Writing an
Operating System/2
application

This paper illustrates use of the key facilities of
Operating System/2™ (OS/2™). It provides some guid-
ance on how to use the interfaces and functions imple-
mented by the system and then introduces the pro-
gram development environment. Two examples demon-
strate the use of some of the more interesting capabili-
ties. The paper discusses many of the significant differ-
ences between the functions of OS2 and those of the
Disk Operating System (DOS).

Anew operating system must provide a way for
its users to convert existing applications and to
develop new ones. There must be suitable interfaces
to the functions provided by the system, in addition
to the programming tools that are needed to create
executable code.

Operating System/2™ (0s/2™) offers the program-
mer a comprehensive set of interfaces. In addition,
programming languages and tools provide the means
for creating 0s/2 applications.

Since 08/2 is intended to be a general-purpose oper-
ating system for Intel 80286-based personal com-
puters such as the 1BM Personal System/2®, it has
many functions, and rules and principles guide the
application developer in the use of the various fea-
tures of the system.

Using the new features of 0S/2

Although much in 0s/2 should be familiar to 1BM
Personal Computer Disk Operating System (DOS)

134 cook T AL

L. Cook

L. Rawson lll
A. Tunkel

L. Williams

by R.
F.
J.
R.

programmers, many new features have no analog in
pos. The creation of reliable and efficient applica-
tions requires that these facilities be used in the
manner intended by the 0s/2 designers. The follow-
ing discussion, though not all-inclusive, touches
upon those areas that have proven to be the most
important to designers of 0s/2 applications.

For more information on the design of 0s/2, includ-
ing a more detailed presentation of its terminology,
see the paper in this issue by Kogan and Rawson.!

Performing tasks. 0s/2 multitasking uses the con-
cepts of processes and threads.

A process represents the execution of a program.
Processes have an identifier known as the Process 1D
(r1D), which is often needed when requesting services
from 0s/2. A process owns resources—storage, files,
pipes, queues, semaphores. A process also has at least
one thread of execution. Processes are protected
from other processes by 0s/2 and the 80286 processor
architecture, and coordinate their actions by means
of the synchronization mechanisms described in the
next subsection.

© Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

A thread is the unit of dispatchability within 0s/2.
Threads have an identifier known as the Thread ID
which is only valid within a process. Whenever a
Thread D is used in a request for 0S/2 services, it is
assumed to refer to a thread within the current
process. Threads, in general, do not own resources;
threads use the resources of their process. Threads
have full access to the resources of their process and
thus are not protected from other threads within the
same process. Threads can cooperate with other
threads within the same process through the use of
synchronization mechanisms.

Processes require allocation of resources when they
are started. Hence, there is inherent overhead in
starting a process. Threads can be created and de-
stroyed rapidly with little overhead.

0s/2 provides various services that may be used to
manage processes and threads. The following ser-
vices are primarily used to manage processes:

DosExecPgm starts a program, executing it as a new
process. The requesting process can either continue
executing asynchronously, or it can wait for the new
process to terminate.

DosExit ends the current thread within the current
process or the current process and all threads under
it, furnishing a Result Code to any thread which has
issued a DosCwait for this Process ID. Even a process
that has not created any additional threads should
issue a DosExit for the entire process rather than for
the thread, since it is possible that a subsystem or
0s/2 itself has created additional threads on behalf
of the process.

DosKillProcess requests the system to terminate the
indicated process and, optionally, any child proc-
esses. If the indicated process has a SigTerm signal
handler, which is set by the DosSetSigHandler func-
tion call, it may intercept the Kill Process request
and decide whether to terminate at this time.

DosGetInfoSeg retrieves system-wide and local vari-
ables of the process under which it is invoked. This
call provides pointers to two read-only areas which
may be directly read by the process. The information
available includes date and time, 0s/2 version infor-
mation, information on current and active sessions,
process IDs, and process and thread priority.

The following services are primarily used to manage
threads:

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

DosCreateThread creates another asynchronous
thread of execution within the current process. The

Time-critical threads execute before
any other execution classes.

new thread is of the same priority as the current
thread and has equal access to any process resources.

DosSetPrty sets the execution priority or priority
class of a process or of a thread. There are three
priority classes, and each class has 32 priority levels,
In descending order, these classes are

1. Time-critical
2. Regular
3. Idle-time

Time-critical threads execute before any other exe-
cution classes. 0s/2 never modifies the priority of a
time-critical thread: Only an explicit request using
DosSetPrty can change its priority. Regular threads
have a base priority level, but 0s/2 modifies this level
around the base in order to most effectively allocate
the processing resources of the system. Effective al-
location ensures optimum user responsiveness. Idle~
time threads are of the lowest-priority class and, like
the time-critical class, have static priority levels.
Most processes and threads should belong to the
Regular priority class.

DosCwait waits until a child process has ended and
then returns the Process 1D and the Result Code of
the ending process.

DosSuspendThread suspends the execution of an-
other thread in the same process. The target thread
is not suspended until it has released any system
resources it may be using. The thread can be restarted
by issuing the DosSuspendThread function call.

Handling critical sections and task synchronization,
The problem of mutual exclusion is well-known in
the computer science literature. Any system that
provides multitasking capabilities must also provide

cook ET AL 135

mechanisms for guaranteeing mutually exclusive ac-
cess 1o resources by several processes or threads. An
example is the manipulation of a linked data struc-
ture that is accessible to multiple threads.

0s/2 provides several such mechanisms. The simplest
mechanism permits a thread to suspend the dispatch-
ing of all other threads in its process. A critical
section of execution is defined as a set of instructions
whose sequential execution cannot be interrupted by
other threads in the same process. To accomplish
this, a thread may issue a DosEnterCritSec function

Differences between RAM and
system semaphores are primarily in
performance and reliability.

call, which disables thread switching for the current
process. Thread switching can be enabled after the
critical section of code has completed execution by
issuing the DosEXxitCritSec function call. To prevent
deadlocks, a thread should not make 0s/2 system
calls while in a critical section.

An advantage of this mechanism is that it does not
require the cooperation of the other threads in the
process. A disadvantage is the easy creation of dead-
lock situations if the critical section thread waits for
a semaphore “owned” by another thread in the proc-
ess. Since subsystem services are often serialized by
means of ssmaphores, two threads using a subsystem
(for example, the video subsystem) could deadlock
if one of them makes a video call within a critical
section.

A more general synchronization mechanism is pro-
vided through the use of semaphores. Semaphores
are objects that can be owned, unowned, set, and
cleared atomically. Semaphores require that the
processes or threads cooperate in their use of the
resource. This cooperation takes the form of explicit
requests and releases of the ssmaphores. The state of
a semaphore at any given time is unambiguous.

136 coox eT AL

0s/2 provides two types of semaphores: random
access memory (RAM) semaphores and system sem-
aphores. A number called a handle represents a
semaphore to a program. A RAM semaphore is a
minimal-function, high-performance mechanism al-
lowing two or more threads, or processes accessing
shared memory, to synchronize through a double
word in memory. A system semaphore is a full-
function mechanism allowing synchronization
among any processes or threads in the 0s/2 system.
The storage for the system semaphore data structure
is allocated and managed by 0s/2.

