The design
of Operating System/2

The design of Operating System/2™ (0S/2™) is a
result of matching the requirements of IBM and its
customers for a new operating system for various
models of the Personal System/2® with the need for
continuity with a very large body of established DOS
applications. The design of 0S/2 represented a signifi-
cant challenge both in meeting these requirements and
in making efficient use of the hardware. In this paper,
the design characteristics of 0S/2 are discussed.

Operating System/2™ (0s/2™) is IBM’s new op-
erating system for its personal systems that
incorporate 80286 and 80386 processors. Because
new operating systems are expensive to develop and
expensive for customers to install and to adapt to
their own use, there has been a tendency in recent
years to stretch existing systems rather than to im-
plement new ones. 0s/2 represents an effort to im-
plement a new system that meets the needs of a
growing marketplace while minimizing the devel-
opment costs of both 1BM and its customers.

The overriding goal behind the design of 0s/2 is to
provide a successor to the 1BM Personal Computer
Disk Operating System (D0s) that fully supports the
hardware of the 80286 processor without giving up
compatibility with DOS. 0s/2 relieves a number of
limitations of DOs while still permitting most DOS
applications to run. Table 1 compares the key re-
quirements placed on DOs and 0s/2.

0s/2, like DOS, is a single-user system, designed to
run well on personal systems. It is oriented toward
providing a good interactive response while not oc-
cupying too much main memory or disk space.

90 «ocan AND RAWSON

by M. S. Kogan
F. L. Rawson lll

These requirements combined with the architectural
constraints of the 80286 processor led to the devel-
opment of the system structure that is characteristic
of 0s/2.

0S/2 product set. 0s/2 executes on Models 50, 60,
and 80 of the 1BM Personal System/2°®, It also exe-
cutes on the 1BM Personal Computer AT® and the 1BM
Personal Computer XT Model 286. Although 1BM has
announced two versions of the Standard Edition of
0s/2 and two versions of the Extended Edition, this
paper discusses the design characteristics common
to all versions of 0s/2.

System features. To meet its design goals, 0s/2 had
to provide a number of important system features
(see Table 2).

Many of these features are common in current op-
erating systems, and, where possible, 0s/2 imple-
ments them in standard ways, using demonstrated
techniques from earlier systems. However, two sets
of design constraints forced the designers of 0s/2 to
use novel techniques in a number of areas to meet
the requirements imposed on the system. The first
set of design constraints is architectural in nature:

¢ 0s/2 had to provide a way to run the vast body of
existing DOS applications.

© Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988




« 0s/2 also had to use effectively the large physical
memory that can be attached to the 80286 and
80386 processors.

Because of the nature of the architecture of the 80286
processor (described in the next section), these con-
straints are in conflict. Resolving this conflict in a
working system is a significant design achievement
of 0s/2.

The other set of design constraints is one usually
found in the design of small systems:

s 08/2 had to provide the features of a full-scale
operating system such as might be found on larger
microcomputers and on minicomputers.

s 0s/2 also had to execute without consuming large
amounts of system resources in order to fit on the
machines it is intended to support.

As always with this set of constraints, the result is a
compromise between complex and powerful ways of
implementing features and simpler but less expen-
sive means of providing them.

0S/2 architectural design constraints

In order to understand the conflict between the two
sets of 0s/2 architectural design constraints, it is
essential to understand the hardware architecture of
the Intel processor family and the environment as-
sumed by DOSs applications.

The architecture of the 80286 processor. Convenient
use of the large-memory features of the Intel 80286
and 80386 processors necessitates use of their more
advanced and incompatible architectural features.
Since 0s/2 is an 80286 operating system that treats
the 80386 processor as if it were an 80286 processor,
the term 80286 will be used to refer to the common
features of both types of processor. For more infor-
mation on the architecture of the Intel 80286 proc-
essor, see References 1 and 2.

The 80286 processor extends the addressing range of
the 8086/8088 processor used in many personal
computers by adding a new mode of operation called
protect mode. The 80286 can also execute in 8086/
8088 mode, which is called real mode on the 80286.
The 80286 can switch beween real and protect modes
under program control. The switch from real to
protect mode is relatively simple and can be made
fairly quickly. Although the exact mechanics vary
from machine to machine, the transition from pro-

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Table 1 DOS and 0S/2 requirements

.Area’ ) DOS 08/2
" Processor architecture 8086 80286
supported
Maximum memory size 640K bytes 16M bytes
Number of tasks 1 Multiple .
Number of concurrent - 1 Many
applications
System interfaces ‘Fixed User-extendible

Table2 OS/2 system features

" Use of physical memory up to 16M bytes
~ Multiple concurrent applications
Protection between independent applications
~ Multitasking =
- Interprogram communication and synchromzatmn S
- Dynamic linking to system and subsystem services-
Demand loading of code and data
Call Application Programmer Interface (APT)
DOS Envirohment for executing DOS applications
Methods and tools t.hat permit the development of
N applications that can run on either DOS or 08/2
F:Ie and, media formats identical to those of DOS
- ,Separate devwe drivers for IBM and non-»IBM jevices

s Subsystems for vuieo keyboard, andpom ‘
- An extended DOS command processor
A set of utilmes extcudmg those of DOS
“An mstalla&on program for the system and
amated development tools
" National language and country-specific support

tect mode back to real mode on the 80286 (but not
the 80386) always requires that the processor be
reset. This operation is relatively slow and is done
by the hardware on the machine external to the
processor.

