0S/2 EE Database
Manager overview
and technical highlights

Structured Query Language (SQL) has become an in-
dustry standard. It is supported by mainframe prod-
ucts. This paper describes the OS2 EE Database Man-
ager, which is based on the relational database model
of E. F. Codd and on the SQL query language. A func-
tional overview of the OS/2 EE Database Manager and
08/2 EE is provided; technology applied to different
areas is highlighted.

With the increasing power of personal computer
systems, users’ database management re-
quirements are growing at a rapid pace. The amount
of data that can be stored and managed on a personal
computer is rapidly increasing. The complexity of
the data and the variety of applications on top of
these data also grow by leaps and bounds. Users who
once were satisfied with simple file-manager pro-
grams now need powerful database management
tools to manage and control their data. Application
developers also are requiring the full features of
database management systems once available only
on larger machines.

The 0s/2 Extended Edition (0s/2 EE) Database Man-
ager is included in the 1BM 0s/2™ Extended Edition
to satisfy the database requirements of both end users
and application developers. It is an 1BM-developed,
full-function, relational database manager support-
ing the 1BM Structured Query Language (SQL). IBM
technology and architecture in the 0s/2 EE Database
Manager provide high performance, single-user and
multiuser concurrent access, robust data integrity,
and data protection facilities.

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

by P. Y. Chang
W. W. Myre

The 0s/2 EE Database Manager is based on the sQL
query language and on the relational database
model' invented by E. F. Codd at the iBM San Jose
Research Center. The relational model has been
widely accepted by the industry and by end users.
The main advantage of the relational database model
is its clear separation between the user perception
and the internal implementation of data. In the
personal computer environment, user friendliness is
a paramount concern. The relational model has been
designed to be easy to understand, while at the same
time the Database Manager itself is free to imple-
ment efficient access mechanisms to optimize per-
formance. In the os/2 EE Database Manager, the
actual storage and access methods are far more com-
plex than the simple table structure of the data would
indicate, but all the complexity is hidden from the
users. Users of the 0s/2 EE Database Manager sce
only the simple relational form of data; the Database
Manager is responsible for providing good perform-
ance characteristics.

Structured Query Language (SQL),” originally devel-
oped in the System R project’ at 1BM San Jose
Research, has also become a standard in the industry.
sQL is considered simple to learn, yet powerful in

© Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

cHang ano Myre 105

expressing sophisticated queries. A single statement
in sQL can perform the same function as many lines
of conventional code.

SQL is supported by two products in the 1BM relational
product family: 1BM Database 2 (DB2)* and Struc-
tured Query Language/Data System (sQL/DS), both
on IBM System/370. sQL is also included in the 1BM
Systems Application Architecture (saa)*® as the
database interface component of the common pro-
gramming interfaces. SAA provides a standard inter-
face across the three major 1BM computing environ-
ments: System/370 (TSO/E under Mvs/xA, and CMS
under vMm), System/3X, and personal computers
(0s/2). The 0s/2 EE Database Manager supports the
SAA Database Interface and is consistent with DB2
and sQL/DS.

The interactive end-user tool included in the 0s/2 EE
Database Manager, called the 0s/2 EE Query Man-
ager, provides data entry, edit, query, report, and
customized application support. The 0s/2 EE Query
Manager supports the SAA query interface and is
consistent with the Query Management Facilities
(QMF) product on System/370, which provides query
and report interfaces to DB2 and SQL/DS.

This paper describes the functions of the 0S/2 EE
Database Manager and highlights the technologies
used in developing it. The paper by Watson’ in this
issue highlights the functions and user interfaces of
the 0s/2 EE Query Manager.

IBM relational technology

After the creation of the basic theory on the rela-
tional model, 1BM developed several research proto-
types based on the model. The best-known prototype
developed in the San Jose Research Laboratory is
called System R. The sQL language was invented as
part of the System R research. Other technologies
developed with System R include sQL statement
processing techniques, query optimization and com-
pilation, concurrency control, and locking and log-
ging protocols. Most importantly, System R showed
that the relational model can provide significant
benefits and reasonable performance in real-life en-
vironments.

The System R prototype provided the basis for re-
search in the Distributed Database Management Sys-
tems (DDBMS) area. The R* project® at the San Jose
Research Laboratory was a test bed for many break-
throughs in DDBMS research. Global optimization,

106 cHanG AND MYRE

global naming, global data definition, and optimized
two-phase commit are among the most significant
results. This research showed that the relational
model is also suitable for the distributed database
environment.

After the R* project was finished in 1984, 1BM Re-
search continued the development of the relational
database technology with a project called Starburst®.
This project is continuing the work on DDBMS in the

The 0S/2 EE Database Manager
was designed specifically to run in
the 0S/2 environment.

area of heterogeneous DDBMS interactions. New tech-
niques for implementing the relational model and
for building extendable database systems are among
the current research topics.

The sQL/DS product, running in the vsE and vM
environments, is a direct descendant of the System
R project. Many pieces of System R were rewritten
to make it a program product and to adapt it to the
vSE and VM environments. New techniques in the
areas of recovery were developed in sQL/DS. The first
version of SQL/Ds was released in 1981.

The DB2 product, running in the Mvs environment,
was designed specifically for Mvs with large-system
emphasis. It contains some of the new code written
for sQL/Ds, but most of the sQL function was rewrit-
ten to incorporate new technologies developed at
San Jose Research and in the Santa Teresa Labora-
tory. New techniques in DB2 include logging and
locking, recovery protocols, and buffer-management
techniques. The first version of DB2 was released in
1985. The QMF product, released together with DB2,
is the end-user facility for pB2 and sQL/Ds. It permits
users to submit queries interactively and to generate
customized reports.