The differences between RAM and system semaphores
are primarily in performance and reliability. RAM
semaphores are intended to be used by threads
within a process. Since the handle used to access a
RAM semaphore is actually the semaphore address,
access is very fast. However, RAM semaphore own-
ership is not tracked by 0s/2, and should the owner
of a RAM semaphore end abnormally, or end without
releasing the semaphore, 0s/2 does not recover the
semaphore nor give it to the next thread requesting
it. System semaphore ownership and allocation are
tracked and managed in protected system storage.
Should the owner end without releasing the sema-
phore, 0s/2 has the ability to release the system
semaphore on its behalf and notify the next thread.

RAM semaphores are created by allocating a double
word of memory within the address space of the
application and initializing it to zero. System sema-
phores are created by 0s/2 upon the request of a
process. DosCreateSem creates a new system sema-
phore. A system semaphore must be created before
any process can use it. Once it is created, other
iprocesses must OPEN it before they can use it. The
" Exclusive option allows the creation of a ssmaphore
that may only be cleared by the owner. DosOpenSem
opens a system semaphore and returns a handle to
be used by the current process when accessing the
semaphore. DosCloseSem closes a system sema-
phore. Even though 0s/2 closes system semaphores
for a terminating process, the process should en-
deavor to close the semaphores itself as part of its
termination.

Once a system semaphore has been created by 0s/2,
or a RAM semaphore has been allocated in memory,
the same set of semaphore function calls is used to
manipulate it. DosSemRequest requests a ssmaphore
and, optionally, waits if it is already owned. If the
semaphore is unowned, it is set “owned.” Later the
semaphore may be set “unowned” with the Dos-

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

SemClear function call. The double-word data struc-
tures for RAM semaphores should be initially set to
0, “unowned.” If the required initial state is to be
“owned,” the application should issue DosSemSet.
When system semaphores are allocated, they are also

A process can specify a signal
handler to intercept specific signals.

initialized to unowned. If the required initial state is
to be owned, the application should issue DosSemSet
immediately after obtaining the semaphore handle
with DosCreateSem.

DosSemClear releases the semaphore. If any threads
were waiting for the ssmaphore to become unowned,
they are made dispatchable in the order in which
they requested the semaphore. This call uncondition-
ally clears the semaphore regardless of its current
state. DosSemClear cannot be issued against an ex-
clusive system semaphore that is owned by another
thread.

DosSemSet sets a ssmaphore as owned.

DosSemSetWait sets a semaphore as owned and
waits until another thread issues a DosSemClear for
this semaphore.

DosSemWait waits for a semaphore to be cleared.
The semaphore is not marked owned.

DosMuxSemWait waits until one of a list of sema-
phores is cleared. DosMuxSemWait does not set any
of the semaphores owned. If any of the list of sema-
phores is clear, DosMuxSemWait returns immedi-
ately; otherwise, the thread is blocked until one of
the semaphores is cleared.

All of the semaphore wait function calls, except
DosMuxSemWait, return only if the subject sema-
phore has been cleared and remains cleared until the
waiting thread is dispatched. It is possible for a
subject semaphore to be cleared and set again before
a waiting thread is dispatched; the thread continues

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

to wait. DosMuxSemWait returns whenever any of
the semaphores on its list is cleared, regardless of
how long it may remain cleared. Therefore, it is
possible for DosMuxSemWait to return from waiting
and find that the triggering semaphore is set again.

Dealing with external events. 0s/2 signals provide a
way for the system to notify a process of an asyn-
chronous, external event and for the process to han-
dle the event if desired. Events that can appear as
signals to a process are the pressing of either the Ctrl-
Break keys or the Ctrl-C keys on the keyboard or
calis to DosFlagProcess or DosKillProcess that point
to the process as their target.

A process can specify a signal handler to intercept
specific signals. Incoming signals are handled either
by default action or by the signal-handler routine.
The default action for some signals is to ignore the
signal; for others it is to terminate the process. If a
signal handler has been specified, thread 1 of the
target process, the original thread which was created
when the process was created, is diverted, in a man-
ner similar to a hardware interrupt, to the proper
signal-handler routine.

Incoming signals are presumed by the system to
represent a time-critical event. If thread 1 is in the
middle of a system call that cannot complete quickly,
the system call is aborted, and control is passed to
the proper signal handler. Typically, the calls that
are aborted in this manner are device 1/0 calls,
semaphore waits, and DosSleep. File system calls are
not normally aborted.

An application that expects to make nonemergency
use of signals, through DosFlagProcess for example,
should reserve thread 1 and use another thread for
program execution. Thread 1 is reserved by having
it wait for a semaphore that is never cleared.

Processes may, by agreement, define external events
which one process may signal to another. Dos-
FlagProcess provides the mechanism for activating
the signal. Three flags, or signals, may be sent with
DosFlagProcess—Flag A, Flag B, and Flag C. Addi-
tionally, a one-word argument of undefined seman-
tics may be sent along with the signal. If the target
process has not set an appropriate signal handler, the
default action, ignore, is processed. Otherwise, the
signal is handled by the signal handler.

The Ctrl-Break or Ctrl-C signals may be sent to a
process subtree, a collection of child and sibling

cook et aL. 137

processes originating at a root process, by the func-
tion call DosSendSignal. The signal is given to the
last-created child process in the subtree that has a
corresponding signal handler. If, in the search for
this process, the issuer of the DosSendSignal is
checked, an error code is returned.

In many ways, processing of signals is analogous to
the processing of interrupts. The requirement exists
to disable and enable signal processing to protect
critical sections of code. DosHoldSignal can be is-
sued with a disable request to postpone the process-
ing of all signals until it is again issued with an enable
request.

DosSetSigHandler, the primary function call for sig-
nals, can install signal handlers for a process, install
the default signal action, install an ignore action for
a signal, or reset signal handling after the receipt of
a signal. When activated by its associated signal, a
signal handler must itself issue DosSetSigHandler
with the appropriate action code to acknowledge the
signal and re-enable recognition of that signal.

The signal to terminate may be sent to a process by
invoking the system call DosKillProcess. If no
SigTerm signal handler has been set by the target
process, the effect is the same as if one of the threads
of the process had issued a DosExit for the entire
process.

Managing memory in an application program. Many
aspects of application program memory manage-
ment for 0s/2 should be familiar to DOS program-
mers, many are new to DOS programmers but may
be familiar to users of mainframe systems, and some
originate with 0s/2. The 0s/2 memory model is based
on the Intel 80286 architecture which defines storage
as segments. Segments are contiguous regions of
storage of variable length ranging in size from 1 byte
to 64K bytes.

08/2 provides four main memory management ser-
vices to the application programmer.

Functions exist in 0s/2 to allocate and deallocate
segments of storage at the request of the application.
A segment is identified by a 16-bit value called a
selector. Segments are allocated in varying sizes up
to 64K bytes, but the capability also exists to handle
large storage needs by allowing the allocation of
multiple 64K-byte segments. Programs may not treat
multiple segment allocations as contiguous memory.

138 coox er AL

Segments allocated by one process may be shared
among several processes. Segments may be shared
by name or by passing selectors.

Data segments marked as discardable may be cre-
ated, and they can be discarded by 0s/2 during
periods of high storage use. Discardable data seg-
ments should only be used when the data that they
contain can be quickly regenerated. When discard-
able segments are being used by an application, they
should be locked, thus preventing them from being
discarded until they are unlocked. If a program
attempts to lock a segment that has been discarded,
it receives an error code from 0s/2, indicating that
the segment has been discarded.