Like the 8086/8088, the 80286 processor divides
memory into ranges of addresses called segments.
Except on the 80386, segments are limited to at most
64K bytes in length because the processor can only
generate a 16-bit offset into the segment. Although
the 80386 can generate 32-bit offsets, 0s/2 does not
use this feature. Consequently, the 32-bit mode of
the 80386 will not be discussed here.

koGAN AND Rawson 91




Figuret1 80286 real- and protect-mode address generation

REAL MODE

PHYSICAL
ADDRESS SPACE

MEMORY
LOCATION

SEGMENT REGISTER

PROTECT MODE

SEGMENT REGISTER

PHYSICAL
ADDRESS SPACE

16M

VIRTUAL
ADDRESS SPACE

MEMORY
LOCATION

SEGMENT SIZE

OFFSET

SEGMENT BASE

DESCRIPTOR

R A ——"

In protect mode, segments are described to the proc-
essor by data structures known as descriptors. The
descriptor for a segment gives the starting address of
the segment in physical memory, its length, and its
usage and protection attributes. Descriptors that the
operating system can protect and manipulate as nec-
essary to implement its memory management poli-
cies are gathered into tables. There is a single, system-
wide Global Descriptor Table (GDT) as well as mul-

92 KOGAN AND RAWSON

tiple Local Descriptor Tables (LDTs). At any one time
the GDT and one LDT are accessible: the GDTR and
LDTR are hardware registers that point to the current
GDT and LDT, respectively. Addressing is done indi-
rectly through either the GDT or the current LDT. The
16-bit values in the segmentation registers are no
longer addresses, as they are in real mode, but rather
are indexes called selectors. The selector indexes to
a descriptor in the GDT or LDT. The processor cal-
culates the address of the location being accessed by
adding the segment base address to an offset value.
By making the result of the address calculation 24
bits wide in protect mode, the 80286 provides for a
maximum physical storage size of 16M bytes.

Figure 1 shows the address generation of the 80286
in real and protect modes.

The 80286 and 80386 processors provide four levels
of protection, called protection rings. The rings are
numbered, with the most privileged ring being 0 and
the least privileged being 3. Privilege is associated
with segments, and the privilege level of a segment
is stored in its descriptor. The current privilege level
of the machine is the privilege level of the currently
executing code segment.

Certain instructions relating to the processor state
are designated as privileged and can only be executed
at Ring 0. Other instructions relating to 1/0 opera-
tions are classified as trusted and require 1/0 privilege
access, known as 10PL. In order to use these instruc-
tions, the current privilege level must be at least as
privileged as the minimum privilege set globally for
these trusted instructions. See page 10-5 of Reference
1 for a list of these instructions.

The processor provides a disciplined way of going
from one privilege level to a more privileged level,
called a gate. When a program calls a gate using the
FAR CALL instruction and the gate points to a more
privileged code segment, the processor automatically
switches privilege level. When switching privilege
levels, the processor automatically copies the param-
eters specified on the call to the stack used at the
new privilege level.

Built into the 80286 there is a hardware tasking
model which uses a Task State Segment (TSS) to
describe the state of a task and the stacks that it is
using. In order for privilege transitions in protect
mode to work correctly, there must be a Tss. A
hardware register, the TR, holds the address of the
current TSS.

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988




An Interrupt Descriptor Table (IDT) is used to vector
interrupts to the routines that service them. This
table is laid out differently from the low-storage
interrupt vector table used in real mode, containing
descriptors for special types of gates. This table is
pointed to by a special register, the IDTR, that allows
it to be located anywhere in physical memory rather
than being restricted to low storage as is the interrupt
vector table of real mode.

The DOS programming environment. DOS applica-
tions are coded to a well-established DOs program-
ming environment. This environment is very tightly
tied to the details of the hardware provided with the
original 8088-based 18M Personal Computers. It is a

very open environment in which the application .

writer has almost total freedom to control what the
machine does. Although this is a significant advan-
tage in many cases, it makes it difficult to move to
more advanced architectures and make multiple ap-
plications run together on the same system.

The most important architectural features of the DOS
programming environment are summarized in Table
3.

Capturing this open environment in a system that
provides traditional operating system resource man-
agement is a significant technical problem.

pos and DOS programs execute only in real mode.
Although there is a BIOS® interrupt that puts the
machine in protect mode, its usage is very limited
and specialized; for example, there are no DOS system
services available in protect mode. BIOS itself also
assumes real-mode operation.

DOS assembly language programs commonly use seg-
mentation registers for base registers and perform
arithmetic on the values contained in them. Doing
this when running in protect mode generally leads
to protection violations. The segmentation registers
cannot be used as base registers in protect-modé
programs, since the values in them are indexes rather
than addresses.

The DOs programming environment assumes an ad-
dressing maximum of 640K bytes for a usable pro-
gramming area. Although the processor can address
in real mode up to 1M bytes, the address range
between 640K bytes and 1M bytes is reserved for
Blos read-only memory (ROM) code and video buf-
fers.

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Table3 DOS programming environment

Real-mode execution on the 8088/8086,/80286/80386

Modification of segmentation register values

Addressing range limited to 1M bytes

Use of both DOS and BIOS interrupt interfaces

Applications execute with full privilege, using all machine
facilities

Multiple application programs supported with special fea-
tures such as terminate and stay resident

Application programs may alter each other or DOS

Many of the interfaces that are commonly used by
DOS programs are not provided by DOs but rather by
BIOS. DOS programs are written to the combination
of the DOs and BIOS interfaces.

The DOS programming environment gives the pro-
grammer full access to the facilities of the hardware.
The program may do low-level 1/0 instructions, dis-
able and enable interrupts, and perform its own
interrupt processing. The memory buffer that repre-
sents the display screen is directly accessible, so that
programs may update the screen by storing infor-
mation in the appropriate memory locations.

Interrupt vectors that are set up by DOS or by BIOS
may be altered by application programs. This prac-
tice is usually called shooking an interrupt. The alter-
ation is done by simply storing a pointer to the
routine that the application wishes to get control of
into the correct interrupt vector table location in low
storage.

There is no protection between programs under DOS,
which assumes that one program is running at a
time. Although there are many schemes for actually
executing multiple programs together, such as ter-
minate-and-stay resident routines, no mechanism is
provided by the system or by the hardware when
running in real mode that enforces any type of
separation between programs. There are also no
system mechanisms for managing the concurrent
execution of multiple programs. Although this may
be an advantage when structuring a set of programs
that are tightly coupled and cooperating, it is a
significant disadvantage when programs from differ-
ent sources are being collected together.

A number of alternatives to protect-mode operation
have been proposed and implemented in the past.
These alternatives certainly increase the utility of
DOS, but all of these solutions are limited by two

KOGAN AND RawsoN Q3




9

Figure2 0S/2 protection ring usage

important factors. First, they are external solutions,
different from the processor architecture and the
natural trend of development for systems based on
the Intel processor family. They require special hard-
ware, usually on the bus or on memory cards, which
increases the total cost of the machine. Second, they
are all mapping schemes. Although they increase the
amount of physical memory that can be attached to
the machine, they do not increase the instanta-
neously addressable memory that a program has.
The programmer must divide the code and data into
sections that do not have to be addressable concur-
rently and then must manage the hardware correctly
to ensure that the correct section is mapped at any
particular time. This procedure is complex, espe-
cially when using higher-level languages. For this
reason, 08/2 uses protect mode to extend the address-
ing range of the application program.