The 0s/2 e Database Manager benefited from all
the technologies, research effort, and product expe-

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

riences mentioned above. It was designed specifically
to run in the 0s/2 environment. The code in the 0s/2
EE Database Manager was newly written to utilize
innovative technologies and to optimize for 0s/2.
Researchers at the 1BM Almaden Research Center
were involved in the original design of the 0s/2 EE
Database Manager and were held in close consulta-
tion throughout the development cycle. Developers
of DB2, SQL/DS, and QMF were also consulted on a
regular basis.

The significant benefits to the 0s/2 EE Database
Manager from this technology transfer can be found
in the following areas:

Performance: Performance is the paramount design
objective of the 0s/2 EE Database Manager. Many
new technologies have been applied in this area, e.g.,
optimization techniques, join algorithms, and buffer-

The functions of the 0S/2 EE Query
Manager can be used to create
customized applications.

management techniques. New indexing and locking
techniques also provide a high level of concurrency
while maintaining high levels of performance.

IBM Systems Application Architecture (saa): Care was
taken to make sure SAA benefits can be provided in
the os/2 EE Database Manager. The syntax and se-
mantics of the database interface functions are de-
signed to converge with those of other products, and
the program product architectures are also designed
to work together. For example, the consistent hand-
ling of host variables, precompile, bind, and query
optimization simplifies the users’ work in writing
cross-system applications.

Robust data integrity support: Advanced transaction-

management and logging techniques are used to
preserve the integrity of data.

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Distributed Database Management Systems (DDBMS)
support: Though most of the ppBMS functions are
not implemented in the first release, the product has
been designed for growth into the DDBMS areas.
Architectural similarities with DB2 and sqQL/Ds will
simplify distribution among these heterogeneous
products.

The rest of this paper provides a functional overview
of the 0s/2 Ee Database Manager. Technologies ap-
plied in different areas are also highlighted.

System structure

Figure 1 illustrates the 0s/2 EE Database Manager
functional structure. Note that some of the functions
are marked with '*' as planned enhancements. Those
functions are announced as part of a future release.
They are not shipped in the first release of 0s/2 EE.

Figure 1 shows three ways to use the 0s/2 Eg Database
Manager functions:

e The 0s/2 EE Query Manager interactive interface
can be used to perform ad hoc queries, data entry,
update, data definition, or reporting applications.

¢ The functions of the 0s/2 EE Query Manager can
be used to create customized applications with
forms, menus, queries, reports, and procedures.
The customized application can be executed re-
peatedly—the user of such applications does not
even need to learn most 0S/2 EE Query Manager
functions or know that the 0s/2 EE Query Manager
is involved.

¢ Traditional programming languages, such as C,
can be used. The 0s/2 EE Database Manager func-
tions can be accessed via the Database Interface
and the 0s/2 EE Database Manager Application
Program Interface (API). To use the Database In-
terface functions, the programmers would need to
issue SQL statements in their programs. The 0s/2
EE Database Manager language-specific precom-
pilers and binders are used to establish links
(database requests) between user programs and
the Database Services.

Regardless of the way in which the 0s/2 Eg Database
Manager functions are used, all accesses to the da-
tabase are performed by the Database Services com-
ponent of the 0s/2 EE Database Manager. This com-
ponent, the “engine” of the 0s/2 EE Database Man-
ager, actually manages the data stored in the database
and supports the sQL functions via the Database

crHang anp mvre 107

Figure1 0S/2 Database Manager structure

TN
APPLICATION
| PROGRAM
{ USING QUERY
MANAGER /
LMANRGER

REMOTE
DATABASES

I
0S/2 EE |
DATABASE
MANAGER 44
—_——
Y v
'LCALLABLE OS/2 EE (INCLUDES
| INTERFACE | queRy USER-DEFINED
| (PLANNED | MANAGER - INTERPRETIVE
ENHANCEMENT) APPLICATIONS)
| e |
F A ——
| REMOTE |
[(Sp'f_i‘(,'ﬁsg I DATABASE APPLICATION
| ENHANCEMENT) | INTERFACE PROGRAMMING
| | (saL) INTERFACE
I | (AP))
| |
i I 0S/2 EE
DATABASE
:_ l SERVICES
: /}
1
]
a1l
I'N LOCAL
i 0S/2 EE
. FILE SYSTEM
1

patABase Y

pATABASE Z

108 cHanG AnD MYRe

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Interface. It generates optimized access plans and
supports transactions, concurrency, storage, and
buffer-management functions. It also handles utility
functions such as import, export, backup, restore,
reorg, and runstats via the Utilities API.

If the database being accessed is remote on a local-
area network (LAN), Database Services calls the Re-
mote Services component (a planned enhancement)
to handle the remote access. The Remote Services
component uses the SNA Advanced Program-to-Pro-
gram Communication (APPC) protocol for remote
database accesses. APPC is supported by the 1BM 08/2
EE Communication Manager, another component
included in the 1BM 0s/2 Extended Edition.

In the next sections, major functions provided in the
Database Interface, the API, the precompiler and
binder, the Database Services, and the Remote Serv-
ices components are described.