In general, 0s/2 memory management handles entire
segments. Quite often, however, an application needs
to subdivide its segment allocation into smaller
data-element-sized units. 0s/2 provides a standard
mechanism for achieving this downsizing without
incurring the overhead of segment allocation. Sub-
allocation provides a high-speed mechanism for
managing storage within a segment.

Allocating memory. DosAllocSeg allocates a memory
segment ranging from 1 byte to 64K bytes. The
segment thus allocated can be flagged via Dos-
GiveSeg or DosGetSeg as sharable and/or discard-
able. If the allocation is successful, a selector is
returned pointing to the allocated segment.

DosFreeSeg can be used to free (unallocate) shared
or unshared memory segments. When freeing seg-
ments, 0S/2 decrements a usage count. When the
count reaches zero, the segment is freed.

The size of storage segments can be changed as
desired by the application within the range of 1 byte
to 64K bytes by using DosReallocSeg. However, if a
segment is shared, it may only be increased in size.
Issuing DosReallocSeg for a segment that is discard-
able causes it to be locked in storage.

DosMemAvail returns the size of the largest available
block of free storage at the moment of execution.
Since this value is likely to vary at any time as a
function of system activity, it should be used as an
approximation.

Allocating objects as discardable allows the memory
manager to reclaim their space when the system is
low on memory and they are not locked. Prior to
using a discardable segment, an application should

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

lock it with DosLockSeg. A locked discardable seg-
ment may still be swapped to disk if necessary, but
it is not discarded until unlocked with a Dos-
UnlockSeg request. Locking a discarded segment
results in an error code. The application must then
reallocate the segment and rebuild the data, if nec-
essary. A use count is kept of the Lock and Unlock

0S/2 can make large amounts of
memory available to an application.

requests issued for a discardable segment. If the use
count reaches 255, the segment is considered to be
permanently locked.

Sharing memory. Memory is shared on a segment
basis. There are two sharing mechanisms, one based
on names and the other on selectors.

Processes can share named segments by agreeing on
names and then obtaining the memory with
DosAllocShrSeg or DosGetShrSeg. The naming
convention used for named segments is the same as
the file-system naming convention, although no
files are involved. Shared segments must all be
named \SHAREMEM\nnnnnnnn.eee, where n and e
conform to the file-system name rules.

Processes can share unnamed segments by allocating
them as “sharable by GetSeg” or “sharable by
GiveSeg.” Additional interprocess communication is
required to pass the sharable selectors among the
cooperating processes.

If it is assumed that a segment is allocated as “shar-
able by GetSeg” and that the selector to that segment
has been passed to the current process, access to that
segment can be obtained by issuing DosGetSeg.

DosGiveSeg is analogous to DosGetSeg, except that
the segment must be allocated as “sharable by
GiveSeg,” and the process ID of the sharing process
must be available. Typically the sharing process is a

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

child of the current process. The selector of the child
process to the shared segment is passed to the process
through some means of interprocess communica-
tions unrelated to the shared segment in question.

Allocating huge segments. 0s/2 has the ability to
make large amounts of memory available to an
application. Huge allocations simplify use of mem-
ory objects greater than 64K bytes. A huge allocation
is a group of 64K-byte segments that can be allo-
cated, shared, and freed as a unit. The selectors that
point to the segments of a huge allocation are algo-
rithmically derived from the selector that points to
the initial segment of the allocation.

DosAllocHuge allocates a number of 64K-byte seg-
ments. The segments may, as a group, be “sharable
by GiveSeg,” “sharable by GetSeg,” or discardable.
Whenever any selector of a huge allocation is shared,
locked, or discarded, the operation is performed on
all selectors of the allocation. The segments are al-
located with noncontiguous selectors, and only the
first selector is returned to the requestor. The selec-
tors to the succeeding segments can be calculated
from the first selector and a shift count by the
following algorithm:

Obtain shift count by issuing DOSGETHUGESHIFT

Place the value 1 in a register and shift left by the
shift count

Add this value to the previous selector to obtain the
next selector

DosGetHugeShift returns the shift count to be used
in the algorithm required to calculate the selectors
needed to access a huge allocation.

DosReallocHuge expands or reduces the size of a
huge allocation (up to the maximum specified in the
original allocation). The algorithm used to calculate
selectors remains the same, but more or fewer valid
selectors may be available.

When freeing segments obtained with DosAlloc-
Huge, supplying the selector to the first segment frees
the entire set of selectors for the huge storage.

Segment suballocation. Subdividing memory within
a segment is something that DOS programs have
typically had to do for themselves. 0s/2 provides a
simple high-speed mechanism that has little system
overhead. Segment suballocation cannot be used
across a huge allocation.

cook ET AL. 139

DosSubSet initializes a segment for suballocation.
This function is also used if the size of a segment is
expanded.

DosSubAlloc and DosSubFree respectively allocate
and free intrasegment memory. Memory is managed
in units of four bytes.

Program access to hardware. It has been common
practice on single-tasking systems such as DoOs for
application programs to query and control hardware
devices directly. This activity is not desirable on
0s/2 because of the potential for conflict among
concurrently executing programs. 0S/2 programs
typically access hardware by making requests to
0s/2 subsystems, for example, the video, mouse, or
keyboard subsystems, or device drivers through the
Device 1/0 Control (DosDevIOCtl) Interface. There
are, however, situations in which direct hardware
access is necessary, and 0s/2 provides two mecha-
nisms for doing so.

The primary mechanism for accessing and control-
ling hardware devices is the device driver. There are
0s/2 device drivers to support the standard 18M hard-
ware for the Personal Computer AT®, the Personal
Computer x1/286, and the Personal System/2
Models 50, 60, and 80. For special-purpose adapters
and devices, the programmer must write specific
device drivers. See the paper in this issue by Mizell
for a description of 0s/2 device drivers.?

The Intel 80286 processor architecture defines four
privilege levels for programs and data. These privi-
lege levels are called rings and are numbered 0
through 3. Device drivers run at the most privileged
level of the processor, Ring 0, and have complete
access to the hardware and hardware interrupts that
are generated by adapter cards. Device drivers are
the only system component that can receive hard-
ware interrupts. The 1/0 Control function call,
DosDevIOCtl, is provided to permit application pro-
grams and subsystems to communicate with device
drivers.

In some applications the program may need to access
hardware directly, yet has no need to process device
interrupts. Examples of such programs are full-
screen graphics applications that directly manipulate
the video hardware, including the video controller
registers. To implement these applications on 0s/2,
one creates a separate code segment containing the
code that does the 1/0 instructions and gives it 1/0
privilege, or IOPL. 10PL code segments run at the

140 coox ET AL

Ring 2 privilege level and can issue the 80286 1/0
instructions IN and OUT. I0PL code segments are also
used in building subsystems that work in conjunc-
tion with device drivers to provide device support.
Although Clear Interrupt (CLI) and Set Interrupt (STI)
instructions may be issued from 10PL code segments,

0S8/2 provides both dynamic linking
and independently loadable
segments.

these instructions do not guarantee atomicity of
execution, since Not Present faults for swapped seg-
ments may occur when loading segment registers. It
is a better coding practice to use semaphores to
control access to critical sections of code.