System structure

Since 0s/2 runs real-mode applications in real mode
and protect-mode applications in protect mode, and
since in protect mode the architecture of the 80286
requires the use of multiple protection rings in order
to enforce privilege constraints, the structure of the
0s/2 system is tailored to support these features.

Mode usage. Many portions of the 0s/2 system are
designed to run either in real mode or protect; these
include

KOGAN AND RAWSON

Device management
Interrupt management
Mode switching
Context switching

Code that can run in either mode is called bimodal
code. The device drivers supplied with 0s/2 are also
implemented as bimodal code. The balance of the
0s/2 system, including virtual memory management
and the file system, is implemented as protect-mode-
only code. Low-level system services are provided
that permit system code to determine the current
mode of the machine and to ensure that it is execut-
ing in the correct mode.

An attempt is made in 0s/2 to minimize the amount
of mode switching that is done on performance-
critical paths such as device and interrupt handling,
since mode switching is relatively slow, especially
when going from protect to real mode. This led to
the decision to use bimodal code for the device
drivers. In comparison, services such as segment
allocation that are usable only in protect mode are
written as protect-mode-only code. Although it is
used by real-mode programs, the file system is im-
plemented as protect-mode-only code to reduce the
amount of storage below 640K bytes required by the
0s/2 system. When the file system is used by a real-
mode program, there are two mode switches, one
from real mode to protect mode when calling it and
one from protect mode to real mode on return.

Protection ring layout. 0s/2 uses three of the four
protection rings of the 80286. Figure 2 shows use of
the protection ring by the system.

The Ring 0 operating system code consists of two
parts. The basic system services are linked together
to form a program called the kernel. The programs
that are used to run devices are separately loaded
modules called device drivers. Both the kernel and
the device drivers execute at Ring 0 because they
require the highest level of system privilege in order
to be able to handle interrupts.

Subsystems are system services and extensions that
do not require hardware privilege. Both applications
and subsystems execute at Ring 3. Ring 2 segments
are used by subsystems and applications for code
that executes instructions requiring 1/0 privilege.
This allows these programs to do 1/0 operations that
do not require servicing interrupts.

The kernel is implemented as a monolithic monitor
with one entry and one exit. The 0s/2 kernel is

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988




nonpreemptible; when a program is executing in the
kernel, it will not be preempted to run another
program. However, a program may be interruped
while in the kernel, so that interrupt routines can
run and perform functions that have to be done
within a relatively brief period of time, such as
clearing 1/0 buffers. This kernel structure permits
simplicity of implementation and provides accepta-
ble performance for a single-user, interactive, but
nonreal-time system such as 0s/2. With this design
it is essential that the length of time spent by any
system call in the kernel be held to a minimum.

Implementing large memory

By using protect mode, 0S/2 is able to use the full
addressing range of the 80286. Memory is a key
system resource that is laid out and managed care-
fully by the system. Figure 3 shows the memory
layout of 0s/2.

0s/2 programs execute as a process. In particular,
each process has its own addressing environment.
The tasking aspects of processes are covered in the
section on multiprogramming and multitasking,

The kernel consists of one code and one data seg-
ment in low physical memory below 640K bytes and
several code and data segments in high memory
above IM bytes. The low-memory segments are
tiled, which means that these segments can be ad-
dressed with the same value in a segment register in
real and protect modes. Tiling is accomplished by
taking the real-mode virtual address of these low-
memory segments, converting this address to a phys-
ical address, and placing this value into the base
address field of the descriptor whose selector matches
the segment value from the original real-mode vir-
tual address. Tiling lets bimodal code execute cor-
rectly regardless of the current mode of the machine.
Figure 4 illustrates the concept of tiling. The device
drivers and the portion of the kernel that is in low
memory are tiled.

Real-mode programs are run in an area below 640K
bytes, so that they have the same addressing environ-
ment as they do in DoS. The split of the kernel into
low- and high-memory segments is done to maxi-
mize the amount of space available to a DOS program
running in real mode.

Virtual memory management. Although any individ-

ual segment is still limited to 64K bytes in size, a
protect-mode program can use a large number of

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Figure3 0S/2 memory layout

TOP

08/2 PROGRAMS

08/2 SYSTEM HIGH SEGMENTS
1M BYTES

640K BYTES

0 BYTES

Figure4 Tiled addressing

- - =

REAL i PROTECT
MODE MODE

|

!

i

1

I

|

|

° 1

i

1

b ,:_

|

|

i

1

!

segments; thus, it may have an address space that is
much larger than the 640K-byte limit imposed by
Dpos. In addition, 0s/2 provides ways of allocating
and using collections of segments as single units to
permit the implementation of large data structures.

Since, as is standard in multitasking systems, the
memory resources of individual processes have to be
protected from interference by other processes and

KOGAN AND RawsoN 05




since those of the system itself have to be protected
from interference by user programming, the descrip-
tor tables are accessible only at Ring 0 privilege.
Thus, the kernel must manage segments, determin-
ing their base addresses in physical memory and
their lengths. This function is performed by the
Virtual Memory Manager, which uses the services of
the Physical Memory Manager (described in the
subsection “Physical Memory Management™) to al-
locate and deallocate physical memory as needed
and to guarantee that memory can be overcommit-
ted by the Virtual Memory Manager.

Although segments are allocated and deallocated by
processes, the Virtual Memory Manager maintains
a single, system-wide table, called the Handle Table,
that describes all memory objects currently allocated
in the system. Objects are mapped to segments and
selectors by the Handle Table.

Since the smallest unit of storage managed by the
kernel is a segment, 0s/2 provides a subsystem to
manage storage within a single segment.

Memory sharing. 0S/2 supports memory sharing of
code and data segments. The system provides both
named and unnamed shared segments. The names
of named shared data segments have the same form
as the names of files. Processes gain access to named
shared segments by knowing the name and using the
shared-segment system calls. 0s/2 permits sharing of
application and subsystem code segments as well as
global subsystem data segments. In fact, the entire
0s/2 subsystem concept is built around the notion
of memory sharing: Processes are almost always
sharing segments with other processes. This is in
contrast to systems like the UNIX® operating system
which typically share only reentrant code between
processes. See Bach* for a description of the UNIX
process model and the recent enhancements made
to it to support memory sharing between processes.