Database Interface support

Data manipulation langvage. SELECT, UPDATE, IN-
SERT, and DELETE are the four basic data manipula-
tion language functions in SQL. SELECT is the most
powerful sQL statement and is used for querying
tables or views. Some examples of the supported
SELECT statements are shown below. These state-
ments assume two tables:

AUTHORS{AUTHORID,
LASTNAME,FIRSTNAME,ROYALTIES)
BOOKS({TITLE, COPIES, TYPE, AUTHORID)

1. Ordering of output rows:
SELECT LASTNAME, FIRSTNAME
FROM AUTHORS
ORDER BY LASTNAME ASC, FIRSTNAME ASC
. Built-in functions and expressions are supported:
SELECT AVG(ROYALTIES)*0.5 FROM AUTHORS
. Get summary rows with GROUP BY and HAVING:
SELECT TYPE, SUM(COPIES)
FROM BOOKS
GROUP BY TYPE
HAVING TYPE = 'SF' OR TYPE = 'FI'
. Joins of up to 15 tables:
SELECT LASTNAME, TITLE
FROM AUTHORS A, BOOKS B
WHERE A.AUTHORID = B,AUTHORID
AND
TYPE = 'SF'
AND
FIRSTNAME = 'JOHN'

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

5. Subqueries:
SELECT FIRSTNAME,LASTNAME
FROM AUTHORS
WHERE ROYALTIES >
(SELECT AVG(ROYALTIES)
FROM AUTHORS
AND
AUTHORID = ANY (SELECT AUTHORID
FROM BOOK
WHERE TYPE = 'SF'))
. Correlated subqueries:SELECT TITLE
FROM BOOKS X
WHERE COPIES > (SELECT AVG(COPIES)
FROM BOOKS
WHERE TYPE = X.TYPE)

UPDATE, INSERT, and DELETE statements can have
WHERE clauses with search conditions or subqueries

SQL cursoring functions step

through the set one row at a time.

much like the SELECT statement above. For example,
the following UPDATE statement would give all
AUTHORS who write SF books a royalty increase of 10
percent:

UPDATE AUTHORS SET ROYALTIES = ROYALTIES * 1.1
WHERE AUTHORID = ANY (SELECT AUTHORID

FROM BOOKS

WHERE TYPE = 'SF')

Programming interface. A SELECT statement would
usually return more than one row of data, the num-
ber of rows returned ranging from a few to many.
How can a program anticipate the amount of mem-
ory required to contain the data returned? sQL pro-
vides cursoring facilities to solve this problem.

Conceptually, a select statement returns a set of rows.
The cursoring functions step through the set one row
at a time. A program should first issue a DECLARE
CURSOR for a SELECT statement. Then, after a cursor
iS OPENed, each FETCH statement retrieves one row
from the answer set.

cHan ano Myre 109

The FETCH statement also establishes a current cursor
position. UPDATE and DELETE on CURRENT OF CUR-
SOR can be specified to change or delete the row at
the cursor position.

After a FETCH, the data are passed from the database
to the program in host variables, which are variables
declared in the host language as data areas for input
to or output from the database. They are used di-
rectly in the embedded sQL statements. For example,
the following embedded sQL statement (embedded
in C) contains the two host variables :partno and
:partprice.

EXEC SQL

SELECT pnumber, price INTO :partno, :partprice
FROM part

WHERE pnumber = 1234;

After the execution of this statement, the :partno
and :partprice variables in C contain the values
retrieved, respectively, from the pnumber and price
columns of the part table.

More complicated interactions between the program
and the database are achieved using a data area called
SQLDA. SQLDA is an architected control block struc-
ture containing data and pointers to data. In the
example above, the same results can be achieved by
an “INTO SQLDA” clause instead of “INTO :partno,
:partprice.”After the statement is executed, SQLDA
contains pointers to the values retrieved.

Another data structure, called the sQLCA, is used to
return status information after each query. Perhaps
the most important information in the SQLCA is the
return code from a query which alerts the program
to the success or failure of that query. If a failure
occurs, the reason (as a numeric SQL code) is given.
Additional error and diagnostic information may
also be retrieved.

It is worth mentioning here that the host variable
support and the SQLDA and SQLCA structures de-
scribed above are consistent with DB2 and SQL/Ds
products. This is an important element of sAA—the
programmer can interact with the IBM 0S/2 EE
Database Manager, DB2, and SQL/DS in the same
fashion.

Static and dynamic SQL support. Each sQL state-
ment must be compiled by the Database Services
component before execution. The difference between
static sQL and dynamic SQL is the time at which
the compilation is done. For static SQL statements,

110 cHanG anD MyRe

the compilation is done at precompile or bind time.
The compilation is done only once, no matter how
many times the statements are executed. For dy-
namic SQL statements, the compilation is done at
run time and must be repeated when the same
statements are executed again. Static SQL is therefore

Dynamic SQL is supported in the
0S/2 EE Database Manager with
PREPARE, DESCRIBE, EXECUTE,
and EXECUTE IMMEDIATE
statements.

more efficient and should be used when possible.
However, if the program using SQL must issue arbi-
trary SQL queries, dynamic SQL is a necessity.

Support of static SQL is a performance feature origi-
nally invented in System R. It is implemented in
DB2, in SQL/DS, and also in the 0s/2 EE Database
Manager. For queries in application programs that
execute repeatedly, the performance savings can be
significant.

