Utilizing the SNA Alert
in the management
of multivendor networks

Managing multivendor networks is one of the largest
challenges facing vendors and customers in data proc-
essing and telecommunications. This paper focuses on
one aspect of managing multivendor network environ-
ments: problem notification, isolation, and resolution,
via Systems Network Architecture’s Alert. It describes
an extension to the SNA Alert function, termed the
generic Alert, that makes it possible for various ven-
dors’ products, as well as customer-written applica-
tions, to send Alerts of the same type to a single Alert
receiver. It also describes IBM’s implementation of the
Alert receiver for the System /370, the NetView™ pro-
gram product. Among the facilities that the generic
Alert architecture provides to an Alert sender are the
following: (1) code points that index short descriptions
of Alert conditions, probable causes of these condi-
tions, and recommended operator actions; and (2)
vehicles to carry product-unique text. This text can be
used for further characterizing an Alert condition or
specifying a particular operator action.

In today’s environment, multivendor networks are
the rule rather than the exception. Such networks
are made possible by the existence of agreed-upon
rules for communication among products from dif-
ferent manufacturers. These rules may take the form
either of international standards, such as x.25 or the
emerging ISDN, or of an IBM open architecture stan-
dard, such as SNA’s LU 6.2. A customer can be confi-
dent that two products from different manufacturers
which conform to one of these standards will be able
to communicate.

IBM SYSTEMS JOURNAL, VOL 27, NO 1, 1988

by R. E. Moore

Until recently, however, there has been no provision
for management of a multivendor network. Products
from different manufacturers either have provided
different, incompatible network management capa-
bilities, or, in some cases, have provided no network
management capabilities at all. With the introduc-
tion of the new generic Alert structure into SNA’s
Management Services Architecture, and into IBM’s
NetView™ and NetView/PC™ program products, a
foundation for solving this problem has been pro-
vided in the area of problem management. The
published generic Alert structure, which IBM has
made available to vendors and to customers who
write their own application programs, provides a
standard mechanism by which every product in an
SNA network will be able to provide useful problem
notifications to a network operator. Furthermore,
with the generic Alert support in the NetView/PC
program, IBM has provided an avenue through which
problem notifications for non-SNA resources in a
network, or even for an entire non-SNA network, can
be forwarded to this same network operator.'

© Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

moore 15

Once the generic Alert architecture has been imple-
mented by products in a multivendor network, the

An Alert is an unsolicited record
sent to a network operator indicating
that a problem exists.

network operator will be provided with consistent
problem management for those products.

Opening the Alert architecture

Alerts have been a part of sNA’s Management Ser-
vices Architecture from its inception.? An Alert is an
unsolicited record sent to a network operator at an
Alert receiver by a network component that has
detected a problem. In addition to notifying the
network operator that a problem exists, the Alert
provides the following information:

» The identity of the Alert sender, both as a network
entity and as a product

e The identity of the network resource most closely
related to the problem

¢ An indication of the problem’s severity, e.g.,
whether it is a permanent or a temporary failure

» A description of the problem

¢ A list of probable causes of the problem, ranked
according to their probability of occurrence

* A list of recommended actions for the operator to
take in response to the problem

e In some cases, additional protocol-unique error
data, e.g., data pertaining to a token-ring local-
area network (LAN)

e In some cases, additional product-unique error
data, e.g., a machine check code

¢ In some cases, an indication of the time at which
the problem was detected

In the past, the majority of this information was
stored in a database controlied by the NetView pro-

16 moore

gram,’ in the form of predefined display panels.
These panels were grouped within the database ac-
cording to sending product. The Alert record itself
carried two pieces of information that the NetView
program used to retrieve the right set of panels from
its database of all Alert panels: the identity of the
Alert sender, and an indication of which set of its
panels the sender was requesting. For example, an
Alert from an 1BM 3274 might call for the NetView
program to display the set of panels known to the
NetView program as 3274’s set #5; see Figure 1.

The scheme with stored panels is totally dependent
on predefining the contents of the panels. The panels
must be incorporated into the NetView program. An
Alert sender that did not have panels stored in the
NetView program had no means of obtaining a full
Alert display.* Since panels were defined by NetView
product developers in conjunction with other 1BM
product developers wanting Alert support for their
product, manufacturers other than 1BM were unable
to utilize the Alert function fully.

To circumvent this problem temporarily until the
generic Alert architecture could be defined and im-
plemented, in 1986 1BM introduced an enhancement
in Release 1 of the NetView program. Sixteen sets
of null panels which could be filled in by a customer
were included in the NetView program’s database of
Alert panels. Rather than being indexed by product
type, such as 3274, these sets of panels were indexed
by the sixteen surrogate values USERO, USERI, - - -,
USERF. A vendor’s product, or a customer-written
application, would then be able to create an Alert
requesting the NetView program to display set #5
from the group of panels indexed by the surrogate
value USER2, as shown in Figure 2.