The 0S/2 development environment

0s/2 and its associated language and toolkit products
offer a program developer a complete set of devel-
opment tools for converting DOS applications and
writing new applications. The 0s/2 development en-
vironment should be familiar to programmers who
have written software for Dos. Many of the concepts
are similar, and the programming tools are enhanced
versions of their DOS counterparts. In fact, it is pos-
sible to use the 0s/2 programming tools to create DOS
programs.

The 0s/2 program developer may choose from a
number of language processors that run on 0s/2 and
can generate object code for either 0s/2 or DOS. The
new 0S/2 language processors are /2, COBOL/2, FOR-
TRAN/2, Macro Assembler/2, Pascal/2, and BASIC
Compiler/2.

The 0s/2 Linker is based on the pos Linker, but it
provides new features to support the new facilities of
0s/2. Unlike DOS, 08/2 provides both dynamic link-
ing and independently loadable segments. Dynamic
linking is an 0s/2 facility which allows /ate binding
of program segments. The binding between segments
can be delayed until load time, run time, or until

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

needed during program execution. This delay is an
advantage because binding may never actually occur
in some cases. Segments may be statically linked into
the executable module as in DOSs, dynamically linked
and preloaded by the 0s/2 program loader at pro-
gram initiation, dynamically linked and loaded on
call when an actual reference is made by the pro-
gram, or explicitly loaded by the program using the
facilities of 0s/2.

Dynamic Link Libraries are repositories of code and
data segments created by the Linker from the object
modules produced by the language translators. Ap-
plication programs may explicitly import code and
data segments at load time or run time. 08/2 provides
a number of its facilities using dynamic link libraries,
and programmers may create their own if desired.

Family Applications. The developer may wish to
create applications that can execute on either DOS or
0s/2. 0s/2 applications that restrict themselves to a
defined subset of the 0s/2 interfaces called the Family
Application Programming Interface, or Family API,
may be implemented in such a way that either DOs
or 0s/2 can load and execute them.

The os/2 Toolkit provides the mechanism for build-
ing such Family Applications. The functions of the
Family AprI are 0s/2 functions and are implemented
directly by 0s/2. On DOS a layer of mapping code
maps each function to a corresponding DOS or Basic
Input Output System (BIOS) programming interface.
As a result, the program executes correctly on either
DOS Or 08/2.

The Family APl mapping is created by an 0s/2
Toolkit utility called the Family Ap1 Binder (BIND).
The BIND utility is run after the compile and link
steps. Its input is the 0s/2 application (.EXE) plus the
Family AP1 mapping library (AP1.LIB), and it produces
a Family Application (.EXE) version of the same
program. The 0s/2 Loader will load only the 0s/2
segments of the .EXE file, whereas the DOS Loader
will bring into memory all the code necessary for the
applications to run in a DOS system.

Message files. Modern programming practice dic-
tates that text strings, such as user messages, should
not be inextricably bound into a program. Rather,
they ought to be gathered together into data objects,
separate from program logic, where they can easily
be modified without danger of impacting any of the
program. Following this practice also allows simple
language translation of application programs: Only

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

the data objects that contain the messages need to
be modified during the translation process.

The os/2 Toolkit provides two utilities for creating
such objects in the form of message files and message
segments, and the 0s/2 system provides function calls
to retrieve, modify, and display these messages. 0s/2
uses this mechanism for all of its own messages and
is distributed in versions with 11 different message
files to support 11 national languages.

The utility Make Message File (MKMSGF) converts
an ASCII text message file created by the programmer
or the message translator into an indexed file suitable
for rapid retrieval by the DosGetMessage function
call. The utility Message Bind (MSGBIND) places mes-
sages from the message file into a message data
segment that is bound to an executable module. This
is useful for those instances when very rapid display
of messages is required or when, for diskette-resident
programs, the disk containing the message file is not
available. Programs that use bound messages are
guaranteed that the messages are in storage when the
program is executing. Since the DosGetMessage
function call checks for the message in the message
segment before accessing the message file, no pro-
gramming changes are required to use the MSGBIND
utility.

Implementing some simple programs

This section presents two 0s/2 programs. The first is
a simple application which demonstrates some mem-
ory-allocation techniques. The second is a more
complex program using some of the multitasking
and synchronization facilities of 0s/2.

Since real applications are too large to present in this
paper, the programs are shown in simplified form.
Although these programs are written in 1BM C/2 and
have been run on 0s/2 Standard Edition Release 1.0,
not everything necessary to compile, link, and run
them is shown here. In particular, the link and bind
steps are not described in any detail. Also, only those
data declarations necessary to explain the 0s/2 pro-
gramming techniques are included in the listings.
The other declarations are contained within the IN-
CLUDE files but are not completely shown. The pro-
grams are presented in a manner that highlights the
0s/2 function calls, rather than the program logic.
For this reason, although all 0s/2 system calls return
error codes which can and should be checked, no
error checking is shown. Finally, some concurrent
programming practices have been simplified, thereby
allowing certain race conditions to exist.

cook T AL 141

Figure1 High-level logic for memory management example

DISPLAY THE PROGRAM TITLE

GET THE FILE NAME FROM THE COMMAND LINE
GET THE FILE SIZE

ALLOCATE THE NECESSARY MEMORY

READ THE FILE INTO MEMORY

CALL THE SORT ROUTINE

WRITE MEMORY OUT TO A TEMPORARY FILE
DELETE THE OLD FILE

RENAME THE NEW FILE TO THE OLD FILE NAME
TERMINATE THE PROGRAM

A memory management example. Figure 1 shows the
outline of a simple in-storage sort program that uses
the memory management features of 0s/2—the sort-
ing routine itself has been omitted. The C source
code is given in Appendix A.

Parameter passing. Command line parameters in
05$/2, unlike their DOS counterparts, must be obtained
from the environment segment. On entry to the
program, the AX register contains the selector to the
environment segment and the BX register contains
the offset to the command string. However, when
programming is being done in C, standard conven-
tions are used for passing command line parameters.

File system. Using the 0s/2 file system is similar to
using the handle-based 1/0 system of pos. However,
the system calls are more powerful; for example, the
OPEN function call, DosOpen, attempts to open a file
and, if it does not exist, can create it. DOS requires
that the program use separate function calls for OPEN
and CREATE. Information about a particular file is
obtained with a query to the file system, DosQFile-
Info, and the required information is in the data
structure addressed by the returned pointer. The read
and write function calls, DosRead and DosWrite,
move data directly between the user’s buffer segment
and the file system without the need to specify a
Disk Transfer Area. The MOVE function call,
DosMove, moves a file between subdirectory paths
on a given disk or diskette or, as in this case, renames
a file.

Memory management. The sample program uses
DosAllocHuge to allocate enough main memory to
hold the entire file. Since the size of the file may be
larger than 64K bytes, the program uses a huge
allocation. When the program moves from one seg-

142 cook ET AL

ment of the huge allocation to the next, it generates
the new selector from the current selector by using
the shift count returned by DosGetHugeShift.

DosAllocHuge allocates enough segments to hold all
of the data in the file. If there is not enough physical
memory available to keep all of the data in main
memory at the same time, 0s/2 invokes swapping to
keep available the data currently being used. Thus,
the operating system rather than the application
manages the physical memory resource. The appli-
cation simply allocates the memory needed.

Message file. Keeping messages in an external mes-
sage file makes the program easier to maintain and
easier to translate for use in another country. The
messages may be retrieved by using the Get Message
function call, DosGetMessage, and appropriate fields
may be inserted into the message by using the Insert
Message, DosInsMessage, function call.