Dynamic sQL is supported in the 0s/2 EE Database
Manager with PREPARE, DESCRIBE, EXECUTE, and EX-
ECUTE IMMEDIATE statements. For example, a pro-
gram may have a string variable v to store SQL
statements at run time. The program can be written
as follows:

V = 'SELECT LASTNAME FROM AUTHORS';
EXEC SQL
PREPARE S1 INTO :NM FROM V;

Data Definition Language. SQL Data Definition Lan-
guage functions supported in the 0s/2 EE Database
Manager are listed below:

e CREATE and DROP TABLE: These functions allow
the user to add or remove a table from a database.
When a new table is being added with CREATE, the
table is given a name, and each column in the
table is separately defined with a name and a data

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

type. Column data types supported include CHAR,
VARCHAR, LONG VARCHAR, INTEGER, SMALLINT
DECIMAL, FLOAT, DATE, TIME, and TIMESTAMP, A
column can be defined as Nullable or not Nullable.
A character column can be defined as FOR BIT
DATA to indicate that it contains binary, not tex-
tual, data. A table can have up to 255 columns.

¢ ALTER TABLE: This function allows the user to add
new columns to a table. New columns are added
at the “right” of the table-—the order of the original
columns remains unchanged. In this way, access
plans created before the table was altered are not
invalidated.

® CREATE and DROP VIEW: Views can be defined on
top of existing tables or views. When a table is
dropped, views dependent on it are also dropped
automatically.

¢ CREATE and DROP INDEX: Indexes can be created
on frequently accessed columns to increase per-
formance. Indexes are stored in B-Tree format
with both efficient random access and update char-
acteristics. Indexes can be used to improve per-
formance for queries asking for particular values,
for example in 'SELECT ... WHERE age = 35.
Indexes are also used to improve the performance
of join operations and to avoid sort. Whether a
particular index is used for a given query is con-
trolled by the optimizer in the Database Services
component. Indexes can be dropped if they are no
longer useful.

* COMMENT on TABLE and COLUMN: Comments can
be added to tables and columns.

The data types supported by the 0s/2 EE Database
Manager listed above are the same as those supported
by DB2 and SQL/Ds, with the exception of the double
byte character set (DBCS) GRAPHICS types. The 0s/2
EE Database Manager has internal provisions for
adding the GRAPHICS data-type support in a Double-
Byte Character Set (DBCS) release of the product (a
planned enhancement).

LONG VARCHAR columns of up to 32 700 bytes are
supported. Such long fields can be used to store large
chunks of data such as graphics, image, or audio
data.

Integrated system catalogs, much like those in DB2,
are used to store the data definition and relationships
in the database. Such catalogs are treated like normal
tables, with the exception that only the 0s/2 EE
Database Manager code can update the catalogs.
Users can use SQL DML statements to query the
catalogs for information. System catalogs also con-

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1968

tain information for the private use of the 0S/2 EE
Database Manager, such as access plans and database
statistics.

Compared to DB2, the DDL functions for controlling
the physical placement of data are simplified here.
For example, the table space option in DB2 is not
supported by the 0s/2 EE Database Manager. While
this reduces the ability of the user to fine-tune some
performance characteristics, the need for a highly
trained database administrator (DBA) is also reduced.
End users can define the databases themselves with
the simplified DDL commands.

Utility and environment APL. The 0s/2 EE Database
Manager has functions that are not part of the saa
database interface. These functions are provided as
callable application program interfaces (API) to the
data manager. Application programmers can use the
API to control the environment and to access the
utility functions.

The environment API functions allow an application
to create a database, drop a database, connect to
(START USING) a database, and disconnect from (STOP
USING) a database. Perhaps the most widely used
environment API calls are START USING and STOP
USING database functions. An 08/2 process must issue
a START USING (database name) before any sQL
commands can be issued.

Another set of APIs allows applications to obtain
information regarding databases and to change the
configuration parameters of a database, including
RAM size of the buffer pool, RAM size of the lock data
structure, and maximum number of transactions
allowed. These are parameters the users can set to
fine-tune the performance and resource-use charac-
teristics of 0s/2 EE Database Manager. For example,
one can increase the size of the buffer pool to de-
crease the number of 1/0 operations.

Utility API functions allow program calls to IMPORT
data generated by other programs into a table or
EXPORT a table into one of the supported formats.
Other utilities include BACKUP and RESTORE data-
bases, REORG to reorganize the physical structure of
a table, and RUNSTATS to update the statistics used
by the performance optimizer.

Precompile and bind. The 0s/2 EE Database Manager
precompiler and binder are tools used by program-
mers who embed SQL statements in their application
programs. Figure 2 illustrates how a source program
with embedded SQL can be prepared for execution.

cHanG anp mvre 111

Figure 2 Prepare a program using the precompiler

DON'T CREATE CREATE
BIND FILE PATH BIND FILE PATH

EXECUTABLE
PROGRAM

112 cHanG AND MYRE IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

As mentioned earlier, SQL statements are embedded
in a C program with EXEC sSQL at the beginning of
the statement. Because this is not a “legal” C state-
ment and would cause C compiler syntax errors, it
is necessary to precompile the source code. The
precompiler replaces the sQL statements with “legal”
C statements—calls to the 0s/2 EE Database Man-
ager’s Database Services functions. The file contain-
ing this new source program with the calls is called
the modified source file; it can be compiled by the C
language compiler to produce an executable object.

In addition to the modified source file, the precom-
piler also calls the Database Services component to
analyze the sQL statements and generate access plans
corresponding to the statements. Access plans are
compiled, low-level representations of the SQL state-
ments which contain optimized instructions on how
to get the desired data. Access plans are stored in the
database under the name of the program being pre-
compiled. Each sQL statement in a program corre-
sponds to a section in the access plan. When a
program is executed, the function call replacing an
SQL statement causes the corresponding section in
the access plan to execute. This is how a program
with embedded sSQL can be prepared and executed.