This was only half the job. The null panels in the
NetView program for USER2’s Alert #5 still had to be
filled in by the customer, so that the correct infor-
mation would be displayed when the Alert was re-
ceived. Thus, a vendor utilizing an Alert of this type
had to include documentation with the Alert-sending
product, instructing the customer how to fill in the
null panels. The customer was required to do the
customization of the NetView program.

While this enhancement based on the sixteen surro-
gate values was not a perfect solution, it did make
available to the manufacturers for the first time the
function inherent in the NetView program’s stored
Alert panels.

IBM SYSTEMS JOURNAL, VOL 27, NO 1, 1988

Figure1 Indexing stored Alert panels

NetView

3274 PANELS

3710 PANELS

SYSTEM/36 PANELS

————»

ALERT: “DISPLAY 3274's SET #5”

The new generic Alert

With Release 2 of the NetView program in 1987,
the shortcomings of the stored-panel approach to
Alert presentation were overcome. Figure 3 illus-
trates the fundamental difference between the earlier
stored-panel Alerts and the new generic Alerts. While
the sending product is still identified in the Alert for
the benefit of the network operator, its identity plays
no role in the creation of the basic Alert displays.
Rather than being asked to retrieve and display a
particular set of predefined Alert panels, the NetView
program is told how to build a set of panels, using
text elements stored within the NetView program
itself. An Alert sender is free to request any combi-
nation of these text elements. The NetView program

IBM SYSTEMS JOURNAL, VOL 27, NO 1, 1988

simply combines the elements as requested, without
regard to the sender’s identity. Since the sender’s
request is transported in the Alert record itself, no
prearrangement is necessary; if a sender sends a
correctly formatted generic Alert record, the desired
information will be presented to the network opera-
tor by the NetView program.

In this sense, the Alert architecture resembles that
for x.25 or LU 6.2. When both sender and receiver
implement the architecture correctly, successful
communication between them is assured.

Publication of the architecture. So that manufactur-
ers of SNA and non-SNA products may participate

moore {7

Figure 2

Indexing stored panels using a surrogate ID

USERQ PANELS j USER1 PANELS g

18 woore

IBM SYSTEMS JOURNAL, VOL 27, NO 1, 1988

Figure3 Generic Alert

NetView

ALERT DESCRIPTIONS

PROBABLE CAUSES

RECOMMENDED ACTIONS

X'aaaa’ 277777777
X'bbbb’ 2777277
Xceee! 227772722

. .

. °

. .

i

4 ___—N

ANY PRODUCT

ALERT. “DISPLAY:

ALERT DESCRIPTION X'bbbb,
PROBABLE CAUSE X'aaad,
REPOMMENDED ACTION X'bbbby,

fully in network management, IBM has published the
complete architecture for generic Alerts. The actual
Alert formats appear in Reference 5, while a discus-
sion of how they are used and the displays they are
designed to produce appears in Reference 6. In ad-
dition to these publications, 1BM has provided classes
to assist interested parties in implementing the Alert
architecture.

There are three audiences to whom these publica-
tions are primarily addressed: vendors who build and
market SNA products, those who build and market
non-sNA products, and customers with SNA networks
who write their own application programs, With the
information 1BM provides, all of these groups will be

IBM SYSTEMS JOURNAL, VOL 27, NO 1, 1988

able to create SNA components that build and send
Alerts via techniques similar to those used by 1BM
products.” A customer will be able to manage prob-
lems for an entire network, including 1BM products,
SNA and non-SNA products from vendors other than
1BM, and applications that the customer has written,
in a uniform way and with a single product: the
NetView program.

Uniformity of Alert presentations. There is another
benefit provided by the switch from stored-panel to
generic Alerts: Since the generic Alert displays are
created dynamically from a common set of stored
text elements, more uniform presentations are cre-
ated. Because stored panels were previously defined

voore 19

Figure4 The Network Management Vector Transport (NMVT)

NMVT HEADER

ONE MANAGEMENT SERVICES MAJOR VECTOR

(ONE OR MORE MANAGEMENT SERVICES SUBVECTORS)

(LENGTH POINTS TO HERE) T

MV = MAJOR VECTOR

individually for each product that sent an Alert to
the NetView program, and used only by that prod-
uct, there was no reason that the panels for one Alert
sender had to look at all like those for another Alert
sender. In tact, the NetView program did enforce a
certain degree of uniformity in overall presentation
style and format on all of its stored panels, but
differences in detail and terminology nevertheless
crept in. For example, one set of panels might use
the term DEVICE CABLE, a second COAXIAL CABLE,
and a third TERMINAL CABLE, in all cases referring to
exactly the same thing. The cumulative effect of
many such small differences was to leave the opera-
tor at the NetView program always a little unsure as
to whether two Alerts were really reporting the same
type of failure.