Segments in the Global Descriptor Table (GDT) are,
of course, automatically shared by all processes as a
result of the architecture of the 80286 processor.
However, except for the kernel, most code and data
segment descriptors are located in the Local Descrip-
tor Table (LDT). In order to support segment sharing
in a convenient way and in order to make sure that
addresses can be passed correctly between processes
for shared code and data, the Virtual Memory Man-
ager ensures that if a slot is allocated for a shared
segment in the LDT of one process, that slot is re-
served in every other LDT in the system. This guar-

06 KocaN AND RAWSON

antees that the slot will be available should any other
process request access to the segment. Each selector
in the LDT is classified as either public or private.
Public selectors are managed as sharable resources
across the LDTs of all processes. Sharable items, such
as segments that are allocated as being shared, and
subsystem code and data are mapped into public
selectors. The private selectors are used for segments
allocated by the process owning the LDT. Reference
counts and owners are tracked by the Virtual Mem-
ory Manager in the Handle Table.

Although this arrangement has the obvious cost of
requiring that all LDTs be scanned on every allocation
or deallocation of a shared segment, and although it
increases the size of the LDTs in the system, it ensures
that addresses can be shared validly across processes.
As long as the size of the LDTs and the number of
processes are both small, the cost is reasonable.

0S/2 descriptor table management. The GDT is stat-
ically allocated when the 0s/2 kernel is built. It
contains descriptors for global system segments, as
shown in the memory layout of Figure 3. Resident
and installable device drivers’ code and data seg-
ments are also mapped into the GDT. In addition,
the call gates for the callable interfaces implemented
by the kernel reside in the GDT.

Aliases to processor-specific data structures are also
in the GDT. The alias to the GDT itself is present,
along with one LDT descriptor for the current LDT.
There is also an alias to the LDT so that it can be
referenced as data. Other aliases include an 1DT alias,
a descriptor for the current Per Task Data Area
(PTDA), a TSS descriptor for the 1SS of the system, a
descriptor for the tiled selector to the ROM data area
at 40:0, and a descriptor for an interrupt stack. The
PTDA, which is the control block used by 0s/2 to
describe a process, will be described more fully in
the next section. The rest of the GDT entries can be
dynamically allocated by portions of the kernel and
the device drivers.

There is one LDT for each process in the system. The
fact that there is only one LDT descriptor and one
PTDA descriptor in the GDT implies that these descrip-
tors are remapped on a context switch by 0S/2. PTDAs
and LDTs are allocated when a program is started,
and the LDT can be dynamically grown.

Physical memory management. 0S/2 manages phys-
ical memory in such a way that more memory can

" be allocated than the machine actually has. This

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988




feature, known as memory overcommit, allows the
user more flexibility by permitting the system to
execute programs that are larger than the amount of
physical memory installed on the machine. Segments
that are not actively being used may be swapped out
to a fixed disk. The system brings them back into
memory when they are needed. Since all of the
memory used by a segment must be contiguous,
0s/2 moves segments around in main memory in
order to maximize the amount of free space available
in physical memory. This placement is called com-
paction or segment motion. Code segments are dis-
carded in overcommit situations rather than being
swapped, since they can be reloaded from their orig-
inal disk images when needed again. 0s/2 uses seg-
ment swapping rather than paging to support mem-
ory overcommit because the 80286 processor does
not have paging hardware but does provide the hard-
ware support necessary to implement demand seg-
mentation.

The areas of low physical memory used to run DOS
programs and 0S/2 itself are not subject to being
moved or swapped. In addition, the system or an
application may temporarily lock a segment in stor-
age, so that, for example, an 1/0 buffer is guaranteed
to remain fixed in physical memory until the 1/0
operation is completed.

When there is not enough contiguous physical mem-
ory to satisfy a request, the Physical Memory Man-
ager attempts to compact memory to create a large
enough space. If the compaction fails to produce
such a space, the Physical Memory Manager per-
forms a background operation to swap enough seg-
ments out of physical storage to permit the original
request to complete. The swapper uses the file system
to swap data to and from physical storage.

Since swapping and compaction impose some over-
head on the system as a whole, the user may config-
ure the system so that these functions are not per-
formed.

The Physical Memory Manager tracks the usage of
physical memory. Each block of physical memory,
called an arena, has a header that describes it. All
the arena headers are chained together in a doubly
linked list. The Physical Memory Manager main-
tains two additional doubly linked lists, one for the
free arenas and one for the allocated ones. The pDos
Environment has a single arena that is not on the
free list of the Physical Memory Manager. Memory
management in the DOS environment is done by the
DOS services running there.

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Multiprogramming and multitasking

A multiprogramming system allows the concurrent
execution of multiple applications. A multitasking
system distributes processor time among multiple
programs by giving each one short periods of time
on the processor. 0s/2 implements both multipro-
gramming and multitasking.

Sessions. 0s/2 provides multiprogramming by sup-

porting up to 16 concurrent sessions. Since the sys-
tem uses four of these sessions for (a) the DOS envi-

A thread is the unit of dispatching in
the system.

ronment, (b) the user shell, (c) the hidden session for
detached processes, and (d) the hard-error handler,
a user may start up to 12 concurrent sessions.

08/2 manages the video buffer so that the display can
be used by multiple applications concurrently. Each
session has a single logical display, keyboard, and
mouse.

Processes and threads. The word rask always refers
to the hardware-defined task state. Although 0s/2
executes multiple tasks concurrently, it does not use
the concept of a task as it is defined by the 80286
architecture. Instead, o0s/2 differentiates between
processes and threads.

A process owns resources such as threads, file han-
dles, semaphores, queues, and a memory map de-
scribed by its own LDT.

The 0s/2 system maintains a Per Task Data Area
(PTDA) for each process in the system. The PTDA of
each process is placed in a separate segment that is
addressable via the GDT.