After the message file is written, the Make Message
File (MkMsGF) Utility converts the ASCII text into a
file indexed by message number that can be accessed
rapidly using the DosGetMessage call.

The message file for this program is shown in Figure
2. In this message file, the first two lines, beginning
with semicolons, contain comments. The next line
contains the message file component 1D, which in
the example is SRT. The last two lines are the actual
messages numbered 0001 and 0002. The I is an
indication that this is an information message versus
an error (E), prompt (P), or warning (W) message.
The %1 in the second message is a place holder for
variable-message text.

External calls. All of the calls made by the example
program to 0S/2 functions are dynamic link calls to
external routines because the 0s/2 programming in-
terface is implemented as a set of dynamic link
libraries.

Program termination. 0s/2 programs terminate with
the DosExit function call. The call permits the pro-
gram to exit with a return code and provides the
option of terminating the entire process, as in this
case, or just the currently executing thread.

Converting to a Family Application. To make this
program executable on either 0s/2 or DOS 3.3, it must
be run through the BIND utility. The bind command
used to bind this program is

bind sort.exe api.lib doscalls.lib

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Figure2 0S/2 message file for sample program

;5 Sort Example Program Message File

Hd
SRT

SRT00011: Family API and Memory Mgt Example = Sort Program
SRT00021: File %1 has been sorted,

The Bind utility adds logic to the SORT.EXE file which
maps the 0s/2 system calls to their equivalent DOS
and BIOS software interrupts. Following the Bind
process, SORT.EXE is an executable module that can
run on either 0s/2 or pos 3.3. If the programmer
chooses to use calls that are not in the Family AP,
there is no equivalent mapping routine. However, it
is possible to issue DosGetMachineMode to test the
machine state and branch around 0s/2 specific logic
when executing on DOS 3.3.

A multitasking example. Figure 3 depicts the use of
0s/2 multitasking to implement a postfix calculator
using three threads. Figure 4 shows the structure of
the program in pseudocode. The user of the program
enters operands on a stack. When an operator is
entered, the program pops the top two operands off
the stack, performs the calculation, and pushes the
result back onto the stack. Meanwhile, the stack data
structure is constantly displayed on the screen. Fig-
ure 5, Figure 6, and Figure 7 show the logic of the
three threads. The C code itself is given in Appendix
B.

The main procedure is responsible for initializing
the display, creating the two additional threads, and

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Figure 3 Tasking structure of calculator program

DISPLAY RESULTS
THREAD

3

then terminating all of the threads in the process
when the program is finished. Three primary proce-
dures (C functions) are run during normal execution
of the program. In addition, there are auxiliary func-
tions for manipulating the stack and the display.

IPC. This example uses several interprocess com-
munications mechanisms, as shown in Figure 8.

There are two RAM semaphores, StartCalc and
ResultAvail, that coordinate the execution of the

cook eT aL. 143

Figure 4 Structure of the program

Variables declared in include file

Main Procedure
Initialize the display
Create threads 2 and 3
Call the user input function with thread 1
Terminate all threads of the programs

User Input Procedure executed by thread 1
Calculator Procedure executed by thread 2
Display Results Procedure executed by thread 3
Additional functions used throughout the program
Push an operand/result on the stack
Pop an operand off the stack

Initialize the display
Clear the user input field

Figure 5 Keyboard input thread

User Input Procedure
dowhile the quit key is not pressed
Read a string from the keyboard
capture the screen resource with ScreenOwnership semaphore
if an operator was entered
then (
place operator in shared operator variable
pop top value off stack into shared operator 1 variable
pop next value off stack into shared operator 2 variable
clear StartCalc semaphore to signal thread 2
clear the user input field on the display
)
else if the quit key was pressed
do nothing since we are going to quit
else (
push the new number on the operand stack
clear the user input field on the display
)
release the ScreenOwnership semaphore
return

144 cook ET AL IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1968

Figure 6 Calculation thread

Calculator Procedure
do forever
wait on StartCalc semaphore to clear
convert operands to integers
perform the calculation
convert the integer result to a string
clear the ResultAvail semaphore to signal thread 3

Figure 7 Screen display thread

Display Calculation Result
do forever

wait on ResultAvail semaphore to clear

capture the screen resource with ScreenOwnership semaphore
push the result on the stack

release the ScreenOwnership semaphore

1BM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

cook ET AL. 145

Figure 8 Interprocess communications mechanisms

Thread Signaling

RAM Semaphore - StartCalculation, thread 1 signals thread 2

RAM Semaphore — ResultAvailable, thread 2 signals thread 3

Resource Ownership

System Semaphore ~ ScreenOwnership, thread 1 and thread 3

three threads. Since the threads all share the same
address space, RAM semaphores can be used rather
than system semaphores. Since StartCalc and
ResultAvail are RAM semaphores, they do not have
to be explicitly created by the program: They are
double words in shared storage referenced by their
addresses.

StartCalc and ResultAvail are used as signaling sem-
aphores. They are initialized as set, and the threads
waiting for them wait for another thread to clear
them. Once a clear is done, the waiting thread is
awakened. The DosSemRequest used to wait for the
clearing of the semaphore also sets it again. When
the function loops back to the DosSemRequest, the
thread waits until the signaling thread does another
DosSemClear.

One exclusive system semaphore, ScreenOwnership,
is used to serialize access by the threads to the display
image and the data structure representing the stack
of the calculator. As ScreenOwnership is a system
semaphore, it must be explicitly created by an 0s/2
system call. 0s/2 tracks which thread, if any, cur-
rently owns an exclusive system semaphore, and only

146 cook T AL

serialize their access to the display
and the stack.

the current owner can clear it. This feature allows
the semaphore to control resource ownership. When
a thread is ready to update the data structures
guarded by ScreenOwnership, it does a DosSem-
Request to indicate that it wishes ownership. If no
other thread currently owns ScreenOwnership, the
requesting thread is granted the ssmaphore. When it
is done with the data structures, it must do a Dos-
SemClear on ScreenOwnership to permit other
threads to acquire the resource.

Shared data structures and code. Since threads of
the same process share the same memory address
space, it is very easy to define data structure that can
be shared by all of the threads. The shared data
structures used by the threads of this program are
shown in Figure 9. However, since the data structures
are shared and the threads of the program execute
concurrently, it is important to serialize access to
any shared data that are updated by one or more of
the threads. Static, updated data must be managed
carefully in a multithreaded environment.

Threads may also share common functions very
simply. The functions can be invoked in the usual

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

way in the C language. Functions that use only
parameters and automatic variables do not require
special precautions because these functions are
passed or allocated on the stack, and each thread has
its own stack. References to static variables must be
explicitly serialized, as indicated above.

Keyboard handling. Thread 1, which manages the
keyboard, uses the KbdStringIn function to read
lines from the keyboard. This simplifies processing
by permitting the application to receive all of the
characters of an operand or operator with one call
in a single buffer. Although an application can han-
dle keystrokes directly, it is usually simpler to request
lines unless the application must handle individual
keys immediately. KbdStringIn implicitly waits for
a sequence of characters terminated by a return to
be entered at the keyboard. No polling of the key-
board is required, and, in general, polling techniques
are not recommended for 0s/2 programs.