Since the generic Alert displays are built dynamically
from the same stored text e¢lements, they do not
contain variations of this type. The text element
DEVICE CABLE is defined in the published Alert ar-
chitecture, and can be indexed by all Alert senders
wishing to report a failure on such a cable. Thus the
operator always sees the same text. In this way,
uniformity of presentation is intrinsic to the generic
Alert architecture,

The architecture

In moving from stored-panel to generic Alerts, the
potential existed for losing the one outstanding ben-
efit of stored-panel Alerts: their flexibility. A set of

20 mooRE

panels defined for a single Alert sender could, in
principle, say anything whatsoever, so long as it fit
on the NetView program’s screens.® In order to
preserve the beneficial aspects of this flexibility, while
eliminating unhelpful diversity, it was necessary to
create an architecture of sufficient power that Alert
senders could cause the NetView program to build
displays just as informative as those that would have
been defined for a set of stored panels. We now
highlight some of the features of the generic Alert
architecture that make this possible.

The basic structure of management services
data units

Figure 4 shows the format of the sNA Request Unit
in which an Alert is transported through the network.
The value X'41038D"' in the header distinguishes
this Request Unit, the Network Management Vector
Transport (NMVT), from other sNA Request Units.
The NMVT carries other types of management ser-
vices data besides Alerts; an Alert is identified by the
major vector key X'0000'.

Following the fixed-length header is the remainder
of the NMVT, a single management services major
vector. Since the end of the major vector, which is
also the end of the NMvT, is indicated by the major
vector length, the length of different NMVTs can vary.
For example, one Alert for which a substantial
amount of data is available may be 350 bytes in
length, while another may contain only 70 or 80
bytes.’

IBM SYSTEMS JOURNAL, VOL 27, NO 1, 1988

Figure5 Structure of a management services major vector

3RD sV 4TH sV

(MV LENGTH POINTS TO HERE)

1 = 2-BYTE MAJOR VECTOR LENGTH

= 2-BYTE MAJOR VECTOR KEY

1-BYTE SUBVECTOR LENGTH

i

x
#

1-BYTE SUBVECTOR KEY

Figure 5 shows the structure of a management ser-
vices major vector. A major vector is simply an
envelope for one or more management services sub-
vectors. Each subvector has a length field indicating
where it ends. Thus, just like the NMvT, the major
vector and subvectors can be of variable length.

Currently there are 21 subvectors defined in the
architecture for inclusion in the Alert major vector.
No single Alert contains all of these subvectors; a
typical Alert, in fact, contains only about eight. The
major vector structure provides for the definition of
additional subvectors as they are required. To sup-
port additional types of information in an Alert, a
receiver such as the NetView program need only add
support for an additional subvector. Its general sup-
port for parsing the Alert major vector, as well as its
support for previously defined subvectors, is unaf-
fected.

An older version of the NetView program will not
have any problem with a new subvector, although it
will not provide support for it. Since unrecognized
subvectors are always ignored by the NetView pro-
gram, the new subvector will not even be detected
by the older version.

1BM SYSTEMS JOURNAL, VOL 27, NO 1, 1988

In many cases there is one more level of decompo-
sition; some, but not all, management services sub-
vectors are decomposed into management services
subfields. As shown in Figure 6, a subfield has exactly
the same structure as a subvector; i.e., it has a length,
a key, and some data. The only difference between
the two is that a subvector is contained immediately
within a major vector, while a subfield is contained
immediately within a subvector.

References 5 and 6 provide further details on the
NMVT and its major vector/subvector/subfield en-
coding scheme.

Generic Alert code points

The primary Alert displays are created by the
NetView program by means of index code points.
These 1- or 2-byte hexadecimal values index rela-
tively short strings of text stored in tables in the
NetView program; when it receives an Alert, the
NetView program does a series of table lookups
based on the code points contained in the Alert. The
text strings retrieved as a result of these lookups are
combined to form the display for the Alert.