When a process is created, one thread is always
created to run the code specified in the process
creation system call. Thus, a process always has at
least one thread. A thread is the unit of dispatching
in the system. It is conceptually a stack and register

xoGaN AND RawsoN 7




Figure5 0OS/2PTDA segment

set that embodies a program. A process may have
multiple threads sharing its resources. The system
maintains a Thread Control Block (TcB) for each
thread in the system. The TCB contains the register
set and the kernel stack of the thread, and informa-
tion for thread scheduling and 1/0 activity. Figure 5
shows the layout of the PTDA segment of a multi-
threaded process.

When a process is created, the system allocates a
segment for the PTDA, including space for several
TCBs. When subsequent requests to create threads
exhaust the segment, the segment is resized to add
space for more TCBs.

Dispatching mechanism. The dispatching mecha-
nism in 0s/2 is a software mechanism rather than
the hardware mechanism defined by the 80286 ar-
chitecture. Since the unit of dispatch is a thread, the
system switches PTDAs when it switches to a thread
that is not in the current process. Also, the stack
fields of the TSs must be changed to reflect the correct
stacks for each thread in the system. On a process
switch operation, the physical address field in the
LDT descriptor in the GDT is changed to point at the
new target LDT, and the LDTR is reloaded to effect
the LDT switch. The process switch operation is
mostly completed when the hardware stack pointer
(ss:sp) is reloaded to the new kernel stack and PTDA.
A thread switch is the same as a process switch,
except that the PTDA and LDT remain constant while
the stack fields in the TSs are updated.

98 KOGAN AND RAWSON

The decision to use a software dispatching mecha-
nism is based on two major considerations. First,
since the system sometimes runs in real mode, the
hardware dispatching mechanism is not always avail-
able. Even when it is running in real mode, the
system must track the currently executing program.
Second, the dispatch mechanism is finely tuned,
saving and restoring only those things that are ab-
solutely essential to the correct preemption and re-
sumption of execution. As a result, fewer clock cycles
are expended in performing the 0s/2 software context
switch than would be required for an 80286 Tss
switch.

Scheduling policy. 0s/2 implements a preemptive
time-slicing scheduler. A thread executes for some
relatively short period of time before the scheduler
gets control. When it does, it may determine that
there is some other thread that ought to run. If so, it
preempts the currently running thread by saving its
state and dispatching the other thread. The o0s/2
scheduler implements a multilevel priority scheme
with dynamic priority variation and round-robin
dispatching within priority level. Dynamic priority
variation changes the priority of threads on the basis
of their current activity. This is done to improve
overall system performance and to make sure that
the system responds rapidly to user interactions.
Round-robin dispatching within a priority level en-
sures that if there is more than one thread at the
same priority level, all of the threads at that level
have an equal chance to execute.

For a single-user, personal-system operating system,
0s/2 implements a sophisticated scheduling policy.
This implementation permits the user to control the
interactions of the programs being run on the system
to make the whole system as responsive as possible
to individual needs. Defaults built into the system
permit it to run standard application mixes well, and
built-in programming interfaces permit application
programmers 1o control the behavior of their appli-
cations. This mechanism exists to ensure that the
system provides the interactive response expected by
the user.

Process synchronization and communication

Since it provides multiple processes and threads,
0s/2 must also provide ways to coordinate their
operation and to communicate among them, so that
programmers can implement applications using
more than one thread or process.

BM SYSTEMS JOURNAL, VOL 27, NO 2, 1988




Semaphores. Since 0s/2 applications may be mul-
tithreaded, it is important that they protect their
resources. Common data areas shared by multiple
threads in a process must be accessed in a serialized

A semaphore is a data structure
owned by one thread at a time.

fashion. 0s/2 allows an application to do this by
using semaphores. A semaphore is a data structure
which is owned by one thread at a time. If two
different threads of a program need to access a data
structure, each must request the semaphore first.
0s/2 grants the semaphore to one of the requestors
and blocks the other until the first relinquishes con-
trol.

0s/2 has two types of semaphores: system sema-
phores and random-access memory (RAM) sema-
phores. The ownership of system semaphores is
tracked by the system, and system semaphores may
be used to serialize between threads in different
processes. RAM semaphores are a very simple and
very efficient form of semaphore that can be utilized
to serialize among the different threads of a single
process. When the thread owning a system sema-
phore terminates, the system notifies any pending
requestors of the semaphore. However, it is up to
the application using RAM semaphores to ensure that
there are no deadlocks among threads requesting
access.

Signals. Signals are used to notify 0s/2 processes
that some external event has occurred. A process can
define signal-handler routines that are invoked when
the various signals are received by the process.
Among the signals defined for 0s/2 processes are
ones indicating that the user has keyed in the control-
break function and that the process is to terminate
itself, If there is no signal-handler defined when a
signal is received, the system takes the default action,
usually either ignoring the signal or terminating the
process. If there is a signal-handler defined for the
signal, it is invoked under the initial thread of the
process. The system provides a function that permits
a process to disable and to enable signaling.

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

Pipes. 0s/2 provides both pipes and queues for in-
terprocess communication. A pipe permits two proc-
esses to communicate by using the file 1/0 calls of
the system. The first process writes data into the
pipe, and the second reads data from the pipe. How-
ever, the data are never actually written to an exter-
nal file but are kept in a segment in main memory.

Queues. The queuing system calls are implemented
by a Ring 3 subsystem that uses shared memory,
suballocation, and semaphores for serialization.
These calls implement the mailbox model in which
only the owner can read from the queue, but any
thread can write to it. The owner can look at the
elements on the queue, remove elements from the
queue, purge the queue, and delete the queue.

Dynamic linking to services

0s/2 programs use far call instructions to invoke
services from the system. The references generated
by these calls are resolved when the program is
loaded or when the segments of the program are
loaded. This postponed resolution of references is
called dynamic linking. The 0s/21oad module format
is a superset of the DOS load module format. It has
been extended to support a demand segment-swap-
ping environment with dynamic linking.

Dynamic linking reduces the storage requirements
of 0s/2 programs while making it possible to replace
subsystems and service routines without relinking
applications.

The dynamic linking mechanism. In protect-mode,
whether a code segment selector or a call gate selector
is used is transparent to the caller. When the request
is for a system service that requires a privilege tran-
sition, a call gate is used. When the linkage is to a
service provided by a subsystem executing at the
privilege level of the application, the call is directly
to a code segment selector.