Some changes in the database structure, such as the
dropping of an index, may invalidate the access plans
for precompiled programs. When an invalid access
plan is retrieved for execution, the 0s/2 EE Database
Manager automatically regenerates the access plan
(if possible) to suit the new situation. For example,
the dropped index would no longer be used in the
new access plan. Some changes may make regener-
ating the access plan impossible. For instance, if a
table referenced by the program were dropped, an
error would occur on execution.

In the precompile process described above, a pro-
gram must be precompiled against a database before
it can be executed against that database. It is impos-
sible to ship an application program without ship-
ping the source code because the program must be
precompiled against the users’ databases.

To solve this problem, the 0s/2 EE Database Manager
precompiler supports an optional bind step. The
precompiler can optionally generate a bind file which
contains all SQL statements in the source program
and all the related information needed to generate
access plans. An application vendor would ship the
bind file together with the executable program to the
customers, who would then install the program by

1BM SYSTEMS JOURNAL, VOL. 27, NO 2, 1988

running the 0s/2 EE Database Manager binder proc-
ess. The binder uses the bind files to cause the
generation of access plans in the customers’ data-
bases.

Another advantage provided by the separate binder

step is the capability for a program to access multiple
databases. For example, the personnel records of a

The OS/EE Database Manager
supports concurrent access to the
same database from different 0S/2
processes.

company could be segregated into several databases.
A program with embedded sQL to generate a sum-
mary could be precompiled (and bound) against one
of the databases, and then subsequently bound
against all the others. The same program could then
run against each of the databases, as long as a differ-
ent START USING were first issued to the database
used.

The above discussions refer primarily to static SQL
statements. Access plans are also generated for dy-
namic SQL statements, but these are just place holders
that will cause the compilation of the sQL statement
at execution time.

Database Services

Multiprocess and multiuser support. It is possible in
IBM 0S/2 EE to run several processes concurrently.
The 0s/2 EE Database Manager supports concurrent
access to the same database from different 0s/2 proc-
esses. Transaction commit and rollback features and
locking mechanisms in the 0s/2 EE Database Man-
ager preserve consistency of data while multiple
processes are reading or updating the database. Users
can take advantage of this support by running several
database applications concurrently. For example, a
report program may be running in the background
while a data entry function is running in the fore-
ground; a third program updating the database from
daily receipt may also be running.

cHanG ano mvre 113

This multiprocess support is the foundation for the
Remote Services component (planned enhance-
ment) of the 0s/2 EE Database Manager, which sup-
ports multiple workstations on a LAN. On the server
workstation, multiple processes are created as “serv-
ers” to serve the “clients” on remote workstations.
The 0s/2 EE Database Manager manages concurrent
accesses by the processes and ensures consistency of
the database with transaction management tech-
niques.

Multiprocess support is also used to support concur-
rent “demon” processes. For example, a “deadlock
detector” demon in the 0s/2 EE Database Manager
wakes up periodically to detect deadlocks among
concurrent transactions.

The 0s/2 process synchronization and communica-
tion features are used extensively for multiprocess
database access. Many control blocks and RAM buff-
ers are shared and updated by different processes,
with 0s/2 semaphores being used to serialize changes
to these shared data structures.

For the following discussions, the term application
process 1s used generically to describe each process
issuing database commands. In a multiuser LAN
access environment, an application process may be
a process created by 0s/2 EE Database Manager Re-
mote Services, or it may be a local process.

Transaction support. A transaction is a unit of work
or unit of recovery that the user or application pro-
gram considers to be atomic. All changes to the
database in a transaction should either be committed
or be rolled back; a database is in an inconsistent
stage when a transaction is partially reflected in the
database. An example of a user transaction might be
the operation of moving some money from a check-
ing account to a savings account. The debit to the
checking account and the credit to the savings ac-
count should be done as one action; both become a
permanent part of the database or neither does. This
is a classic example of the role of transactions.

The 0s/2 EE Database Manager provides full trans-
action support in much the same manner as DB2 or
SQL/DS. Any reading or writing of the Database
Manager database is done within a transaction. An
application process that STARTS USING a database
and proceeds to issue an SQL command automati-
cally starts a transaction. This transaction can be
explicitly ended by the SQL COMMIT or ROLLBACK
command. The coMMIT command makes perma-
nent all changes made within the transaction. The

114 crang anD MYRE

rollback command removes from the database all
changes made by the transaction. The recovery log
(explained below) is used to drive the ROLLBACK
operation. A new SQL command after COMMIT or
ROLLBACK automatically starts a new transaction.

Locks on data read or changed by a transaction are
removed by a COMMIT, making the data available to
other transactions. Locks are also removed on a
ROLLBACK, and the data unlocked are the same as
when the transaction started.

If for some reason an application process ends ab-
normally while in the midst of a transaction, the
process’ transaction is rolled back automatically by
the 0s/2 EE Database Manager. If an application ends
normally without issuing a COMMIT or ROLLBACK,
the transaction is committed automatically.

The consistency of a database is also protected in the
event of a system crash by the recovery process. A
recovery log file is maintained of the database
changes which are either uncommitted or committed
but not on disk, so that the recovery process can
restore the database to a consistent state. The con-
sistent state is defined as follows: At the time of the
system failure, all transactions that had successfully
committed or rolled back are restored, respectively,
to that state; all transactions that were in flight
(transactions that have made changes but not yet
committed or rolled back) are rolled back. Thus,
although some work may be lost, the recovery proc-
ess restores the database to a state in which all
changes to data made by committed transactions are
reflected in the database.