MOORE 21

Figure 6 Decomposition of a subvector into subfields

18T SF

3RD SF 4TH SF

il

(SV LENGTH POINTS TO HERE)

-
[}

1-BYTE SUBVECTOR LENGTH

1-BYTE SUBVECTOR KEY

1-BYTE SUBFIELD LENGTH

=
L}

1-BYTE SUBFIELD KEY

Figure 7 Default and replacement text for Recommended Action code points

CODE POINT DEFAULT TEXT REPLACEMENT TEXT

X'0400" RUN APPROPRIATE TEST RUN APPROPRIATE TEST
X'0401 " RUN CONSOLE TEST
X'0402' " RUN CONSOLE LINK TEST
X'0403' " RUN MODEM TESTS

X'0500 RUN APPROPRIATE TRACE RUN APPROPRIATE TRACE

X'0800 OBTAIN DUMP OBTAIN DUMP
X‘0801 " TRANSFER AND PRINT MOSS DUMP
X'0602' " TRANS AND PRINT CONT PROG DUMP
X'0603' " TRANS AND PRINT LINE ADAP DUMP
X'0610 " DUMP CONTROL PROGRAM
X061 “ DUMP CHANNEL ADAPTER MICROCODE
X'0612' " DUMP LINE ADAPTER MICROCODE
X'0613' " DUMP MOSS MICROCODE

Figure 7 shows a portion of one of the NetView
product’s tables. The text strings indicate various
recommended actions that can be presented to an
operator. When the NetView product receives rec-
ommended action code point X'0402', it displays
the text RUN CONSOLE LINK TEST.

If the NetView product should receive a code point
not contained in its tables, it automatically displays

22 wmoore

the default text indexed by the first byte of the code
point; in the case of recommended action code point
X'0404', for example, the NetView product would
display RUN APPROPRIATE TEST. This technique al-
lows for the introduction of new code points into
the architecture. If a newly defined code point is
included in an Alert by an Alert sender before the
NetView product’s tables have been updated to in-
clude it, the default text that the NetView product
retrieves still provides a meaningful display. Later,

1BM SYSTEMS JOURNAL, VOL 27, NO 1, 1988

when the NetView product’s tables are updated to
include the new code point, the more informative
replacement text is automatically retrieved.

In addition to the code points and text strings con-
tained in the product itself, the NetView product
allows the customer to enter new code points and
text strings. A customer who writes an application
that sends its own Alerts, for example, might wish to
report conditions not covered by any of the text
strings initially included in the NetView product. To
do this, the customer would (1) select an unused
code point, (2) write the application in such a way
that it included the code point in the Alert that it
sent, and (3) enter the new code point and the desired
text into the NetView product. Once all of this had
been done, the NetView product would process this
Alert in exactly the same way that it processes any
other Alert.

Figure 8 indicates how the index code points are
carried in the Alert major vector. It shows one of the
subvectors defined for this major vector, the Failure
Causes (X'96') subvector. In this case the Failure
Causes subvector contains two subfields: the Failure

Causes (X'01') and Recommended Actions (X'81")
subfields. The code points themselves appear within
these subfields; in this case there are two Failure
Causes code points (X'3451' and X'6210') and one
Recommended Action code point (X'0301").

Figure 9 shows the sets of index code points defined
by the Alert architecture. The NetView product has
a separate table for each set of code points. The
nature of a code point, and thus the table into which
the NetView program must index, is determined by
the structure that contains the code point within the
Alert major vector. Thus, a Recommended Action
code point appears within the Recommended Action
subfield within one of four subvectors: the User
Causes, Install Causes, Failure Causes, or Cause Un-
determined subvector. A Probable Causes code
point, on the other hand, appears within the Proba-
ble Causes subvector.

Figure 10 shows one of the NetView program’s Alert
displays, the Recommended Action screen. The fol-
lowing elements of this display are stored text strings,
indexed by the indicated code points:

Figure8 Example showing how index code points are carried in an Alert major vector

8| = 2.BYTE ALERT MAJOR VECTOR LENGTH
= 2-BYTE ALERT MAJOR VECTOR KEY
1-BYTE FAILURE CAUSES SUBVECTOR LENGTH

= 1-BYTE FAILURE CAUSES SUBVECTOR KEY

1-BYTE FAILURE CAUSES SUBFIELD LENGTH

X'or 1-BYTE FAILURE CAUSES SUBFIELD KEY

1-BYTE RECOMMENDED ACTIONS SUBFIELD LENGTH

= 1-BYTE RECOMMENDED ACTIONS SUBFIELD KEY

IBM SYSTEMS JOURNAL, VOL 27, NO 1, 1988

MooRE 23

Figure 9 Sets of index code points defined by the Alert architecture

it "}/‘ e

CODE POINT SIZE FLOWS IN

ALERT DESCRIPTION 2-BYTE GENERIC ALERT DATA (X'92') SUBVECTOR

PROBABLE CAUSE 2-BYTE PROBABLE CAUSES (X'93') SUBVECTOR

USER CAUSE 2-BYTE CAUSES (X'01) SUBFIELD IN THE USER CAUSES (X'94) SUBVECTOR

INSTALL CAUSE 2-BYTE CAUSES (X'01) SUBFIELD IN THE INSTALL CAUSES (X'95") SUBVECTOR

FAILURE CAUSE 2-BYTE CAUSES (X'01') SUBFIELD IN THE FAILURE GAUSES (X'96") SUBVECTOR

RECOMMENDED ACTION 2-BYTE RECOMMENDED ACTION (X'81') SUBFIELD IN THE USER CAUSES
(X'94), INSTALL CAUSES (X'95), FAILURE CAUSES (X'96'), AND CAUSE
UNDETERMINED (X'97') SUBVECTORS