Calculator. The calculator thread is in an infinite
loop, waiting for input and performing calculations
when enough input is available. It waits for the
keyboard handler to clear StartCalc. When that hap-
pens, it does the necessary string-to-integer conver-
sions, computes the result of the operation, and
converts the result to a string. It then signals thread
3, the screen handler.

Screen handler. Thread 3, the screen handler, waits
for thread 2 to clear ResultAvail, indicating that
there is some output to display. Since the screen is
shared with thread 1, thread 3 must capture it by
using the ScreenOwnership semaphore. Once it owns

Figure9 Shared data structures

A LIST OF STRINGS KEPT
IN A TWO-DIMENSIONAL
ARRAY OF CHARACTERS AND
MANIPULATED IN A LAST IN,
FIRST OUT OR LIFO MANNER

SET OF VARIABLES TO PERFORM CALCULATION

OPERATOR
OPERAND #1
OPERAND #2
RESULT

the screen, the screen handler updates the screen to
show the result of the calculation and releases the
screen resource again.

Summary

0s/2 gives the programmer a set of interfaces with
which to use its large memory and multitasking
features. It also provides file-system and other serv-
ices in a manner that is an extension of the functions
and features of DoOs and BI0s. With the 0s/2 Toolkit
and language products, the programmer can convert
existing DOs applications to 0s/2 and write new
applications that utilize the new features of 0s/2.

Operating System/2 and OS/2 are trademarks, and Personal Com-

puter AT and Personal System/2 are registered trademarks, of
International Business Machines Corporation.

Appendix A: Source listing for memory management example

#include (doscall.h)
#include (string.h)

#include (sort.h)
void main(argc, argv, envp)
int argc;

char *argv[]
char *envp[1;

{

/* DISPLAY PROGRAM TITLE */

/* DosGetMessage obtains Message Number 1 from the message file named ''srt.msg'' and */
/* places it in MsgDataArea */

cook eT AL 147

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

DOSGETMESSAGE((char far * far *)lvTable,
vCount,
(char far *)MsgDataArea,
MsgDatal ength,
MsgNumber = 1,
MsgFileName = ''srt.msg'’,
(unsigned far *)&MsgLength);

/* DosPutMessage writes the message retrieved above as output to the console */

DOSPUTMESSAGE(OutputHandie = CONSOLE,
MsgLength,
MsgDataArea);

/* OPEN THE FILE NAMED IN argv[1] */
/* DosOpen opens the file (named in argv[1]) with sharing permitted. */

DOSOPEN(FileName = argv{1],
(unsigned far *)&FileHandle,
(unsigned far *)&ActionTaken,
FileSize = 0,
FileAttribute = 0,
OpenFlag = OPEN_FILE_IF_EXISTS,
OpenMode = DENY_NONE_READ_WRITE_ACCESS,
ReservedDWord = 0);

/* DosQFileinfois used to obtain the size of the file. This information will be used to determine */
/" the size of the required memory allocation needed. */

DOSQFILEINFO(FileHandle,
Filelnfolevel = 1,
FileStatusStructPointer,
FileinfoBufSize = 22);

/* ALLOCATING MEMORY TO CONTAIN THE FILE */

/* DosAllocHuge is used to obtain several 64K Byte segments plus a shorter segment to contain */
/* the file. The allocation is not expandable or sharable. */

DOSALLOCHUGE(NumSeg = (FileStatusStructure.file_size / 65535),
Size = (FileStatusStructure.file_size — (NumSeg*65535)),

{(unsigned far *)&Selector, /* Selector pointing to initial SEGMENT */
MaxNumSeg = 0,
AllocFlags = 0);

/* DosGetHugeShift provides a shiftcount which is used to calculate the selector increment. */

DOSGETHUGESHIFT((unsigned far *)&ShiftCount);
Selectorincrement = 1 <« ShiftCount;

/* The file is completely read into the Huge Memory Allocation */

Looplndex = FileStatusStructure.file_size;

148 cook eT A IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

CurrentSelector = Selector;

while (Loopindex > 65535){
/* Calculate next selector */

PointerBuilder = CurrentSelector;
SegmentPointer = PointerBuilder <« 16;

DOSREAD(FileHandle, /* Read 64K Bytes into a segment */
(SegmentPointer,
ReadBufferLength = 65535,
{(unsigned far *)&BytesRead);

CurrentSelector = CurrentSelector + Selectorincrement;
} Loopindex = Looplndex — 65535;

PointerBuilder = CurrentSelector;
SegmentPointer = PointerBuilder << 16;

/* Read in the rest of the file */

DOSREAD(FileHandle,
SegmentPointer,
ReadBufferLength = Size,
(unsigned far *)&BytesRead);

DOSCLOSE(FileHandle);

/it**i***ﬁ*******iit******ﬁ*ﬁt*t*i*************t********ﬁ****t*****t*******************t**i***************t*****t******i* /

I CALL SORT at this point v/

/**i**ﬁ*ii**i*******'************i********t************************************i****t***i*******************i*t******t**t /

/* OPEN OUTPUT FILE FOR SORTED DATA */

/* DosOpen opens a new file (named ''Examp1.tmp'') with sharing permitted. */

DOSOPEN(NewFileName = ''Exampl.tmp'’,
{(unsigned far *)&NewfFileHandle,
{unsigned far *)&ActionTaken,
FileSize = FileStatusStructure file_size,
FileAttribute = 0,
OpenFlag = CREATE_FILE_REPLACE_IF_EXISTS,
OpenMode = DENY_NONE_READ_WRITE_ACCESS,
ReservedDWord = 0);

/* Write Sorted Data out to new file */

Loopindex = FileStatusStructure. file_size;
CurrentSelector = Selector;
while (LoopIndex > 65535){

PointerBuilder = CurrentSelector;
SegmentPointer = PointerBuilder << 16;

DOSWRITE(NewFileHandle,
SegmentPointer,
WriteBufferLength = 65535,
(unsigned far *)&BytesWritten);

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988 coox T AL 149

CurrentSelector = CurrentSelector + Selector Increment;
Loopindex = Loopindex — 65535;

)

PointerBuilder = CurrentSelector;
SegmentPointer = PointerBuilder <« 16;

DOSWRITE(NewFileHandle,
SegmentPointer,
WriteBufferLength = Size,
(unsigned far *)&BytesWritten);

DOSCLOSE(NewFileHandle);
/* DosDelete removes the named file */

DOSDELETE(FileName,
ReservedDWord);

/* RENAME THE NEW FILE */

DOSMOVE(OldPathName = ''Examp1.tmp'’,
NewPathName = FileName,
ReservedDWord = 0);

DOSGETMESSAGE((char far * far *)lvTable = &FileName,
ivCount =1,
(char far *)MsgDataArea,
MsgDatalength,
MsgNumber = 2,
MsgFileName = ''srt.msg'’,
(unsigned far *)&MsgLength);

DOSPUTMESSAGE(OutputHandle = CONSOLE,

Msglength,
MsgDataArea);
/" Terminate the program */
/* DosExit terminates the entire process with a Result Code = 0 (Success) */

DOSEXIT(ActionCode = 1,
ResultCode = 0);
}

Appendix B: Source listing for calculator example

#include (doscall.h) /* OS/2 API declarations */
#include (stdio.h) /* C standard 1/O run time */
#include (string.h) /* C string library */

#include (calc.h)