To return the database to a consistent state after
system failure, some of the changes reflected in the
log must be undone, while some others must be
redone. The 0s/2 EE Database Manager keeps track
of the status of each transaction and is capable of
undoing and redoing the necessary operations. This
recovery processing is very similar to that of pB2. A
complete description of the transaction recovery
process in DB2 can be found in Reference 10.

The recovery log is also used to implement internal
save points during the execution of a transaction.
The 0s/2 EE Database Manager can recover changes
to a transaction to a declared save point. There is a
class of errors which are not serious enough to re-
quire a rollback of the whole transaction; with save
points, the operations involved in the error can be
backed out and either retried or circumvented by

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

the transaction. Save points can only be used by the
os/2 EE Database Manager; they are not available to
an application.

The effect of the use of save points is made visible at
the sQL interface as follows: A save point is declared
before the execution of each SQL statement. For
instance, if an UPDATE operation runs into an error
and cannot continue after having already updated
some records, the 0s/2 EE Database Manager rolls
back only the records changed by that UPDATE state-
ment and returns an error to the calling program.
Suppose the error concerns only the SQL statement

The OS/EE Database Manager locks
logical data objects in a hierarchical
manner.

and is not serious. If the calling program can discrim-
inate between errors fatal to the transaction and
errors involving only the SQL statement, it may be
able to proceed with the transaction. Applications
which use dynamic sQL, such as interactive applica-
tions, may find this feature particularly useful, as
they have the greatest flexibility.

Concurrency. As mentioned earlier, the 0S/2 EE
Database Manager allows multiple processes to ac-
cess a database concurrently. The locking system
used to maintain data integrity during concurrent
processing is discussed in this section.

The locking system of the 0s/2 EE Database Manager
follows the general concept of locks in System R,
sQL/Ds, and DB2. The 0s/2 EE Database Manager
maintains the Repeatable Read (rRr) level of data
isolation. This means that within a process’ trans-
action, all updates are locked so that other transac-
tions may not access them—this is the heart of the
concept of data integrity. In addition all records read
are locked so that other transactions cannot change
them-—this is the essence of Repeatable Read versus
other levels of data isolation. Repeating a SELECT
query within a transaction provides identical data

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

each time under Repeatable Read, except when the
transaction itself updates the data. All data remain
locked until the transaction is committed or rolled
back.

The 0s/2 EE Database Manager locks logical data
objects, tables, and records in a hierarchical manner,
in contrast to pB2, which locks physical data objects:
table spaces and pages. Record-level locking provides
finer granularity and better concurrency support.

The sQL command LOCK TABLE [Exclusive Share]
{table name) is supported externally. This is the
only explicit way in which one may directly lock
data within a database. The table specified is locked
until the application issues a COMMIT. If LOCK TABLE
is not specified, implicit locks are applied automati-
cally.

The level of locking done implicitly (and the level of
concurrency that is externally detectable) depends
on choices made on the optimization of the SQL DML.
The 0s/2 EE Database Manager attempts to maxi-
mize concurrency in a database by using intention
locks at the table level and locking the records indi-
vidually. For example, a transaction executing an
UPDATE statement can lock the table as 1x (Intention
eXclusive) while locking each record as S (shared).
This prevents other transactions from updating the
records accessed by this transaction. However, it does
not prevent read accesses until the actual record for
update is found. Because an UPDATE statement with
a WHERE clause typically reads many records before
a record is updated, intention locking at record level
can increase concurrency significantly.

Concurrent index access is supported by algorithms
and data structures which allow high levels of con-
currency. Key values and key ranges accessed are
held by the accessing transaction until the transac-
tion concludes.

Locks on logical objects are kept in memory with
specialized data structures to optimize addi-
tion/deletion of locks. The amount of memory ded-
icated to locks can be specified in the configuration
profile. If too many locks are obtained for records in
a table, the locks are “escalated” to a table-level lock.
This reduces the system resource required for locks.

Deadlocks can occur between 0S/2 EE Database Man-
ager transactions holding and requesting locks. These
are detected and resolved by a background demon
called the deadlock detector which is associated with

cHang anp MvRe 115

each database. Whenever a database is being used,
the deadlock detector is periodically activated in the
background. The deadlock detector looks at the locks
in the system and determines whether a deadlock
situation has occurred. The user can control the
frequency of deadlock detector activity by changing
a parameter in the database configuration file.

If there is a deadlock, the deadlock detector selects a

“victim” which is a member of the deadlock cycle.
The deadlock victim transaction is selected ran-

The optimizer contains the key
technology enabling efficient query
execution in the 0S/2 EE Database

Manager.

domly, and the victim transaction is rolled back,
allowing other transactions involved in the deadlock
to proceed.

SQL compilation and optimization. As mentioned
previously, static SQL statements are compiled at
precompile or bind time, and dynamic SQL state-
ments are compiled at run time. The compilation of
sQL statements is much like the compilation of pro-
gramming languages: The 0s/2 EE Database Manager
first parses the statements and performs syntax
checks. Data definitions in the system catalogs are
consulted for semantic verifications. Optimization
and code-generation steps follow.

Instead of executable object code, the 0s/2 EE Data-
base Manager sQL compiler generates access plans
containing low-level primitive operators. These op-
erators are interpreted at run time by the 0S/2 EE
Database Manager to perform the actual SQL query
functions.