DATA ID +BYTE DETAILED DATA (X'82') SUBFIELD IN THE X'94-X'97 AND DETAILED
DATA (X'98") SUBVECTORS

RESOURCE TYPE 1-BYTE HIERARCHY NAME LIST (X10') SUBFIELD IN THE HIERARCHY/RESOURCE
LIST (X'05') SUBVECTOR

COMC, LINE, CTRL, and TERM: Resource-type
code points

DEVICE POWER OFF: User cause code point

TERMINAL MULTIPLEXER POWER OFF: User cause
code point

DEVICE CABLE NOT CONNECTED: User cause code
point

CHECK POWER: Recommended action code
point

CHECK CABLES AND THEIR CONNECTIONS: Rec-
ommended action code point

NONE: Implicit--the NetView product displays
this because the Alert contains no Install
Cause subvector

DISPLAY: Failure cause code point

DEVICE CABLE: Failure cause code point

CONTACT APPROPRIATE SERVICE REPRESENTA-
TIVE: Recommended action code point

REPORT THE FOLLOWING: Recommended action
code point

ERROR CODE: Data ID code point

The remaining elements of the display, i.e., the re-
source names PU123, etc., the sending product iden-
tification TTTT, and the variable data 21F, are not
stored text strings retrieved via code points. These
elements will be discussed later.

One useful property of index code points is that they
inherently provide support for different national lan-
guages. Since a code point itself is in no language at

24 woore

all, nothing special needs to be done when an Alert
crosses a national-language boundary. The tables in
the receiving NetView program contain text appro-
priate for the country where it is located, so Alerts
from anywhere in the world will automatically pro-
duce displays in the correct language: the language
spoken at the receiving site."°

While the 2-byte size of most of the index code
points defined in the Alert architecture provides for
up to 65536'' text strings, the question may still
arise as to what happens when these numbers are
exhausted. The subvector/subfield encoding method
used in the NMvT provides a very straightforward
answer. New ranges of code points can be introduced
at any time simply by adding new subvectors or
subfields to the architecture.

Detail qualifiers. While the technique of building
Alert displays using stored text strings indexed by
code points is quite flexible, it is not by itself suffi-
cient. A second mechanism is required for displaying
variable data to an operator. If, for example, an Alert
reports a failed attempt to set up a switched tele-
phone connection, two key pieces of information are
the calling telephone number and the telephone
number that was called. Obviously the NetView
program cannot store all possible telephone numbers
as text strings to be indexed by code points. Instead,
the telephone numbers themselves must be carried
within the Alert major vector.

IBM SYSTEMS JOURNAL, VOL 27, NO 1, 1988

Figure 10 Example of a NetView display: the Recommended Action screen

NETVIEHW
NPDA-45A * RECOMMENDED ACTION FOR SELECTED EVENT * PAGE 1 OF 1
USAO1 PU123 LINEOL C651F2

R

DOMAIN | coMC |==--LINE-===| CTRL

e ————t - ——————

USER CAUSED DEVICE POWER OFF
TERMINAL MULTIPLEXER POWER OFF
DEVICE CABLE NOT CONNECTED
ACTIONS I017 =~ CHECK POWER
1020 - CHECK CABLES AND THEIR CONNECTIONS

INSTALL CAUSED NONE

FAILURE CAUSED DISPLAY
DEVICE CABLE
ACTIONS I126 = CONTACT APPROPRIATE SERVICE REPRESENTATIVE
I141 = REPORT THE FOLLOWING:
TTTT ERROR CODE 21F

Figure 11 shows the structure defined by the Alert another product, should be explicitly identified in
architecture for the transport of variable data such conjunction with a particular piece of variable
as telephone numbers. [Instances of variable data data.

such as this are referred to as detail qualifiers in the ¢ The Data ID: This 1-byte index code point indexes
architecture; the structure that transports a detail a text string identifying the type of variable data
qualifier is the Detailed Data (X'82') subfield.] There contained in the subfield, e.g., CALLING TELE-
are four elements present in every Detailed Data PHONE NUMBER.

subfield: o The Data Encoding: This code instructs NetView

how to display the variable data. For example, the

o The Product ID Code: This code serves as an index
to product identification data that are carried else-
where in the Alert major vector. With this code, a
product sending an Alert can specify that it, or

1BM SYSTEMS JOURNAL, VOL 27, NO 1, 1988

same variable data X'FOFQ' will be displayed as
“FOF0” if the data encoding code is X'00' (hexa-
decimal), but as “00” if the data encodingis X'11'
(EBCDIC).