150 cook e7 AL IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

/* Semaphore Variables */

unsigned long RamSem1 = 0;
unsigned long far *StartCalc = &RamSem1;
unsigned long RamSem2 = 0;
unsigned long far *ResultAvail = &RamSem2;
unsigned long ScreenOwnership;

void main()

/* DosCreateThread/Variables */
unsigned ThreadlDWord; /* Thread ID */
unsigned char Thread2Stack[2000]; /* Stack for #2 */
unsigned char Thread3Stack[2000]; /* Stack for #3 */

/*11***ﬁtt*t*****wti***ﬁ*w****t*ﬁ************t**************************t************************************t************ /

/* Begin execution . . . */
/" */
/* Procedure that executes as Thread 1 */

/*******t*******tt***it**t**********************t******************i************************************t****t*****t***** /
InitializeDisplay();

DOSCREATESEM(NoExclusive = 0, /" Exclusive system semaphore */
(unsigned long far *)&ScreenOwnership, /* for the display */
SemName = "' \\SEM\\MYSCREEN"');

DOSSEMSET(StartCaic); /* Set RAM semaphore */
DOSCREATETHREAD(CalculatorProcedure, /* Create Calculator Thread */
(unsigned far *)&ThreadlDWord,
(unsigned char far *)&Thread2Stack[1999]);
DOSSEMSET(ResultAvail); /* Set RAM semaphore */
DOSCREATETHREAD(DisplayResultProcedure, /* Create Display Thread */
(unsigned far *)&ThreadlDWord,
(unsigned char far *)&Thread3Stack[1999]);

/* The initial program thread (Thread 1) is the input procedure */
UserinputProcedure(); /* Get input from the keyboard */
DOSCLOSESEM(ScreenOwnership); /* Close the semaphore */
DOSEXIT(ActionCode = 1, /* Terminate entire process */

ResultCode = 0);

} /* MAIN Procedure Ends */
void UserinputProcedure()

{

1BM SYSTEMS JOURNAL, VOL 27, NO 2, 1988 COOK ET AL. 151

/* Loop is terminated when user enters ''q'' which is defined as QUIT

dof */
KbdLength.Length = 32;
KBDSTRINGIN((char far *)CharBuffer, /* Read string from keybd */
(struct KbdStringinLength far *)&KbdLength,
IOWait = 0, /* Wait for carriage return */

KbdHandle = 0);
/* Substitute NULL for carriage return */
CharBuffer[strlen(CharBuffer) — 1] = NUL;

DOSSEMREQUEST(ScreenOwnership, /* Request Screen Semaphore */
Timeout = —1); /* No timeout - indefinite wait */
/* Test to see if it is an operator. */

if(CharBuffer[0]==PLUS || CharBuffer[0]==MINUS ||
CharBuffer[0]==DIV || CharBuffer{0]==MULT){

Operator = CharBuffer;

Pop(Operand2);
Pop(Operand1);
DOSSEMCLEAR(StartCalc); /™ Signal calculation thread */
ClearinputField();
/ ’}' Test to see if it is the quit character ''q'', then do nothing */

else if (CharBuffer[0]==QUIT)

/* Now assume it must be a number so push it on the stack. */
else {
Push(CharBuffer);
ClearinputField();
}
DOSSEMCLEAR(ScreenOwnership); /* Release Screen Semaphore */

jwhile(CharBuffer[0] != QUIT);
!

/**iﬁ**'k**********************'k**i'k************************************ /

/" */
/* Procedure that executes as Thread 2 */
/" .

HRARRARIRAER TN RA KRN TR R EARAI AR TR I A R TR R AR R AR AR TR R AR AR A AR A ARARAARERIARAR IR IR AIR IR AR IREARER AR A RA AR AR A RR AT AR KA R T AR IR /

void far CalculatorProcedure()
int IntOp1,IntOp2,IntResult;
for(;;) {
DOSSEMREQUEST (StartCalc, /* Wait for signal */
Timeout = —1); /* Indefinite wait */

IntOp1 = atoi(Operand1);

152 coox eT AL IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

IntOp2 = atoi(Operand2);

switch(*Operator)|
case '+':
|ntReSU|t - lntop1 + |ntop2; / TAFRRTIAARR TN T AR RAARA TR AR R hhrd sk hkdedrid /
break; /* */
case '—': /* Perform */
IntResult = IntOp1 — INtOp2; /™ */
break; /” Appropriate */
case '*': /* */
IntResult = IntOp1 * IntOp2; /* Calculation */
break; * *
case l/l: / hhhAARA AT ART I AT Th bl hkhhkhrhhhdiri /
IntResult = IntOp1 / IntOp2;
break;
}
Result = itoa(IntResult,ResultBuffer,10); /* Convert to ASCII */
DOSSEMCLEAR(ResultAvail); /* Signal that Result is Available */
)
}
/i*ti***ti***t**i*t***t****tt*******************************t*t*****ﬁt*******ﬁ*t**********t*****t****************t******t /
/* */
/* Procedure that executes as Thread 3 */

P LI 2 122 e s e T e 2 T e L L R e T I R A TSRS I I 22 SR SRR 2 L 2 a2 at S 22 s s s an ettt ittt it it issdttiddddss /

void far DisplayResultProcedure()

{
for(;;){
DOSSEMREQUEST(ResultAvail, /* Wait for signal from Calculator */
Timeout = —1); /* Indefinite Wait */
DOSSEMREQUEST(ScreenQwnership, /* Request screen resource */
Timeout = —1); /* Indefinite Wait */
Push(Result),
DOSSEMCLEAR(ScreenOwnership); /* Release Screen Resource */
J
}
/t*tt***tt**i*tt*t*ﬁ*t*i*ﬁi************t*********t*t*****************************t******t*******************************t/
/" Subroutines ./

/tﬁ***tii***i****"itt**i’*****t*t***i***********************************t***ﬁ****tt**********************i**************** /

void Push(Operand)
char *Operand;
{
/* Display stack change. */
VIOSCROLLDN(TopRow=7,
LeftCol=55,
BotRow=19,
RightCol=58,
NumLines=1,
(char far *)RedBlankChar,
VioHandle = Q);

1BM SYSTEMS JOURNAL, VOL 27, NO 2, 1388 cook eT AL. 153

VIOWRTCHARSTR((char far *)Operand,
VioLength = strlen(Operand),
Row =7,
Column = 58 — VioLength + 1,
VioHandle = 0);

/* Update the stack data structure. */
for(StackColumn=0;
StackColumn<=strlen(Operand);
StackColumn++)
OperandStack[Stackindex][StackColumn] = Operand[StackColumn];
| Stackindex = Stackindex + 1;

void Pop(Operand)
?har *Operand;

VIOSCROLLUP(TOPROW=7, /**************i*******************/
LeftCol=55, /* Display stack */
BotRow=19, /" change */
RightCOI=58, /**********************************/
NumLines=1,
(char far *)BlueBlankChar,
VioHandle = 0);
Stackindex = Stackindex — 1; /* Update the stack data structure */
for(StackColumn=0;
StackColumn<=strlen(&OperandStack{Stackindex][0]);
StackColumn++)
Operand[StackColumn] = OperandStack[Stackindex][StackColumn];
}
void InitializeDisplay()
VlOSCROLLUP(TOpROW=O, / KhRAARTARAA R AR A AhAr kb h kR rhhbhkhd /
LeftCol=0, /* Blank */
BotRow=-—1, /* the */
RightCol=-1, /* screen */
NumLines=—1 , / FREARAAKRTRIERRIRERAA TR IR AT AR /
(char far *)FillChar,
VioHandle = 0);

for(RowCounter = 0;
RowCounter < WindowLength;
RowCounter++)

