase. Additionally, the file may be defined as hav-
ing LOCK ON RECORDS, meaning that each successive
access to the file will release any previous locks, or
LOCK ON MULTIPLE RECORDS, in which case locks are
only released by means of the UNLOCK statement,
which releases all locks on a specified file, or the
COMMIT statement, which releases all locks on all
files. COBOL/Z also permits a whole file to be locked,
either by means of a LOCK MODE IS EXCLUSIVE phrase
in the SELECT statement, or by specifying EXCLUSIVE
in the OPEN statement.

Besides these facilities for sharing liles, COBOL/~ also
includes a means of passing messages between differ-
ent programs running on a network, using one of
the least-known and least-used areas of the COBOL
language, the COMMUNICATIONS module.

The lack of interest in the COMMUNICATIONS module
is no doubt due partly to the complexity of the
language definition, but perhaps also to its lack of
usefulness. In previous COBOL compilers on micro-
computers, this facility was certainly implemented
more because it was a requirement for ANS certifi-
cation than because it had been demanded by users.

The ANS definition of COMMUNICATIONS, in both the
1974 and 1985 standards, speaks in terms of com-
munication between a COBOL program on one side
and a “communication device” on the other.
COBOL/Z makes the relation symmetrical by allowing

IBM SYSEMS JWRNAL. VOL 27, NO 2, 1988 SALES 167

Figure 4 Simple introductory COBOL program

Select inf i le ass ign infile-name line sequential.
f d i n f i l e .
01 in-rec p i c ~(120).
working-storage section.
01 eof -f lag pic 99 comp.
procedure division.

display “Enter f i l e name: ‘I with no advancing accept inf ile-name
open input f i l e
move 0 to eof-flag
perform until eof-f lag not = 0

read inf i l e
at end
move 1 to eof-f lag
not at end
display in-rec

end-read
end-perf orm
stop run.

the “communication device” to be another COBOL
program executing remotely on a networked ma-
chine, thus giving COBOL programs the ability to talk
to one another over the network. Although the com-
plete syntax for COBOL communications is complex,
a simple subset is enough to establish contact be-
tween two such COBOL programs and pass messages
between them.

Communication is initiated on both sides by means
of the ENABLE verb and continues thereafter by
means of SEND and RECEIVE verbs. Message destina-
tions are defined within the COBOL program with
symbolic names, and before the program can be run,
the actual name must be associated with this sym-
bolic name. Thus, the symbolic destination for a
program sending messages is defined within the pro-
gram, and this must be associated with the actual
destination, which is another COBOL program. This
association is established by running a utility pro-

gram called MCSETUP, which creates an information
file for each of the programs. The use of symbolic
names means that network configurations can be
altered without having to change the COBOL pro-
grams.

COBOL/S as a vehicle for teaching

Since COBOL is widely regarded as a verbose language,
it seems appropriate to start with the most simple
program that can be created using COBOL/Z:

Procedure division.
Display “hello world.”

This program, which will simply display the message
and stop, is not very useful in itself, but perhaps
serves as a better introduction to computer program-
ming than the normal approach to COBOL through a

IBM SYSTEMS JOURNAL, VOL 27. NO 2, 1988

solemn discussion of the identification, environ-
ment, data, and procedure divisions. In COBOL/2
none of these divisions is actually required (though
the program will not do anything without the pro-
cedure division) and, if they are put aside initially,
COBOL is revealed as being just as simple to use as
BASIC or Pascal, though it offers unlimited growth to
the novice programmer.

Creation of more realistic programs still requires a
minimum of red tape, as can be seen from Figure 4,
which reads a text file and copies its concepts to the
screen. Note the use of lowercase letters, which some
feel improves the readability of the program. Since
the compiler in fact takes no notice of case, the user
is free to adopt whatever convention is preferred.

This little program owes much of its simplicity to
new features introduced by the A N S ~ ~ COBOL stand-
ard. In particular, the in-line perform statement per-
mits the loop to be written without resorting to GO
TOS and paragraph names. The alternative “not at
end” branch of the READ statement serves a similar
purpose since, in its absence, it would be necessary
for the “at end” branch to jump off somewhere in
order to avoid the display.

As a result of these and other improvements in the
language, it is now possible to write well-structured
COBOL programs to satisfy the most ardent advocate
of “structured programming.” It is perhaps still true
that COBOL gives more scope than most languages
for bad practices, but these practices can be avoided.
The ALTER verb is part of the history of COBOL and,
despite the temptation to withdraw it, remains a part
of COBOL for historical reasons. But the need to
support old programs does not mean that anyone
should consider using such constructs in new pro-
grams.

The essential character of COBOL is a sequential,
narrative style which is very close to the style of
current machine languages (a COBOL “move” is sim-
ilar in purpose to an 8086 “mov” even though it
operates on much more complex entities). This nar-
rative style, which makes COBOL such an intuitive
language for a first approach to computing, is ex-
ploited and emphasized by ANIMATOR, the symbolic
debugging tool discussed earlier. ANIMATOR is an
excellent way to provide insight into the way in
which a computer program functions.

Personal System/2 is a registered trademark, and OS/2 is a trade-
mark, of International Business Machines Corporation.

IBM SYSTEMS JOURNAL, VOL 27. NO 2, 1988

General reference

American National Standard X3.23, Programming Language
COBOL ANSI, ANSI COBOL Committee, ANSI X3.24, 1985.

Robert Sales Micro Focus Inc.. 2465 E. Bayshore Rd., Palo Alto,
California 94303. Mr. Sales has been with Micro Focus since 1979
and has been involved in developing and evolving most compo-
nents of the Micro Focus COBOL system, including the original
design and implementation of the ANIMATOR debugging tool in
1981. During 1985 and 1986 he was leader of the software group
that developed the IBM COBOL/2 compiler. He graduated from
the University of Cambridge, England, in 1971 with a degree in
mathematics and completed a postgraduate course in number
theory at Cambridge during the following year. Before joining
Micro Focus, Mr. Sales worked as a mathematics teacher in
London, as an English teacher in Rome, and with MAEL Com-
puter in Carsoli, Italy, as a technical writer and software developer.

Reprint Order No. G321-5316.