MOORE

25

Figure 11 The Detailed Data (X'82") subfield

Figure 12 Example of an X'82' subfield and the resulting display

X"10 23

‘ 1

I
: } b e s e e DETAILED DATA
| b e e e = e = DATA ENCODING
e e DATA 1D

b PRODUCT ID CODE

ACF/{FICT ABEND CODE 1023

o The Variable Data: Up to 44 bytes of variable points, the variable data are required to be truly
data. In order to be compatible with the national- language-independent: telephone numbers, ma-
language support provided by the Alert code chine error codes, port addresses, etc.

26 moore IBM SYSTEMS JOURNAL, VOL 27, NO 1, 1988

Figure13 Examples of code points with associated detail qualifiers

DE POI A o TEXT B

X'FOA3’ FAILURE OCCURRED ON (sf82 qualifier)

X'20A3' NO RESPONSE FROM THE X.21 NETWORK — (sf82 qualifier) EXPIRED

X"12Co’ RETRY AFTER (sf82 qualifier) {sf82 qualifier)

X320t LOCAL DCE COMMUNICATIONS INTERFACE (sf82 qualifier) (sf82 qualifier) (sf82 qualifier)

Figure 12 illustrates how the Detailed Data subfield
might be used to create a unit of display. It assumes
that the fictitious 1BM software product ACF/FICT has
sent an Alert in which it reports one of its own abend
codes. The text “ACF/FICT” is carried in a Product
Set ID subvector identifying the Alert sender; the
value X'91' instructs the NetView program to re-
trieve this text.!? The text “ABEND CODE” is retrieved
from a table of Data 1Ds by the NetView program,
via the code point X'01'. The text “1023” is dis-
played by the NetView program because it was in-
structed to treat the variable data as hexadecimal
rather than EBCDIC.

Each instance of the Detailed Data subfield creates
a single unit of display at the NetView program, of
the type illustrated in Figure 12. The location of this
unit of display in the overall set of displays created
by the NetView program for an Alert is determined
by the location of the Detailed Data subfield in the
Alert record. The most interesting case is that in
which the unit of display appears on the NetView
program’s Recommended Action screen, as “TTTT
ERROR CODE 21F” did in Figure 10. When a detail
qualifier appears on the Recommended Action
screen, it is always associated with a particular cause
or recommended action. In Figure 10, for example,
TTTT ERROR CODE 2IF is associated with the recom-
mended action REPORT THE FOLLOWING. Up to three
detail qualifiers may be associated with each cause
or action; Figure 13 illustrates the convention used
in the architecture for indicating where, within the
text string, the detail qualifier’s unit of display is to
be inserted by the NetView program.

Figure 14 illustrates the common structure shared
by the User Cause, Install Cause, and Failure Cause
subvectors in the Alert major vector. The first sub-
field in each of these subvectors is always the Causes
(X'01') subfield, containing all of the code points

IBM SYSTEMS JOURNAL, VOL 27, NO 1, 1988

for indexing text elements identifying causes. In
Figure 10 there would be three code points contained
in this subfield within the User Cause subvector, and
two code points in it within the Failure Cause sub-
vector. Next come any Detailed Data (X'82')
and/or Product Set 10 Index (X'83') subfields asso-
ciated with the causes code points. There would be
none of these in the Alert for Figure 10.

The Product Set 1D Index (X'83") subfield will not
be discussed in detail here. It provides the same
function as that provided by the Product 1D Code
field within the Detailed Data (X'82') subfield: in-
structing the NetView program to retrieve and dis-
play a product identification. It is used when a
product identification is desired, not in conjunction
with a piece of variable data, but just by itself. For
example, the Product Set ip Index subfield is used
with the recommended action text CALL THE APPRO-
PRIATE SERVICE REPRESENTATIVE FOR XXX; the
NetView program inserts the appropriate product
identification in place of the Xs.

Third, there is a Recommended Action (X'81') sub-
field containing one or more recommended action
code points. Finally, there is again a set of X'82'
and/or X'83' subfields, providing any detail quali-
fiers associated with the recommended action code
points contained in the X'81' subfield. In the Alert
for Figure 10, there is one X'82' subfield at this
location in the Failure Causes subvector, providing
the detail qualifier TTTT ERROR CODE 21F associated
with the recommended action REPORT THE FOLLOW-
ING.