VIOWRTCHARSTRATT({IOWindow[RowCounter],
VioLength = strlen(lIOWindow[RowCounter]),
Row = 1 + RowCounter,

154 coox ET AL IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Column = 20,
Attribute = WHITEONBLUE,

VioHandie = 0);
VIOWRTCHARSTRATT(CharStr=""' '',
VioLength = 4,
Row =7,
Column = 23,
Attribute = WHITEONGREEN,
VioHandle = 0);
VIOSETCURPOS(Row = 7,
Column = 23,
VioHandle = 0);
}
void ClearinputField()

{

VIOWRTCHARSTRATT(CharStr="" "',
VioLength = 4,
Row =7,
Column = 23,
Attribute = WHITEONGREEN,
VioHandle = 0);

VIOSETCURPOS(Row = 7,
Column = 23,
VioHandle = 0);

Appendix C: INCLUDE File “calc.h” for Calculator Example

/**t*********************************** /

/* Multiple Threads Example — Calculator Program — Variables */

/t******i*t***********t*********t****i*******************ﬁ**t**************Qﬁ*******************************ti*********** /

* . TRA TN T R A ARR RN R AR AR AR AR AR AR AR AR AR A A AR T AN A AR RN T RAA R AR hh kA h bk vk bk hdhdd
/* Calculator Variables /

char *Operator;

char Op1Buf[8];

char *Operand1 = Op1Buf;
char Op2Buf{8];

char *Operand2 = Op2Buf ;
char *Result;

char ResultBuffer[8];

char OperandStack[13][8];
int Stackindex = 0;

int StackColumn;

1BM SYSTEMS JOURNAL, VOL 27, NO 2, 1988 cook et AL 155

/" Semaphore Function Variables *********+¥xxx jaitiokoiolaisieololohidoluiaiiloloioisialoioinialaloboloieisdaloioidabobodalbodolobboboboiob bbbt /

unsigned long RamSemaphore;
unsigned long far *SemHandle = &RamSemaphore;
long Timeout = —1;
unsigned NoExclusive;
unsigned long SysSemHandle;
char far *SemName;
/* Fill Characters and Attributes s sttt stk kb kb kR AR AR R x My
char FillChar[2] = {0x20, OxQF};
char RedBlankChar{2] = {0x20, O0x4F};
char BlueBlankChar[2] = {0x20, Ox1F};
/* Display window character definitions ***********ssuesessisnmininrin Biteinieeieiniaieioialaindaiaiiaialalalalailaiaaia ¥
char far *IOWindow[22] =
i "
{ T 1 I,
" MULTIPLE THREADS EXAMPLE "
" CALCULATOR PROGRAM "
" e
" Input Field Stack .
[Tt
" "
Tty 1 l’
LN L] l’
" Enter a number, "
" or ' 1,
" Enter an operator if at least "
" two numbers are on the stack. "
" Valid operators are: ' ':
1R} 1t
" + addition "
" — subtraction ",
1 * multiplication "
" / division ",
" Press q to quit ! ':
Tt L) };
int RowCounter = 0;

int WindowLength = 22;

156 coox eT AL IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Cited references

1. M. S. Kogan and F. L. Rawson III, “The design of Operating
System/2,” IBM Systems Journal 27, No. 2, 90-104 (1988, this
issue).

2. A. M. Mizell, “Understanding device drivers in Operating
System/2,” IBM Systems Journal 27, No. 2, 170-184 (1988,
this issue).

General references

E. lacobucci, OS/2 Programmer’s Guide, Osborne McGraw-Hill,
Berkeley, CA (1988).

iAPX 286 Programmer’s Reference Manuals, Intel Corporation,
3065 Bowers Avenue, Santa Clara, CA 95051 (1985).

J. 1. Krantz, A. M. Mizell, and R. L. Williams, OS/2 Features,
Functions, and Applications, John Wiley & Sons, Inc., New York
(1988).

Operating System/2, IBM Personal System/2 Seminar Proceed-
ings, G360-2758, IBM Corporation; available through IBM branch
offices.

Operating System/2 Programmer’s Guide, 84X1448, IBM Cor-
poration (October 1987); available through IBM branch offices.

Operating System/2 Technical Reference Volume I, 84X1434,
IBM Corporation (October 1987); available through IBM branch
offices.

Operating System/2 Technical Reference Volume II, 84X1440,
IBM Corporation (October 1987); available through IBM branch
offices.

Ross L. Cook IBM Entry Systems Division, P.O. Box 1328, Boca
Raton, Florida 33432. Mr. Cook received a B.S. and an M.S.
degree in computer science from the Florida Institute of Technol-
ogy in 1969 and 1973, respectively. He began his career with IBM
in 1965, working for the Federal Systems Division on the Apollo
moon mission. His IBM programming experience includes hard-
ware diagnostic programs for both the central processor unit and
various peripherals, automated test controller for the IBM 2305
and 3330 disk facilities and file control units, development of a
FORTRAN compiler and macro assembler for the System/7, and,
since 1974, operating system design and programming for small
to medium-sized systems. Mr. Cook was involved in early design
work that led to Operating System/2; he joined the OS/2 design
department in 1985. He has been instrumental in the detailed
design of several components of OS/2 and has received an IBM
Qutstanding Technical Achievement Award for this work. Cur-
rently he is a senior programmer in the OS/2 design group.

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Freeman L. Rawson Il IBAM Entry Systems Division, P.O. Box
1328, Boca Raton, Florida 33432. Mr. Rawson is currently a
senior programmer in the OS/2 Systems Architecture Department,
where he is involved in the design and enhancement of Operating
System/2. When he joined IBM in 1973 in San Jose, California,
his first assignment was in the development of data management
utilities for System/370 operating systems. Mr. Rawson transferred
to Boca Raton in 1976 to work on the development of the Realtime
Programming System for the Series/1 computer. In 1986, he joined
the OS/2 design organization to work on its support for the
Personal System/2.

Jay A. Tunkel IBM Entry Systems Division, P.O. Box 1328, Boca
Raton, Florida 33432. Mr. Tunkel is currently an advisory pro-
grammer in the OS/2 Systems Architecture Department, where he
is involved in the design and enhancement of Operating System/2.
He joined IBM in Endicott, New York, in 1968 and has worked
on many projects relating to mid-size and personal computers,
including the IBM 4300 Series, IBM PC XT/370, and IBM PC
AT/370. Mr. Tunkel holds B.S. and M.B.A. degrees from the
University of Connecticut and an M.S, in computer science from
the State University of New York at Binghamton.

Robert L. Williams IBM Entry Systems Division, P.O. Box 1328,
Boca Raton, Florida 33432. Mr. Williams is currently a member
of the OS/2 Systems Architecture Department, where he is in-
volved with the design of OS/2. He joined the Entry Systems
Division in 1983 and has worked on several personal computer
office system software projects in areas including telephony, LAN
communications, and document retrieval. Mr. Williams is co-
author of a book titled OS/2 Features, Functions and Applications
(John Wiley & Sons, Inc.). He holds Bachelor’s and Master’s
degrees in computer science and engineering from the University
of South Florida.

Reprint Order No. G321-5315.

cook eT aL. 157