Application structure. An 0s/2 EXE module contains
EXPORT and IMPORT records. When a program IM-
PORTs a far call reference, the linker does not attempt
to resolve the far call to the function being imported
and creates instead an IMPORT record in the EXE
header. EXPORTs are usually found in subsystems; if
a subsystem has EXPORTed a public far routine, the
linker creates an EXPORT record in the EXE header to
indicate that this EXE module contains candidates
for target dynamic links.

KOGAN AND RawsoN 99




Subsystem structure. Subsystems are also called dy-
nalink packages, or dynamic link libraries, and reside
in EXE files with the extension “.DLL.” Subsystems
are loaded into memory when they are referenced
by an application at load time or run time. A sub-
system does not have a stack segment but may
contain Ring 3 and Ring 2 code segments. Subsystem
modules also may contain data segments which are
classified as instance data or shared global data. An
instance data segment is allocated one per requestor
of the package, whereas a shared data segment im-
plies that the data segment is allocated once when
the package is loaded. Since subsystems are mapped
into the public selectors in the LDT, these slots are
preserved in all LDTs, so that the subsystem appears
in the same place in the address space of the process
no matter which process is using the subsystem.
Global data for subsystems are implemented by the
loader allocating a public selector in the LDT for the
segment, and then mapping this selector to a single
copy of the data segment supplied by the subsystem
module. This shared segment appears in the same
place in all LDTs. Conversely, instance data are pro-
vided by the loader allocating one segment per LDT
per process that has referenced the subsystem, and
mapping the same public selector in each LDT to a
unique copy of the data segment of the subsystem
when the subsystem is first referenced by a thread in
a process.

When a subsystem is loaded, an optional initializa-
tion routine supplied in the package will be run so
that the subsystem is ready for clients. The initiali-
zation routine may be identified as instance or global
depending on whether the subsystem writer wishes
the initialization routine to be called once (global),
or on a per-process-reference (instance) basis.

Load time dynamic linking. The 0s/2 loader imple-
ments dynamic linking using the Module Table data
structure which consists of Module Table Entries
(MTEs). Each MTE is referenced by a module handle
that is a pointer to an MTE. All the MTEs in the system
are kept in a linked list of module handles. Each MTE
contains the resident EXE header information ex-
tracted from the load module, including the exported
entry points. Module tabies are allocated as movable
segments.

When the 0s/2 loader attempts to load an EXE file, it
builds an MTE if one does not already exist for the
module. The MTE handle is stored in the PTDA of the
requesting process. The MTE is then scanned for
IMPORT records. Each IMPORT record tells the loader

100 «oGAN AND RAWSON

what module contains the code being referenced.
IMPORTs can be by name or by ordinal number.

IMPORTs by name are references to subsystem code.
If it is a Ring 3 code segment, the loader fixes up the
program to call the Ring 3 code segment selector. If
it is a Ring 2 code segment, the loader fixes up the
program to call a Ring 3 call gate that points to the
Ring 2 code segment. If necessary, the loader loads
any subsystems referenced by the program. Subsys-
tem loading is similar to application loading.

For IMPORTs by ordinal number the references are to
the kernel, and the far call reference is fixed up to a
Ring 3 call gate that contains a Ring 0 code segment
selector and offset of the target. Ordinal numbers
allow faster dynamic linking of kernel calls, since no
search of the MTEs for the kernel is required.

When the system resolves dynamic links from Ring
3 to Ring 2, it allocates a Ring 2 stack. When there
is movement from Ring 3 to Ring O through a pos
Call, the Ring 0 stack is already set up for the
requesting thread in its TCB in the kernel. The TSs
points to this as the Ring 0 stack.

Run time dynamic linking. 0s/2 applications may
explicitly load subsystems by using the DosLoad-
Module system call to load the subsystem that it
wishes to use. The application then uses the Dos-
GetProcAddr call to get the selector and offset of a
given routine in the target subsystem. This permits
routers to redirect requests to different subsystems at
run time.

The program loader adds the explicitly loaded mod-
ules to the module table chain of the system and
keeps track of them with a record structure contain-
ing the requestor’s PTDA, the MTE handle for the run-
time dynalinked module, and a reference count.

Demand loading. When the loader scans the MTE and
finds segments with the PRELOAD attribute off, these
are LOADONCALL segments that are demand-loaded.
The loader postpones the actual loading of LOADON-
CALL segments; LDT selectors are allocated for them,
but the descriptors are marked not present. On ref-
erence to the not-present segment, a not-present fault
occurs, and the segment is demand-loaded. This
condition may require the loader to do dynamic
linking as a result of handling a segment-not-present
fault.

Privilege transition on system call. When an appli-
cation makes a system call to the kernel, the system

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988




makes a privilege-level transition to Ring 0 by doing
a far call to a Ring 3 call gate. Since the target code
segment in the call gate is a Ring 0 code segment,
the processor switches from the Ring 3 stack, which
is allocated by the application during assembly or
link time, to the Ring O segment specified in the Tss.
Any parameters are copied from the Ring 3 stack to
the Ring 0 stack by the 80286, and execution contin-
ues on the kernel stack of the thread which is allo-
cated in the TCB. The dispatch mechanism ensures
that when threads are switched, the Ring 0 stack
fields of the Tss are changed so that the system always
uses the correct kernel stack for the requesting
thread.

On return, the system comes back to the caller,
making the transition back to Ring 3. To be in kernel
mode is not the same as to be executing at Ring 0.
Once a system call has moved through the call gate,

0S/2 programs execute as a
process.

the thread is executing at Ring 0, but it is not yet in
kernel mode. Each system call entry handler invokes
the System Call Interpreter, or scI, which connects
the Ring 0 entry point to its respective worker rou-
tine. A worker routine is an internal routine that
executes the system call. sC1 validates the stack-based
parameters that are passed to the kernel and moves
them to registers for use by the workers. scCI also
ensures proper serialization for routines in the ker-
nel. On return from the worker, it sets up the return
status and returns through the call gate to the original
requestor.

Application programming interface. 0S/2 uses calls
to implement its application programming interface
(APD), rather than the software interrupts (INTs) used
by Dos and BIos. The software-interrupt mechanism
for invoking system services has a number of disad-
vantages, as follows:

¢ The number of INTs is very limited, restricting
future growth.

1BM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

e It is impossible to add new parameters to existing
INTs in a compatible fashion, making it difficult to
extend current interfaces.