The more general case shown in Figure 14 contains
multiple Detailed Data subfields following both the
causes and the recommended actions. The question
arises of how the NetView program knows which

voore 27

Figure 14 Structure of User Cause, Install Cause, and Failure Cause subvector

CAUSES (X'94, X'95', OR X'96") SUBVECTOR:

@

(0) {©) (@)

LK | = SUBVECTOR LENGTH AND KEY

= CAUSES (X'01) SUBFIELD

CP-n | = CAUSES OR RECOMMENDED ACTION CODE POINT

X'82 SF | = DETAILED DATA (X'82) SUBFIELD

detail qualifiers should be associated with which code
points. The problem is complicated by the fact that
one or more of the code points may be unknown to
the NetView program, since the NetView program
is prepared to accept unknown code points and
display default text for them. Given, then, the four
detail qualifiers (a)-(d) in Figure 14, how does the
NetView program know which ones (if any) belong
with cause cp-1, which with cause cp-2, and which
with cause CP-3?

The answer lies in the code points themselves. As
Figure 15 indicates, the third hexadecimal digit of
each user cause, install cause, failure cause, or rec-
ommended action code point indicates how many
qualifiers belong with the code point. If, for example,
cp-1 were X'10AQ', the NetView program would
know that qualifier (a), and only qualifier (a), be-
longed with it, even if X' 10AQ' were not in its table.
Similarly, if cp-2 were X'2121' and cp-3 were
X'11D0', the NetView program would know to
associate qualifiers (b)-(d) with cp-3.

In the case of an unknown code point with associated
qualifiers, the NetView program associates the units
of display for the qualifiers with the default text that
it displays for the code point.

Obviously it is up to the Alert sender to guarantee
that exactly the right number of qualifiers are pro-
vided for the causes or recommended action code
points included.

28 nooRE

Alert hierarchies

The NetView program’s Alert displays have always
included hierarchy diagrams, such as that illustrated
across the top of Figure 10. For each resource iden-
tified in the hierarchy, both an 8-character resource
name and a 4-character resource type are displayed.
The hierarchy is constructed on the basis of infor-
mation provided to the NetView program by the
Alert sender and by the Virtual Telecommunications
Access Method (vram). Basically, VTAM is responsi-
ble for providing hierarchy information down
through the Alert sender, while the Alert sender must
provide information on any resources below itself.

Alert hierarchies play a number of roles in the
NetView program:

» They provide the operator with a picture of where
a failing resource is located in the network, and
what path through the network must be taken to
reach it from the NetView program.

o They allow the operator to select Alerts from
specified senders for special processing, e.g., to
have them logged but not displayed immediately
by the NetView program.

& They form the basis for retrieval of Alerts from
the NetView program’s Alert database.

The generic Alert architecture does not introduce

any significant changes in the transport or processing
of Alert hierarchy information.

IBM SYSTEMS JOURNAL, VOL 27, NO 1, 1988

CP-1 CP-2 CP-3 CP4

= RECOMMENDED ACTION (X'81") SUBFIELD

Protocol-unique subvectors

The architecture provides a very general mechanism
allowing Alert senders to have the NetView program
create Alert displays. In certain cases, however, more
specialized encodings are needed. A good example
of this is the specialized subvectors defined for the
various link-level protocols.

Figure 16 shows the types of data carried in the SDLC
Link Station Data (X'8C') subvector. While it would
be possible to define Data 1Ds for each of these types
of data, and then pass the data themselves in Detailed
Data (X'82') subfields, there are several reasons why
1t is preferable to define a separate subvector for
these data.

¢ Since many of the pieces of data are interrelated,
it makes sense to enforce a grouping of them, both
in the Alert major vector and on the NetView
displays.

« This sort of data might be included in other man-
agement services records besides the Alert, e.g., in
a major vector reporting details concerning a link
connection. Putting this type of data into its own
subvector facilitates its inclusion in different major
vectors.

» This sort of data lends itself to automated analysis
by various types of software. Putting the data into
a separate subvector, rather than passing them as
a series of detail qualifiers that could appear within

IBM SYSTEMS JOURNAL, VOL 27, NO 1, 1988

Figure 15 Scheme for associating detail qualifiers with code
points

=] QUALIFIERS

XxxOx'-X'xx9x’ NO X'82° OR X'83' SUBFIELDS
XxoxAx'-XxxBx' ONE X'82' SUBFIELD

X'xxCx'’ TWO X'82' SUBFIELDS

XxxDx' THREE X'82' SUBFIELDS
X'xxEx' ONE X'83' SUBFIELD

X'xxFx' RESERVED FOR FUTURE USE

any of a number of subvectors, makes it much
easier for an automated routine to find the data
within the Alert major vector.