Before the access plan of a query is generated, the
0s/2 EE Database Manager optimizer first analyzes
the query. Statistics kept in the system catalogs, such

116 crana anD mvRe

as the size of the table and the number of distinct
values in an index, are consulted. Decisions on the
actual access path, or strategy for accessing data and
executing the query, are then made. Important
choices made by the optimizer include the following:
whether indexes should be used, in what order a join
should be performed, what join algorithm should be
used, and whether and when a sort is appropriate.
The optimizer contains the key technology enabling
efficient query execution in the 0s/2 EE Database
Manager.

Specialized sort algorithms are used in the 0S/2 EE
Database Manager for optimized performance in the
relational database environment. The algorithm is
very flexible in terms of RAM usages and temporary
storage usages. The query optimizer has a great deal
of freedom in controlling sort operations based on
overall performance and resource utilization consid-
erations.

Storage management. Conceptually, Database Ser-
vices SQL compiler and optimizer functions are in a
subcomponent similar to the Relational Data Ser-
vices (RDS) component in System R. The physical
data structures are managed by a subcomponent
similar to the Relational Storage System (RSS) com-
ponent in System R. However, the RsS interface in
the 0s/2 EE Database Manager is not a rigid one. For
performance reasons, RDS and RSS in the 0S/2 EE
Database Manager are tightly integrated.

The o0s/2 e Database Manager uses the 0s/2 file
system to support a database. Generally, each table
is stored in a single 0s/2 file. In addition, all indexes
for the same table are stored in a separate 0s/2 file.
Each of these files is internally divided into 4K pages,
which is the standard 1/0 unit of the data manager.
Space allocation is handled within each page. Long
fields are handled separately to optimize the alloca-
tion of field sizes up to 32700 bytes in length. All
long fields for a table are stored together in a single
0s/2 file.

When a database is created, a special subdirectory
for that database is formed, and all 0s/2 files making
up the database are stored in that subdirectory.
Databases may not span a media partition—all of
the 0s/2 files making up a database must be on one
drive letter in the special subdirectory created for
that database. The database files are not meant to be
used in any way except by the Database Manager, as
any change to these files by other means could have
catastrophic results on the integrity of the data.

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

The 0s/2 EE Database Manager allocates a separate
memory area, called the buffer pool, for each data-
base in use. A buffer pool consists of multiples of 4K
pages of space and is used by the 0s/2 EE Database
Manager to read from or write to the disk. The buffer
pool is used as a cache area for the database data. In
general, a Least Recently Used (LrU) algorithm is
used for buffer replacement. The oldest, or least
recently used, data page is replaced by a new page.
Frequently used pages such as index nodes or “hot”
data therefore tend to stay longer in the buffer pool,
reducing the overall number of disk 1/0s.

A write-ahead logging scheme is used in the 0S/2 EE
Database Manager. To ensure the integrity of data,
the log is always written to the disk before the data
page updates are written. This means that the data
pages can stay in the buffer pool even after updates.
Frequent accesses and updated data pages can there-
fore stay longer, again reducing the need for disk 1/0.

Security. The 0s/2 EE Database Manager supports
password security at the database level. When a
database is created, a database password can be
assigned. (If password security is not desired, a NULL
password indicates NO SECURITY.) On connection to
a database (via the START USING command), a valid
password is required before access is allowed. The
password of a database can be changed via the ALTER
DATABASE command.

National-language support. The 0s/2 EE Database
Manager provides National-Language Support (NLS)
by isolating the end-user interactions (menus and
messages) into separate files that can be translated.
In addition, special consideration is given to func-
tions that require special adaptation in different
countries, such as date/time formats, collating se-
quences, and monocasing rules. In general, Database
Manager NLS functions are built on top of the NLS
functions in the base 0s/2 operation system. For
example, the collating tables and monocasing tables
obtained through DOSGETCOLLATE and DOSCASEMAP
are used by 0s/2 EE Database Manager to support its
sorting functions and monocasing functions. The
SQL language itself is not translated into national
languages. However, provisions are supported by the
0s/2 EE Database Manager for identifiers in SQL (table
names, view names, and field names) to be defined
in national languages.

The os/2 EE Database Manager is also enabled for
Double-Byte Character Set (DBCS) language transla-

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

tion. DBCS enabling allows the support of a mixed
one-byte and double-byte internal coded character
set. IBM organizations in Asia can use this as a base
for providing national-language support for selected
Asian languages.

Remote Services (planned enhancement)

The Remote Services component of the 0s/2 EE
Database Manager supports the distributed database
functions on a LAN. It permits applications to issue
remote SQL requests against remote databases on a
LAN. All sqQL functions can be executed against a
remote database as if the database were in the local
workstation.

Before a database can be accessed through Remote
Services, the name and location of the database must
first be cataloged. The 0s/2 EE Database Manager
provides catalog database and catalog node function
calls to achieve these functions.

When a START USING database request is accepted by
the 0s/2 EE Database Manager Remote Services, the
Remote Services requestor first performs the routing
function by consulting the catalogs. If the database
is remote, the requestor then passes the calls through
the 1BM 0s/2 EE Communication Manager (APPC
protocol) to the Remote Services server where the
database resides. The Remote Services server then
issues requests to the database. Any returned data or
return codes from the database are passed back to
the requestor. The requestor returns the information
to the application in the same manner as the 0S/2 EE
Database Manager would. Therefore, the application
does not need to know whether the database being
accessed is local or remote. No changes to the appli-
cation code are necessary to run on a local 0S/2 EE
Database Manager or a remote one.