¢ The software interrupt interfaces are easy to code
in assembler, but they do not translate very well
into higher-level languages.

Rather than using software interrupts, the 0s/2 API
is based on the dynamic linking mechanism of the
system described above.

Extendability. The 0s/2 API can easily be extended
by adding new function names to the system library.
Subsystems can also be added by introducing new
dynamic link libraries. The application developer is
provided with a single, consistent mechanism for
accessing base system functions and extensions. The
dynamic link mechanism enables the system to
change APIs in future releases while maintaining
compatibility for the existing calls.

Family API. There is a subset of the 0s/2 API called
the Family ap1 which is supported by both 0s/2 and
DOs 3.3. Programs written to the Family API can be
linked and bound to produce EXE files that are exe-
cutable on 0s/2 in protect mode, on 0s/2 in the DOS
environment, or on Dos. On 08/2 in protect mode,
the Family API calls are handled in the usual manner
by the system, whereas on DOS or in the DOS envi-
ronment of 0s/2, a special piece of code is bound to
the application that is used to translate the Family
API calls to software interrupts or to emulate the
0s/2 system call in real mode. This code also loads
and transfers control to the program, so that it seems
to be executing in the 0s/2 environment.

File system and I/O. Although there are many
changes in the details of the implementation, the
functions and overall structure of the 1/0-related
portions of 0s/2 are very similar to those of the 1/0
support sections of DOs and BIOS.

File system. 0s/2 uses the same file-system formats
as DOS 3.3, so that media written by one system can
be read by the other. Like DOS 3.3, 08/2 permits the
user to organize the files on a disk or diskette into
tree-structured directories. The file-naming and
drive-letter conventions of 08/2 are the same as those
of pos 3.3. The 0s/2 file system provides the same
file-sharing features as DOS 3.3, so that a file can be
shared among processes that are running concur-
rently. File access can be serialized among threads
of the same process using semaphores.

koaan anD Rawson 101




Unlike DOs, 0s/2 provides asynchronous file 1/0 op-
erations as well as synchronous file 1/0 operations.
This means that a program may issue a read or a
write and then proceed with other processing while
the 1/0 operation is being done by the system. When
the program needs the data being read or needs to
reuse the buffer containing the data being written, it
can wait for a semaphore that is set when the 1/0
operation is completed by the system.

Also, since the file system runs under the thread of
the caller or, in the case of asynchronous 1/0 opera-
tions, under the thread created to run the request,
file system operations are multithreaded. This means
that 0s/2 does not wait for disk 1/0 activity to com-
plete. Instead, it can dispatch other threads and do
other work while the disk is returning the data re-
quested.

For devices larger than 32 megabytes, 0s/2 provides
a method of partitioning the disk into logical drives,
each with its own drive letter. This partitioning
scheme is identical to that in DOS 3.3, so that media
compatibility between the two systems is main-
tained.

0s/2 provides a single file system for all protect-mode
programs and the DOS environment, and it enforces
the file-sharing protocols between real- and protect-
mode applications

Video, keyboard, and mouse. Although they are gen-
erally regarded as devices, 0s/2 implements most of
the device support code for video, for the keyboard,
and for a mouse using subsystem code. There are
device drivers for each, but they contain only a small
portion of the code required to operate the devices.
This arrangement permits the user to replace the
0s/2-provided device support with customized sup-
port on a per-session basis.

The system manages sessions so that when a session
is in the foreground, a process performing video
output sends it directly to the hardware video buffer.
When the session is moved to the background, the
hardware video buffer is saved to a logical video
buffer for the session. While the session is in the
background, the process sends its video output to
this logical video buffer. When the user returns the
session to the foreground, the system copies its logi-
cal video buffer to the hardware video buffer. Key-
strokes and mouse inputs are directed to one of the
processes in the foreground session. There are pro-
gramming interfaces to control which process re-
ceives them.

102 KoGaN AND RAWSON

Device drivers. Like Dos, 0s/2 has two types of device
drivers—character device drivers and block device
drivers. As with Dos, 0s/2 device drivers may be
broken down into strategy and interrupt routines.
However, because 0s/2 device drivers must operate
in a multitasking environment, they must be written
to relinquish control whenever they are forced to
wait for 1/0 operations to complete. Device drivers
are bimodal, tiled, Ring 0 code. Since they are bi-
modal, an asynchronous 1/0 operation may be
started by a device driver in one mode, but the device
driver may receive the interrupt for it in the other

0S/2 executes real-mode programs
one at a time in low storage.

mode. Since the addressing structure is different in
real mode and protect mode, device drivers translate
virtual addresses to physical addresses and store the
physical addresses for use at interrupt time. The
physical addresses are guaranteed to be constant,
independent of the mode of the processor.

To assist in implementing such device drivers, 0s/2
has a common interrupt manager that handles all
hardware interrupts and routes them to the correct
device driver. Also, the system provides a number of
services called device driver helper, or DevHlIp, rou-
tines that a device driver may call. These DevHlp
calls provide access to kernel services, including
some that are specifically tailored to assist in the
implementation of device drivers. Among the func-
tions provided are

«~ Converting virtual addresses to physical addresses
«~ Converting physical addresses to virtual addresses
~ Segment locking

» Semaphore handling

»~ Request queue management

The kernel provides a DevHIp router that converts
DevHIp calls to an interface to the kernel worker
routines similar to the one produced by the System
Call Interpreter for dynamic link calls. More infor-
mation on 0s/2 device drivers can be found in the
paper by Mizell.

IBM SYSTEMS JOURNAL, VOL. 27, NO 2, 1988




Compatibility with DOS

08/2 executes real-mode programs one at a time in
low storage. Real-mode programs run only when the
DOS environment is selected as the foreground ses-
sion. Protect-mode applications may continue to
execute in the background. When a real-mode pro-
gram is put into the background by the user, it is
frozen and does not run again until the user returns
it to the foreground. This means that real-mode data
communication functions cannot be reliably sup-
ported in the DOS environment when the user
switches to a protect-mode 0s/2 application.

The software interrupts issued by real-mode pro-
grams are serviced by 0s/2. Included are both the
DOS software interrupt function calls and the BIOS
software interrupts. This arrangement permits the
real-mode application and the protect-mode appli-
cations to share common resources and services such
as the file system under the control of the operating
system. Some BIOS functions which are particularly
difficult to emulate are given to the ROM BIOS itself
to execute. In that case, the bimodal device driver
uses system services to serialize the use of ROM BIOS,
so that the BIOS code operates correctly.