Currently the Alert architecture contains three sub-
vectors for transporting protocol-unique data: the
spLC Link Station Data (X'8C') subvector described
in Figure 16, the LAN Link Connection Subsystem
Data (X'51') subvector, for transporting data on
token-ring, CSMA/CD, and bridged local-area net-
works, and the Link Connection Subsystem Config-
uration Data (X'52') subvector, for transporting

moore 29

Figure 16 Subfields in the SDLC Link Station Data (X'8C') subvector

SUFIELD ESCRIPTION

X'or CURRENT N(S)/N(R) COUNTS

X'02' QUTSTANDING FRAME COUNT

X'03 LAST SDLC CONTROL FIELD RECEIVED

X'04' LAST SDLC CONTROL FIELD SENT

X085 SEQUENCE NUMBER MODULUS FOR THE LINK STATION

X'06' LINK STATION STATE (LOCAL OR REMOTE LINK STATION BUSY)
X7’ NUMBER OF TIMES THE LLC REPLY TIMER (T1) HAS EXPIRED
X'08’ LAST RECEIVED N(R) COUNT

data on various types of link connections. Additional
protocol-unique subvectors may be defined later if
they are required.

Conclusion

With its introduction of the generic Alert architec-
ture in Release 2 of the NetView program, 1BM has
provided a foundation upon which customers will
be able to base the management of their increasingly
commeon multivendor networks. This paper has de-
scribed several key features of this architecture. It
has also discussed how equipment and software man-
ufactured by 1BM, by other vendors, and by the
customer can, by using the architecture, all receive
equivalent support from the NetView program.

NetView and NetView/PC are trademarks of International Busi-
ness Machines Corporation.

Cited references and notes

1. For a full description of the NetView/PC program, see
M. Ahmadi, J. H. Chou, and G. Gafka, “NetView/PC,” IBM
Systems Journal 27, No. 1, 32-44 (1988, this issue).

2. Robert E. Moore, “Problem Detection, Isolation, and Notifi-
cation in Systems Network Architecture,” IEEE Infocom’86
Proceedings, Miami, April 8-10, 1986, pp. 377-381.

3. In 1986 IBM released the NetView program, which contained
a number of previously separate network management appli-
cations. One of these applications was Network Problem De-
termination Application (NPDA), a product that received
Alerts from the network and presented them to the network
operator. References in this paper to functions provided by
the NetView program in many cases identify functions that
were initially provided by NPDA.

30 woore

4, Provision was made, in the Alert architecture and in the
NetView program, for a partial display based on some variable
data transported in the Alert, but this display was clearly
inferior to the ordinary stored-panel displays.

5. SNA Formats, GA27-3136, IBM Corporation; available
through IBM branch offices.

6. SNA Format and Protocol Reference Manual: Management
Services, SC30-3346, IBM Corporation; available through
IBM branch offices.

7. In the case of non-SNA products, the SNA component is an
application program that runs on the NetView/PC program.
This application program communicates with the non-SNA
product itself to gather the necessary data on an error; then it
formats these data as a generic Alert and makes use of the
capability provided by the NetView/PC program to forward
the Alert to the NetView program.

8. The negative side of this flexibility, excessive diversity, was
discussed earlier. It is important to recognize, though, the
benefits that it also provided.

9. The maximum length allowed for an NMVT is 512 bytes.

10. The same point obviously applies to stored panels as well:
Since the index to a set of panels is not in any language either,
it can index panels in different languages at different instances
of the NetView program. The difference is one of practicality:
Translation of generic Alert text strings is a manageable un-
dertaking, whereas translation of literally thousands of sets of
stored panels is not.

11. Actually, the number is not quite this large. First, the default/
replacement structure reduces the number of available code
points: Unless there are exactly 255 replacements under each
default code point, some numbers will go unused. Second,
there is a meaning assigned to the third hexadecimal digit of
each code point that potentially causes other numbers to go
unused as weli. This use of the third digit of the code points
is explained in the “Detail Qualifiers” section of the text.

12. The Product Set ID is not discussed in this paper. For details,
see References 5 and 6.

Robert E. Moore /BM Communication Products Division, P.O.
Box 12195, Research Triangle Park, North Carolina 27709.

IBM SYSTEMS JOURNAL, VOL 27, NO 1, 1988

Dr. Moore joined IBM in 1983. He has been in Network Manage-
ment Architecture since that time, working primarily on the
development of the generic Alert architecture. Currently he is
working in the area of Performance and Accounting Management.
Dr. Moore received a B.A. in mathematics and philosophy from
Rice University in 1971, an M.A. and a Ph.D. in philosophy from
Duke University in 1974 and 1977, respectively, and an M.S. in
computer science from the University of Houston in 1983.

Reprint Order No. G321-5308.

IBM SYSTEMS JOURNAL, VOL 27, NO 1, 1988

moore 31