This design makes it possible to write a single appli-
cation to run on different system configurations.
There is complete flexibility on how the LAN should
be configured in terms of database usage. It is possi-
ble to put a database on a machine with more DASD
and RAM resources as a server, and run applications
from smaller machines. It is also possible to distrib-
ute the databases to different machines and allow
cross-accesses when necessary.

The robust nature of APPC protocol permits the 0s/2
EE Database Manager to guarantee database consist-
ency across the LAN. If a remote site fails, the trans-
action for that application is rolled back and the

cHanG ano mvre 117

database is not harmed, because the Remote Services
server is aware of the requestor status at all times
through the APPC protocol.

Remote Services uses a client/server model to redi-
rect the sQL-level database request using APPC. A
complex SQL query can be sent once over the LAN.
All query processing happens on the server, and the
answer of the query is passed back. Compared to an
alternative approach of redirecting file 1/0 through
the 0s/2 EE LAN Requestor (available in Version 1.1
of 1BM 0s/2 EE), the Remote Services approach tends
to reduce the LAN traffic significantly. Remote Ser-
vices does not use the LAN requestor nor require its
installation.

In terms of future growth, the design adopted in the
0s/2 EE Database Manager provides a good founda-
tion for future extensions in distributed database
functions. When the request is at the database re-
quest level, the Database Manager retains control of
how to process the query. An example might be a
query that joins two tables from two databases on
different nodes. With database requests, the Data-
base Manager can decide where the join operation
should be performed and what data should be sent
where. The potential benefit of such global query
optimization is clearly high.

Conclusions

The 0s/2 EE Database Manager, which was developed
entirely within IBM, employs many IBM unique rela-
tional technologies. It was developed in parallel with
the 1BM 0s/2 operating system and has been opti-
mized for the 0s/2 environment. The 0s/2 EE Data-
base Manager provides high performance, full func-
tion, and robust data integrity support. It is consist-
ent in function with and similar in architecture to
DB2, SQL/DS, and QMF, so that tightly integrated
distributed database support among the 1BM rela-
tional family of products will be easier to add in the
future.

The 0s/2 EE Database Manager, together with other
functions in the 0s/2 Extended Edition, provides a
high-function platform for users and application de-
velopers alike. It also provides a strong foundation
for future growth.

0S/2 is a trademark of International Business Machines Corpo-
ration.

Cited references

1. E. F. Codd, “Relational database: A practical foundation for
productivity,” Communications of the ACM 25, No. 2, 109-
117 (February 1982).

118 cHang anD MYRE

2. D. D. Chamberlin et al., “SEQUEL 2: A unified approach to
data definition, manipulation, and control,” IBM Journal of
Research and Development 20, No. 6, 560-575 (November
1976).

3. M. M. Astrahan et al.,, “System R: Relational approach to
database management,” ACM Transactions on Database Sys-
tems 1, No. 2, 97-137 (June 1976).

4. S. Kahn, “An overview of three relational data base products,”
IBM Systems Journal 23, No. 2, 100-111 (1984).

5. IBM Systems Application Architecture: An Overview, GC26-
4341-0, IBM Corporation; available through IBM branch of-
fices.

6. IBM Systems Application Architecture: Common Program-
ming Interface, Database Reference, SC26-4348-0, IBM Cor-
poration; available through IBM branch offices.

7. S. L. Watson, “OS/2 Query Manager overview and prompted
interface,” IBM Systems Journal 27, No. 2, 119-133 (1988,
this issue).

8. B. Lindsay et al., “R*: A distributed database manager,” ACM
Transactions on Computing Systems 2, No. 1, 24-38 (Febru-
ary 1984).

9. B. Lindsay et al., “A database management extension archi-
tecture,” Proceedings of ACM SIGMOD 1987, San Francisco
(May 1987).

10. R. A. Crus, “Data recovery in IBM Database 2,” IBM Systems
Journal 23, No. 2, 178-188 (1984).

Philip Y. Chang IBM Entry Systems Division, Austin Laboratory,
11400 Burnet Road, Austin, Texas 78758. Dr. Chang is a senior
programmer in the Austin Laboratory and a lead architect of the
0S/2 EE Database Manager project. He joined IBM in 1979 as a
lead designer for Displaywriter software, and managed several
projects related to Displaywriter follow-on work and the Display-
write software on PC. Dr. Chang joined the OS/2 EE Database
Manager project at its inception in 1984 and has held both
technical and management positions within the project. Before
joining IBM, Dr. Chang taught in the Computer Science Depart-
ment at the University of Texas at Austin between 1976 and 1979.
He holds a B.S. degree in electrical engineering from the National
Taiwan University and a Ph.D degree in computer science from
the University of Utah.

William W. Myre IBM Entry Systems Division, Austin Labora-
tory, 11400 Burnet Road, Austin, Texas 78758. Mr. Myre is a
technical planner for the OS/2 EE Database Manager project. He
joined IBM in 1981 as a programmer on the IBM 5520 office
system in the document distribution area. In 1984, he became part
of the initial design team of the OS/2 EE Database Manager and
did significant portions of the locking, transaction, and recovery
subsystems design. Mr. Myre received a M.A. degree in computer
science from the University of Texas at Austin in 1980 and a B.S.
degree in computer science and mathematics from Vanderbilt
University in 1977.

Reprint Order No. G321-5313.

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