Because of the requirements of 0s/2 for storage below
640K bytes, there is less application space available
in the DOs environment than there is in a system
running DOS 3.3.

A DOS program may hook an interrupt vector. When
the DOS environment is dispatched, the interrupt
vector table is set up to match the table expected by
the DOs program. When 0s/z regains control, it
compares the interrupt vector table with its previous
image and alters the protect-mode IDT if necessary.
If the system detects that the DOS program is hooking
an interrupt in order to use a hardware resource, it
ensures that this usage does not conflict with the
usage being made by a protect-mode device driver
or program. This feature is called interrupt table
shadowing.

Although 0s/2 is bimodal, the DOS environment does
not get scheduled like protect-mode threads, since it
cannot run in the background. There is a DOS PTDA
in low, fixed memory.

Commands and utilities

The command processor for 0s/2 is an extension of
the coMMAND.coM command processor of Dos. With

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988

minor exceptions, the familiar command set of DOS
is supported, and the syntax of the commands and
the meaning of the parameters to the commands are
the same.

There are some new commands that are unique to
0s/2. In particular, 08/2 provides a START command
that permits the user to start a program in another
session and let it execute asynchronously to the
command processor.

0§/2 supports a compatible extension of the DOS
batch file language. This extension permits old batch
files to be brought over from pos and used on 0s/2.
Unlike Dos, 0s/2 commands routinely set the error
level, so it is easy to determine whether a command
has succeeded.

The STARTUP.CMD command file, if present, is exe-
cuted during system start-up and may be used to
contain initialization commands. In addition, there
may be an OS2INIT.CMD file that is executed at the
beginning of each cMD.EXE session. This file is the
functional equivalent of the traditional AuTO-
EXEC.BAT file of DOS. The AUTOEXEC.BAT file, if pres-
ent, is executed when the DOS environment is started.

The utilities are implemented using the Family a1,
so the same programs can be used as real-mode
programs in the DOS environment or as protect-mode
programs. However, since the programs are able to
determine the mode in which they are executing,
some of them provide functions that are specific to
one mode or the other. The Family Ar1 was used to
implement the utility programs to save disk space,
since only one program file is required per utility
rather than two, as would have been necessary had
there been both real- and protect-mode versions of
the utility.

The DOS environment uses the COMMAND.COM com-
mand processor of DOS to process commands entered
at the keyboard.

Summary

This paper has focused on the design of 0s/2 Stan-
dard Edition Version 1.0, emphasizing the architec-
tural constraints on the design of the system together
with the requirements for providing a system that is
both relatively small and fully functional.

0s/2 is a logical extension of IBM DOS 3.3 that provides

koaan AND rawsoN 103




s Large real memory beyond 640K bytes
* Muiltiprogramming
» Multitasking

Yet 0s/2 retains the ability to run most DOS appli-
cations. Thus, it is able to provide a bridge from the
heritage of single-tasking, memory-limited personal
systems of the past to the more complex but more
powerful multitasking, large-memory systems of the
future,

Operating System/2 and OS/2 are trademarks, and Personal Sys-
tem/2 and Personal Computer AT are registered trademarks, of
International Business Machines Corporation.

UNIX is developed and licensed by AT&T, and is a registered
trademark of AT&T in the U.S.A. and other countries.

Cited references and note

1. iAPX 286 Programmer’s Reference Manual, Intel Corpora-
tion, 3065 Bowers Avenue, Santa Clara, CA 95051 (1985).

2. iAPX 286 Operating Systems Writer’s Guide, Intel Corpora-
tion, 3065 Bowers Avenue, Santa Clara, CA 95051 (1983).

3. BIOS stands for Basic Input Output System. BIOS is the low-
level device support code that is packaged with the machine.

4. M. J. Bach, The Design of the UNIX® Operating System,
Prentice-Hall, Inc., Englewood Cliffs, NJ (1986).

5. A. M. Mizell, “Understanding device drivers in OS/2,” IBM
Systems Journal 27, No. 2, 170-184 (1988, this issue).

General references

Disk Operating System Version 3.00 Technical Reference,
6138536, IBM Corporation (October 1987); available through
IBM branch offices and authorized dealers.

iAPX 86/88, 186/188 User’s Manual, Intel Corporation, 3065
Bowers Avenue, Santa Clara, CA 95051 (1983).

Operating System/2, IBM Personal System/2 Seminar Proceed-
ings, G360-2758, IBM Corporation; available through IBM branch
offices.

Operating System/2 Technical Reference Volume I, 84X1434,
IBM Corporation (October 1987); available through IBM branch
offices and authorized dealers.

Operating System/2 Technical Reference Volume II, 84X1440,
IBM Corporation (October 1987); available through IBM branch
offices and authorized dealers.

Michael S. Kogan IBM Entry Systems Division, P.O. Box 1328,
Boca Raton, Florida 33432. Mr. Kogan is currently a Staff Pro-
grammer in the OS/2 Design Department, where he is involved in
the architecture and design of Operating System/2. In 1984 he
joined IBM in Boca Raton, where he developed and tested several
products in the IBM Engineering/Scientific Series. He then partic-

104 x0GAN AND RAWSON

ipated in the development and testing of IBM Personal Computer
XENIX. Mr. Kogan holds a B.S. degree in computer science and
mathematics from Emory University and an M.S. degree in com-
puter science from Nova University; he is currently working
toward an Sc.D. in computer science at Nova University.

Freeman L. Rawson Wl IBM Entry Systems Division, P.O. Box
1328, Boca Raton, Florida 33432. Mr. Rawson is currently a
Senior Programmer in the Advanced Systems Architecture De-
partment, where he is involved in the design and enhancement of
Operating System/2. When he joined IBM in 1973 in San Jose,
California, his first assignment was in the development of data
management utilities for System/370 operating systems. Mr. Raw-
son transferred to Boca Raton in 1976 to work on the development
of the Realtime Programming System for the Series/1 computer.
In 1986, he joined the OS/2 design organization to work on its
support for the IBM Personal System/2.

Reprint Order No. G321-5312.

IBM SYSTEMS JOURNAL, VOL 27, NO 2, 1988




